当前位置:文档之家› 第四章 光场的二阶相干性基础

第四章 光场的二阶相干性基础

406-光源、光的相干性

406光源、光的相干性 1. 选择题 1,来自不同光源的两束白光,例如两束手电筒光照射在同一区域内,是不能产生干涉图样的,这是由于 (A)白光是由不同波长的光构成的(B)两光源发出不同强度的光 (C)两个光源是独立的,不是相干光源(D)不同波长的光速是不同的 [ ] 2,有三种装置 (1)完全相同的两盏钠光灯, 发出相同波长的光,照射到屏上; (2)同一盏钠光灯,用黑纸盖住其中部将钠光灯分成上下两部分同时照射到屏上; (3)用一盏钠光灯照亮一狭缝,此亮缝再照亮与它平行间距很小的两条狭缝,此二亮缝的光照射到屏上; 以上三种装置,能在屏上形成稳定干涉花样的是: (A) 装置(3) (B) 装置(2) (C) 装置(1)(3) (D) 装置(2)(3) [ ] 3,对于普通光源,下列说法正确的是: (A)普通光源同一点发出的光是相干光(B)两个独立的普通光源发出的光是相干光(C)利用普通光源可以获得相干光(D)普通光源发出的光频率相等 [ ] 4,杨氏双缝干涉实验是: (A) 分波阵面法双光束干涉(B) 分振幅法双光束干涉 (C) 分波阵面法多光束干涉(D) 分振幅法多光束干涉 [ ] 2. 判断题 1,光波振动的量是电场强度E和磁场强度H,起光作用的主要是电场强度。 2,两个独立的普通光源如果频率相同,也可构成相干光源。

3,光强均为I0的两束相干光相遇而发生干涉时, 在相遇区域内有可能出现的最大光强是4I0。 4,普通光源发光特点是断续的,每次发光形成一个短短的波列, 各原子各次发光相互独立,各波列互不相干。 5,洛埃德镜和双镜等光的干涉实验都是用波阵面分割的方法来实现的。 6,获得相干光源只能用波阵面分割和振幅分割这两种方法来实现。 7,发光的本质是原子、分子等从具有较高能级的激发态到较低能级的激发态跃迁过程中释放能量的一种形式。 8,光波的相干叠加服从波的叠加原理,不相干叠加不服从波的叠加原理。

时间相干性

光波的时间相干性 摘要:该文介绍光的时间相干性的原理,并作了定量分析,得出了相干时间及相干波列长度与干涉条纹清晰度关系的结论。 关键词:相干时间相干长度 从一无限小的点光源发出无限长光波列,用光学方法将其分为两束,再实现同一波列的相遇叠加,得到稳定的干涉条纹,这样的光源称为相干光源。我们知道,任何光源发射的光波只有在有限的空间范围内并且在一定的时间范围内才可以看作是稳定的。即光源向外发射的是有限长的波列,而波列的长度是由原子发光的持续时间和传播速度确定的。 我们以杨氏干涉实验为例讨论,如图所示。光源S发射一列波,被杨 b' a" b a S S' S" P P' a' r r r' r"

氏干涉装置分为两列波a'、a ",这两列波沿不同的路径r'、r "传播后,又重新相遇。由于这两列波是从同一列光波分割出来,他们具有完全相同的频率和一定的相位关系,因此可以发生干涉,并可以观察到干涉条纹。若两路的光程差太大,致使S'、S "到达考察点P 的光程差大于波列的长度,使得当波列a "刚到达P 点时,波列a'已经过去了,两列波不能相遇,当然无法发生干涉。而另一发光时刻发出的波列b 经S'分割后的波列b'和a "相遇并叠加。但由于a 和b 无固定的相位关系,因此在观察点无法发生干涉。故干涉的必要条件是两列波在相遇点的光程差应小于波列的长度。 我们知道,λ λλλδ?≈?+=2 max )(j 式中考虑到当λλ? ,该式表明, 光源的单色性决定产生干涉条纹的最大光程差,通常将max δ称为相干长度。 再由上述讨论可知,波列的长度至少应等于最大光程差,由上式 得波列的长度L 为λ λδ?==2 max L ,此式表明,波列的长度与光源的谱 线宽度成反比,即光源的谱线宽度λ?就小,波列长度就长。下表是几种光源的相干长度。 发光物质 )(o A λ )(o A λ? L (m) a N 5893 ~0.1 ~3.4*210- g H 5460.73 ~0.1 ~3*210- r K 6057 ~0.0047 ~1.0 e e N H -激光 6328 ~610- ~4*410

