当前位置:文档之家› 线性方程组解的结构

线性方程组解的结构

线性方程组解的结构
线性方程组解的结构

课题:高等代数第3.4.1页

课题:高等代数第3.4.2页

课题:高等代数第3.4.3页

课题:高等代数第3.4.4页

课题:高等代数第3.4.5页

课题:高等代数第3.4.6页

【免费下载】线性方程组的解空间

第六章 向量空间 6.1 定义和例子 6.2 子空间 6.3 向量的线性相关性 6.4 基和维数 6.5 坐标 6.6 向量空间的同构 6.7 矩阵的秩齐次线性方程组的解空间返回教案总目录6.7矩阵的秩,齐次线性方程组的解空间一、教学思考 1、矩阵的秩与线性方程组解的理论在前面已经有过讨论,本节运用向量空间的有关理论重新认识矩阵的秩的几何意义,讨论线性方程组解的结构。2、注意:齐次线性方程组(含n 个未知量)的解的集合构成n F 的子空间,而非齐次线性方程组的解的集合非也。3、注意具体方法:1)证矩阵的行空间与列空间的维数相等;2)求齐次线性方程组的基础解系。 二、内容要求 1、内容:矩阵的秩的几何意义,齐次线性方程组的解空间。 2、要求:理解掌握矩阵的秩的几何意义,齐次线性方程组的基础解系的求法。三、教学过程 1、矩阵的秩的几何意义几个术语:设)(F M A n m ?∈,????? ??=mn m n a a a a A 1111,A 的每一行看作n F 的一个元素,叫做A 的行向量,用),2,1(m i i =α表示;由),2,1(m i i =α生成的n F 的子空间),,(1m L αα 叫做矩阵A 的行空间。 类似地,A 的每一列看作m F 的一个元素,叫做A 的列向量;由A 的n 个列向量生成的m F 的子空间叫做矩阵A 的列空间。注:)(F M A n m ?∈的行空间与列空间一般不同,分别是n F 与m F 的子空间;下证其维数相同。 引理6.7.1设)(F M A n m ?∈,1)若PA B =,P 是一个m 阶可逆矩阵,则B 与A 有相同的行空间;2)若AQ C =,Q 是一个n 阶可逆矩阵,则C 与A 有相同的列空间。分析:设()()()m m ij n m ij n m ij p P b B a A ???===,,,),2,1(m i i =α是A 的行向量,),2,1(m j j =β是B 的行向量;只需证这两组向量等价。

线性方程组解的几何意义

设有三元非齐次线性方程组 线性方程组解的几何意义 ???????=++=++=++,,,)1(22221111m m m m d z c y b x a d z c y b x a d z c y b x a 我们来讨论一下三元非齐次线性方程组解的几何意义.

2) 有唯一解这时方程组(1) 中的m 个方?? ???=+--=--=+,423, 32,123z y x y x z x 该方程组有唯一解.817,21,4 7??? ??--则方程组(1) 的解有以下三种情况: 1) 无解这时方程组(1) 中的m 个方程所表示的平面既不交于一点, 也不共线、共面. 程所表示的平面交于一点. 例如

其几何意义如图3 -11 所示. 2x-y=-3 3x+2z=-1 x-3y+2z=4 图3-11

交直线所确定.3) 有无穷多组解 这时又可分为两种情形:情形一自由变量, 基础解系中有两个向量,其一般解的形式为 γ=c 1η1+ c 2η2+ γ0(c 1, c 2为任意常数).这时方程组的所有解构成一个平面, 而这个平面是由过点γ0且分别以η1、η2为方向向量的两条相A 的秩=A 的秩= 1 .此时,有两个γ=c 1η1+ c 2η2+ γ0 称为平面的参数方程.

例如, 设保留方程组为 x + y + z = 3, 则可求得其通解为 . 11110101121???? ? ??+????? ??-+????? ??-=c c x

则过点P (1,1,1) 分别以(1,-1,0)T , (1,0,-1)T 为方向,1 10111:,0 11111:21--=-=--=--=-z y x L z y x L 则这两条相交直线L 1, L 2所确定的平面的方程即向量的两直线的方程分别为 为x + y + z = 3 . 如图3-12

求解线性方程组的直接解法

求解线性方程组的直接解法 5.2LU分解 ① Gauss消去法实现了LU分解 顺序消元结束时的上三角矩阵U和所用的乘数,严格下三角矩阵。 将下三角矩阵的对角元改成1,记为L,则有A=LU, 这事实是一般的,我们不难从消去的第k个元素时的矩阵k行及k列元素的 历史得到这一点.因为从消元的历史有 u kj=a kj-m k1u1j- m k2u2j -…- m k,k-1u k-1,j, j=k,k+1,…,n m ik=(a ik-m i1u1k- m i2u2k -…-m i,k-1u k-1,k>/u kk i=k+1,k+2,…,n 于是a kj=m k1u1j+m k2u2j+…+m k,k-1u k-1,j+u kj, j=k,k+1,…,n a ik=m i1u1k+m i2u2k+…+m i,k-1u k-1,k+m ik u kk i=k+1,k+2,…,n 从前面两个式子我们可以直接计算L和U(见下段>.将矩阵分解为单位下 三角矩阵和上三角矩阵之积称为矩阵的LU分解.顺序消元实现了LU分 解,同时还求出了g, Lg=b的解. ②直接LU分解 上段我们得到(l ij=m ij> u kj=a kj-l k1u1j-l k2u2j -…- l k,k-1u k-1,j, j=k,k+1,…,n l ik=(a ik-l i1u1k-l i2u2k -…-l i,k-1u k-1,k>/u kk i=k+1,k+2,…,n 2 诸元素对应乘积,只不过算L的元素时还要除以同列对角元.这一规律很 容易记住.可写成算法(L和U可存放于A>: for k=1:n-1 for j=k:n u kj=a kj-l k1u1j-l k2u2j -…- l k,k-1u k-1,j end for i=k+1:n l ik=(a ik-l i1u1k-l i2u2k -…-l i,k-1u k-1,k>/u kk end end 这一算法也叫Gauss消去法的紧凑格式,可一次算得L,U的元素,不需逐步 计算存储.

