当前位置:文档之家› 环境噪声检测仪设计

环境噪声检测仪设计

辽宁工业大学

单片机原理及接口技术课程设计(论文)题目:环境噪声检测仪设计

院(系):电气工程学院

专业班级:

学号: 1

学生姓名:

指导教师:(签字)

起止时间:2013-06-24至2013-07-12

课程设计(论文)任务及评语

院(系):电气工程学院教研室:Array

注:成绩:平时20% 论文质量60% 答辩20% 以百分制计算

摘要

噪声对人体健康有着严重的危害,因此减少噪声危害已成为当前一项重要的任务。环境噪声监测,是人类提高生活质量,加强环境保护的一个重要环节。

本文详细介绍了噪声监测系统的测量原理和系统组成,包括:噪声信号的转换、放大、A/D转换、数据采集和显示系统的设计。外界噪声信号通过传声器转换成音频信号,电信号经过放大和A/ D 变换输入到单片机进行处理,并转换成相应的噪声分贝值通过LED 显示,从而实现噪声的实时监测。

该系统具有实现简单,精确度高,可用于实际进行噪声的实时监测等特点。

关键词:运算放大器;A/D转换器;单片机;LED

目录

第1章绪论 (1)

1.1环境噪声检测仪概况 (1)

1.1.1 噪声的概念 (1)

1.1.2 噪声的来源及危害 (1)

1.2本文研究内容 (2)

1.2.1 设计任务 (2)

1.2.2 课题意义 (3)

第2章 CPU最小系统设计 (4)

2.1环境监测仪总体设计方案 (4)

2.2CPU的选择 (4)

2.3数据存储器扩展 (5)

2.4复位电路设计 (6)

2.5时钟电路设计 (7)

2.6CPU最小系统图 (8)

第3章噪声监测仪输入输出接口电路设计 (9)

3.1信号放大器 (9)

3.2噪声监测仪检测接口电路设计 (10)

3.2.1 A/D转换器选择 (10)

3.2.2 模拟量检测接口电路图 (13)

3.3噪声监测仪输出接口电路设计 (13)

第4章噪声传感器软件设计 (14)

4.1软件实现功能综述 (14)

4.2流程图设计 (14)

4.2.1 主程序流程图设计 (14)

4.2.2 模拟量检测流程图设计 (16)

4.2.3 环境噪声监测仪流程图设计 (16)

4.3程序清单 (17)

第5章系统设计与分析 (20)

5.1系统原理图 (20)

5.2系统原理综述 (20)

5.3软件调试结果 (21)

第6章课程设计总结 (22)

参考文献 (23)

第1章绪论

1.1环境噪声检测仪概况

1.1.1噪声的概念

物理学定义:噪声是发生体做无规则时发出的声音。

生理学定义:凡是妨碍人们正常休息、学习和工作的声音,以及对人们要听的声音产生干扰的声音。

从这个意义上来说,噪声的来源很多。街道上的汽车声、安静的图书馆里的说话声、建筑工地的机器声、以及邻居电视机过大的声音,都是噪声。

总体讲,噪音是物体振动产生。

1.1.2噪声的来源及危害

噪声即噪音,是一类引起人烦躁、或音量过强而危害人体健康的声音。噪声通常是指那些难听的,令人厌烦的声音。噪音的波形是杂乱无章的。从环境保护的角度看,凡是影响人们正常学习,工作和休息的声音凡是人们在某些场合“不需要的声音”,都统称为噪声。如机器的轰鸣声,各种交通工具的马达声、鸣笛声,人的嘈杂声及各种突发的声响等,均称为噪声。噪声污染属于感觉公害,它与人们的主观意愿有关,与人们的生活状态有关,因而它具有与其他公害不同的特点。