§9-6激光相干性

§9-6 激光的相干性 一、间相干性与空间相干性 在第一章里已讲过了光的干涉,光源的相干性是一个很重要的问题,所谓相干性,也就是指空间任意两点光振动之间相互关联的程度, Q P 1 P 2 (图9-26) 在图9-26中,如果1P 和2P 两点处的光振动之间的位相差是恒定的,那么当1P 和2P 处的光振动向前传播并在Q 点相遇时,这两个振动之间的位相差当然也是恒定的,于是在Q 点将得到稳定的干涉条纹,这时,我们就称1P 和2P 处的光振动为完全在联的,也就是完全相干光,如果1P ,2P 处的光振动之间的位相差是完全任意的,并随时间作无规则的变化,那么在Q 点相遇时,根本不能给出干涉条纹,这时我们称1P ,2P 处的光振动是完全没有关联的,也就是完全非相干光。 由于原子的发光不是无限制地持续的,每一次发光,有一定的寿命,因此它总是有一个平均发光时间间隔,从干涉的角度来讨论问题时,可以很明显地看到,只有在同一光源同一个发光时间间隔内发出的光,经过不同的光程后再在某点相遇时,才能给出干涉图样,所以我们把原子的平均发光时间间隔叫做相干时间,在这里,把这一个相干时间记为H t ?,如果光的速度为c 则H c t ?表示在相干时间内光经过的路程,我们称它为相干长度,记之为H ι?,于是有 H ι?=H c t ? 在迈克耳孙干涉仪中,如图1-19所示,引起干涉的两束光为11a b 和22a b ,这两束光的 光程差即为平面反射镜1M 和'2M 之间的空气薄层的厚度,现在令这厚度为ι?,只有当 H t ι??时,11a b 和22a b 这两束光已经不是发光原子同一次发光中发出的了,它们之间已无恒定的位相差,因而干涉条纹非常模糊,ι?比H t ?大得愈多,干涉条纹愈模糊,甚至完全不能见到,这时11a b 和22a b 是完全不相干光,在这个例子中,我们可以看到,虽然在处理

相干光

相干光通信 一、相干光通信的基本工作原理s 在相干光通信中主要利用了相干调制和外差检测技术。所谓相干调制,就是利用要传输的信号来改变光载波的频率、相位和振幅,这就需要光信号有确定的频率和相位(而不像自然光那样没有确定的频率和相位),即应是相干光。激光就是一种相干光。所谓外差检测,就是利用一束本机振荡产生的激光与输入的信号光在光混频器中进 行混频,得到与信号光的频率、位相和振幅按相同规律变化的中频信号。在发送端,采用外调制方式将信号调制到光载波上进行传输。当信号光传输到达 s 接收端时,首先与一本振光信号进行相干耦合,然后由平衡接收机进行探测。相干光通信根据本振光频率与信号光频率不等或相等,可分为外差检测和零差检测。前者光信号经光电转换后获得的是中频信号,还需二次解调才能被转换成基带信号。后者光信号经光电转换后被直接转换成基带信号,不用二次解调,但它要求本振光频率与信号光频率严格匹配,并且要求本振光与信号光的相位锁定。s 相干光通信系统可以把光频段划分为许多频道,从而使光频段得到充分利用,即多信道光纤通信。我们知道无线电技术中相干通信具有接收灵敏度高的优点,相干光通信技术同样具有这个特点,采用该技术的接收灵敏度可比直接检测技术高18dB。早期,研究相干光通信时要求采用保偏光纤作传输介质,因为光信号在常规光纤线路中传输时其相位和偏振面会随机变化,要保持光信号的相位、偏振面不变

就需要采用保偏光纤。但是后来发现,光信号在常规光纤中传输时,其相位和偏振面的变化是慢变化,可以通过接收机内用偏振控制器来纠正,因此仍然可以用常规光纤进行相干通信,这个发现使相干光通信的前景呈现光明。s 相干光纤通信系统在光接收机中增加了外差或零差接收所需的本地振荡光源,该光源输出的光波与接收到的已调光波在满足波前匹配和偏振匹配的条件下,进行光电混频。混频后输出的信号光波场强和本振光波场强之和的平方成正比,从中可选出本振光波与信号光波的差频信号。由于该差频信号的变化规律与信号光波的变化规律相同,而不像直检波通信方式那样,检测电流只反映光波的强度,因而,可以实现幅度、频率、相位和偏振等各种调制方式。根据本振光波的频率与信号光波的频率是否相等可以将相干光通信系统分为两类:当本振光频率和信号光频率之差为一非零定值时,该系统称为外差接收系统;当本振光波的频率和相位与信号光波的频率和相位相同时,称为零差接收系统。但不管采用何种接收方式其根本点是外差检测。 二、相干光通信系统的优点s 相干光通信充分利用了相干通信方式具有的混频增益、出色的信道选择性及可调性等特点。由以上介绍的相干光通信系统的基本原理分析且与IM/DD系统相比,得出相干光通信系统具有以下独特的优点: (一)灵敏度高,中继距离长s 相干光通信的一个最主要的优点是能进行相干探测,从而改善接收机的灵敏度。在相干光通信系统中,经相干混合后输出光电流的大