线性方程组的解法

线性方程组的解法 1 引言 在科学研究和大型工程设计中出现了越来越多的数学问题,而这些问题往往需要求数值解。在进行数值求解时,经离散后,常常归结为求解形如Ax= b的大型线性方程组。而如插值公式,拟合公式等的建立,微分方程差分格式的构造等,均可归结为求解线性方程组的问题.在工程技术的科学计算中,线性方程组的求解也是最基本的工作之一.因此,线性方程组的解法一直是科学和工程计算中研究最为普遍的问题,它在数值分析中占有极其重要的地位。20世纪50年代至70年代,由于电子计算机的发展,人们开始考虑和研究在计算机上用迭代法求线性方程组Ax =b的近似解,用某种极限过程去逐渐逼近精确解,并发展了许多非常有效的迭代方法,迭代法具有需要计算机存储单元少、程序设计简单、原始系数矩阵在计算过程中始终不变等优点。例如Jacobi方法、Gauss—Seidel 方法、SOR方法、SSOR 方法,这几种迭代方法是最常用的一阶线性定常迭代法。 2 主要算法 20世纪50年代至70年代,人们开始考虑和研究用迭代法求解线性方程组。 Ax = b (1) 的近似解,发展了许多有效的方法,其中有Jacobi方法、Gauss—Seidel方法,SOR方法、SSOR方法,这几种迭代方法均属一阶线性定常迭代法,即若系数矩阵A的一个分裂:A =M-N ;M 为可逆矩阵,线性方程组(1)化为: (M-N)X =b; →M X = NX + b; →X= M -1NX+ M-1b 得到迭代方法的一般公式: X(k+1)=HX(k)+d (2) 其中:H =MN-1,d=M-1b,对任意初始向量X(0) 一阶定常迭代法收敛的充分必要条件是: 迭代矩H的谱半径小于1,即ρ(H) < 1;又因为对于任何矩阵范数恒有ρ(H)≤‖H‖,故又可得到收敛的一个充分条件为:‖H‖< 1。 2.1 Jacobi迭代法 若D为A的对角素构成的对角矩阵,且对角线元素全不为零。系数矩阵A的一个分解:A =

浅析线性方程组的解法及应用

目录 摘要 ........................................................................ I Abstract.................................................................... II 第一章绪论 (1) 1.1 引言 (1) 第二章行列式与线性方程组求解 (1) 2.1 标准形式的二元线性方程组 (1) 2.2 标准形式的三元线性方程组 (2) 2.3 克莱姆法则 (3) 2.3.1逆序数 (3) 2.3.2 克莱姆法则 (4) 第三章线性方程组的理论求解 (6) 3.1 高斯消元法 (6) 3.2 线性方程组解的情况 (7) 3.3 将非齐次方程组化为齐次方程组求解方法 (8) 第四章求解线性方程组的新方法 (9) 第五章线性方程组的应用 (11) 5.1 投入产出数学模型 (11) 5.2 齐次线性方程组在代数中的应用 (14) 第六章结论 (16) 参考文献 (17) 致谢 (18)

浅析线性方程组的解法及应用 学生:陈晓莉指导教师:余跃玉 摘要:线性方程组的求解方法在代数学中有着极其重要的作用.本文介绍了有关线性方程组的一些基本求解方法,由二元到三元的线性方程组,再到n姐线性方程组,其中详细介绍了克莱姆法则。然后是对于齐次方程组和非齐次线性方程组,介绍了线性方程组的理论解法,里面介绍了消元法、解的情况、将非线性化成线性方程组来求解。并且给出了相关的例题,可以加深对线性方程组求解的方法的认识。对于线性方程组还有什么解法,本文也将有探讨。介绍了这么多解线性方程组的求解,相信在今后解线性方程组会更加方便。最后还有关于线性方程组的应用,主要介绍了关于投入产出的数学模型,在经济分析与管理中会经常用到。 关键词:线性方程组; 高斯消元法;行列式