噪音污染主要来源于交通运输、车辆鸣笛、工业噪音、建筑施工、社会噪音如音乐厅、高音喇叭、早市和人的大声说话等。

环境噪声监测,是人类提高生活质量,加强环境保护的一个重要环节,在各大城市的繁华街区和居民区,已有大型环境噪声显示器竖立街头。但目前国内的便携式噪声测试仪,多为价格昂贵的进口专用设备,除卫生、计量等环保专业部门拥有外,无法作为民用品推广普及。本文介绍一种以89C52单片机为核心,采用V/F转换技术构成的低成本、便携式数字显示环境噪声测量仪。该仪器工作稳定、性能良好,经校验定标后能满足一般民用需要,可广泛应用于工矿企业、机关学校等需要对环境噪声进行测量和控制的场合。

随着噪声污染的日趋严重,噪声监测技术的研究及设备的开发也得到迅速发展,世界发达国家的噪声监测设备的产值平均以10-15%的速度增加,我国在93年噪声振动监测设备产值已达到6.2亿元,“八五”期间用于噪声治理的工程费

用达到9.2亿元,上述产值尚不包括配套的噪声振动监测设备,预计我国配套的噪声振动监测设备20亿左右。高速运输系统和工具等一些新出现的噪声源和计算机、数字处理、新材料等技术发展使噪声监测技术、设备的研究与发展面临挑战,又提供了机遇。噪声监测技术和设备已开始进入规范化、标准化、系列化和配套化阶段。噪声监测技术和设备的研究和开发已取得很大进展但应看到仍有一些技术不够成熟,需进一步研究的问题仍然很多。

声级计是一种能够把工业噪声、生活噪声和车辆噪声等,按人耳听觉特性近似地测定其噪声级的仪器。噪声级是指用声级计测得的并经过听感修正的声压级(dB)或响度级(方)。

根据声级计在标准条件下测量1000Hz纯音所表现出的精度,六十年代国际上把声级计分为两类,一类叫精密声级计,一类叫普通声级计。我国也采用这种分法。70年代以来有些国家推行四类分法,即分为0型、1型、2型和3型。它们的精度分别为±0.46、±0.76、±1.00和±1.5dB。根据声级计所用电源的不同,还可将声级计分为交流式声级计和用干电池的电池式声级计两类。电池式声级计也称为便携式声级计,这种仪器体积小、重量轻、现场使用方便。声级计一般由传声器、前置放大器器、衰减器、放大器、计权网络、检波器、指示表头和电源等组成,其原理方框图如图1.1所示。

图1.1 声级计原理方框图

1.2本文研究内容

1.2.1设计任务

查阅资料,了解课题背景,了解环境噪声的特点。学习、掌握声压计的测量机理、传声器测量基本原理。合理选择噪声测量传感器,掌握其测量原理及应用。学习单片机原理,熟悉单片机系统设计和软件编程。进行整体方案设计,做出开题报告。进行系统硬件电路设计,包括传声器测量系统设计、单片机系统硬件设计。审查后,焊接或在面包板上搭接电路。编写程序,仿真调试。仿真调试通过后,固化程序,脱离开发系统运行。在实验室进行环境模拟,测试系统,完成系统联调。

1.2.2课题意义

噪声是日常生活中常见的物理现象。在大多数情况下,噪声是有害的。噪声在生理和心理上也会危害人类的健康,因而已被列入需要控制的危害之一。但噪声也有可以被利用的一面。

无论是利用噪声还是防止噪声,都必须确定其量值。在长期的科学研究和工程实践中已逐步形成了一门较完整的噪声工程学科,可供进行理论计算和分析。但这些毕竟还是建立在简化和近似的数学模型上,还必须用试验和测量技术进行验证。随着现代工业和现代科学技术的发展,对各种仪器设备提出了低噪声的要求,需要进行噪声的分析与设计,并通过实验来验证,改进设计。总之,噪声的测量不仅在噪声研究领域里占有重要的地位,而且已经广泛应用于机械制造、建筑工程、地球物探、生物医疗等各个领域。

查阅资料,了解课题背景,了解环境噪声的特点。学习、掌握声压计的测量机理、传声器测量基本原理。合理选择噪声测量传感器,掌握其测量原理及应用。学习单片机原理,熟悉单片机系统设计和软件编程。进行整体方案设计,做出开题报告。进行系统硬件电路设计,包括传声器测量系统设计、单片机系统硬件设计。编写程序,仿真调试。仿真调试通过后,固化程序,脱离开发系统运行。

