当前位置:文档之家› 第2章水环境样品的采集和保存

第2章水环境样品的采集和保存

第2章水环境样品的采集和保存
第2章水环境样品的采集和保存

第2章水环境样品的采集和保存

2.1 水质采样方案设计

2.1.1 地表水

水质监测点位的布设关系到监测数据是否有代表性,是能否真实地反映水环境质量现状及污染发展趋势的关键问题。

1.地表水监测断面的设置原则

断面在总体和宏观上应能反映水系或区域的水环境质量状况;各断面的具体位置应能反映所在区域环境的污染特征;尽可能以最少的断面获取有足够代表性的环境信息;应考虑实际采样时的可行性和方便性。

根据上述总体原则,对水系可设背景断面、控制断面(若干)和入海断面。对行政区域可设背景断面(对水系源头)或入境断面(对过境河流)、控制断面(若干)和入海河口断面或出境断面。在各控制断面下游,如果河段有足够长度(至少10km),还应设削减断面。

(1)监测断面的分类。

1)采样断面:指在河流采样中,实施水样采集的整个剖面。分背景断面、对照断面、控制断面、削减断面和管理断面等。

2)背景断面:指为评价某一完整水系的污染程度,未受入类生活和生产活动影响,提供水环境背景值的断面。

3)对照断面:指具体判断某一区域水环境污染程度时,位于该区域所有污染源上游处,提供这一水系区域本底值的断面。

4)控制断面:指为了解水环境受污染程度及其变化情况的断面。即受纳某城市或区域的全部工业和生活污水后的断面。

5)削减断面:指工业废水或生活污水在水体内流经一定距离而达到最大程度混合,污染物被稀释、降解,其主要污染物浓度有明显降低的断面。

6)管理断面:指为特定的环境管理需要而设置的断面。

(2)设置原则。环境管理除需要上述断面外,还有许多特殊需要,如了解饮用水源地、水源丰富区、主要风景游览区、自然保护区,与水质有关的地方病发病区,严重水土流失区及地球化学异常区等水质的断面。

断面位置应避开死水区、回水区、排污口处,尽量选择顺直河段、河床稳定、水流平稳、水面宽阔、无急流、无浅滩处。

监测断面应力求与水文测流断面一致,以便利用其水文参数,实现水质监测与水量监测的结合。监测断面的布设应考虑社会经济发展,监测工作的实际状况和需要,要具有相对的长远性。流域同步监测中,根据流域规划和污染源限期达标目标确定监测断面。

局部河道整治中,监视整治效果的监测断面,由所在地区环境保护行政主管部门确定。

入海的河口断面要设置在能反映入海河水水质、临近入海口的位置。

其他如突发性水环境污染事故,洪水期和退水期的水质监测,应根据现场情况,布设能反映污染物进入水环境和扩散、削减情况的采样断面及点位。

2.河流监测断面的设置方法

(1)背景断面须能反映水系未受污染时的背景值。要求基本上不受入类活动的影响,远离城市居民区、工业区、农药化肥施放区及主要交通路线。原则上应设在水系源头处或未受污染的上游河段,如选定断面处于地球化学异常区,则要在异常区的上、下游分别设置。如有较严重的水土流失情况,则设在水土流失区的上游。

(2)入境断面用来反映水系进入某行政区域时的水质状况,应设置在水系进入本区域且尚未受到本区域污染源影响处。

(3)控制断面用来反映某排污区(口)排放的污水对水质的影响。应设置在排污区(口)的下游,污水与河水基本混匀处。

(4)控制断面的数量、控制断面与排污区(口)的距离可根据以下因素决定:主要污染区的数量及其间的距离、各污染源的实际情况、主要污染物的迁移转化规律和其他水文特征等。此外,还应考虑对纳污量的控制程度,即由各控制断面所控制的纳污量不应小于该河段总纳污量的80%。如某河段的各控制断面均有5年以上的监测资料,可用这些资料进行优化,用优化结论来确定控制断面的位置和数量。

(5)出境断面用来反映水系进入下一行政区域前的水质。因此应设置在本区域最后的污水排放口下游,污水与河水已基本混匀并尽可能靠近水系出境处。如

在此行政区域内,河流有足够长度,则应设削减断面。削减断面主要反映河流对污染物的稀释净化情况,应设置在控制断面下游,主要污染物浓度有显著下降处。

(6)省(自治区、直辖市)交界断面。省、自治区和直辖市内主要河流的干流、一级、二级支流的交界断面,这是环境保护管理的重点断面。

(7)其他各类监测断面。

1)水系的较大支流汇入前的河口处,以及湖泊、水库、主要河流的出、入口应设置监测断面。

2)国际河流出、入国境的交界处应设置出境断面和入境断面。

3)国务院环境保护行政主管部门统一设置省(自治区、直辖市)界断面。

4)对流程较长的重要河流,为了解水质、水量变化情况,经适当距离后应设置监测断面。

5)水网地区流向不定的河流,应根据常年主导流向设置监测断面。

6)对水网地区应视实际情况设置若干控制断面,其控制的径流量之和应不少于总径流量的80%。

7)有水工建筑物并受入工控制的河段,应视情况分别在闸(坝、堰)上、下设置断面。如水质无明显差别,可只在闸(坝、堰)上设置监测断面。

8)要使各监测断面能反映一个水系或一个行政区域的水环境质量。断面的确定应在详细收集有关资料和监测数据基础上,进行优化处理,将优化结果与布点原则和实际情况结合起来,做出决定。

9)对于季节性河流和入工控制河流,由于实际情况差异很大,这些河流监测断面的确定、采样的频次与监测项目、监测数据的使用等,由各省(自治区、直辖市)环境保护行政主管部门自定。

河流监测断面设置如图2 -1所示。

图2 -1 河流监测断面的设置

3.潮汐河流监测断面的布设

(1)潮汐河流监测断面的布设原则与其他河流相同,设有防潮桥闸的潮汐河流,根据需要在桥闸的上游、下游分别设置断面。

(2)根据潮汐河流的水文特征,潮汐河流的对照断面一般设在潮区界以上。若感潮河段潮区界在该城市管辖的区域之外,则在城市河段的上游设置一个对照断面。

(3)潮汐河流的削减断面,一般应设在近入海口处。若入海口处于城市管辖区域外,则设在城市河段的下游。

(4)潮汐河流的断面位置,尽可能与水文断面一致或靠近,以便取得有关的水文数据。

4.湖泊、水库监测垂线的布设

对于湖泊、水库通常只设监测垂线,如有特殊情况可参照河流的有关规定设置监测断面。

(1)湖(库)区的不同水域,如进水区、出水区、深水区、浅水区、湖心区、岸边区,按水体类别设置监测垂线。

(2)湖(库)区若无明显功能区别,可用网格法均匀设置监测垂线。

(3)监测垂线上采样点的布设一般与河流的规定相同,但对有可能出现温度分层现象时,应作水温、溶解氧的探索性试验后再定。

(4)受污染物影响较大的重要湖泊、水库,应在污染物主要输送路线上设置控制断面。

湖泊、水库监测垂线布设如图2-2所示。

图2-2湖泊、水库监测垂线的布设

在一个监测断面上设置的采样垂线与各垂线上的采样点数应符合如表2 -1、表2-2和表2-3所示。

表2 -1 采样垂线数的设置

表2-2 采样垂线上的采样点数的设置

表2-3 湖f库)监测垂线采样点的设置

5.地下水(泉水、井水)

对于自喷的泉水,可在涌口处直接采样。采集不自喷泉水时,将停滞在抽水管的水汲出,新水更替之后,再进行采样。

从井水采集水样,必须在充分抽汲后进行,以保证水样能代表地下水水源。

6.饮用水

从自来水用户所使用的水龙头上采样是最好的办法。采样前应移去水龙头上的防溅湿装置,采样时不能使用带有混合式的水龙头,在干线和支线管道采样可利用消防栓。此外,为细菌学检验采集样品时要特别小心。

采取自来水或抽水设备中的水样时,应先放水数分钟,使积留在水管中的杂质及陈旧水排出,然后再取样。采集水样前,应先用水样洗涤采样器容器、盛样瓶及塞子2~3次(油类除外)。

7.浴场

从天然浴场采样,按照水库和湖泊采样方法进行。使用循环水系统的游泳池,应该从进口、出口和水体中分别采样。

8.饮用水处理过程中所产生的污泥

大多数饮水处理厂所生成的污泥为氢氧化铝或氢氧化铁,但也有一些处理厂生成石灰软化泥或生物污泥。这些样品可在凝聚槽混凝沉淀池内的不同深度采取,也可在浓缩池内采取。因样品的特殊性在取出后几分钟内就会发生明显变化,因此采样后要尽量少搅动,尽快检验。

9.河流、河口、海洋、湖泊和水库的底部沉积物

所制订的采样方案应考虑到沉积物组分纵、横方向的变化,必须取得有关底

部沉积物的深度和不同深度上沉积物组成的数据。

采水样时的许多重要因素,如船只的使用,也适用于底部沉积物的采样。

底层通常是不均匀的。为了提供有代表性的评价参数,应保证采集足够数量的样品。

2.1.1 污水

污染源的采样取决于调查的目的和监测分析工作的要求。采样涉及采样的时间、地点和频次三个方面。为了采集到有代表性的污水,采样前应该了鳃污染源的排放规律和污水中污染物浓度的时、空变化。在采样的同时还应该测量污水的流量,以获得排污总量数据。

1.污水监测点位的布设原则

第一类污染物采样点位一律设在车间或车间处理设施的排放口或专门处理此类污染物设施的排放口。

第二类污染物采样点位一律设在排污单位的外排口。

进入集中污水处理厂和进入城市污水管网的污水应根据地方环境保护行政主管部门的要求确定。

2.污水处理设施效率监测采样点的布设

(1)对整体污水处理设施效率监测时,在各种进入污水处理设施污水的入口和污水设施的总排口设置采样点。

(2)对各污水处理单元效率监测时,在各种进入处理设施单元污水的入口和设施单元的排口设置采样点。

2.1.3 工业用水的采样情况

1.上水

上水包括饮用水、河水、中水和井水。由于水源不同,水质随时发生变化,但在给定的时间内,通常它们的组成是均质的。这些水通过一个普通的管道系统进入工厂,不存在特殊的采样情况。

当同时存在非饮用工业供水系统时,要用适当的标志加以区分,以避免搞错采样点。为了检查水是否可以饮用,要准备一些采样设备。

如果需要各水体混合物的质量数据,采样之前必须保证水体充分混合。

2.锅炉系统的水

(1)处理厂的水。在处理厂的设计阶段,应仔细考虑采样点的方位、各处理阶段过滤池的进口和出口的采样设备。当存在悬浮物时,取样之前应将采样管彻底清洗。

当测定水中溶解气体(如氧或二氧化碳)采样时,为了避免逸失必须使用特殊的采样技术。如果使用除气塔洗除二氧化碳,那么在随后的样品处理中就要避免二氧化碳的逸失或补充。采样管应完全浸没于水中,避免吸进气体。