光的干涉填空题41

题目:惠更斯-菲涅耳原理的基本内容是:波阵面上各面积元发出的子波在观察点P的 决定了P点的合振动及光强。 答案:干涉(或“相干叠加”) 题目:如图所示,假设有两个同相的相干点光源和,发出波长为的单色光。A是它们连线的中垂线上的一点。若在与之间插入厚度为、折射率为的薄玻璃片,则两光源发出的光在点的位相差??=________________,若已知波长,, 点恰为第四级明纹中心, 则 = __________ nm。 答案:2 π ( n –1 )e/λ 4×103 nm 题目:光在折射率为的介质走过几何路程,相当于光在真空中走过 了路程,把它称为。 答案:nr 光程 题目:现有频率为,初相相同的两相干光,在均匀介质(折射率为)中传播,若在相遇时它们的几何路程差为,则它们的光程差为,相位差为。 答案:

题目:相干光是指,从普通光源获得相干光的方法是,常用的方法有法和法两种。 答案:频率相同,振动方向相同,相位差恒定的两束光 将同一点光源发出的光分为两束,使其经不同路径再相遇 分波阵面法和分振幅法 题目:如图所示,以的单色光源照射双缝,在点观察到第7级明 条纹,现在缝上加盖一厚度为的介质膜片,在点观察到(-2)级明条纹,则膜片的折射率为。 答案: 题目:如图所示,有一劈尖薄膜(很小),在垂直入射光照射下,若=,则在反射光中观察劈尖边缘O处是纹(填明或暗);若,在反 射光中观察O处是;两相邻明条纹对应的薄膜处的厚度差= ;相邻明(或暗)条纹间距。

题目:光的半波损失是指光线从介质到介质的界面上发生 ___________ 时,光程有或相位有的突变。 答案:从光疏到光密介质界面反射时 有光程或相位的突变 答案:暗明 题目:为了增加照相机镜头的透光能力,常在镜头()表面镀有一层氟化镁()薄膜,若此膜适用于对胶片最敏感的黄绿光(), 则此膜的最小厚度应为。 答案: m 题目:为了精确测定半导体元素硅(Si)片上的二氧化硅(SiO2)膜的厚度,可将二氧化硅膜腐蚀掉一部分,使其成为劈尖,如图所示,已知硅的折射率,二氧化硅的折射率,用的氦氖激光垂直照射,在劈尖最高处恰为第7条暗纹,则该膜的厚度。

光源的时间相干性和空间相干性对干涉、衍射的影响

109-光源的时间相干性和空间相干性对干涉、衍射现象的影响 摘要:光波作为一种概率波,其波动性已早已为我们所熟知,并且基于其波动特性的干涉和衍射现象已用于科学研究和生产实践的各个领域。因此,提高光波的相干性对充分利用干涉和衍射现象具有重要意义。光波的相干性与光源的性质有着密切的联系,因此搞清楚光源的时间相干性和空间相干性具有重要意义。 关键词:时间相干性;谱线宽度;空间相干性 正文: 光源的时间相干性体现为其单色性,即所发射光子频率的离散程度。其具体数值指标为谱线宽度,其值越小说明发射光子频率的离散程度越小,光源的单色性越好,其时间相干性越好。普通单色光源的谱线宽度的数量级为千分之几纳米到几纳米,而激光的谱线宽度只有nm,甚至更小,因此,激光的相干性要远远优于普通单色光源。也正是基于激光的强相干性,光学全息技术、非线性光学、激光制冷技术、原子捕陷等近代物理技术才获得了快速的发展。并且,多光子吸收等在普通单色光源下不可能发现的现象也在激光出现后被发现,极大地促进了人们对原子更为精系结构及能级跃迁机理的认识。 光源的空间相干性体现为光源的大小对相干性的影响。由于从普通光源的不同部位发出的光是不相干,因此光源的大小必然影响到其相干性。其具体临界数量关系式为:bd=R λ,其中λ为单色光的波长,R 为光源 与衍射孔的距离,b 为光源的宽度, d 为衍射孔的距离。当d,R, λ固定 时,光源的宽度b 必须小于R λ/d, 才可以在衍射屏上观察到干涉条 纹。同样,当b,R,λ固定时,d 必须 小于R λ/b,称该值为相干间隔,以 此来衡量光源的空间相干性。由于激光光源各处发出的光都是想干的,所以激光光源的光场相干间隔的限制,这也是激光具有强相干性的原因之一。迈克尔逊侧性干涉仪巧妙地利用了空间相干性原理来测得恒星的角直径,便是利用空间相干性的典型例子。 在光栅光谱仪的实验中,减小光入射缝的宽度实际上是相当于减小了b ,从而提高了光源的空间相干性,故得到原子光谱的谱线更加精细,体现在电脑图谱上就是突起变得更加尖锐。 参考文献 [1].张三慧.大学物理:第四册.北京:清华大学出版社,2000. [2].张三慧.大学物理:第五册.北京:清华大学出版社 ,2000.