第2章CPU最小系统设计

2.1环境监测仪总体设计方案

环境监测仪系统结构框图如图2.1所示。环境噪声经高灵敏度、无指向性驻极体传声器转换成电信号。放大电路由运放LM386构成,精心调整相关外围元件参数,可使其输出幅频特性满足测量要求的电压信号。通过A/D转换器后,输出频率信号变为TTL电平送给单片机的P3.4引脚,经软件处理后,噪声声压级显示值由P1口输出,驱动LED数码管显示。

图2.1 噪声监测仪硬件结构图

2.2CPU的选择

CPU是单片机的核心部分,它的作用是读入和分析每条指令,根据每条指令的功能要求,控制各个部件执行相应的操作。89C51每部有一个8位的CPU,它是由运算器和控制器组成的。

运算器主要包括算术和逻辑运算部件ALU、累加器ACC、寄存器B、暂存器YMP1、TMP2、程序状态字寄存器PSW、布尔处理器及十进制调整电路等。

控制器主要包括时钟发生器、定时控制逻辑、指令寄存器、指令译码器、程序计数器PC、程序地址寄存器、数据指针寄存器DPTR和对战指针SP等。

本次设计采用89C51单片机,89C51单片机有5中封装形式,本设计采用40脚DIP的封装,其中2条主电源引脚,2条外接晶振体引脚,4条控制或与其他电源复用的引脚,32条I/O引脚。89C51的引脚图如图2.2:

其中VSS为接地端,VCC接+5V电源;XTAL1接外部晶体和微调电容的一端,XTAL2接外部晶体和微调电容的另一端;RST是复位信号的输入端,高电平有效;ALE引脚是地址锁存允许信号;VPP是内、外ROM的选择端;P0、P1、P2、P3口为输入/输出引脚;

图2.2 89C51引脚图

2.3数据存储器扩展

89C51片内有128 B的RAM存储器,在实际应用当中仅靠这128 B的数据存储器时远远不够的。这种情况下可利用89C51单片机所具有的扩展功能,扩展外部数据存储器。89C51单片机最大可扩展64KB RAM。常用的数据存储器有静态数据存储器RAM和动态数据存储器,由于在实际应用中,需要扩展的容量不大,所以一般采用静态RAM,如SRAM 6116、6264等。

数据存储器空间地址同程序存储器一样,由P2口提供高8位地址,P0口提供低8位地址和8位双向数据线。数据存储器的读和写由RD和WR信号控制,而程序存储器由读选通信号PSEN控制,两者虽然共处同一地址空间,但由于控制信号不同,故不会发生总线冲突。

本次设计主要扩展数据存储器,选择6116芯片,6116是2K×8位静态随机存储器,采用CMOS工艺制造,单一+5V电源供电,额定功耗160mW,典型存取时间200ns,为24线双列直插式封装。其硬件扩展图如图2.3

图2.3 硬件扩展图

2.4复位电路设计

单片机的复位都是靠外部复位电路来实现的,在时钟电路工作后,只要在单片机的RESET引脚上出现24个时钟振荡脉冲以上的高电平,单片机就能实现复位。为了保证系统可以可靠复位,在设计复位电路时,一般使RESET引脚保持10ms 以上的高电平,单片机便可以可靠地复位。当RESET从高电平变为低电平以后,单片机从0000H地址开始执行程序。在复位有效期间,ALE和PSEN引脚输出高电平。

简单的复位电路有上电复位电路和手动复位电路两种,不管是哪一种复位电路都要保证在RESET引脚上提供10ms以上稳定的高电平。本次设计选择按键电平复位,如图2.4是按键式复位电路,它可以通过按键实现复位,按下键后,通过5