(2)锅炉给水和锅炉水。在蒸汽冷凝循环系统的许多采样点上采集的水样只含有痕量待测物质。因此,要特别小心,避免从采样到分析过程中样品受到污染。

通常的采样系统用不锈钢制成,采样系统要有完善的结构,能经受住所承受的运转压力。如果用长采样管采集高温高压锅炉给水,为了安全,最好在靠近采样点的地方冷却采样管中的样品。

当用物理和化学方法除气时,通常需设两个采样点:一个点在加化学药品之前,检验物理方法除气效率;第二个点检验总的除气效率。

所设计的锅炉采样点要保证能采到锅炉水的代表性样品。对于某些分析如痕量金属,它们可能部分或全部的以颗粒形式存在,在这种情况下应该使用等动力采样探头。

(3)蒸汽冷凝水。在工业上控制蒸汽的质量非常重要。通常需要从蒸汽冷凝液的回路上,过热蒸汽或者加压湿蒸汽中采样。所使用的采样探头,附有不锈钢冷却器。要注意防止采样和分析期间样品受到污染。

(4)冷却水。主要有三类冷却系统:

1)敞开式蒸发冷却系统。

2)直流式(单程式)冷却系统。

3)闭路循环冷却系统。

在敞开式蒸发冷却系统中,进水和循环水通常都要采样,通常在进水口设一个采样点就够了。但是就冷却系统本身而言,为了获得所需要的数据资料,则必须同时在几个点上采样。使用生物杀虫剂处理时,则直接在冷却塔的水池中采样。从理论上讲,最好的采样系统是等动力系统。

直流式冷却系统采样点设在进水口和出水口处,闭路系统采样点设在低处。

2.1.4 工业废水

工业废水的采样必须考虑废水的性质和每个采样点所处的位置。通常,用管道或者明沟把工业废水排放到远而偏僻、入们很难达到的地方。但在厂区内,排放点容易接近,有时必须采用专门采样工具通过很深的入孔采样。为了安全起见,最好把入孔设计成无须入进入的采样点。从工厂排出的废水中可能含有生活污水,采样时应予以考虑所选采样点要避开这类污水。其中,第一类污染物的采样必须在车间出水口或预处理出水口。

如果废水被排放到氧化塘或贮水池,那么情况就类似于湖泊采样。

2.1-5 暴雨污水和地面径流

出现暴雨污水和地面径流排放时,接纳水道的流量很大,有效稀释相当大,暴雨污水的溢流可以控制。由于种种原因,地表径流可能被污染,甚至当水道内水流很大的情况下,溢流对水道内的水质也构成严重威胁。

由于暴雨污水和地面径流的排放具有间歇性,在排放期内质量变化非常明显,因此给采样带来一些特殊的问题。由于对污水管道或者不渗水表面的冲刷,最初排放出来的污水水质很差。在这种情况下,最好使用自动采样装置,并收集整个调查期间的有关降水量和必要的气温资料。

2.2 水环境样品的采集

2.2.1 水样类型

采样技术要随具体情况而定,有些情况只需在某点瞬时采集样品,而有些情况要用复杂的采样设备进行采样。静态水体和流动水体的采样方法不同,应加以区别。瞬时采样和混合采样均适用于静态水体和流动水体,混合采样更适用于静态水体,周期采样和连续采样适用于流动水体。

1.瞬时水样

从水体中不连续的随机采集的样品称为瞬时水样。对于组分较稳定的水体,或水体的组分在相当长的时间和相当大的空间范围变化不大,采集瞬时样品具有很好的代表性。当水体的组分随时间发生变化,则要在适当的时间间隔内进行瞬时采样,分别进行分析,测出水质的变化程度、频率和周期。当水体的组分发生空间变化时,就要在各个相应的部位采样。

下列情况适用瞬时采样:

(1)流量不固定、所测参数不恒定时(如采用混合样,会因个别样品之间的相互反应而掩盖了它们之间的差别)。

(2)不连续流动的水流,如分批排放的水。

(3)水或废水特性相对稳定时。

(4)需要考察可能存在的污染物,或要确定污染物出现的时间。

(5)需要污染物最高值、最低值或变化的数据时。

(6)需要根据较短一段时间内的数据确定水质的变化规律时。

(7)需要测定参数的空间变化时,例如某一参数在水流或开阔水域的不同断面(或)深度的变化情况。

(8)在制订较大范围的采样方案前。

(9)测定某些不稳定的参数,例如溶解气体、余氯、可溶性硫化物、微生物、油脂、有机物和pH值。

2.周期水样(不连续)

(1)在固定时间间隔下采集周期样品(取决于时间)。通过定时装置在规定的时间间隔下自动开始和停止采集样品。通常在固定的期间内抽取样品,将一定体积的样品注入一个或多个容器中。时间间隔的大小取决于待测参数。

入工采集样品时,按上述要求采集周期样品。

(2)在固定排放量间隔下采集周期样品(取决于体积)。当水质参数发生变化时,采样方式不受排放流速的影响,此种样品归于流量比例样品。例如,液体流量的单位体积(如10000L),所取样品量是固定的,与时间无关。

(3)在固定排放量间隔下采集周期样品(取决于流量)。当水质参数发生变化时,采样方式不受排放流速的影响,水样可用此方法采集。在固定时间间隔下,抽取不同体积的水样,所采集的体积取决于流量。

3.连续水样

(1)在固定流速下采集连续样品(取决于时间或时间平均值)。在固定流速下采集的连续样品,可测得采样期间存在的全部组分,但不能提供采样期间各参数浓度的变化。

(2)在可变流速下采集的连续样品(取决于流量或与流量成比例)。采集流量比例样品代表水的整体质量。即便流量和组分都在变化,而流量比例样品同样可

以揭示利用瞬时样品所观察不到的这些变化。因此,对于流速和待测污染物浓度都有明显变化的流动水,采集流量比例样品是一种精确的采样方法。

4.混合水样

在同一采样点上以流量、时间、体积或是以流量为基础,按照已知比例(间歇的或连续的)混合在一起的样品,此样品称为混合水样。混合水样可自动或入工采集。

混合水样是混合几个单独样品,可减少监测分析工作量,节约时间,降低试剂损耗。

混合样品提供组分的平均值,因此在样品混合之前,应验证这些样品参数的数据,以确保混合后样品数据的准确性。如果测试成分在水样储存过程中易发生明显变化,则不适用混合水样,如测定挥发酚、油类、硫化物等。要测定这些物质,需采取单样储存方式。

下列情况适用混合水样:

(1)需测定平均浓度时。

(2)计算单位时间的质量负荷。

(3)为评价特殊的、变化的或不规则的排放和生产运转的影响。

5.综合水样

把从不同采样点同时采集的瞬时水样混合为一个样品(时间应尽可能接近,以便得到所需要的资料),称作综合水样。综合水样的采集包括两种情况:在特定位置采集一系列不同深度的水祥(纵断面样品);在特定深度采集一系列不同位置的水样(横截面样品)。综合水样是获得平均浓度的重要方式,有时需要把代表断面上的各点或几个污水排放口的污水按相对比例流量混合,取其平均浓度。

采集综合水样,应视水体的具体情况和采样目的而定。如几条排污河渠建设综合污水处理厂,从各个河道取单样分析不如综合样更为科学合理,因为各股污水的相互反应可能对设施的处理性能及其成分产生显著的影响,由于不可能对相互作用进行科学预测,、因此取综合水样可能提供更加可靠的资料。而有些情况取单样比较合理,如湖泊和水库在深度和水平方向常常出现组分上的变化,此时大多数平均值或总值的变化不显著,局部变化明显。在这种情况下,综合水样就

失去了意义。

6.大体积水样

有些分析方法要求采集大体积水样,范围从50L到几立方米。例如,要分析水体中未知的农药和微生物时,就需要采集大体积的水样。水样可用通常的方法采集到容器或样品罐中,采样时应确保采样器皿的清洁;也可以使样品经过一个体积计量后,再通过一个吸收筒(或过滤器),可依据监测要求选定。

随后的采样程序细节应依据水样类型和监测要求而定。用一个调节阀控制在一定压力下通过吸收筒(或过滤器)的流量。大多数情况下,应在吸收筒(或过滤器)和体积计后面安装一个泵。如果待测物具有挥发性,泵要尽可能安放在样品源处,体积计安放在吸收筒(或过滤器)后面。

7.平均污水样

对于排放污水的企业而言,生产的周期性影响着排污的规律性。为了得到代表性的污水样(往往需要得到平均浓度),应根据排污情况进行周期性采样。不同的工厂、车间生产周期不同,排污的周期性差别也很大。一般应在一个或几个生产或排放周期内,按一定的时间间隔分别采样。对于性质稳定的污染物,可将分别采集的样品进行混合后一次测定;对于不稳定的污染物可在分别采样、分别测定后取其平均值为代表。

生产的周期性也影响污水的排放量,在排放流量不稳定的情况下,可将一个排污口不同时间的污水样,按照流量的大小,按比例混合得到平均比例混合的污水样。这是获得平均浓度的最常采用的方法,有时需将几个排污口的水样按比例混合,用以代表瞬时综合排污浓度。

在污染源监测中,随污水流动的悬浮物或固体微粒,应看成是污水样的一个组成部分,不应在分析前滤除。油、有机物和金属离子等,可能被悬浮物吸附,有的悬浮物中就含有被测定的物质,如选矿、冶炼废水中的重金属。所以,分析前必须摇匀取样。

2.2.2 水环境样品的采样

1.开阔河流的采样

在对开阔河流进行采样时,应包括下列几个基本点:

(1)用水地点的采样。

(2)污水流入河流后,应在充分混合的地点以及流入前的地点采样。

(3)支流合流后,对充分混合的地点及混合前的主流与支流地点的采样。

(4)主流分流后地点的选择。

(5)根据其他需要设定的采样地点。

各采样点原则上应在河流横向及垂向的不同位置采集样品。采样时间一般选择在采样前至少连续两天晴天,水质较稳定的时间(特殊需要除外)。采样时间是在考虑入类活动、工厂企业的工作时间及污染物到达时间的基础上确定的。另外,在潮汐区,应考虑潮的情况,确定把水质最坏的时刻包括在采样时间内。

2.封闭管道的采样

在封闭管道中采样,也会遇到与开阔河流采样中所出现的类似问题。采样器探头或采样管应妥善地放在进水的下游,采样管不能靠近管壁、湍流部位,例如在“T”形管、弯头、阀门的后部,可充分混合,一般作为最佳采样点,但是对于等动力采样(等速采样)除外。