大学物理实验:光的干涉

4.11光的干涉—-牛顿环 要观察到光的干涉图象,如何获得相干光就成了重要的问题,利用普通光源获得相干光的方法是把由光源上同一点发的光设法分成两部分,然后再使这两部分叠起来。由于这两部分光的相应部分实际上都来自同一发光原子的同一次发光,所以它们将满足相干条件而成为相干光。获得相干光方法有两种。一种叫分波阵面法,另一种叫分振幅法。 牛顿环是一种用分振幅方法实现的等厚干涉现象,最早为牛顿所发现,所以叫牛顿环。在科学研究和工业技术上有着广泛的应用,如测量光波的波长,精确地测量长度、厚度和角度,检验试件表面的光洁度,研究机械零件内应力的分布以及在半导体技术中测量硅片上氧化层的厚度等。 【实验目的】 1. 通过实验加深对等厚干涉的理解。 2. 学会使用读数显微镜并通过牛顿环测量透镜的曲率半径。 3. 学会使用读数显微镜测距。 4. 学会用图解法和逐差法处理数据。 【实验仪器】 读数显微镜,牛顿环仪,钠光灯。 【实验原理】牛顿环仪是由曲率半径 较大的平凸透镜L 和磨光的平玻璃板 P 叠和装在金属框架F 中构成,如图 4-11-1所示。框架边上有三个螺旋H 用来调节L 和P 之间的接触,以改变 干涉条纹的形状和位置。调节H 螺旋不可旋得过紧,以免接触压力过 大引起透镜弹性形变,甚至损坏透镜。 1114--图F

如图4-11-2所示平凸透镜的凸面与玻璃平板之间的空气 层厚度从中心到边缘逐渐增加,若以平行单色光垂直照射到 牛顿环上,则经空气层上、下表面反射的二光束存在光程差, 它们在平凸透镜的凸面相遇后,将发生干涉。从透镜上看到 的干涉花样是以玻璃接触点为中心的一系列明暗相间的圆环 (如图4-11-3所示),称为牛顿环。由于同一干涉环上各处 的空气层厚度是相同的,因此它属于等厚干涉。??? ?? 由图4-11-2可见,如设透镜的曲率半径为R,与接触点 O相距为r处空气层的厚度为d,其几何关系式为: 222)(r d R R +-= 2222r d Rd R ++-= 由于R>>d,可以略去d 2得 R r d 22= (4-11-1) ?? 光线应是垂直入射的,计算光程差时还要考虑光波在平玻璃板 上反射会有半波损失,从而带来λ/2的附加光程差,所以总光程差 为 ?? 22λ+ =?d (4-11-2) 产生暗环的条件是: ? ?=(2k+1)2λ (4-11-3) 其中k=0,1,2,3,...为干涉暗条纹的级数。综合(4-11-1)、(4-11-2)和(4-11-3)式可得第k级暗环的半径为: ?? λkR r k =2 (4-11-4) 由(4-11-4)式可知,如果单色光源的波长λ已知,测出第m级的暗环半径rm ,即可得出平凸透镜的曲率半径R;反之,如果R已知,测出rm 后,就可计算出入射单色光波的波长λ。但是用此测量关系式往往误差很大,原因在于凸面和平面不可能是理想的点接触;接触压力会引起局部形变,使接触处成为一个圆形平面,干涉环中心为一暗斑。或者空气间隙层中有了尘埃,附加了光程差,干涉环中心为一亮(或暗)斑,均无法确定环的几何中心。实际测量时,我们可以通过测量距中心较远的两个暗环的半径rm 和rn 的平方差来计算曲率半径R。 因为?? rm 2=mRλ , rn 2=nRλ 两式相减可得?? λ)(22n m R r r n m -=- 所以?? λ)(2 2n m r r R n m --=或λ)(42 2n m D D R n m --= (4-11-5) 图4-11-3

§33分波前干涉光场的空间相干性.