R 和1

C形成回路,使RESET端产生高电平。按键的时间决定了复位时间。

图2.4 复位电路

2.5 时钟电路设计

时钟电路应用于产生但纷纷偏激工作所需的时钟信号。诗中信号可以由两种方式产生:内部时钟方式和外部时钟方式,本次设计采用外部时钟方式如图2.5: C 1

30pf

2

pf

Y 1

11.0592

X TA L1

X TA L2

图2.5 晶振电路

外部时钟方式采用外部振荡器,外部振荡脉冲信号由89C51的XTAL1端接入后直接送至内部时钟发生器,输入端XTAL2应悬浮,由于XTAL1端的逻辑电平不是TTL 的,故建议外接一个上拉电阻。

一般要求,外接的脉冲信号应当是高、低电平的持续时间大于20ms ,且频率低于24MHz 的方波。这种方式适合于多块芯片同时工作,便于同步。

2.6CPU最小系统图

图2.6 CPU最小系统图

第3章噪声监测仪输入输出接口电路设计

3.1信号放大器

LM386是美国国家半导体公司生产的音频功率放大器,主要应用于低电压消费类产品。为使外围元件最少,电压增益内置为20倍。但在1脚和8脚之间增加一只外接电阻和电容,便可将电压增益调为任意值,直至200。输入端以地为参考,同时输出端被自动偏置到电源电压的一半,在6V电源电压下,它的静态功耗仅为24mW,使得LM386特别适用于电池供电的场合。

功率放大器的作用相当于扬声器的音量调节器。音频功率放大电路的作用主要是将信号处理器发送过来的信号功率放大,使其信号的功率达到设计要求。对该部分电路的要求是输出功率大。在电路设计过程中进行对比,通过比较发现LM386集成电路使用简单,基本没有外围器件,而且它还有体积小、电源范围宽、外接元件少、电压增益可调整、频率响应好、输出功率大、总谐波失真小等优点。因此选用LM386来组成音频功率放大电路。LM386 被广泛地应用在录音机和收音机音频放大、室內对讲机、红外线、超声波、小型马达驱动器等电路中。

LM386的引脚图如图3.1所示。

图3.1 LM386引脚图

20倍的音频放大器如图3.2所示。由于传声器输出的电信号比较弱,只有毫伏级,为了使数据采集卡能很好的采集到相应数据,必须经过电压放大器进行电压放大,采用LM386芯片电压增益200倍的接法,即在1和8引脚间接10uF的电容。

图3.2 20倍的音频放大器

3.2噪声监测仪检测接口电路设计

3.2.1A/D转换器选择

A/D 转换接口是数据采集系统前向通道中的一个重要环节。数据采集是在模拟信号源中采集信号,并将其转换为数字信号送入计算机的过程。因此,完成数据采集应具备下述基本部件:模拟多路转换开关和信号调节电路,采样/保持放大器,模拟/数字(A/D)转换器,通道控制电路。

图3.3是由AD536构成真有效值TRMS/DC转换电路,AD536内含有源整流器(绝对值电路),平方/除法电路,镜像电流源及缓冲放大器。图中的R2和R3为偏置电阻,两电阻的公共连接端接到AD536的COM,由于AD536的COM内部为CMOS 电路,阻抗较高,流经COM端的电流仅为数uA。C1为输入隔直电容,CAV为平均电容,它与内部的电阻r(25KΩ)构成低通滤波器,以获得平均值电压,有效值电压通过AD536的第6脚输出。

由于电路采用了隔直电容,所以这样的电路仅适合于测量交流电,不能测量直流或变化缓慢的电压。AD536的满量程电压为7V,如果使用的AD转换器输入电压范围不匹配,应设一个电压转换电路。

AD536所谓真有效值即为“真正有效值”之意,英文缩写为“TRMS ”,有的文献也称为真普通数字直流电压表自然只能测量直流电压,欲需测量交流电压必须增加AC/DC 转换电路,一般的交流电压表为降低成本和简化电路,均使用简易的平均值响应交流/直流转换器。常用的平均值响应AC/DC 转换器是运算放大器和二极管组成的半波(或全波)线性整流电路,这种电路具有线性度好、准确度高、电路简单、成本低廉等优点。但是这种电路是按照正弦波平均值与有效值的关系(VRMS=1.111Vp)来定义的,因此这类电表只能测量正弦波电压。