采集自来水或抽水设备中的水样时,应先放水数分钟,使积留在水管中的杂质及陈旧水排出,然后再取样。采集水样前,应先用水样洗涤采样器容器、盛样瓶及塞子2~3次(油类除外)。

3.水库和湖泊的采样

水库和湖泊的采样,由于采样地点不同和温度的分层现象可引起水质很大的差异。

在调查水质状况时,应考虑到成层期与循环期的水质明显不同。了解循环期水质,可采集表层水样,了解成层期水质,应按深度分层采样。

在调查水域污染状况时,需进行综合分析判断,抓住基本点,以取得代表性水样。如废水流入前、流入后充分混合的地点、用水地点、流出地点等,有些可参照开阔河流的采样情况,但不能等同而论。

在可以直接汲水的场合,可用适当的容器采样,如水桶。从桥上等地方采样时,可将系着绳子的聚乙烯桶或带有坠子的采样瓶投于水中汲水。要注意不能混入漂浮于水面上的物质。

在采集一定深度的水时,可用直立式或有机玻璃采水器,采水器如图2-3所

示。这类装置是在下沉的过程中,水就从采样器中流过。当到达预定深度时,容器能够闭合而汲取水样。在水流动缓慢的情况下,采用上述方法时,最好在采样器下系上适宜重量的坠子,当水深流急时要系上相应重的铅鱼,并配备绞车。

图2-3采水器

(a)简易采水器

1-水样瓶;2、3-采水瓶架;4、5-控制采水瓶平衡的挂钩;6-固定采水瓶绳的挂钩;

7-瓶塞;8-采水瓶绳;9-开瓶塞的软绳;10-铅锤

(b)深层采水器

1-叶片;2-杠杆(关闭位置);3-杠杆(开口位置);4-玻璃塞(关闭位置);

5-玻璃塞(开口位置);6-悬挂绳;7-金属架

采样过程应注意:

(1)采样时不可搅动水底部的沉积物。

(2)采样时应保证采样点的位置准确,必要时使用GPS定位。

(3)认真填写采样记录表,字迹应端正清晰。

(4)保证采样按时、准确、安全。

(5)采样结束前,应核对采样方案、记录和水样,如有错误和遗漏,应立即补采或重新采样。

(6)如采样现场水体很不均匀,无法采到有代表性样品,则应详细记录不均匀的情况和实际采样情况,供使用数据者参考。

(7)测定油类的水样,应在水面至水面下300mm采集柱状水样,并单独采

样,全部用于测定。采样瓶不能用采集的水样冲洗。

(8)测溶解氧、生化需氧量和有机污染物等项目时的水样,必须注满容器,不留空间,并用水封口。

(9)如果水样中含沉降性固体,如泥沙等,应分离除去。分离方法为:将所采水样摇匀后倒入筒型玻璃容器,静置30min,将已不含沉降性固体但含有悬浮性固体的水样移入盛样容器并加入保存剂。测定总悬浮物和油类的水样除外。

(10)测定湖库水COD、高锰酸盐指数、叶绿素a、总氮、总磷时的水样,静置30min后,用吸管一次或几次移取水样,吸管进水尖嘴应插至水样表层50mm 以下位置,再加保存剂保存。

(11)测定油类、BOD5、溶解氧、硫化物、余氯、粪大肠菌群、悬浮物、放射性等项目要单独采样。

4.底部沉积物采样

“底质”系指江、河、湖、库、海等水体底部表层沉积物质。底质监测不包括工厂废水沉积物及污水处理厂污泥的监测,但包括工业废水排污(沟)道的底部表层沉积物。

(1)采样点位。底质采样点位通常为水质采样点位垂线的正下方。当正下方无法采样时,可略作移动,移动的情况应在采样记录表上详细注明。

底质采样点应避开河床冲刷、底质沉积不稳定、水草茂盛表层及底质易受搅动之处。

沉积物可用抓斗、采泥器或钻探装置采集。

典型的沉积过程一般会出现分层或者组分的很大差别。此外,河床高低不平以及河流的局部运动都会引起各沉积层厚度的很大变化。

采泥地点除在主要污染源附近、河口部位外,应选择由于地形及潮汐原因造成堆积以及底泥恶化的地点。。另外也可选择在沉积层较薄的地点。

在底泥堆积分布状况未知的情况下,采泥地点要均衡设置。在河口部分,由于沉积物堆积分布容易变化,应适当增设采样点。采泥方法,原则上在同一地方稍微变更位置进行采集。

混合样品可由采泥器或者抓斗采集。需要了解分层作用时,可采用钻探装置。

在采集沉积物时,不管是岩芯还是规定深度沉积物的代表性混合样品,必须

知道样品的性质,以便正确地解释这些分析或检验。此外,如对底部沉积物的变化程度及性质难以预测或根本不可能知道时,应适当增设采样点。

采集单独样品,不仅能得到沉积物变化情况,还可以绘制组分分布图,因此,单独样品比混合样品的数据更有用。

(2)采样量及容器。底质可用抓斗、采泥器或钻探装置采集。混合样品可由采泥器或者抓斗采集。需要了解分层作用时,可采用钻探装置。在较深水域一般常用掘式采泥器采样。在浅水区或干涸河段用塑料勺或金属铲等即可。

采样底质采样量通常为1~2kg,一次的采样量不够时,可在周围采集几次,并将样品混匀。样品中的砾石、贝壳、动植物残体等杂物应予以剔除。样品在尽量沥干水分后,用塑料或玻璃瓶盛装;供测定有机物的样品,用金属器具采样,置于棕色磨口玻璃瓶中,瓶口不要沾污,以保证磨口塞能塞紧。所采底质样品的外观性状,如泥质状态、颜色、嗅味、物现象等,均应填入采样记录表,一并送交实验室,亦应有交接手续。

(3)底质采样。

1)底质采样点应尽量与水质采样点一致。

2)水浅时,因船体或采泥器冲击搅动底质,或河床为砂卵石时,应另选采样点重采。样点不能偏移原设置的断面(点)太远。采样后应对偏移位置做好记录。

3)采样时应装满抓斗。采样器向上提升时,如发现样品流失过多,必须重采。

5.地下水的采样

地下水可分为上层滞水、潜水和承压水。上层滞水的水质与地表水的水质基本相同。潜水含水层通过包气带直接与大气圈、水圈相通,因此其具有季节性变化的特点。承压水地质条件不同于潜水。其受水文、气象因素直接影响小,含水层的厚度不受季节变化的支配,水质不易受入为活动污染。采集样品时,一般应考虑的一些因素:

(1)地下水流动缓慢,水质参数的变化率小。

(2)地表以下温度变化小,因而当样品取出地表时,其温度发生显著变化,这种变化能改变化学反应速度,倒转土壤中阴阳离子的交换方向,改变微生物生长速度。

(3)由于吸收二氧化碳和随着碱性的变化,导致pH值改变,某些化合物也会

发生氧化作用。

(4)某些溶解于水的气体如硫化氢,当将样品取出地表时,极易挥发。

(5)有机样品可能会受到某些因素的影响,如采样器材料的吸收、污染和挥发性物质的遗失。

(6)土壤和地下水可能受到严重的污染,以致影响到采样工作入员的健康和安全。

监测井采样不能像地表水采样那样可以在水系的任一点进行,因此,从监测井采得的水样只能代表一个含水层的水平向或垂直向的局部情况。

如果采样目的只是为了确定某特定水源中有没有污染物,那么只需从自来水管中采集水样。当采样的目的是要确定某种有机污染物或一些污染物的水平及垂直分布,并做出相应的评价,那么需要组织相当的人力物力进行研究。

对于区域性的或大面积的监测,可利用已有的井、泉或者就是河流的支流,但要符合监测要求,如果时间很紧迫,则只有选择有代表性的一些采样点。但是,如果污染源很小,如填埋废渣、咸水湖,或者是污染物浓度很低,比如含有机物,那就极有必要设立专门的监测井。增设的井的数目和位置取决于监测的目的,含水层的特点,以及污染物在含水层内的迁移情况。

如果潜在的污染源在地下水位以上,则需要在包气带采样,以得到对地下水潜在威胁的真实情况。除了氯化物、硝酸盐和硫酸盐,大多数污染物都能吸附在包气带的物质上,并在适当的条件下迁移。因此很有可能采集到已存在污染源很多年的地下水样,而且观察不到新的污染,这就会给人以安全的错觉,而实际上污染物正一直以极慢的速度通过包气带向地下水迁移。另外还应了解水文方面的地质数据和地质状况及地下水的本底情况。另外采集水样还应考虑到:靠近井壁的水的组成几乎不能代表该采样区的全部地下水水质,因为靠近井的地方可能有钻井污染,以及某些重要的环境条件,如氧化还原电位,在近井处与地下水承载物质的周围有很大的不同。所以,采样前需抽取适量水。对于自喷的泉水,可在涌口处直接采样。采集不自喷的泉水时,将停滞在抽水管的水汲出,新水更替之后,再进行采样。从井水采集水样,必须在充分抽汲后进行,以保证水样能代表地下水水源。

6.降水的采样

准确地采集降水样品难度很大,在降水前,必须盖好采样器,只在降水实际出现之后才打开。每次降水取全过程水样(降水开始到结束)。采集样品时,应避开污染源,采样器四周应无遮挡雨、雪的高大树木或建筑物,以便取得准确的结果。

降水采样包括:

(1)降水自动采样器采样。最适宜的降水自动采样器是直入式的湿式采样器(雨水能直接落入采水容器,不通过其他部件如漏斗、管道等再进入采水容器)。

(2)降水手工采样。

1)雨水样品采集使用聚乙烯塑料桶,上口直径30cm,高度不小于30cm。

2)雪水样品采集使用聚乙烯塑料容器,上口直径50cm以上,高度不低于50cm。

(3)降雨量的测量。降雨量的测量应使用标准雨量仪,与降水采样器同步、平行进行。不可使用降水采样器采集降雨量。

(4)雪样采集。降雪样品可采用手工采样,应使用50cm以上的聚乙烯塑料容器,容器高度应不低于50cm。

(5)采样时间。

1)原则上应逢雨必采,采集每次降水(雨、雪)的全过程样品(自降水开始到结束)。

2)当连续数天降雨,可每隔24h收集一次样品(每天上午8:00至第二天上午8:00)。

3)当一天中有几次降雨过程,对使用自动采样器的采样点可合并为一个样品测定。

7.污水的采样

(1)采样频次。

1)监督性监测。地方环境监测站对污染源的监督性监测每年不少于1次,如被国家或地方环境保护行政主管部门列为年度监测的重点排污单位,应增加到每年2~4次。因管理或执法的需要所进行的抽查性监测由各级环境保护行政主管部门确定。