3. 光的干涉与相干性 §3.3 分波前干涉光场的空间相干性

主要内容 1. 杨氏双孔干涉实验 2. 光源宽度对干涉条纹图样的影响 3. 光场的空间相干性 4. 其他分波前干涉实验装置

(1) 实验装置 图3.3-1 杨氏双孔干涉实验原理 S 2 r 1 S 1 D S R P d O R 2R 1 x 1 z x n 1' n 2'n 2 r 2 n 1 单色光源 3.3.1杨氏双孔干涉实验 S :小孔;S 1,S 2:一对相同小孔;d :小孔间距

叠加光波强度分布:(3.3-1) 相位差:(3.3-2) 若装置处于空气中,且双孔相对于光源对称放置,n 1=n 2 =n 1 '=n 2 '=1,R 2 =R 1 , (3.3-3) (2)干涉图样特点

图3.3-2 两球面光波形成的干涉条纹图样(xz 平面) (c) 仿真实验结果 (b) 干涉条纹的形成原理 S 1 S 2 D O z x x 1 (a) 干涉条纹的几何图示 ①杨氏双孔干涉是一种等强度的双球面波干涉,场点的叠加光强度随两光波相位差呈现余弦平方型周期变化,且条纹衬比度等于1。 ②等相位差点的轨迹(干涉图样)是以点源S 1和S 2连线为旋转轴(且亮暗相间)的空间旋转双曲面族。 结论:

假设:场点P 和双孔S 1、S 2共面且分别沿x 和x 1轴,P 点的坐标为x ,D>>d ,x , 由傍轴条件得: (3.3-4a) (3.3-4b) (3.3-5) (3.3-6) (3.3-7) (3)傍轴近似条件下的干涉光场强度分布 P 点处两光波光程差:P 点处两光波相位差:

光的时间相干性

目录 中文摘要 Abstract 引言 (1) 1.光的相干 (1) 1.1干涉条纹的对比度 (1) 1.2 空间相干性 (1) 1.3 时间相干性 (2) 2.迈克尔孙干涉仪 (5) 2.1迈克尔孙干涉仪装置 (5) 2.2迈克尔孙干涉仪原理 (5) 3.应用 (5) 3.1用迈克尔逊干涉仪测量汞相干长度 (7) 3.1.1实验方法 (8) 3.1.2数据记录 (8) 3.1.3 实验结果 (9) 3.2用迈克尔逊干涉仪测量钠相干长度 (9) 3.2.1 实验数据结果 (9) 致谢 (10) 参考文献 (10)

引言 虽然光学是物理学中最古老的一门基础学科,但是在当前科学研究中依然活跃,具有很强的生命力和研究价值。从十七世纪开始,人们发现彩色的干涉条纹并开始对其进行观察研究,一直以来以光的直线传播观念为基础的光的本性理论动摇了,从此开始进入了光的波动理论的萌芽期。十九世纪初,波动光学初步形成,产生了很多一系列的干涉方面的理论,光源的时间相干性概念也就是此刻被提出并引入了干涉理论当中去的。 光源的时间相干性是掌握光的干涉和衍射现象的一个很重要的方面,它用相干长度和相干时间来表示。光源时间相干性主要是与干涉现象中条纹的清晰度有着很大的关联,知道了它们之间内在的影响关系之后,就可以很容易的,通过改变某些条件来得到清晰的对比度较好的条纹,从而便于我们观察,加深认识,也更容易对波动光学理论的基础进行理解跟掌握。在当今,社会生活中的很多方面都与光的时间相干性有着紧密的联系,在光的时间相干性的基础上运用光的干涉进行精度的评估,如长度的精密测量,及检验工件表面的差异等。 1.光的相干 1.1干涉条纹的对比度 为了描述两波交叠区域内的干涉条纹的清晰程度,引入对比的概念。干涉条纹对比定义为 min max min max I I I I V +-= (1.1) 式(1.1)中max I ,min I 分别为条纹光强的极大值和极小值。当max I =0时, 1=V ,此时条纹的反差最大,对比度最大,干涉条纹最清晰;当max min I I ≈时,0≈V , 此时条纹模糊,对比度为0,甚至不可辨认,看不到干涉条纹。一般的, V 总是在1~0之间。 关于干涉条纹的对比度,影响因素有很多,主要因素有产生干涉的两束光的光强比、光源的大小以及光源单色性的好坏等,本论文就是主要研究每个因素所产生的影响进行讨论。 1.2光源的相干极限宽度 空间相干性 在讨论杨氏双缝干涉实验时,假设光源S 宽度很小,可以看作是线光源。实验表明,随着光源宽度增大,干涉条纹的对比度将下降,当光源宽度达到某一个值时,对比度为零,此时干涉条纹消失。为什么会出现这种现 ?这是因为任何一个有一定宽度的光源S ,都可以看成有更细的光线光源组成的。由于光源上不同部位发出的光彼此不相干(激光光源除外),所以每个线光源各自都在屏上产生一组干涉条纹。这些干涉条纹彼此错开,产生非相干叠加,结果是屏上的条纹变得模糊不清以至消失,条纹的对比度下降为零。 定义干涉条纹的对比度下降为零时,光源的宽度0b 称为光源相干的极限宽度。光源相干的极限宽度0b 可如下求出,如图1.1 ,射光源到双缝屏G 的距离为B ,光源发

