当前位置:文档之家› 5.极限法(高中物理解题14法)

5.极限法(高中物理解题14法)

5.极限法(高中物理解题14法)
5.极限法(高中物理解题14法)

五、极限法

方法简介

极限法是把某个物理量推向极端,即极大和极小或极左和极右,并依此做出科学的

推理分析,从而给出判断或导出一般结论。极限法在进行某些物理过程的分析时,具有独特作用,恰当应用极限法能提高解题效率,使问题化难为易,化繁为简,思路灵活,判断准确。因此要求解题者,不仅具有严谨的逻辑推理能力,而且具有丰富的想象能力,从而得到事半功倍的效果。

赛题精讲

例1:如图5—1所示, 一个质量为m 的小球位于一质量可忽略的直立

弹簧上方h 高度处,该小球从静止开始落向弹簧,设弹簧的劲度 系数为k ,则物块可能获得的最大动能为 。

解析:球跟弹簧接触后,先做变加速运动,后做变减速运动,据此推理,

小球所受合力为零的位置速度、动能最大。所以速最大时有

mg =kx ① 图5—1

由机械能守恒有 2

2

1)(kx E x h mg k +

=+ ②

联立①②式解得 k

g

m m g h E k

2

2

21?

-=

例2:如图5—2所示,倾角为α的斜面上方有一点O ,在O 点放一至

斜面的光滑直轨道,要求一质点从O 点沿直轨道到达斜面P 点 的时间最短。求该直轨道与竖直方向的夹角β。

解析:质点沿OP 做匀加速直线运动,运动的时间t 应该与β角有关,

求时间t 对于β角的函数的极值即可。

由牛顿运动定律可知,质点沿光滑轨道下滑的加速度为 βcos g a =

该质点沿轨道由静止滑到斜面所用的时间为t ,则

OP at

=2

21

所以β

cos 2g OP t =

由图可知,在△OPC 中有

图5—2

)

90sin()

90sin(βαα-+=

-

OC

OP

所以)

cos(cos βαα-=

OC OP ②

将②式代入①式得 g

OC g OC t )]2cos([cos cos 4)

cos(cos cos 2βαααβαβα-+=

-=

显然,当2

,1)2cos(α

ββα==-即时,上式有最小值.

所以当2

α

β=

时,质点沿直轨道滑到斜面所用的时间最短。

此题也可以用作图法求解。

例3:从底角为θ的斜面顶端,以初速度0υ水平抛出一小球,不计

空气阻力,若斜面足够长,如图5—3所示,则小球抛出后, 离开斜面的最大距离H 为多少?

解析:当物体的速度方向与斜面平行时,物体离斜面最远。

以水平向右为x 轴正方向,竖直向下为y 轴正方向,

则由:gt v v y ==θtan 0,解得运动时间为θtan 0g

v t =

该点的坐标为 θθ2

2

2

2

00tan 22

1tan g

v gt

y g

v t v x =

=

=

=

由几何关系得:θθtan cos /x y H =+

解得小球离开斜面的最大距离为 θθsin tan 22

?=

g

v H 。

这道题若以沿斜面方向和垂直于斜面方向建立坐标轴,求解则更加简便。

例4:如图5—4所示,一水枪需将水射到离喷口的水平距离为3.0m

的墙外, 从喷口算起, 墙高为4.0m 。 若不计空气阻力,取

2

/10s m g =,求所需的最小初速及对应的发射仰角。

解析:水流做斜上抛运动,以喷口O 为原点建立如图所示的 直角坐标,本题的任务就是水流能通过点A (d 、h )的最小初速度和发射仰角。

图5— 3

图5—4

根据平抛运动的规律,水流的运动方程为?

?

?

??-?=?=2

0021

sin cos gt t v y t v x αα

把A 点坐标(d 、h )代入以上两式,消去t ,得: h

h

d

h

h

d

d

h d

gd

h d gd d h gd

v -?+-

?++=+-=-?-=]2cos 2sin [

/)]12(cos 2sin /[)

tan (cos 2/2

2

2

2

2

2

2

2

2

2

2

0αααααα

令 ,sin /,cos /,tan /2

2

2

2

θθθ=+=+=h

d h h

d

d d h 则上式可变为

,

,6.713

4arctan

45arctan

2

1452

4590

2,1)2sin(,,)2sin(/02

2

2

2

0最小时亦即发射角即当显然v d

h h h d

gd

v

=+=+

=+

==-=---+=θαθαθαθα

且最小初速0v =

./5.9/103)(2

2

s m s m h h

d g ==++

例5:如图5—5所示,一质量为m 的人,从长为l 、质量为

M 的铁板的一端匀加速跑向另一端,并在另一端骤然停止。 铁板和水平面间摩擦因数为μ,人和铁板间摩擦因数为

μ',且μ'>>μ。这样,人能使铁板朝其跑动方向移动 的最大距离L 是多少?