2)企业自控监测。工业污水按生产周期和生产特点确定监测频次。一般每个

生产周期不得少于3次。

3)对于污染治理、环境科研、污染源调查和评价等工作中的污水监测,其采样频次可以根据工作方案的要求另行确定。

4)根据管理需要进行调查性监测,监测站事先应对污染源单位正常生产条件下的一个生产周期进行加密监测。周期在8h以内的,1h采1次样;周期大于8h,每2h采1次样,但每个生产周期采样次数不少于3次。采样的同时测定流量。根据加密监测结果,绘制污水污染物排放曲线(浓度一时间,流量一时间,总量一时间),并与所掌握资料对照,如基本一致,即可据此确定企业自行监测的采样频次。

5)排污单位如有污水处理设施并能正常运行使污水能稳定排放,则污染物排放曲线比较平稳,监督检测可以采瞬时样;对于排放曲线有明显变化的不稳定排放污水,要根据曲线情况分时间单元采样,再组成混合样品。正常情况下,混合样品采样单元不得少于两次。如排放污水流量、浓度甚至组分都有明显变化,则在各单元采样时采样量应与当时的污水流量成比例,以使混合样品更具代表性。

(2)采样方法。

1)污水的监测项目根据行业类型有不同要求。在分时间单元采集样品时,测定pH、COD、BOD5、溶解氧、硫化物、油类、有机物、余氯、粪大肠菌群、悬浮物、放射性等项目的样品,不能混合,只能单独采样。

2)自动采样用自动采样器进行,有时间等比例采样和流量等比例采样。当污水排放量较稳定时,可采用时间等比例采样,否则必须采用流量等比例采样。

3)采样的位置应在采样断面的中心;在水深大于1m时,应在表层下1/4深度处采样;水深小于或等于1m时,在水深的1/2处采样。

(3)流量测量。

流量测量原则:

1)污染源的污水排放渠道,在已知其“流量一时间”排放曲线波动较小,用瞬时流量代表平均流量所引起的误差可以允许时(小于10%),则在某一时段内的任意时间测得的瞬时流量乘以该时段的时间即为该时段的流量。

2)如排放污水的“流量-时间”排放曲线虽有明显波动,但其波动有固定的规律,可以用该时段中几个等时间间隔的流量来计算出平均流量,则可定时进行

瞬时流量测定,在计算出平均流量后再乘以时间得到流量。

3)如排放污水的“流量-时间”排放曲线既有明显波动又无规律可循,则必须连续测定流量,流量对时间的积分即为总流量。

流量测量方法:

1)污水流量计法。污水流量计的性能指标必须符合污水流量计技术要求。

2)容积法。将污水纳入已知容量的容器中,测定其充满容器所需要的时间,从而计算污水量的方法。本方法简单易行,测量精度较高,适用于污水量较小的连续或间歇排放的污水。对于流量小的排放口用此方法。在溢流口与受纳水体应有适当落差或能用导水管形成误差。

3)速仪法。通过测量排污渠道的过水截面积,以流速仪测量污水流速计算污水量。适当地选用流速仪,可用于很宽范围的流量测量。多数用于渠道较宽的污水量测量。测量时需要根据渠道深度和宽度确定点位垂直测点数和水平测点数。本方法简单,但易受污水水质影响,难用于污水量的连续测定。排污截面底部需硬质平滑,截面形状为规则几何形,排污口处有不少于3~5m的平直过流水段,且水位高度不小于0. 1m。

4)量水槽法。在明渠或涵管内安装量水槽,测量其上游水位可以计量污水量。常用的有巴氏槽。用量水槽测量流量与溢流堰法相比,同样可以获得较高的精度(±2%~±5%)和进行连续自动测量。其优点为水头损失小、壅水高度小、底部冲刷力大,不易沉积杂物。但造价较高,施工要求也较高。

5)溢流堰法。是在固定形状的渠道上安装特定形状的开口堰板,过堰水头与流量有固定关系,据此测量污水流量。根据污水量大小可选择三角堰、矩形堰、梯形堰等。溢流堰法精度较高,在安装液位计后可实行连续自动测量。为进行连续自动测量液位,已有的传感器有浮子式、电容式、超声波式和压力式等。

利用堰板测流,由于堰板的安装会造成一定的水头损失。另外,固体沉积物在堰前堆积或藻类等物质在堰板上黏附均会影响测量精度,必须经常清除。

在排放口处修建的明渠式测流段要符合流量堰(槽)的技术要求。

8. 着生生物

着生生物即周丛生物( periphyton),指生长在浸没于水中的各种基质(srib-stratum)表面上的有机体群落(organisms community)。周丛生物包括许多

第二章 废水样品的采集和保存

第二章废水样品的采集和保存 §2-1概述 在具有代表性的时间,地点,按规定的采集要求采集水样,才能准确反映实际的污染情况。若忽视了试样的代表性,即使采用先进的分析手段,进行认真地分析,得到的结果也是不准确的,没有代表性的。这不仅浪费了、人力人物力,而且还误导了环境治理工作。因此,准确的采样是环境分析的首要问题。 采样涉及采样的时间、地点和频数三个方面。为了采集到有代表性的废水,采样前应该了解污染源的排放规律和废水中污染物浓度的时空变化。在采样的同时还应该测量废水的流量,获得排污量的准确数据。 §2-2 废水采样点的设置原则 一、布设原则 1.第一类污染物采样点位一律设在车间或车间处理设施的排放口或专门处理此类污染物设施的排口。第一类污染物主要有汞、镉、砷、铅的无机化合物,六价铬的无机化合物及有机氯化合物和强致癌物质等。 2.第二类污染物采样点位一律设在排污单位的外排口。第二类污染物主要有悬浮物、硫化物、挥发酚、氰化物、有机磷化合物、石油类、铜、锌、氟的无机化合物、硝基苯类、苯胺类等。 3.综合排污口、排污渠的采样应在污水泵站的进水口及安全溢流口,污水处理厂的进水、出水口和市政排污管线入江(河)口处设置采样点。 4.废水处理设施效率监测采样点的布设 (1)对整体废水处理设施效率监测时,在各种进入废水处理设施废水的入口和废水设施的总排口设置采样点。 (2)对各废水处理单元效率监测时,在各种进入处理设施单元废水的入口和设施单元的排口设置采样点。 §2-3 废水样采集的时间和频率 一、采样频次 1.监督性监测

地方环境监测站对污染源的监督性监测每年不少于1次,如被国家或地方环境保护行政主管部门列为年度监测的重点排污单位,应增加到每年2~4次。因管理或执法的需要所进行的抽查性监测或对企业的加密监测由各级环境保护行政主管主管部门确定。 2.企业自我监测 工业废水按生产周期和生产特点确定监测频率。一般每个生产日至少3次。废水监测应填写废水监测基本信息登记表。 3.对于污染治理、环境科研、污染源调查和评价等工作中的污水监测,其采样频次可以根据工作方案的要求另行确定。 4.排污单位为了确认自行监测的采样频次,应在正常生产条件下的一个生产周期内进行加密监测:周期在8h以内的,每小时采1次样;周期大于8h的,每2h采1次样,但每个生产周期采样次数不少于3次。采样的同时测定流量。根据加密监测结果,绘制污水污染物排放曲线(浓度-时间,流量-时间,总量-时间),并与所掌握资料对照,如基本一致,即可据此确定企业自行监测的采样频次。 根据管理需要进行污染源调查性监测时,也按此频次采样。 5.排污单位如有污水处理设施并能正常运转使污水能稳定排放,则污染物排放曲线比较平稳,监督监测可以采瞬时样;对于排放曲线有明显变化的不稳定排放污水,要根据曲线情况分时间单元采样,再组成混合样品。正常情况下,混合样品的单元采样不得少于两次。如排放污水的流量、浓度甚至组分都有明显变化,则在各单元采样时采样量应与当时污水流量成比例,以使混合样品更有代表性。6.实际采样位置的设置 实际的采样位置应在采样断面的中心。当水深大于lm时,应在表层下1/4深度处采样;水深小于或等于lm时,在水深的1/2处采样。 二、排污总量监测 1.流量测量 (1)流量测量原则 ①污染源的污水排放渠道,在已知其“流量-时间”排放曲线波动较小,用瞬时流量代表平均流量所引起的误差可以允许时(小于10%),则在某一时段内的任意时间测得的瞬时流量乘以该时段的时间即为该时段的流量。

土壤水系沉积物具体采样方法

(一)水系沉积物测量 1:5万水系沉积物测量的工作布置是在充分研究区域地质矿产资料,根据区域矿产分布特征及已知矿化点分布情况进行的。其基本原则是:在区域上有足够的采样点控制异常围,圈定异常位置,查明异常分布及组合特征。 根据《地球化学普查规》和《关于〈地球化学普查规样品分析技术要求补充规定〉的通知》要求,结合景观地球化学条件、区域成矿规律、通行难易程度,围绕测区地质矿产调查目标任务,在本区开展1:5万水系沉积物测量,结合实际情况布设样点。 化探采样工作采用GPS全航迹管理,GPS定位数据采用随机配备的软件进行处理。成果中的坐标单位一律以米计。样品布设、采样要求和样品加工与测试分析按《地球化学普查规》、《地球化学普查规样品分析技术要求补充规定》(中地调发[2007]220号)、中国地质调查局《关于青藏高原区域化探方法技术问题的函》等执行,样品分析单位选择具有“CMA”计量资质的检测单位承担。 样品的采集关系到化探质量的好坏,从采样点的布置、取样介质选取和采集、样品编号、加工、包装、送样到测试各个环节必需严格按照有关规执行。 1、采样点布置原则 1.采样密度:采样点布设密度为4-8个点/km2,平均密度不小于4个点/km2。采样布局应兼顾均匀性与合理性,根据测区实际情况,以最大限度控制汇水域面积和取得具有代表性样品为原则。

2.采样点的布设以4个小方格(1km2)作为采样大格,在全区围分布基本均匀,大格中样品一般应兼顾控制效果和样点基本均匀两方面。 3.采样点尽量布设在最小水系(大于300m)—即一级水系末端和分支水系口上。如果水系较长(大于1km),在水系首尾之间增加采样点,使每一个采样点控制的汇水盆地面积大致在0.25km2之间。原则上不出现5个以上的连续空小格,每个小格的样品不超过2件。水系极不发育地区可以土壤样代替水系沉积物样品,但土壤样应控制在1%以。 4.采样点的布设应避开自然和人工污染地段,如公路、村庄、采矿(石)场等。水系不发育地段,样点布设在受水面积大的冲沟、凹地中。 5.由于设计点位是在未进行实地踏勘的情况下,在1:5万地形图上布设的,个别点位可能不尽合理,允许工作人员在实施过程中结合实际情况适当调整,但变动率应控制在10%以下。 (二)布点方法 在地形图上按1km2为单元进行大格编号,以1:5万图幅为单位,由左至右再自上而下的顺序编排大格号,每个大格分为a、b、c、d 四个小格,图幅边缘按大格中心点所在位置编号。每小格中采集的第一号样品为1,第二号样品为2,每个采样点按上述顺序进行编号。 重复样按工作总量的3%布设。重复样编号方法与上述方法相同,但应为采样小格中最后样号的样品。重复样主要用来检查野外取样的