解线性方程组的基本思想

四:基本方法 基本思路将在解题的过程中得到体现。 1.(求线性方程组的唯一解或特解),这类问题的求法分为两类:一类主要用于解低阶稠 密矩阵——直接法;一类是解大型稀疏矩阵——迭代法。 1.1利用矩阵除法求线性方程组的特解(或一个解) 方程:AX=b,解法:X=A\b,(注意此处’\’不是’/’) 例1-1 求方程组的解。 解: A = ; = ;b=(1,0,0,0,1)’ 由于>>rank(A)=5,rank( )=5 %求秩,此为R(A)=R()>=n的情形,有唯一解。 >>X= A\b %求解X =(2.2662, -1.7218, 1.0571,-0.5940, 0.3188)’ 或用函数rref 求解,>>sv=rref(A:b);所得sv的最后一列即为所要求的解。 1.2 利用矩阵的LU、QR和cholesky分解求方程组的解 这三种分解,在求解大型方程组时很有用。其优点是运算速度快、可以节省磁盘空间、节省内存。 I) LU分解又称Gauss消去分解,可把任意方阵分解为下三角矩阵的基本变换形式(行交换)和上三角矩阵的乘积。即A=LU,L为下三角阵,U为上三角阵。 则:A*X=b 变成L*U*X=b 所以X=U\(L\b) 这样可以大大提高运算速度。命令[L,U]=lu (A) 在matlab中可以编如下通用m 文件: 在Matlab中建立M文件如下 % exp1.m A;b; [L,U]=lu (A); X=U\(L\b) II)Cholesky分解 若A为对称正定矩阵,则Cholesky分解可将矩阵A分解成上三角矩阵和其转置的乘积,即:其中R为上三角阵。 方程A*X=b 变成所以 在Matlab中建立M文件如下 % exp2.m A;b; [R’,R]=chol(A); X=R\(R’\b) III)QR分解 对于任何长方矩阵A,都可以进行QR分解,其中Q为正交矩阵,R为上三角矩阵的初等变换形 式,即:A=QR 方程A*X=b 变形成QRX=b 所以X=R\(Q\b)

直接法解线性方程组

直接法解线性方程组 实习题目: 仿照三对角方程组的追赶法解五对角方程组,其中系数矩阵为A,右端向量为:r。将A分解为LU。其中L为下三角,U为单位上三角。A为7*7阶的矩阵,其中对角元为4 5 6 7 8 9 10。上下次三角对角线元素为1 2 3 4 5 6 ;上下第二条对角线元素为1 2 3 4 5;右端项为:1 2 3 4 5 6 7. 要求:输出系数矩阵A,右端向量r,下三角矩阵L,单位上三角矩阵U,下三角矩阵Ly=b 的解向量y,单位上三角方程组Ux=y的解(即最终的解向量。保留七位小数。 实现方法:通过MATLAB编程实现。建立MATLAB脚本文件。 首先通仿照三对角方程组的追赶法得到五对角矩阵的实现算法。 然后又MATLAB编程实现。 实验结果(MATLAB截图):

结果分析: 通过提供的计算数据得到最终的解向量x及中间过程产生的下三角矩阵L,单位上三角矩阵U,下三角矩阵Ly=b 的解向量y。 同时为了确保算法的正确性,我还通过MATLAB的左除运算检验得使用此算法的计算结果正确。 这里由于是用MATLAB,最终结果为分数形式,考虑到精确解一般比近似解更好,因此未化成七位小数形式。 算法实现分析: 首先计算L和U的元素。由于已知L和U的特定形式(及除了对角线和上下次对角线和上下第二条对角线外,其余为0。故通过矩阵的乘法即可得到LU中元素的计算公式。(具体算法见MATLAB程序) 算法优劣点:

1.解此题时看上去要用较多的存储单元,但实际上只需存储系数矩阵A的不为0的元素。 2.A分解为LU计算完成后,后续计算x和y的“追赶过程”运算量一般来说计算量比较小。 3.此题也可用之前的LU算法求解。但此处算法与一般的LU分解的解线性方程组的算法,相比计算量小了不少。 4.对于此处特定的对称的系数矩阵A,算法还可以进一步优化。 5.由于我在此算法中A.L U的各对角值均用一个列向量表示,一个缺点在于输出A,L,U时要重新组成矩阵形式。不过优点在于减少了存储单元。 6.另一缺点是,未能将结果封装成一个文件。 后附MATLAB代码: c=[4,5,6,7,8,9,10];d=[1,2,3,4,5,6,0];b=[0,1,2,3,4,5,6];e=[1,2,3,4,5,0,0];a=[0,0,1,2,3,4,5]; r=[1 2 3 4 5 6 7]; w=zeros(7,1);x=zeros(7,1);y=zeros(7,1);m=zeros(7,1);n=zeros(7,1);h=zeros(7,1); w(1)=c(1);m(1)=d(1)/c(1);n(1)=e(1)/c(1); h(2)=b(2);w(2)=c(2)-h(2)*m(1);m(2)=(d(2)-b(2)*n(1))/w(2);n(2)=e(2)/w(2); for k=3:5 h(k)=b(k)-a(k)*m(k-2); w(k)=c(k)-a(k)*n(k-2)-h(k)*m(k-1); m(k)=(d(k)-h(k)*n(k-1))/w(k); n(k)=e(k)/w(k); end h(6)=b(6)-a(6)*m(4); w(6)=c(6)-a(6)*n(4)-h(6)*m(5); m(6)=(d(6)-h(6)*n(5))/w(6); h(7)=b(7)-a(7)*m(5); w(7)=c(7)-a(7)*n(5)-h(7)*m(6); y(1)=r(1)/w(1);y(2)=(r(2)-h(2)*y(1))/w(2); for k=3:7 y(k)=(r(k)-a(k)*y(k-2)-h(k)*y(k-1))/w(k); end x(7)=y(7); x(6)=y(6)-x(7)*m(6);