论光场相干性的条件.

论光产生相干的条件 【摘要】本文详细讲述了光波干涉的相干条件,又简述了如何获得相干光的方法 【关键词】相干光相干条件相干光的获得 一、引言 光的干涉及应用是物理光学的一个重要的研究内容。一方面,对干涉现象的研究,促进了波动光学理论的发展,另一方面,光的的干涉作为一种重要的检测手段,在生产实践和科学研究中得到了广泛的应用。光的干涉虽并不难实现,但并非任意两光波相遇都能产生干涉现象。两支蜡烛发出的光波即使相遇,无论如何都不能产生干涉,两个人同时唱歌也绝不会产生声的干涉,为了产生光的干涉,相遇的光波必须满足某些条件,为了产生光的干涉,相遇的光波必须满足某些条件,我们称这些条件为相干条件,满足相干条件的光称为相干光。 二、光波干涉的三个相干条件 对于实际的光源,只有满足下列各条件才能产生干涉。 1、两列光波的频率必须相同。 2、两列光波的频率相同,在相遇点的振动方向必须相同,或者有振动方向相同的分量。 3、两列光波在相遇相遇的区域内,必须保持稳定的位相差。 要产生光的干涉现象,这三个条件缺一不可。下面我将引用一点简单的数学,着重来说明这三个条件。

三、 对光波干涉的三个条件的说明 下面以两个单色平面波叠加为例,来分析干涉的基本条件。设在空间一点P(r)叠加的两个两个平面波1E 和2E 的波函数分别为: )(1t r E ? =)cos(101110?ω+-?t r k E (1) )(2t r E ? =)cos(202220?ω+-?t r k E (2) 应用波得叠加原理,可知t 时刻,P (r )点处的合扰动为: )()()(21t r E t r E t r E ?+?=? 代入公式E E r I ?=)(,干涉场的强度为: )()()(2121E E E E r I +?+= 2122112E E E E E E ?+?+?= 21212)()(E E r I r I ?++= (3) 式中)(1r I 和)(2r I 是1E 和2E 单独存在时P(r) 处的强度。所以,按照光 的干涉的定义,只有当212E E ?不为零时,才能说明该处发生了光的 干涉,因此,称212E E ?为两束光干涉的干涉项。不难看出,干涉项 的出现是光波叠加的结果。下面具体分析干涉项不为零的条件。 将1E 和2E 的波函数代入干涉项的表示式,可得: [{ ])()()(cos 210201*********??ωω+++-?+?=?t r k k E E E E + []})()()(cos 10201222??ωω-+--?-t r k k (4) 在上式中第一项为和频项,由于其时间周期1 22ωωπ+远小于探测器的响应时间τ,所以第一项的时间平均值为零。第二项为差频项,只有当时间周期满足1 22ωωπ->>τ时,其时间平均值才不为零。迄今所知相应