实验样品采集运输保存方法

1.R N A实验样品采集、保存方法 使用范围及样品量 类别:Microarray Service;Sequencing Service; PCR Array& PCR Service 样本量: 样本样本量 哺乳动物培养细胞样品(悬浮细胞)1*107个 哺乳动物培养细胞样品(贴壁细胞)15cm2 植物组织样品100mg-1g,根据植物不同部位的组织决定组 织需要量,尽可能多些,但不必超过1g 动物组织样品 新鲜组织样品 A. 使用RNAlater试剂 取新鲜组织(注:动物死亡后尽快在10min内取材),组织块以PBS或生理盐水清洗干净,所用组织必须切至厚度在一下,然后放入装有5倍体积RNAlater的离心管(或冻存管)中。 4度孵育过夜,此时样品管需要横置以便组织块充分接触到RNAlater,然后转入-20中保存,样品在-20不会冻结,但溶液中可能会有一些晶体出现,这并不影响后续的RNA抽提。 B. 使用Trizol试剂 取新鲜组织(1min以内),组织块以PBS或生理盐水清洗干净,每50-100mg组织加入1ml Trizol溶液匀浆裂解组织样品,最好冰上进行操作。

匀浆的裂解液4度短期保存(1month),-20或者-70度长期保存。 冻存组织 生物体死亡后尽快(10min以内)切取新鲜组织,并以PBS或生理盐水清洗干净切成小块;培养液倒入离心管中,离心沉淀细胞,弃去上清液。 细胞沉淀(1*107个)中加入1ml Trizol裂解液 反复吸打几次后,目视可见细胞层溶液完全 -70保存 贴壁细胞 从培养容器中吸出并弃去培养液 培养瓶直接加入Trizol试剂,Trizol用量与细胞贴壁面积有关,15cm2细胞贴壁面积加入1mlTrizol。 反复吸打几次后,目视可见细胞层溶解完全。 -70度保存。 植物组织样品 准确取得所需新鲜组织后,如有必要可用PBS清洗干净,将所用组织切碎,装入冻存管中或者用锡箔包裹好。 立即投入液氮中保存。 2.血液类样品采集、保存方法 适用范围及样品量 全血/血细胞:Microarray Service;Sequencing Service; PCR Array& PCR Service 血清/血浆:Microarray Service;PCR Array& PCR Service

水质采样-样品的保存和管理技术规定

中华人民共和国国家环境保护标准 HJ 493—2009 代替GB 12999—91 水质采样样品的保存和管理技术规定 Water quality sampling — technical regulation of the preservation and handling of samples (发布稿) 2009-09-27 发布;2009-11-01 实施 前言 为了贯彻《中华人民共和国环境保护法》和《中华人民共和国水污染防治法》,保护环境,保障人体健康,规范水质样品的保存和管理,制定本标准. 本标准规定了水样从容器的准备到添加保护剂等各环节的保存措施以及样品的标签设计,运输, 接收和保证样品保存质量的条款. 本标准对《水质采样样品的保存和管理技术规定》(GB 12999-91)进行了修订,原标准起草单位:中国环境监测总站,首次发布于:1991 年,本次是第一次修订. 主要修订内容: ——增加单项样品的最少采样量及量化部分保存剂的加入量. ——增加分析项目的容器洗涤方法.删除"分析地点"和"建议"合并为"备注" . ——增加待测项目,其中理化和化学指标33 项,如高锰酸盐指数,凯氏氮,总氮,甲醛,挥发性有机物,农药类,除草剂类,邻苯二甲酸酯类等:增加生物指标 4 项:增加放射学指标10 项. 自本标准实施之日起,原国家环境保护局1991 年 1 月25 日批准,发布的国家环境保护标准《水质采样样品的保存和管理技术规定》(GB 12999-91)废止. 本标准由环境保护部科技标准司组织制订. 本标准主要起草单位:中国环境监测总站,辽宁省环境监测中心站. 本标准环境保护部2009年9月27日批准. 本标准自2009年11月1日起实施. 本标准由环境保护部解释. I 水质采样 1 适用范围 样品的保存和管理技术规定

土壤样品采集与处理实验报告

土壤样品采集与处理实 验报告 Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT

实验一土壤样品的采集与处理 土壤样品的采集是土壤分析工作中的一个重要环节,是关系到分析结果和由此得出的结论是否正确的一个先决条件。由于土壤特别是农业土壤的差异很大,采样误差要比分析误差大若干倍,因此必须十分重视采集具有代表性的样品。此外,应根据分析目的和要求采用不同的采样方法和处理方法。 一、土壤样品的采集 (一)采样时间 土壤中有效养分的含量随季节的改变而有很大变化。分析土壤养分供应情况时,一般都在晚秋或早春采样。同一时间内采取的土样,其分析结果才能相互比较。 (二)采样方法 采样方法因分析目的和要求的不同而有所差别: 1.土壤剖面样品研究土壤基本理化性质,必须按土壤发生层次采样。 2.土壤物理性质样品如果是进行土壤物理性质测定,须采原状样品。 3.土壤盐分动态样品研究盐分在剖面中的分布和变动时,不必按发生层次取样,而自地表起每l0cm 或20cm 采集一个样品。 4.耕层土壤混合样品为了评定土壤耕层肥力或研究植物生长期内土壤耕层中养分供求情况,采用这种方法。 (1)采样要求 在采样时,要求土样有代表性,因此需多点取样,充分混合,布点均匀,混合样品的取样数量应根据试验区的面积以及地力是否均匀而定,通常为5~20个点,采样深度只需耕作层土壤0~20cm ,最多采到犁底层的土壤,对作物根系较深的,可适当增加采样深度。 (2)采样方法 根据地形、样点数量和地力均匀程度布置采样点。面积不大,比较方正,可采用对角线取样法;面积较大,形状方正,肥力不匀的地块可采用棋盘式采样方法(方格取样法);面积较大,形状长条或复杂,肥力不匀的地块多采用 土时应除去地面落叶杂物。采样深度一般取耕作层土壤20cm 左右,最多采到犁底层的土壤,对作物根系较深的土壤,可适当增加采样深度。 对角线取样法 棋盘式取样法蛇形取样法法

土壤水系沉积物具体采样方法

土壤水系沉积物具体采样方法(一)水系沉积物测量 1:5万水系沉积物测量的工作布置是在充分研究区域地质矿产资料,根据区域矿产分布特征及已知矿化点分布情况进行的。其基本原 则是:在区域上有足够的采样点控制异常范围,圈定异常位置,查明异常分布及组合特征。 根据《地球化学普查规范》和《关于〈地球化学普查规范样品分析技术要求补充规定〉的通知》要求,结合景观地球化学条件、区域成矿规律、通行难易程度,围绕测区地质矿产调查目标任务,在本区开展1:5万水系沉积物测量,结合实际情况布设样点。 化探采样工作采用GPS全航迹管理,GPS定位数据采用随机配备的软件进行处理。成果中的坐标单位一律以米计。样品布设、采样要求和样品加工与测试分析按《地球化学普查规范》、《地球化学普查规范样品分析技术要求补充规定》(中地调发[2007]220号)、中国地质调查局《关于青藏高原区域化探方法技术问题的函》等执行,样品分析单位选择具有“ CMA计量资质的检测单位承担。

样品的采集关系到化探质量的好坏,从采样点的布置、取样介质选取和采集、样品编号、加工、包装、送样到测试各个环节必需严格按照有关规范执行。 1、采样点布置原则 1.采样密度:采样点布设密度为4- 8个点/km2,平均密度不小于4个点/km2。采样布局应兼顾均匀性与合理性,根据测区实际情况,以最大限度控制汇水域面积和取得具有代表性样品为原则。 2.采样点的布设以4个小方格(1km2)作为采样大格,在全区范围内分布基本均匀,大格中样品一般应兼顾控制效果和样点基本均匀两方面。 3.米样点尽量布设在最小水系(大于300m)—即一级水系末 端和分支水系口上。如果水系较长(大于1km),在水系首尾之间增加采样点,使每一个采样点控制的汇水盆地面积大致在0.25km2之 间。原则上不出现5个以上的连续空小格,每个小格的样品不超过 2 件。水系极不发育地区可以土壤样代替水系沉积物样品,但土壤样应控制在1%以内。 4.采样点的布设应避开自然和人工污染地段,如公路、村庄、采矿(石)场等。水系不发育地段,样点布设在受水面积大的冲沟、凹地中。 5.由于设计点 位是在未进行实地踏勘的情况下,在1:5万地形图上布设的,个别点位可能不尽合理,允许工作人员在实施过程中结合实际情况适当调整,但变动率应控制在10%以下。 (二)布点方法 在地形图上按1km2为单元进行大格编号,以1:5万图幅为单位,由左至右再自上而下的顺序编排大格号,每个大格分为a、b、c、d

渭河沉积物采样方案

渭河沉积物采样方案 1、项目概况 项目名称:渭河下游河道富集污染物的时空变化研究 采样目的:通过对渭河下游沉积物,水,周边土壤,的采样监测,进而研究。 2、采样前准备: (1)采样时间:在2014年的枯水期以及2015年的丰水期各采一次沉积物,每次采样地点一致。 (2)采样工具: (1)工具类包括:铁锹、铁铲、取土钻、竹片以及适合特殊采样要求的工具等。 (2)器材类包括:测距仪、GPS、照相机、PH计、卷尺、样品袋、瓶子,采水器(绳子)、样品箱等。 (3)文具类包括:样品标签、采样记录表、铅笔、圆珠笔、资料夹,监测断面图等。 (4)沉积物采样点布设:共设置22个一级采样点,分别为1#林家村,2#石油桥,3#卧龙寺桥,4#虢镇桥,5#常兴桥,6#黑河入渭,7#兴平,8#涝河入渭,9#南营,10#三里桥,11#咸阳铁桥,12#农场西站(皂河入渭),13#天江人渡,14#三郎村(灞河入渭),15#耿镇桥,16#临河入渭,17#新丰镇大桥,18#沙王渡,19#张家庄,20#树园,21#王谦村、22#潼关吊桥,具体位置参照图纸,每个采样点在河流方向设置4个次级采样点,编号a、b、c、d,次级采样点的布设为在