解析:人骤然停止奔跑后,其原有动量转化为与铁板一起向前冲的动量,此后,地面对

载人铁板的阻力是地面对铁板的摩擦力f ,其加速度g

m

M g

m M m

M f a μμ=++=

+=

)(1

由于铁板移动的距离v a v L ''

=

故,21

2

越大,L 越大。v '是人与铁板一起开始地运动

的速度,因此人应以不会引起铁板运动的最大加速度奔跑。

人在铁板上奔跑但铁板没有移动时,人若达到最大加速度,则地面与铁板之间的摩擦力达到最大静摩擦g m M )(+μ,根据系统的牛顿第二定律得:

02?+=M ma F 所以 g m

m M m

F a +==

μ

2 ①哈

设v 、v '分别是人奔跑结束及人和铁板一起运动时的速度

图5—5

因为 v m M mv '+=)( ② 且L a v l a v 12222,2='=

并将1a 、2a 代入②式解得铁板移动的最大距离

l m

M m L +=

例6:设地球的质量为M ,人造卫星的质量为m ,地球的半径为R 0,人造卫星环绕地球

做圆周运动的半径为r 。试证明:从地面上将卫星发射至运行轨道,发射速度

)2(00r

R g R v -

=

,并用该式求出这个发射速度的最小值和最大值。(取R 0=6.4

×106

m ),设大气层对卫星的阻力忽略不计,地面的重力加速度为g )

解析:由能量守恒定律,卫星在地球的引力场中运动时总机械能为一常量。设卫星从地

面发射的速度为发v ,卫星发射时具有的机械能为

2

12

1R Mm G

mv E -=

发 ①

进入轨道后卫星的机械能为r

Mm G

mv E -=2

22

1轨 ②

由E 1=E 2,并代入,r

GM v =

轨解得发射速度为 )2(00

r

R R GM v -=

发 ③

又因为在地面上万有引力等于重力,即:g R R GM mg R Mm G

00

2

==所以

把④式代入③式即得:)2(00r

R g R v -

=发

(1)如果r=R 0,即当卫星贴近地球表面做匀速圆周运动时,所需发射速度最小

为s m gR v /109.73

0min ?==

.

(2)如果∞→r ,所需发射速度最大(称为第二宇宙速度或脱离速度)为 s m g R v /102.1123

0max ?==

例7:如图5—6所示,半径为R 的匀质半球体,其重心在球心

O 点正下方C 点处,OC=3R/8, 半球重为G ,半球放在 水平面上,在半球的平面上放一重为G/8的物体,它与半

球平在间的动摩擦因数2.0=μ, 求无滑动时物体离球心 图5—6 O 点最大距离是多少?

解析:物体离O 点放得越远,根据力矩的平衡,半球体转过的角度θ越大,但物体在球

体斜面上保持相对静止时,θ有限度。

设物体距球心为x 时恰好无滑动,对整体以半球体和地面接触点为轴,根据平

衡条件有:θθcos 8

sin 83x G R G =

?

得 θt a n

3R x = 可见,x 随θ增大而增大。临界情况对应物体所受摩擦力为最大静摩擦力,则:

R R x N

f m m 6.03,,2.0tan =====

μμθ所以.

例8:有一质量为m=50kg 的直杆,竖立在水平地面上,杆与地面间

静摩擦因数3.0=μ,杆的上端固定在地面上的绳索拉住,绳 与杆的夹角 30=θ,如图5—7所示。

(1)若以水平力F 作用在杆上,作用点到地面的距离L L h (5/21=为杆长),要

使杆不滑倒,力F 最大不能越过多少?

(2)若将作用点移到5/42L h =处时,情况又如何?