解线性方程组基思想

解线性方程组基思想

————————————————————————————————作者:————————————————————————————————日期:

四:基本方法 基本思路将在解题的过程中得到体现。 1.(求线性方程组的唯一解或特解),这类问题的求法分为两类:一类主要用于解低阶稠 密矩阵——直接法;一类是解大型稀疏矩阵——迭代法。 1.1利用矩阵除法求线性方程组的特解(或一个解) 方程:AX=b,解法:X=A\b,(注意此处’\’不是’/’) 例1-1 求方程组的解。 解: A = ; = ;b=(1,0,0,0,1)’ 由于>>rank(A)=5,rank( )=5 %求秩,此为R(A)=R()>=n的情形,有唯一解。 >>X= A\b %求解X =(2.2662, -1.7218, 1.0571,-0.5940, 0.3188)’ 或用函数rref 求解,>>sv=rref(A:b);所得sv的最后一列即为所要求的解。 1.2 利用矩阵的LU、QR和cholesky分解求方程组的解 这三种分解,在求解大型方程组时很有用。其优点是运算速度快、可以节省磁盘空间、节省内存。 I) LU分解又称Gauss消去分解,可把任意方阵分解为下三角矩阵的基本变换形式(行交换)和上三角矩阵的乘积。即A=LU,L为下三角阵,U为上三角阵。 则:A*X=b 变成L*U*X=b 所以X=U\(L\b) 这样可以大大提高运算速度。命令[L,U]=lu (A) 在matlab中可以编如下通用m 文件: 在Matlab中建立M文件如下 % exp1.m A;b; [L,U]=lu (A); X=U\(L\b) II)Cholesky分解 若A为对称正定矩阵,则Cholesky分解可将矩阵A分解成上三角矩阵和其转置的乘积,即:其中R为上三角阵。 方程A*X=b 变成所以 在Matlab中建立M文件如下 % exp2.m A;b; [R’,R]=chol(A); X=R\(R’\b) III)QR分解 对于任何长方矩阵A,都可以进行QR分解,其中Q为正交矩阵,R为上三角矩阵的初等变换形 式,即:A=QR 方程A*X=b 变形成QRX=b 所以X=R\(Q\b)

追赶法求解三对角线性方程组

追赶法求解三对角线性方程组 一 实验目的 利用编程方法实现追赶法求解三对角线性方程组。 二 实验内容 1、 学习和理解追赶法求解三对角线性方程组的原理及方法; 2、 利用MATLAB 编程实现追赶法; 3、 举例进行求解,并对结果进行分。 三 实验原理 设n 元线性方程组Ax=d 的系数矩阵A 为非奇异的三对角矩阵 11222=(1)(n 1)()()a c b a c A a n c b n a n ??????????--?????? ………… 这种方程组称为三对角线性方程组。显然,A 是上下半宽带都是1的带状矩阵。设A 的前n-1个顺序主子式都不为零,根据定理2.5的推论,A 有唯一的Crout 分解,并且是保留带宽的。 其中L 是下三角矩阵,U 是单位上三角矩阵。利用矩阵相乘法,可以1112212(1)1u(n 1)()()1l u m l u A LU l n m n l n ????????????????==?????--????????????……………

得到: 由上列各式可以得到L 和U 。 引入中间量y ,令 y Ux =,则有: 已知 L 和d ,可求得y 。 则可得到y 的求解表达式: 11/1 2,3,,()(1)*y()=()[()(1)]/y d l i n m i y i li i di y i di m i y i li ==-+=--… 1111111/1(2)(1)(1)u (1)(11)/(1)(1)(1)l a l u c u c l mi bi i n a i m i i l i i n ci li ui ui ci li l i a i b i ui =*===≤≤+=+++≤≤-=?=+=+-+Ax LUx Ly d Ly d ====1112222(1)(n 1)(n 1)()()(n)(n)l y d m l y d l n y d m n l n y d ?????????????????????????=??????---?????????????????? ……………