每个一级采样点范围内,每隔25m设置一个次级采样点,共设置4个。在河流横断面上根据河道宽度设置采样点个数,采样点布设具体参照水样采样点布设,按自然数编号。并记录河道宽,水位,流速,水色,沉淀物颜色,岸土性质,采样位置,样品组分,植被发育情况,污染情况。 采样点的布设应避开自然和人工污染地段,如公路,村庄,采矿场等 (3)沉积物采样方法: 应选择河床底部或河道岸边与水面接触处采样,个别地段也可在河漫滩上采样,选择在水流变缓滞留处采样。用铁锹挖50cm的剖面,每隔5cm取沉积物,将样品放入样品袋,并贴上标签,依次从上往下直至50cm处。 样品重量一般为1-2kg,(样品结构粗的应多采,结构细的应少采,保证过60目筛后重量大于150g)。 (4)水样采样方法: 布设22个采样点,位置同沉积物的采样位置一致,采样位置和数量根据河宽而定,位置:河宽<50m,只设置一条中泓垂涎;河宽50—100m,在左右两岸有明显水流处各设一条垂线;河宽100—1000m,左中右三条垂线。数量:水深小于5m时,只在水面下0.5m 处设一个采样点;水深5—10米,在水面下0.5米处和水底上0.5米处采样;水深10—50米,在在水面下0.5米处,水底上0.5米处,水深1/2处采样。

水质采样样品的保存和管理技术规定

水质采样样品的保存和管理技术规定 本标准是水质采样标准第三部分。 本标准参照采用ISO 5667-3:1985《水质采样样品保存和管理技术指导》。 1 主题内容与适用范围 本标准适用于天然水、生活污水及工业废水等,当所采集的水样(瞬时样或混合样)不能立即在现场分析,必须送往实验室测试时,本标准所提供的样品保存技术与管理程序是适用的。 2 样品保存 各种水质的水样,从采集到分析这段时间里,由于物理的、化学的、生物的作用会发生不同程度的变化,这些变化使得进行分析时的样品已不再是采样时的样品,为了使这种变化降低到最小的程度,必须在采样时对样品加以保护。 2.1 水样变化的原因 2.1.1 生物作用:细菌、藻类及其他生物体的新陈代谢会消耗水样中的某些组分,产生一些新的组分,改变一些组分的性质,生物作用会对样品中待测的一些项目如溶解氧、二氧化碳、含氮化合物、磷及硅等的含量及浓度产生影响。 2.1.2 化学作用:水样各组分间可能发生化学反应,从而改变了某些组分的含量与性质。例如溶解氧或空气中的氧能使二价铁、硫化物等氧化;聚合物可能解聚;单体化合物也有可能聚合。 2.1.3 物理作用:光照、温度、静置或振动,敞露或密封等保存条件及容器材质都会影响水样的性质。如温度升高或强振动会使得一些物质如氧、氰化物及汞等 挥发;长期静置会使A1(OH) 3,CaCO 3 及Mg 3 (PO 4 ) 2 等沉淀。某些容器的内壁能不可 逆地吸附或吸收一些有机物或金属化合物等。 水样在贮存期内发生变化的程度主要取决于水的类型及水样的化学性质和生物学性质。也取决于保存条件、容器材质、运输及气候变化等因素。 必须强调的是这些变化往往是非常快。常在很短的时间里样品就明显地发生了变化,因此必须在一切情况下采取必要的保护措施,并尽快地进行分析。 保护措施在降低变化的程度或减缓变化的速度方面是有作用的,但到目前为止所有的保护措施还不能完全抑制这些变化,而且对于不同类型的水,产生的保护效果也不同,饮用水很易贮存,因其对生物或化学的作用很不敏感,一般的保护措施对地面水和地下水可有效的贮存,但对废水就不同了。采自不同地点或废水性质不同其保存的效果也就不同,如采自城市污水和污水处理厂的水其保存效果不同,采自生化处理厂的废水及未经处理的污水其保存效果也不同。 由于样品中成分性质不同,有的分析项目要求单独取样,有的分析项目要求在现场分析,有些项目的样品能保存较长时间。 由于采样地点和样品成分的不同,迄今为止还没有找到适用于一切场合和情况的绝对准则。 在各种情况下,存储方法应与使用的分析技术相匹配,本标准规定了最通用的适用技术。 2.2 盛装水样容器的选择及清洗 盛装水样容器材质的选择及清洗是样品保存的首要问题。 2.2.1 对容器的要求 选择容器的材质必须注意以下几点:

海洋沉积物的采集和硫化物的测定

沉积物样品的采集和沉积物中硫化物的测定 1 沉积物样品 1.1 样品采集 1.1.1 表层样品的采集 1.1.1.1 采样器类型及其选择 用自身重量或杠杆作用设计的抓斗式工或其他类型的沉积物采样器,其设计特点各异,包括弹簧制动、重力或齿板锁合方式。这些要随深入泥层的形状而不同,以及随所取样品的规模和面积不同,各自不一。采样器的选择主要考虑以下几方面: --贯穿泥层的深度; --齿板锁合的角度; --锁合效率(避免障碍的能力); --引起波浪“振荡”和造成样品的流失或者在泥水界面上洗掉样品组成或生物体的程度; --在急流中样品的稳定性。在选择沉积物采样器时,对生境、水流情况、采样面积以及采样船只设备均应统筹考虑。 常用的抓斗式采泥器与地面挖土设备很相似.它们是通过水文绞车将其沉降到选定的采样点上.通常采集较大量的混合样品能够比较准确地代表所选定的采样地点情况. 1.1.1.2 表层样品采集操作 1.1.1. 2.1 将绞车的钢丝绳与采泥器连结,检查是否牢固,同时,测采样点水深; 1.1.1. 2.2 慢速开动绞车将采泥器放入水中。稳定后,常速下放至离海底一定距离3~5m,再全速降至海底,此时应将钢丝绳适当放长,浪大流急时更应如此; 1.1.1. 2.3 慢速提升采泥器离底后,快速提至水面,再行慢速,当采泥器高过船舷时,停车,将其轻轻降至接样板上; 1.1.1. 2.4 打开采泥器上部耳盖,轻轻倾斜采泥器,使上部积水缓缓流出。若因采泥器在提升过程中受海水冲刷,致使样品流失过多或因沉积物太软、采泥器下降过猛,沉积物从耳盖中冒出,均应重采; 1.1.1. 2.5 样品处理完毕,弃出采泥器中的残留沉积物,冲洗干净,待用。 1.2.2 柱状样的采集 柱状采样器可以采集垂直断面沉积物样品。如果采集到的样品本身不具有机械强度,那么从采泥器上取下样器时应小心保持泥样纵向的完整性。 柱状样的采集操作。 1.2.2.2 首先要检查柱状采样器各部件是否安全牢固; 1.2.2.2 先作表层采样,了解沉积物性质,若为砂砾沉积物,就不作重力取样; 1.2.2.3 确定作重力采样后,慢速开动绞车,将采泥器慢慢放入水中待取样管在水中稳定后,常速下至离海3~5m处,再全速降至海底,立即停车; 1.1. 2.4 慢速提升采样器,离底后快速提至水面,再行慢速。停车后,用铁勾勾住管身,转入舷内,