平均值AC/DC 转换的电压表只能测量无失真的正弦波电压,对于正弦波失真的交流电压,这类电表测量就会引起误差,更不能测量方波、矩形波、三角波、锯齿波、梯形波、阶梯波等非正弦波,利用真有效值数字仪表可准确测量各种波形的有效值,满足现代电子测量之需要。交流电压的有效值的表达式的定义如下:

?=T RMS dt t u T V 0

2

)(1

(3-1

)

近似公式:

2

u V RMS =

(3-2)

我们对式(3.1)进行变换,两边平方,并令

?==T VE u A u dt t u T 0

222

)(1 (3-3)

就得到真有效值电压的另一种表达式RMS VE RMS VE RMS RMS V u

A V u A V u V 2

22/

===

(3-4)

从(3-4)式即得,对输入电压依次进行“取绝对值→平方/除法→取平均值”运算,也能得到交流电压的有效值,而且这公式更有使用价值。举例说明:假如要测量的电压变化范围是0.1V —10V ,平方后U2=10mV —100V ,这就要求平方器具有相当大的动态范围是(10000:1),这样的平方电路误差就可能超过1mV ,要平方器能输出100V 的电压,技术上是难以实现的。如果使用式(3-4)的既便于设计电路,也能保证了准确度。目前大多数的集成单片真有效值/直流转换器均采用式(3-4)的原理而设计。真有效值仪表的的核心器件是TRMS/DC 转换器。现在市场上这类单片的集成芯片很多,真有效值仪表普遍使用了这类集成电路。单片集成电路具有集成度高、功能完善,外围元件少,电路连接简单、电性能指标容易保证等诸多优点,这类芯片能准确、实时测量各种电压波形的有效值,无须考虑波形参数和失真,这些性能是平均值仪表无法比拟的。可见,通过测量信号的有效值即可知信号的峰值信息,从而可知振动的峰值。且输出的直流信号便于单片机进行数据采集和数据处理。在此系统中采用有效值检测电路AD536测量信号的有效值,经过一系列的数据处理可得振动的振幅。

3.2.2 模拟量检测接口电路图

图3.4 模拟量检测接口电路图

3.3 噪声监测仪输出接口电路设计

图3.5输出接口电路图

第4章噪声传感器软件设计

4.1软件实现功能综述

研制一台智能仪器是一个复杂的过程,这一过程包括分析仪表的功能要求和拟定总体设计方案,确定硬件结构和软件算法,研制逻辑电路和编制程序,以及仪表的调试和性能的测试等等。软件的设计应遵循结构化设计原则,在总体概况设计的基础上进行具体的详细设计,功能分解,模块划分,细化软件层次,优化软件结构,以达到模块功能的独立性,执行的高效性。总之,设计的程序应该达到可读性,可理解性,可维护性,有效性,可修改性。

4.2流程图设计

4.2.1主程序流程图设计

在单片机系统的程序的设计开发中,单片机就如同整个系统的交通中枢,而程序就是组成交通中枢的条条大道,各个部分的模块化的程序就是整个系统的组成成份。软件编写的好坏,语句运用的是否简洁直接关系单片机的工作效率。在各个模块化的程序中尽量用最少的语句作最多的事情,不让语句出现歧义,这样就可以使整个程序可以在系统中更好的运行,使单片机工作效率大大的提高。下面就对本次毕业设计的软件部分作些介绍,如图4.1所示为软件总体流程图。子程序包括:中断服务程序的设计、查表子程序、显示子程序、指示子程序。由于要实现很多功能,所以采用模块化设计,下面就其主要部分分别分析。

中断服务程序主要实现的功能是:T0中断子程序是将电压/频率转换器产生的频率信号接入计数器的T0口,然后计数器开始计数,当计数到一定数目后,计数器就产生溢出中断。

查表子程序将进入单片机的脉冲信号与实际要显示值之间有一定的对应关系,经过软件编程查表显示所需要的值。

显示子程序是将数据处理的结果送显示器显示。

指示子程序是对显示结果范围的一个指示。

本噪声监测系统软件总体流程图如图4.1所示。

图4.1 单片机软件系统方案框图

相关主题
文本预览
相关文档 最新文档