解析:杆不滑倒应从两方面考虑,杆与地面间的静摩擦力达到极限的前提下,力的大小还与h 有关,讨论力与h 的关系是关键。

杆的受力如图5—7—甲所示,由平衡条件得

)(0cos 0

sin =--=--=--fL h L F mg T N f T F θθ

另由上式可知,F 增大时,f 相应也增大,故当f 增大到最大静摩擦力时,杆刚要滑倒,此时满足:N f μ=

解得:h

h L mgL F mas --=

μθθ/tan )(tan

由上式又可知,当L h h h L 66.0,/tan )(0=∞→--即当μθ时对F 就没有限制了。

(1)当015

2h L h <=

,将有关数据代入max F 的表达式得

图5—7

图5—7—甲

N F 385max =

(2)当,5

402h L h >=

无论F 为何值,都不可能使杆滑倒,这种现象即称为自锁。

例9:放在光滑水平面上的木板质量为M ,如图5—8所示,板上有

质量为m 的小狗以与木板成θ角的初速度0v (相对于地面)

由A 点跳到B 点,已知AB 间距离为s 。求初速度的最小值。 图5—8

解析:小狗跳起后,做斜上抛运动,水平位移向右,由于水平方向动量守恒,木板向左

运动。小狗落到板上的B 点时,小狗和木板对地位移的大小之和,是小狗对木板的水平位移。

由于水平方向动量守恒,有M

mv v Mv

mv θθsin cos 00=

=即 ①

小狗在空中做斜抛运动的时间为 g

v t θ

sin 20= ②

又vt t v s =?+θcos 0 ③

将①、②代入③式得 θ

2sin )(0m M Mgs v +=

当0,4

,12sin v 时即π

θθ=

=有最小值,m

M Mgs v +=

min 0。

例10:一小物块以速度s m v /100=沿光滑地面滑行,然后沿光滑 曲面上升到顶部水平的高台上,并由高台上飞出,如图5—9

所示, 当高台的高度h 多大时,小物块飞行的水平距离s 最 大?这个距离是多少?(g 取10m/s 2)

解析:依题意,小物块经历两个过程。在脱离曲面顶部之前,小物块受重力和支持力,

由于支持力不做功,物块的机械能守恒,物块从高台上飞出后,做平抛运动,其水平距离s 是高度h 的函数。

设小物块刚脱离曲面顶部的速度为v ,根据机械能守恒定律,

m g h mv

mv +=

2

2

02

12

1 ①

小物块做平抛运动的水平距离s 和高度h 分别为:2

2

1gt h =

vt s = ③

图5—9

以上三式联立解得:220

2

2

20

)4()4(

222g

v h g v g

h gh

v s -

-=-=

当m g

v h 5.242

==

时,飞行距离最大,为m g

v s 522

max ==

例11:军训中,战士距墙s ,以速度0v 起跳,如图5—10所示,

再用脚蹬墙面一次,使身体变为竖直向上的运动以继续 升高,墙面与鞋底之间的静摩擦因数为μ。求能使人体

重心有最大总升高的起跳角θ。 图5—10

解析:人体重心最大总升高分为两部分,一部分是人做斜上抛运动上升的高度,另一部

分是人蹬墙所能上升的高度。

如图5—10—甲,人做斜抛运动θcos 0v v x =,

gt v v y -=θsin 0

重心升高为 2

001)cos (

21tan θ

θv s g s H -

=

脚蹬墙面,利用最大静摩擦力的冲量可使人向上的动量增加,即 ∑

∑∑∑=??=?=

=

?=?,)(,)()()()(x

y y mv

t t N t t N t t N t f v m mv 而μμ

x y v v μ=?∴,所以人蹬墙后,其重心在竖直方向向上的速度为

x y y y y v v v v v μ+=?+=',继续升高g

v H

y

22

2

'=

,人的重心总升高

H=H 1+H 2=

μ

θμθθμ1

tan

,)sin cos (21

022

-=-+当s g

v 时,重心升高最大。

例12:如图5—11所示,一质量为M 的平顶小车,以速度0v 沿水

平的光滑轨道做匀速直线运动。现将一质量为m 的小物块无 初速地放置在车顶前缘。已知物块和车顶之间的滑动摩擦因 数为μ。

(1)若要求物块不会从车顶后缘掉下,则该车顶最少要多长?

(2)若车顶长度符合(1)问中的要求,整个过程中摩擦力共做多少功?