环境监测样品采集与保存的质量控制

环境监测样品采集与保存的质量控制 发表时间:2018-03-21T15:12:45.437Z 来源:《防护工程》2017年第32期作者:张小英 [导读] 加强取样和保存的各个环节的质量控制,对我国大环境的污染治理和预防提供有力支持,改善水环境和对水环境保护有重要的意义。 深圳市环境监测中心站 摘要:水质样品取样和保存是个重要的过程,也是影响监测结果相对薄弱的环节。因此,对这个过程中的各个环节,如采样器材、采样操作规范、样品保存剂的添加、样品的保存、运输和交接等几个方面进行分析,根据多年的工作实践提出质量控制建议,供借鉴。 关键词:样品采集;保存;质量控制 前言 监测数据是体现水质结果的最终状态,为使监测数据能够准确反映水环境质量现状,要求监测数据要具有准确性、精密性、可比性和完整性。而水质环境监测工作中各个环境均会影响到监测结果,因此,对整个监测过程采取全程序质量控制措施,确保水质监测结果的准确性。当前水质环境监测质量保证工作比较注重实验室内部的质量控制,对于样品采集和保存过程尚不能严格控制,也是我们当前工作的薄弱部分。 一、水质样品采集和保存过程误差来源及质量控制 (一)采样器材的选择 采样器材主要有采样器和水样容器。采样器一般有聚乙烯塑料桶、单层采水瓶、直立式采水器和自动采样器。一般水质监测项目常用采样器为聚乙烯塑料桶,但特殊项目需用相应的采样器。例如油类采样需用直立式采水器,若采用聚乙烯塑料桶采样,则采集到的水样为表层样品,不符合在水面下300 mm采集柱状水样的要求,导致的误差将会使油类项目的分析数据失去意义。 水样容器主要有硬质玻璃瓶和聚乙烯瓶(桶)。一般的玻璃容器吸附金属,聚乙烯等塑料吸附有机物质、磷酸盐和油类,因此水质采样时,通常分析有机物的样品使用硬质玻璃瓶,分析无机物的样品使用聚乙烯塑料瓶(桶)。也有个别项目有特殊要求,如测定氟化物的水样不能用玻璃瓶盛装;用于测定农药或除草剂等项目的水样,一般使用棕色玻璃瓶盛装;测定BOD5和COD的水样,如果浓度较低,最好用玻璃瓶盛装。如果水样盛装容器对水样中待测项目有吸附或者容器解吸出待测物质,则会导致水样分析结果偏高或偏低。 选择好正确的采样器和水样容器后,在进行水质采样前,均要对采样器和水样容器进行清洗。如果使用新容器,则更应进行充分的清洗。盛装有机物、耗氧量和细菌类等样品的容器一般用洗涤剂洗1次,自来水洗3次,然后用蒸馏水冲洗1次;盛装金属类样品的容器用洗涤剂洗1次,自来水洗2次,HNO3荡洗1次,自来水洗3次,去离子水冲洗1次;盛装阴离子表面活性剂和磷酸盐样品的容器则需用铬酸洗液清洗1次,自来水洗3次,蒸馏水洗1次即可。测定农药或除草剂等项目的样品瓶按_般规则清洗后,在烘箱内180℃下烘干4 h,冷却后再用纯化过的己烷或石油醚冲洗数次。如果采集污水样品可省去用蒸馏水、去离子水清洗的步骤。采样器和水样容器清洗不干净或者采用错误的清洗方式,也会给样品分析结果带来误差,只有按规定的清洗方式将容器清洗干净,才能将这一环节的误差降到最低。 (二)采样操作规范 在地表水质监测中通常采集瞬时水样,采样量要考虑重复分析和质量控制的需要,并留有余地。采样时要保证采样点位的准确性,必要时用定位仪定位。采样时不可搅动水底的沉积物。测定溶解氧、生化需氧量和有机污染物等项目时,水样必须注满容器,上部不留空间,并有水封口。测定油类、BOD5、DO、硫化物、余氯、粪大肠菌群、悬浮物、放射性等项目时要单独采样。一般容器在采样前均需用水样进行荡洗,但测定油类的水样,应在水面下300 mm采集柱状水样,且样品不能用采集的水样冲洗。如果水样中含沉降性固体,则应分离除去。 水样采集好后,要将标签贴在水样容器上,标签内容包括采样时间、采样点位、监测项目、采样人员等。需要现场监测的项目要按规范进行现场监测,并填写水质采样记录表和现场监测表,字迹端正、清晰,内容完整。采样结束前,应仔细核对采样计划、记录与水样,如有错误或遗漏,立即补采或重采。 需要现场监测的项目一定要在现场完成,并且完成记录的规范填写。pH值、溶解氧、电导率等现场测试项目需要对监测仪器进行校准后方能使用,测试方法严格按照国家标准进行。 (三)样品保存剂的添加 引起水样水质变化的原因有生物作用、化学作用和物理作用。水样采集后,要尽快送到实验室分析,样品存放过程中某些组分的浓度可能会发生变化,这就要求加入保存剂来减小组分浓度的变化。测定金属离子的水样常通过加酸来控制溶液pH值,既可以防止重金属的水解沉淀,又可以防止金属在器壁表面上的吸附,同时还能抑制生物的活动。为了抑制生物作用,可在样品中加入抑制剂,如在测氨氮的水样中加氯化汞以抑制生物对铵盐的氧化还原作用。加入硝酸一重铬酸钾溶液可使汞维持在高氧化态,使其稳定性大为改善。测定硫化物的水样,加入抗坏血酸对保存有利。一般保存剂的添加需要在样品采集自然沉降30 min后进行,否则可能影响水样分析结果。张艳研究指出,测定总磷的水样使用不沉降一加酸方式测得的总磷浓度为标准规定方法的1.22~2.21倍,平均1.60倍;不沉降一不加酸测得的总磷浓度为标准规定方法的1.12~1.83倍,平均1.41倍;沉降一不加酸测得的总磷浓度为标准规定方法的0.93~1.00倍,平均0.96倍。由此可见,保存剂添加与否、添加方式都将影响监测数据的质量。 (四)样品的运输 样品的运输也是水质监测的重要步骤,如果样品在运输过程中受到污染或者受损,之前和之后的工作都会受到影响。水样运输前应将容器的盖子盖紧,装箱时应用泡沫塑料、报纸等材料分隔,以防运输途中破损。运输途中应有专门人员管理样品,并填写水样质量保证卡。水样运回实验室后,及时交给样品接收人员,完成相应的交接手续。 (五)样品的保存 待测组分不同的样品要根据各自性质来决定保存条件及时间。有机污染物、悬浮物、酸碱度、阴离子组分等样品一般需要进行低温(0~4℃)避光保存,其余样品在室温条件下保存即可。金属类样品一般可以保存14 d,有机污染物、氨氦等其他组分一般最多保存24 h。(六)样品交接 样品在进入实验室前最后一个环节是进行样品的交接。分析人员领取样品时要查看样品是否破损,样品数量是否正确,保存条件和时

沉积物、水质样品分析方法

3.3.2 样品分析方法 3.3.2.1 沉积物理化性质分析方法 (1)沉积物容重:利用环刀法测量沉积物容重,称100ml 体积环刀的质量m 1(g ),装入呈自然状态下采集回来的沉积物,盖上环刀顶盖,称其质量m 2(g )。则沉积物的湿容重计算式为: ρw1(g/cm 3)=(m 2-m 1)/100 打开环刀盖,将装有样品的盒子及盖子放入烘箱,于105-110℃烘干6-8h ,随后在干燥器中冷却至室温(约20-30min ),称重,再烘2h ,冷却再称,如此反复至恒重(m 3)(前后两次称量之差不大于0.02g )。则沉积物的干容重计算式为: ρw2(g/cm 3)=(m 2-m 3)/100 (2)沉积物含水率 ω(%)=(ρw2-ρw1)/ρw1×100 (3)沉积物比重 沉积物比重的测定采用比重瓶法(FHZDZTR0003)。称取通过2mm 筛孔的风干土样10g 倾入50ml 比重瓶中,加入蒸馏水至一半体积,混合后置于电热板砂盘上加热,保持沸腾1h ,经常摇动以逐出空气,温度不可过高,防止土液溅出。从砂盘上取下比重瓶,冷却后加入无二氧化碳水,塞好瓶塞,滤纸擦干外壁后称重(精确至0.001g ),同时用温度计测水温t 1(精确至0.1℃ ),求得质量m bws1。将比重瓶中土液倾出,注满无二氧化碳水,塞上瓶塞,称取比重瓶+水质量m bw1。称取风干土样10g (精确至0.001g )于恒重的称量瓶中,于105℃烘箱内烘干4-8h ,在干燥器内冷却后称至恒重,由此计算烘干土样的质量m s 。沉积物比重Gs 的计算式为: Gs= m s /(m s + m bws1 - m bw1 )*ρw 1 式中:Gs--沉积物比重,g/cm 3; ρw 1--t 1℃时无二氧化碳水密度,g/cm 3;(见最后表格查询) m s --烘干土样质量,g ; m bws1--t 1℃时比重瓶+水质量,g ; m bw1--t 1℃时比重瓶+水+土样质量,g 。 (4)饱和密度 饱和密度是指土空隙中充满水时的单位体积质量,计算公式: ()1S w sat G e e ρρ+=+ (5)孔隙比 孔隙比是指土中空隙体积与土粒体积之比,它是一个重要的物理指标,可以用来评价天然土层的密实程度。一般e<0.6的土是密实的低压缩性土,e >0.6的土是疏松的高压缩性土。空隙比计算公式为:

《样品采集、保存和管理作业指导书》

样品采集和保存 一样品采集和保存 ①氨氮:水样采集在聚乙烯瓶或玻璃瓶内,要尽快分析。如需保存,每升样品中应加1ml 浓硫酸,并在4下贮存,用酸保存的样品,测定时用氢氧化钠将PH值调至7左右。 ②溶解氧:样品应采集在细口瓶中,测定就在瓶内进行。试样充满全部细口瓶。不得有气 泡。 ③化学需氧量:水样采集于玻璃瓶中,应尽快分析。如不能立即分析时,应加入硫酸至PH <2,置4℃保存,时间不能多余5天。采集水样的体积不得少于100ml。 ④悬浮物:所用聚乙烯瓶或硬质玻璃瓶要用洗涤剂洗净。在采样之前,再用即将采集的水 样清洗三次。然后采集水样500—1000ml,盖严瓶塞。 ⑤总磷:采集500ml水样后加入1ml硫酸调节样品的PH值,使之低于或等于1,或不加 任何试剂于冷处保存。 ⑥PH值:最好现场测定。否则应在采样后把样品保持在0—4℃,并在采样后6小时内进 行测定。 ⑦水温:最好现场测定。否则,应在采样后把样品保持在0~4,并在采样后6h之内进行测 定 ⑧氯化物:采集代表性水样,放在干净且化学性质稳定的玻璃瓶或聚乙烯瓶内。保存时不 必加入特别的防腐剂 ⑨色度:所用于样品接触的玻璃器皿都要用盐酸或表面活性剂溶液加以清洗,最后用蒸馏 水或去离子水洗净、沥干。样品采集在容积至少为1L的玻璃瓶内,在采样后尽快进行测定。 ⑩总氮:将采集好的样品储存在聚乙烯瓶或硬质玻璃瓶中,用浓硫酸调节PH值至1~2,常温下可保存7天。储存在聚乙烯瓶中,-20℃冷冻,可保存一个月。 ⑾五日生化需氧量:采集的样品应充满并密封于棕色玻璃瓶中,样品量不小于1000ml,在0~4℃的暗处运输和保存,并与24小时内尽快分析。24小时不能分析可冷冻保存。 ⑿粪大肠菌群:采样瓶使用500ml已灭菌的磨口玻璃塞广口瓶,采集水样时应避免瓶盖及瓶子颈部受杂菌污染。灭菌后的采样瓶2周内未使用需重新灭菌 采集好的水样需放置约4℃冷藏设备内保存运输,一般要求在采集4小时内测定。

血液样本的采集与保存

实用帖血液样本的采集与保存 在脊椎动物中,外周血一直被认为是侵害性较小、富有价值的检测样本。在许多生物样 本库中,由于血液样本的常规收集、处理及保存方法简便、成本低且富含可利用成分和生物分子,因此是进行多种项目分析的理想实验材料。然鹅,科研僧们历经千辛万苦最后发现获 得的血液样本RNA降解了。。。。额,这就很惆怅了。 所以呢,在样本采集、处理及储存过程中必须格外注意,从根本上确保获得高质量的 RNA 今天小编和大家一起来聊一聊在进行RNA实验时血液样本如何进行收集与保存。 血液的组成 首先来熟悉一下血液的组成。 人类的血液由血浆和血细胞组成。其中血浆约占血液的55%是水,糖,脂肪,蛋白质, 钾盐和钙盐等的混合物。血细胞约占血液的45%主要分为红细胞、白细胞和血小板。而哺 乳动物成熟的红细胞和血小板是无核的。

11^ 血浆和血清 血浆是离开血管的全血经抗凝处理后,通过离心沉淀,所获得的不含细胞成分的液体, 其中含有纤维蛋白原,不含游离的 Ca 2+ ,若向血浆中加入 ,血浆会发生再凝固。 血清是离体的血液凝固之后, 经血凝块聚缩释出的液体, 其中已无纤维蛋白原, 游离的Ca 2+ ,血清中少了很多的凝血因子但多了很多的凝血产物。 不加卿赛 mm BW. 血囲 其他有形咸分 但含有 血浆 有形成分

采血管的选择 采血管,大家都不陌生,去医院抽个血,一定会用到采血管,那么问题来鸟,这么多颜 色的采血管,有什么区别呢?下面小编来给大家介绍一下采血管的分类及不同颜色试管帽代 表的含义。 1. 蓝色头盖管(含有柠檬酸钠抗凝剂的采血管) 2. 黑色头盖管(含有0.109mol/L 柠檬酸钠) 3. 紫色头盖管(含有乙二胺四乙酸以及其盐的采血管 ) 4. 绿色头盖管(肝素抗凝管) 5. 灰色头盖管(含有草酸钾/氟化钠) 6. 橘红色头盖管(促凝管) 7. 金黄色头盖管(含有惰性分离胶及促凝剂的采血管) 8.红色头盖管(无添加剂的干燥真空管) f l m ■ M M ■ ■ 机 ■ 忡-M M