线性方程组的解空间

第六章 向量空间 6、1 定义与例子 6、2 子空间 6、3 向量的线性相关性 6、4 基与维数 6、5 坐标 6、6 向量空间的同构 6、7 矩阵的秩齐次线性方程组的解空间 返回教案总目录 6、7矩阵的秩,齐次线性方程组的解空间 一、教学思考 1、矩阵的秩与线性方程组解的理论在前面已经有过讨论,本节运用向量空间的有关理论重新认识矩阵的秩的几何意义,讨论线性方程组解的结构。 2、注意:齐次线性方程组(含n 个未知量)的解的集合构成n F 的子空间,而非齐次线性方程组的解的集合非也。 3、注意具体方法:1)证矩阵的行空间与列空间的维数相等;2)求齐次线性方程组的基础解系。 二、内容要求 1、内容:矩阵的秩的几何意义,齐次线性方程组的解空间。 2、要求:理解掌握矩阵的秩的几何意义,齐次线性方程组的基础解系的求法。 三、教学过程 1、矩阵的秩的几何意义 几个术语:设)(F M A n m ?∈,??? ? ? ??=mn m n a a a a A ΛΛΛ ΛΛ 1111,A 的每一行瞧作n F 的一个元素,叫做A 的行向量,用),2,1(m i i Λ=α表示;由),2,1(m i i Λ=α生成的n F 的子空间 ),,(1m L ααΛ叫做矩阵A 的行空间。 类似地,A 的每一列瞧作m F 的一个元素,叫做A 的列向量;由A 的n 个列向量生成的m F 的子空间叫做矩阵A 的列空间。 注:)(F M A n m ?∈的行空间与列空间一般不同,分别就是n F 与m F 的子空间;下证其维数相同。 引理6、7、1设)(F M A n m ?∈, 1)若PA B =,P 就是一个m 阶可逆矩阵,则B 与A 有相同的行空间; 2)若AQ C =,Q 就是一个n 阶可逆矩阵,则C 与A 有相同的列空间。 分析:设() ()()m m ij n m ij n m ij p P b B a A ???===,,,),2,1(m i i Λ=α就是A 的行向

线性方程组解的判定

1 / 3 第四节 线性方程组解的判定 从本节开始,讨论含有n 个未知量、m 个方程的线性方程组的解. 11112211211222221122n n n n m m mn n m a x a x a x b a x a x a x b a x a x a x b +++=??+++=????+++= ? (13—2) 主要问题是要判断出方程组(13-2)何时有解?何时无解?有解时解有多少?如何求出方程组的解。 线性方程组有没有解,以及有怎样的解,完全决定于方程组的系数和常数项。因此,将线性方程组写成矩阵形式或向量形式,以矩阵或向量作为讨论线性方程组的工具,将带来极大的方便。 方程组(13-2)中各未知量的系数组成的矩阵111212122212n n m m mn a a a a a a A a a a ??????=?????? 称为方程组(13-2)的系数矩阵.由各系数与常数项组成的矩阵,称为增广矩阵,记作A ,即 11121121 222212n n m m mn m a a a b a a a b A a a a b ??????=?????? 方程组(13-2)中的未知量组成一个n 行、1列的矩阵(或列向量),记作X ;常数项组成一个m 行、1列 的矩阵(或列向量),记作b ,即12n x x X x ??????=??????,12m b b b b ??????=?????? 由矩阵运算,方程组(13—2)实际上是如下关系111212122212 n n m m mn a a a a a a a a a ????????????12n x x x ????????????=12m b b b ???????????? 即 AX=b

追赶法解三对角方程组

《数值分析》课程设计追赶法解三对角方程组 院(系)名称信息工程学院 专业班级10普本信计 学号100111014 学生姓名刘银朋 指导教师张荣艳 2013 年05 月31日

数值分析课程设计评阅书 题目追赶法解三对角方程组 学生姓名刘银朋学号100111014 指导教师评语及成绩 指导教师签名: 年月日答辩评语及成绩 答辩教师签名: 年月日 教研室意见 总成绩: 教研室主任签名: 年月日

课程设计任务书 2012—2013学年第二学期 专业班级:10普本信息与计算科学学号:100111014 姓名:刘银朋 课程设计名称:数值分析Ⅰ、Ⅱ 设计题目:追赶法解三对角方程组 完成期限:自2013 年05月21 日至2013年05 月31日共10天 设计依据、要求及主要内容: 一、设计目的 理解追赶法,掌握追赶法的算法设计以及关于追赶法的分析和综合应用,能 够较熟练的应用Matlab软件编写求解追赶法的程序和应用Matlab软件数据库软 件. 二、设计内容 (1)认真挑选有代表性的三对角方程组. (2)认真梳理解三对角方程组的解题思路. (3)比较追赶法和高斯消去法的计算精度. 三、设计要求 1.先用Matlab数据库中的相应的函数对选定的方程,求出具有一定精度的解. 2.然后使用所用的方法编写Matlab程序求解. 3.对于使用多个方程解同意问题的,在界面上要设计成菜单的形式. 计划答辩时间:2013年06 月 5 日 工作任务鱼工作量要求: 查阅文献资料不少于3篇,课程设计报告1篇不少于3000字. 指导教师(签字):教研室主任(签字): 批准日期:2013 年05 月20 日