第十一章 1相干光 2杨氏双缝干涉 劳埃德镜 教案

§11-1 相干光 §11-2杨氏双缝干涉劳埃德镜 一、教学要点:1. 相干光的条件及获得方法; 2. 杨氏双缝干涉现象; 二、教学要求:1. 理解相干光的条件及获得相干光的方法; 2. 能分析杨氏双缝干涉条件、条纹分布规律和位置;理解劳埃德镜光干涉规律 三、教学过程: 引言:什么是光的干涉现象? 与机械波类似,光的干涉现象表现为在两束光的相遇区域形成稳定的、有强有弱的光强分布。即在某些地方光振动始终加强(明条纹),在某些地方光振动始终减弱(暗条纹),从而出现明暗相间的干涉条纹图样。光的干涉现象是波动过程的特征之一。 光的干涉:两束光的相遇区域形成稳定的、有强有弱的光强分布。 实际是满足一定条件的两列相干光波相遇叠加,在叠加区域某些点的光振动始终加强,某些点的光振动始终减弱,即在干涉区域内振动强度有稳定的空间分布。 干涉条纹:所形成的均匀分布的图样。 §11-1相干光 一、相干光:两束满足相干条件的光称为相干光 1、相干条件(Coherent Condition): 这两束光在相遇区域:①振动方向相同; ②振动频率相同; ③相相位同或相位差保持恒定 那么在两束光相遇的区域内就会产生干涉现象。

2、相干光的获得 (1)普通光源的发光机理 当原子中大量的原子(分子)受外来激励而处于激发状态。处于激发状态的原子是不稳定的,它要自发地向低能级状态跃迁,并同时向外辐射电磁波。当这种电磁波的波长在可见光范围内时,即为可见光。原子的每一次跃迁时间很短(10-8s)。由于一次发光的持续时间极短,所以每个原子每一次发光只能发出频率一定、振动方向一定而长度有限的一个波列。由于原子发光的无规则性,同一个原子先后发出的波列之间,以及不同原子发出的波列之间都没有固定的相位关系,且振动方向与频率也不尽相同,这就决定了两个独立的普通光源发出的光不是相干光,因而不能产生干涉现象。 (2)获得相干光源的两种方法 a.原理: 将同一光源上同一点或极小区域(可视为点光源)发出的一束光分成两束,让它们经过不同的传播路径后,再使它们相遇,这时,这一对由同一光束分出来的光的频率和振动方向相同,在相遇点的相位差也是恒定的,因而是相干光。 b方法: 分波阵面法(Wavefront Spliting):把光波的阵面分为两部分,例如:杨氏双缝干涉,双镜 干涉,洛埃镜干涉。 分振幅法(Amplititude Spliting):利用两个反射面产生两束反射光,例如:劈尖干涉,牛 顿环,薄膜干涉。 §11-2杨氏双缝干涉劳埃德镜 设法将同一束光分为两束。下列分别是利用双缝、利用空气膜、利用肥皂膜、利用平面镜

大学物理光学部分必须熟记的公式(很容易混淆哦)

大学物理光学部分有关于明暗的公式及其结论 1.获得相干光的方法 杨氏实验 ....... ,2,102 2,,=? ±== k k D xd λ δ 此时P 点的光强极大,会出现明条纹。 ...... ,2,102 )12(,,=? +±== k k D xd λ δ此时的光强极小,会出现暗条纹。 或者, d D k x 22λ±= 此时出现明条纹 d D k x 2) 12(λ+±= 此时出现暗条纹。 屏上相邻明条纹或者暗条纹的间距为:d D x λ=?。 洛埃镜。半波损失。 2.薄膜等厚干涉。 ○ 1根据光程差的定义有: ??? ??? ?=?+=?=+=相消干涉。 相长干涉。,...2,1,2)12(,.....2,1,2 2222k k k k d n λλλδ ○ 2劈尖干涉:暗条纹。 明条纹。 ,...2,1,0,2 )12(2 2,...2,1,2 22 2=? +=+ ==? =+ =k k d k k d λ λ δλ λ δ 相邻明条纹或者暗条纹对应的空气层厚度差都等于 2 λ 即: 2 1λ = -+k k d d 。则设劈尖的夹角为θ,相邻明纹或者暗纹的间距 a 应满足关系式: 2 sin λ θ= a

○ 3牛顿环: 直接根据实验结果的出结论为: ? ? ? ? ? == =?-=暗条纹明条纹,...3,2,1,0,R ,...3,2,1,2)12(k k r k R k r λλ 3.单缝的夫琅禾费衍射 关键词:半波带。注意:半波带的数目可以是整数也可以是非整数。 结论:光源是平行光的单缝夫琅禾费衍射的条纹明暗条件为: 明条纹 ,)(暗条纹 ,...3,2,10,2 12si n ,...3,2,1,2 2si n =? +±==? ±=k k a k k a λ ?λ ? 特殊地当?=0时,有: ,中央明条纹中心 0si n =?a 当将单缝换做圆孔时,得到中心的明亮光斑为艾里斑,且其半角宽度0?为: D λ ??22 .1si n 00=≈ 这一角度也是我们在天文望远镜中的最小 分辨角。