海洋沉积物的采集及硫化物的测定

海洋沉积物的采集及硫化物的测定

沉积物样品的采集和沉积物中硫化物的测定 1 沉积物样品 1.1 样品采集 1.1.1 表层样品的采集 1.1.1.1 采样器类型及其选择 用自身重量或杠杆作用设计的抓斗式工或其他类型的沉积物采样器,其设计特点各异,包括弹簧制动、重力或齿板锁合方式。这些要随深入泥层的形状而不同,以及随所取样品的规模和面积不同,各自不一。采样器的选择主要考虑以下几方面: --贯穿泥层的深度; --齿板锁合的角度; --锁合效率(避免障碍的能力); --引起波浪“振荡”和造成样品的流失或者在泥水界面上洗掉样品组成或生物体的程度; --在急流中样品的稳定性。在选择沉积物采样器时,对生境、水流情况、采样面积以及采样船只设备均应统筹考虑。 常用的抓斗式采泥器与地面挖土设备很相似.它们是通过水文绞车将其沉降到选定的采样点上.通常采集较大量的混合样品能够比较准确地代表所选定的采样地点情况. 1.1.1.2 表层样品采集操作 1.1.1. 2.1 将绞车的钢丝绳与采泥器连结,检查是否牢固,同时,测采样点水深; 1.1.1. 2.2 慢速开动绞车将采泥器放入水中。稳定后,常速下放至离海底一定距离3~5m,再全速降至海底,此时应将钢丝绳适当放长,浪大流急时更应如此; 1.1.1. 2.3 慢速提升采泥器离底后,快速提至水面,再行慢速,当采泥器高过船舷时,停车,将其轻轻降至接样板上; 1.1.1. 2.4 打开采泥器上部耳盖,轻轻倾斜采泥器,使上部积水缓缓流出。若因采泥器在提升过程中受海水冲刷,致使样品流失过多或因沉积物太

软、采泥器下降过猛,沉积物从耳盖中冒出,均应重采; 1.1.1. 2.5 样品处理完毕,弃出采泥器中的残留沉积物,冲洗干净,待用。 1.2.2 柱状样的采集 柱状采样器可以采集垂直断面沉积物样品。如果采集到的样品本身不具有机械强度,那么从采泥器上取下样器时应小心保持泥样纵向的完整性。 柱状样的采集操作。 1.2.2.2 首先要检查柱状采样器各部件是否安全牢固; 1.2.2.2 先作表层采样,了解沉积物性质,若为砂砾沉积物,就不作重力取样; 1.2.2.3 确定作重力采样后,慢速开动绞车,将采泥器慢慢放入水中待取样管在水中稳定后,常速下至离海3~5m 处,再全速降至海底,立即停车; 1.1.2.4 慢速提升采样器,离底后快速提至水面,再行慢速。停车后,用铁勾勾住管身,转入舷内,平卧于甲板上; 1.1. 2.5 小心将取样管上部积水倒出,丈量取样管打入深度。再用通条将样柱缓缓挤出,顺序放在接样板上进行处理和描述。若样柱长度不足或样管斜插入海底,均应重采。 沉积物中硫化物的测定方法 1.3 样品保存与运输 1. 3.1 样品保存 样品每隔3㎝分层,装在50ml 离心管中,现场加醋酸锌溶液进行固定,冷藏保存运回实验室。 2沉积物中硫化物的测定方法 硫化物是电正性较强的金属或非金属与硫形成的化合物,分为酸式盐( HS -,氢硫化物) 、正盐( S 2-) 和多硫化物(S n 2- )3 类。土和沉积物中的硫分为有机硫和无机硫两类。土壤中硫化物可与镉、铅、砷等亲硫元素生成难溶性重金属硫化物,加重土壤重金属污染。同时也易被有机质分解,生成H 2S,

废水采样操作规程

1.目的 规范废水的操作程序,正确使用仪器,保证采样工作顺利进行和人员的安全。 2.适用范围 本作业指导书适用于污染源排放污水的现场采集工作。 3.采样设备 水质采样可选用聚乙烯塑料桶、单层采样器、泵式采水器、自动采样器或自制 的其它采样工具和设备。场合适宜时也可以用样品容器手工直接灌装。 4.样品容器 使用硬质玻璃、聚乙烯、石英、聚四氟乙烯制的带磨口盖(或)塞瓶,原则上有机类监测项目选用玻璃材质,无机类监测项目可用聚乙烯容器。 5.采样 5.1样品的采集: 在分时间单元采集样品时,测定pH COD、BOD、硫化物、油类、悬浮物、等项目的样品,不能混合采样,只能单独采样,全部用于测定。 5.2采样方法: 5.2.1不同水体的采样方法 从管道、水渠等落水口处取样:从管道、水渠等落水口处取样,直接用容器或聚乙烯桶,要注意悬浮物质分取均匀。 从排污管道中取样:在排污管道中采样,由于管道壁的滞留作用,同一断面不同部位流速有差异,污染物分布不均匀,浓度相差颇大。因此当排污管道水深大于1m 时,可由表层起向下到1 / 4深度处采样,作为代表平均浓度的废水样。如果小 于或等于1 m时,可只取1 / 2深度的废水样即可。 从容器、贮罐、废水池等处取样:对盛有废液的小型容器,采样前先充分搅匀, 然后取样。废液分三层以上,不能搅匀时,可按各层量的多少的比例分层取样。对污染物分布不均匀的大型贮罐或废水池,根据具体情况,可多点分层采样。可采用自制的负重架,架内固定聚乙烯塑料样品容器,沉入废水中采样。 从地面水如河流、湖泊等水体取样:采集表层水样时,可直接用容器或聚乙烯 桶进行;采集表层以下各层面的水样时,可用单层采样器采样。 522各种采样器的采样方法

实验一土壤样品的采集与预处理

实验一土壤样品的采集与预处理 一、目的和要求 土壤样品(简称土样)的采集与处理,是土壤分析工作的一个重要环节,直接关系到分析结果的正确与否。因此必须按正确的方法采集和处理土样,以便获得符合实际的分析结果。 二、内容与原理 学习土壤农化样品的采样布点方法及分样方法。在大田中,采用蛇形取样法采集1kg 有代表性的土壤样品,采用四分法分样。土样标签书写内容,样品风干要求。 三、主要用具 小土铲、布袋或塑料袋、标签 四、操作方法与实验步骤 (一)土样的采集 分析某一土壤或土层,只能抽取其中有代表性的少部份土壤,这就是土样。采样的基本要求是使土样具有代表性,即能代表所研究的土壤总体。根据不同的研究目的,可有不同的采样方法。 1.土壤剖面样品 土壤剖面样品是为研究土壤的基本理化性质和发生分类。应按土壤类型,选择有代表性的地点挖掘剖面,根据土壤发生层次由下而上的采集土样,一般在各层的典型部位采集厚约l0厘米的土壤,但耕作层必须要全层柱状连续采样,每层采一公斤;放入干净的布袋或塑料袋内,袋内外均应附有标签,标签上注明采样地点、剖面号码、土层和深度。 2.耕作土壤混合样品 为了解土壤肥力情况,一般采用混合土样,即在一采样地块上多点采土,混合均匀后取出一部份,以减少土壤差异,提高土样的代表性。 (1)采样点的选择选择有代表性的采样点,应考虑地形基本一致,近期施肥耕作措施、植物生长表现基本相同。采样点5—20个,其分布应尽量照顾到土壤的全面情况,不可太集中,应避开路边、地角和堆积过肥料的地方。 (2)采样方法:在确定的采样点上,先用小土铲去掉表层3毫米左右的土壤,然后倾斜向下切取一片片的土壤(见图1)。将各采样点土样集中一起混合均匀,按需要量装入袋中带回。 3.土壤物理分析样品 测定土壤的某些物理性质。如土壤容重和孔隙度等的测定,须采原状土样,对于研究土壤结构性样品,采样时须注意湿度,最好在不粘铲的情况下采取。此外,在取样过程中,须

水质采样样品的保存和管理技术规定

水质采样样品的保存和管理技术规定 水质采样样品的保存和管理技术规定 Water quality sampling-technical regulation of the preservation and handling of samples 1991-12-05实施 本标准适用于天然水、生活污水及工业废水等,当所采集的水样(瞬时样或混合样)不能立即在现场分析,必须送往实验室测试时,本标准所提供的样品保存技术与管理程序是适用的。 本标准是水质采样标准第三部分。 本标准参照采用ISO 5667-3:1985《水质——采样——样品保存和管理技术指导》。 1 主题内容与适用范围 本标准适用于天然水、生活污水及工业废水等,当所采集的水样(瞬时样或混合样)不能立即在现场分析,必须送往实验室测试时,本标准所提供的样品保存技术与管理程序是适用的。 2 样品保存 各种水质的水样,从采集到分析这段时间里,由于物理的、化学的、生物的作用会发生不同程度的变化,这些变化使得进行分析时的样品已不再是采样时的样品,为了使这种变化降低到最小的程度,必须在采样时对样品加以保护。 2.1 水样变化的原因 2.1.1 生物作用:细菌、藻类及其他生物体的新陈代谢会消耗水样中的某些组分,产生一些新的组分,改变一些组分的性质,生物作用会对样品中待测的一些项目如溶解氧、二氧化碳、含氮化合物、磷及硅等的含量及浓度产生影响。 2.1.2 化学作用:水样各组分间可能发生化学反应,从而改变了某些组分的含量与性质。例如溶解氧或空气中的氧能使二价铁、硫化物等氧化;聚合物可能解聚;单体化合物也有可能聚合。 2.1.3 物理作用:光照、温度、静置或振动,敞露或密封等保存条件及容器材质都会影响水样的性质。如温度升高或强振动会使得一些物质如氧、氰化物及汞等挥发;长期静置会使A1(OH)3,CaCO3及Mg3(PO4)2等沉淀。某些容器的内壁能不可逆地吸附或吸收一些有机物或金属化合物等。 水样在贮存期内发生变化的程度主要取决于水的类型及水样的化学性质和生物学性质。也取决于保存条件、容器材质、运输及气候变化等因素。 必须强调的是这些变化往往是非常快。常在很短的时间里样品就明显地发生了变化,因此必须在一切情况下采取必要的保护措施,并尽快地进行分析。

相关主题
文本预览
相关文档 最新文档