第三章 解线性方程组的直接方法

习题 3.1 1. 求下列方阵的秩: (1)??? ?? ??--340313021201;(2)????? ??----174034301320;(3)??????? ? ?---------12433023221453334 311 ;(4)??????? ??------34732038234202173132. 2. 求下列方阵的逆矩阵: (1) ?? ? ?? ? ?323513123; (2) ????? ?? ??-----1210232112201023. 3. 解下列矩阵方程 (1) 设 ???? ? ??--=????? ??--=1322 31,113122214B A ,求X 使B AX =; (2) 设 ??? ? ??-=? ???? ??---=132 321,433312120B A ,求X 使B XA =; (3) ?? ??? ??-=????? ??-=????? ??-=112510324, 123011113,1120111111C B A ,求X 使C AXB =. 4. 求下列行列式 (1)? ? ? ??? ??????71 1 0251020214214 ;(2)????????????-260523211213 141 2;(3)?? ? ???????---ef cf bf de cd bd ae ac ab ; (4) ????????????---d c b a 100110011001. 5. 判断下列线性方程组解的情况,如果有唯一解,则求出解. ???????=+++-=----=+-+=+++;01123,2532,242,5)1(432143214 3214321x x x x x x x x x x x x x x x x ? ? ???????=+=++=++=++=+;15,065,065,065,165)2(545434323212 1x x x x x x x x x x x x x (3) ? ?? ??=-++=-+-=-+-;3222, 2353, 132432143214321x x x x x x x x x x x x (4) ?????=---=--+=+++.034,0222,022432143214321x x x x x x x x x x x x 习题 3.2 1. 用回代法解上三角形线性方程组 (1)??? ????==+-=-+=++;63,3,6333,8484443432321x x x x x x x x x (2)?? ???? ?-=-=+--=+--=-+.63,1032,92,9244343242 1x x x x x x x x x 2. 用回代法解下三角形线性方程组

线性方程组解决实际问题项目

线性方程组解决实际问题项 目 -标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

项目名称应用线性方程组解决实际问题项目 【项目内容】营养食谱问题 高考前期一个饮食专家给即将踏入高考大门的学子准备了一份膳食计划,以此来帮助同学们提高和调节身体所摄入的大量营养,提供一定量的维生素C、钙和镁。其中用到3种食物,它们的质量用适当的单位计量。这些食品提供的营养以及食谱需要的营养如下表给出 【相关知识点】 1.线性方程组间的代数运算; 2.线性相关性之间的关系; 3.矩阵与增广矩阵之间的行最简化法; 4.其次线性方程组与非齐次线性方程组的解法; 5.向量组的线性组合以及线性相关性; 【模型假设与分析】

【解】设X1、X2、X3分别表示这三种食物的量。对每一种食物考虑一个向量,其分量依次表示每单位食物中营养成分维生素C、钙和镁的含量: 食物1:1= 食物2:2= 食物3:3=食物4:4= 需求: 【模型建立】 则X11、X22、X33、X44分别表示三种食物提供的营养成分,所以,需要的向量方程为 X11+X22+X33+X4 4 = 则有= 【模型求解】 利用矩阵与增广矩阵之间的行最简化法; = ~

则线性相关 R(A)=4=R(A,b)该线性方程组有唯一解。 【结论及分析】 解此方程组 得到: X1= X2= X3= X4=-5 因此食谱中应该包含个单位的食物1,个单位的食物2,个单位的食物3。个单位的食物4。 由此可得合理的膳食与线性方程组息息相关,由方程可知合理膳食的特解,即在一定的条件下,食物的摄入量是相对稳定的,过多或过少都不利于生理所需,唯有达到一个特解时,营养与体能的搭配才是最完美的。 【心得与体会】 通过生活中的这个小例子,我们小组总结以下发现,线性方程组在生活中的运用是普遍而广泛的,通过学习和查阅资料,让我们更真切的理解和体会到线性方程在身边的实用性,如果合理的运用,不仅对我们身体健康有所帮助,而且有益于我们全面的理解数学世界观,对我们人生有重大的指导和参考意义,线性方程组在科学研究等诸多方面有更广泛深入的应用。希望通过这次的实践和应用,努力将其联系到实际中,真正的做到领会到数学的真谛。【参考文献】 【1】刘振兴,浅谈线性代数在生活中的应用 【2】Loveyuehappy,浅析线性方程组的解法及应用 【3】

线性方程组解的判定

第四节 线性方程组解的判定 从本节开始,讨论含有n 个未知量、m 个方程的线性方程组的解。 11112211211222 22 11 22n n n n m m mn n m a x a x a x b a x a x a x b a x a x a x b +++=??+ ++= ????+++=? (13—2) 主要问题是要判断出方程组(13-2)何时有解?何时无解?有解时解有多少?如何求出方程组的解。 线性方程组有没有解,以及有怎样的解,完全决定于方程组的系数和常数项。因此,将线性方程组写成矩阵形式或向量形式,以矩阵或向量作为讨论线性方程组的工具,将带来极大的方便。 方程组(13-2)中各未知量的系数组成的矩阵11121212221 2 n n m m mn a a a a a a A a a a ? ?? ? ? ?=?? ?? ? ? 称为方程组(13-2)的系数矩阵。由各系数与常数项组成的矩阵,称为增广矩阵,记作A ,即 11121121 222212 n n m m mn m a a a b a a a b A a a a b ?? ????=??? ??? 方程组(13-2)中的未知量组成一个n 行、1列的矩阵(或列向量),记作X;常数项组成一个m 行、1 列的矩阵(或列向量),记作b ,即12n x x X x ??????=?????? ,12 m b b b b ?? ????=?????? 由矩阵运算,方程组(13-2)实际上是如下关系111212122212 n n m m mn a a a a a a a a a ? ?? ? ? ? ?? ?? ? ? 12n x x x ???????????? =12m b b b ???????????? 即 AX=b