相干光通信技术

相干光通信技术 徐飞20114487 【摘要】:随着各种新型通信技术的发展以及互联网带来的信息爆炸式增长,科学研究工作者们提出了相干光通信这一解决办法。本文简要介绍了相干光通信的基本原理、相干光通信相对其他通信方式的优点和它所涉及的主要技术,以及在超长波长光纤通信系统中的应用等问题。 【关键词】:相干调制、外差检波、稳频、超长波长光纤 引言:在光纤通信领域,更大的带宽、更长的传输距离、更高的接受灵敏度,是科学研究者们永远的追求。虽然波分复用(WDM)技术和掺铒光纤放大器(EDFA)的应用已经使光纤通信系统的带宽和传输距离得到了极大地提升但随着视频会议等一系列新的通信技术的不断发展应用和互联网普及带来的信息爆炸式增长,相干光通信技术的研究与应用显得越发的重要。 1.相干光通信的基本原理: 在相干光通信中主要利用了相干调制和外差检测技术,所谓相干调制,就是利用要传输的信号来改变光载波的频率、相位和振幅,这就需要光信号有确定的频率和相位,即应是相干光。激光就是一种相干光。所谓外差检测,就是利用一束本机振荡产生的激光与输人的信号光在光混频器中进行混频,得到与信号光的频率、相位和振幅按相同规律变化的中频信号[1]。在光发射端用外光调制方式将信号以调幅、调相或调频的方式调制到光载波上,再经过光匹配器送入光纤中进行传输,当信号光传输到光接收端时,先用一束本振光信号与之进行相干混合,然后用探测器检测。 相干光通信根据本振光信号频率与接收到的信号光频率是否相等,可分为外差检测相干光通信和零差检测相干光通信。外差检测相干光通信经光电检波器获得的是中频信号,还需要进行二次解调才能被转换成基带信号。外差检测相干光通信又可根据中频信号的解调方式分为同步解调和包络解调。零差检测相干光通信的光信号经光电检波器后被直接转换成系带信号,不需要进行二次解调,但本振光频率与信号光频率要求严格匹配,并且要求本振光与信号光的相位锁定。 2.相干光通信的优点: 相干光通信技术充分利用了它的混频增益、信道选择性及可调性出色以及充分利用光纤通信的带宽等特点,逐步适应当前通信的巨大需求,与传统的通信系统相比,具有以下突出的优点。 2.1灵敏度高,中继距离长

3-3时间相干性和空间相干性

§3--3时间相干性和空间相干性 Temporal Coherence and Spatial Coherence ) 一)问题的提出: 1)单色光入射时,只能在中央条纹附近看到 有限的为数不多的几条干涉条纹。 X 2)单缝或双缝宽度 增大时,干涉条纹 r1 S1 变得模糊起来。 d S2 D
r2
O
为什么?

二)时间相干性 指由原子一次发光所持续的时间来确定的光的 相干性问题-- 原子发光时间越长,观察到清楚的 干涉条纹就越多,时间相干性就越好。 1)两波列的光程差为零( r1 = r2 ) X S1 d S2
r1
r2
D
可产生相 O 干叠加。

2)两波列的光程差较小,小于波列长度
( r 2 ? r1 < L )
S1 d S2
r1
X P
r2
D
O
干涉条纹 变模糊了 !
原因: 能参与产生相干叠加的波列长度减小 若是明纹,则明纹不亮;若是暗纹;暗纹不暗

3)两波列的光程差较大,大于波列长度 ( r 2 ? r1 ≥ L ) X S1 d
r1
P
干涉条 纹消失 了!
r2 结论:产生光的干涉还须加一附加条件:
S2
δ < L
D
O
L = cΔ t
原因: 波列不能在P点叠加产生干涉。 此乃高干涉级条纹看不清或消失的原因之一

结论:产生光的干涉还须加一附加条件:
δ < L
E3 E2 E1
L = cΔ t
注意: 1)波列长度L又称相干长 度。L越长,光波的相干叠 加长度越长,干涉条纹越 清晰,相干性也 越好。
L = cΔ t
2)原子一次发光的时间Δt称为相干时间。 Δt越大,相干长度越长,相干性越好,因此用 这种原子一次持续发光的时间来描述这种相干 性故称为时间相干性。

相关主题
文本预览
相关文档 最新文档