线性方程组解的判定与解的结构

***学院数学分析课程论文 线性方程组解的判定与解的结构 院系数学与统计学院 专业数学与应用数学(师范) 姓名******* 年级 2009级 学号200906034*** 指导教师 ** 2011年6月

线性方程组解的判定与解的结构 姓名****** (重庆三峡学院数学与计算机科学学院09级数本?班) 摘 要:线性方程组是否有解,用系数矩阵和增广矩阵的秩来刻画.在方程组有解且有 多个解的情况下,解的结构就是了解解与解之间的关系. 关键词:矩阵; 秩; 线性方程组; 解 引言 通过系数矩阵和增广矩阵的秩是否相同来给出判定线性方程组的解的判别条件.在了解了线性方程组的判别条件之后,我们进一步讨论解的结构.对于齐次线性方程组,解的线性组合还是方程组的解.在线性方程组有无穷个解时可用有限多个解表示出来.另外以下还涉及到线性方程组通解的表达方式. 1 基本性质 下面我们分析一个线性方程组的问题,导出线性方程组有解的判别条件. 对于线性方程组 1111221121122222 1122n n n n s s sn n s a x a x a x b a x a x a x b a x a x a x b ++???+=??++???+=???????++???+=? (1) 引入向量 112111s αααα??????=?????????,122222s αααα??????=?????????,…12n n n sn αααα??????=????????? ,12s b b b β?? ?? ??=??????? ?? 方程(1)可以表示为 1122n n x x x αααβ++???+= 性质 线性方程组⑴有解的充分必要条件为向量β可以表成向量组α1,α2,…,αn 的线性组合. 定理1 线性方程组⑴有解的充分必要条件为它的系数矩阵

浅谈线性方程组和矩阵方程

鞍山师范学院 数学系13届学生毕业设计(论文)开题报告 课题名称:浅谈线性方程组和矩阵方程 学生姓名:田鸽 专业:数学与应用数学 班级:10级1班 学号:10号 指导教师:裴银淑 2013年12月24日

一、选题意义 1、理论意义:基于线性方程组和矩阵在线性代数以及在各个领域的广泛应用,再加上计算机和计算方法的普及发展,为矩阵的应用开辟了广阔的前景.通过矩阵来解线性方程组大大简化了计算过程,为解决许多数学问题提供了一种研究途径.研究该课题的意义是为了对矩阵在解线性方程组中的广泛应用有一个更深的了解与掌握.。求线性方程组的一般解则是所有学习线性代数的人们必须掌握的基本技能。通过矩阵可以使许多抽象的数学对象得到具体的表示,并把相关的运算转化为矩阵的简单运算,使代数学的研究在一定程度上化复杂为简单,变抽象为具体,变散乱为整齐有序,矩阵是线性代数中不可或缺的处理工具,它在其它的数学理论中也有着重要的作用。 2、现实意义;大学数学是自然科学的基本语言,是应用模式探索现实世界物质运动机理的主要手段。学习数学的意义不仅仅是学习一种专业的工具而已随着科学的发展,我们不仅要研究单个变量之间的关系,还要进一步研究多个变量之间的关系,因为各种实际问题在大多数情况下可以线性化,而科学研究中的非线性模型通常也可以被近似为线性模型,,作为变化率的额倒数在几何学、物理学、经济学中的应用,抛体运动的数学建模及其应用,最优化方法及其在工程、经济、农业等领域中的应用,逻辑斯谛模型及其在人口预测、新产品的推广与经济增长预测方面的应用,网络流模型及其应用,人口迁移模型及其应用,常用概率模型及其应用,等等.另外由于计算机的发展,线性化了的问题又可以计算出来,所以,线性代数因成为了解决这些问题的有力工具而被广泛应用。如量子化学(量子力学)是建立在线性Hilbert空间的理论基础上的,没有线性代数的基础,不可能掌握量子化学。而量子化学(和分子力学)的计算在今天的化学和新药的研发中是不可缺少的。而矩阵是一种非常常见的数学现象,例如学校课表、成绩

【良心出品】MATLAB 追赶法求解三对角方程组的算法原理例题与程序

3)三对角形线性方程组 123456789104100000000141000000001410000000014100000000141000000001410000000014100000000141000000001410000000014x x x x x x x x x x -????????--????????--????--????????--????--????????--????--???????--??????-???? 7513261214455????????-?? ?? ??=??-?? ???? -?? ?????? ???-?? *(2,1,3,0,1,2,3,0,1,1)T x =--- 二、数学原理 设系数矩阵为三对角矩阵 1 122233111000000000 000000 n n n n n b c a b c a b A a b c a b ---?? ? ? ?= ? ? ? ? ?? ? 则方程组Ax=f 称为三对角方程组。 设矩阵A 非奇异,A 有Crout 分解A=LU ,其中L 为下三角矩阵,U 为单位上三角矩阵,记 1 122 233 1 10 00010 000 0001000 000100,00000000 00 0001n n n n b L U γαβγββγβ--???? ? ? ? ? ? ??== ? ? ? ? ? ? ? ? ? ??? ? ? ? 可先依次求出L ,U 中的元素后,令Ux=y ,先求解下三角方程组Ly=f 得出y ,再求解上三角方程组Ux=y 。

事实上,求解三对角方程组的2追赶法将矩阵三角分解的计算与求解两个三角方程组的计算放在一起,使算法更为紧凑。其计算公式为: 1111, 1111 ,111 ,2,3,,,1,2,,1i i i i i i i i i i i i i i n n i i i i c f b y i n c a b a f y y x y i n n x y x βγββαβγγβαβγ--+? ===?? =?? ?==-= ??? -?=?? =??=--?=-??对对(*) 三、程序设计 function x=chase(a,b,c,f) %求解线性方程组Ax=f,其中A 是三对角阵 %a 是矩阵A 的下对角线元素a(1)=0 %b 是矩阵A 的对角线元素 %c 是矩阵A 的上对角线元素c(n)=0 %f 是方程组的右端向量 n=length(f); x=zeros(1,n);y=zeros(1,n); d=zeros(1,n);u= zeros(1,n); %预处理 d(1)=b(1); for i=1:n-1 u(i)=c(i)/d(i); d(i+1)=b(i+1)-a(i+1)*u(i); end %追的过程 y(1)=f(1)/d(1); for i=2:n y(i)=(f(i)-a(i)*y(i-1))/d(i); end %赶的过程 x(n)=y(n); for i=n-1:-1:1 x(i)=y(i)-u(i)*x(i+1); end

线性方程组的解空间

第六章 向量空间 6.1 定义和例子 6.2 子空间 6.3 向量的线性相关性 6.4 基和维数 6.5 坐标 6.6 向量空间的同构 6.7 矩阵的秩齐次线性方程组的解空间 返回教案总目录 6.7矩阵的秩,齐次线性方程组的解空间 一、教学思考 1、矩阵的秩与线性方程组解的理论在前面已经有过讨论,本节运用向量空间的有关理论重新认识矩阵的秩的几何意义,讨论线性方程组解的结构。 2、注意:齐次线性方程组(含n 个未知量)的解的集合构成n F 的子空间,而非齐次线性方程组的解的集合非也。 3、注意具体方法:1)证矩阵的行空间与列空间的维数相等;2)求齐次线性方程组的基础解系。 二、内容要求 1、内容:矩阵的秩的几何意义,齐次线性方程组的解空间。 2、要求:理解掌握矩阵的秩的几何意义,齐次线性方程组的基础解系的求法。 三、教学过程 1、矩阵的秩的几何意义 几个术语:设)(F M A n m ?∈,???? ? ??=mn m n a a a a A 1111,A 的每一行看作n F 的一 个元素,叫做A 的行向量,用),2,1(m i i =α表示;由),2,1(m i i =α生成的n F 的子空间),,(1m L αα 叫做矩阵A 的行空间。 类似地,A 的每一列看作m F 的一个元素,叫做A 的列向量;由A 的n 个列向量生成的m F 的子空间叫做矩阵A 的列空间。 注:)(F M A n m ?∈的行空间与列空间一般不同,分别是n F 与m F 的子空间;下证其维数相同。 引理6.7.1设)(F M A n m ?∈, 1)若PA B =,P 是一个m 阶可逆矩阵,则B 与A 有相同的行空间; 2)若AQ C =,Q 是一个n 阶可逆矩阵,则C 与A 有相同的列空间。 分析:设()()()m m ij n m ij n m ij p P b B a A ???===,,,),2,1(m i i =α是A 的行向量,),2,1(m j j =β是B 的行向量;只需证这两组向量等价。

浅析线性方程组的解法

目录 摘要................................................................................... I Abstract. ............................................................................. II 第一章绪论............................................................................ I 1.1引言 (1) 1.2线性方程组解的求解方法的研究现状 (1) 1.3本文对线性方程组解法的研究结构 (1) 第二章线性方程组理论基础 (2) 2.1 线性方程组概念 (2) 2.2 线性方程组的解的情况分析 (2) 2.3 齐次线性方程组解的结构 (4) 2.4非齐次线性方程组解的结构 (4) 第三章线性方程组的数值解 (5) 3.1 迭代法 (5) 3.1.1 Jacobi方法 (6) 3.2.2 高斯-赛德尔方法 (8) 第四章全文总结和展望 (10) 4.1 全文总结 (10) 4.2 未来展望 (10) 参考文献 (11) 致谢................................................................. 错误!未定义书签。

线性方程组的求解方法 学生:指导教师: 摘要:本文在对线性方程组解的结构的研究背景与意义分析的基础上,对线性方程组的求解方法的研究现状进行了介绍,之后针对线性方程组展开了研究,包括线性方程组的概念、线性方程组的求解方法以及线性方程组的作用等,在对线性方程组有了全面的认识后,基于线性方程组解的结构展开了研究,包括线性方程组解的基本定理,齐次和非齐次线性方程组解的结构形式,以及齐次和非齐次线性方程组解的结构,我们用迭代法中最常用的Jacobi方法中的相似上三角矩阵定理和迭代法中的收敛性讨论线性方程组的数值解法,并用高斯-赛德尔方法进行验证。得到线性方程组的数值解的一般方法。最后,对全文进行了总结和展望。 关键词:线性方程组;数值解;迭代法;Jacobi方法;高斯-赛德尔方法

相关主题
文本预览
相关文档 最新文档