解析:当两物体具有共同速度时,相对位移最大,这个相对位移的大小即为车顶的最小

长度。

图5—10—甲

图5—11

设车长至少为l ,则根据动量守恒 v m M Mv )(0+=

根据功能关系 2

2

0)(2

12

1v m M Mv l mg +-

=

μ

解得 μ

g m M Mv l )(22

+=

,摩擦力共做功

)

(220

m M Mmv

l mg W +-

=-=μ

例13:一质量m=200kg ,高2.00m 的薄底大金属桶倒扣在宽广的 水池底部,如图5—12所示。桶的内横截面积S=0.500m 2, 桶壁加桶底的体积为V 0=2.50×10-2

m 3

。桶内封有高度为 l =0.200m 的空气。池深H 0=20.0m ,大气压强p 0=10.00m 水

柱高,水的密度33/10000.1m kg ?=ρ,重力加速度取g=10.00m/s 2。若用图中所示吊绳将桶上提,使桶底到达水面处,求绳子拉力对桶所需何等的最小功为多少焦耳?(结果要保留三位有效数字)。不计水的阻力,设水温很低,不计其饱和蒸汽压的影响。并设水温上下均匀且保持不变。

解析:当桶沉到池底时,桶自身重力大于浮力。在绳子的作用下 桶被缓慢提高过程中,桶内气体体积逐步增加,排开水的 体积也逐步增加,桶受到的浮力也逐渐增加,绳子的拉力 逐渐减小,当桶受到的浮力等于重力时,即绳子拉力恰好

减为零时,桶将处于不稳定平衡的状态,因为若有一扰动

使桶略有上升,则浮力大于重力,无需绳的拉力,桶就会 图5—12—甲 自动浮起,而不需再拉绳。因此绳对桶的拉力所需做的最

小功等于将桶从池底缓慢地提高到浮力等于重力的位置时绳子拉桶所做的功。

设浮力等于重力的不稳定平衡位置到池底的距离为H ,桶内气体的厚度为l ',如图5—12—甲所示。因为总的浮力等于桶的重力mg ,因而有 mg g V S l =+')(0ρ

有l '=0.350m ①

在桶由池底上升高度H 到达不稳定平衡位置的过程中,桶内气体做等温变化,由玻意耳定律得

lS l l H p S l l l H H p )]([)]([000000--+=''---+ ② 由①、②两式可得

H=12.240m

由③式可知H<(H 0-l '),所以桶由池底到达不稳定平衡位置时,整个桶仍

图5—

12

浸在水中。

由上分析可知,绳子的拉力在整个过程中是一个变力。对于变力做功,可以通过分析水和桶组成的系统的能量变化的关系来求解:先求出桶内池底缓慢地提高了H 高度后的总机械能量△E ·△E 由三部分组成:

(1)桶的重力势能增量

mgH E =?1 ④

(2)由于桶本身体积在不同高度处排开水的势能不同所产生的机械能的改变量

△E 2,可认为在H 高度时桶本身体积所排开的水是去填充桶在池底时桶所占

有的空间,这时水的重力势能减少了。

所以gH V E 02ρ-=? ⑤

(3)由于桶内气体在不同高度处所排开水的势能不同所产生的机械能的改变

△E 3,由于桶内气体体积膨胀,因而桶在H 高度时桶本身空气所排开的水可分为两部分:一部分可看为填充桶在池底时空气所占空间,体积为lS 的水,这部分水增加的重力势能为

SgH l E ρ-=?31 ⑥

另一部分体积为S l l )(-'的水上升到水池表面,这部分水上升的平均高度为

]2/)([00l l l l H H -'++--,

增加的重力势能为

]2/)([)(0032l l l l H H Sg l l E -'++---'=?ρ ⑦

由整个系统的功能关系得,绳子拉力所需做的最小功为 W T =△E ⑧ 将④、⑤、⑥、⑦式代入⑧式得

]2/)())([(2

2

0l l l H l l Sg W T -'+--'=ρ ⑨

将有关数据代入⑨式计算,并取三位有效数字,可得

W T =1.37×104J

例14:如图5—13所示,劲度系数为k 的水平轻质弹簧,左端固定,

右端系一质量为m 的物体,物体可在有摩擦的水平桌面上滑

动,弹簧为原长时位于O 点,现把物体拉到距O 为A 0的P 点按住,放手后弹簧把物体拉动,设物体在第二次经过O 点前, 在O 点左方停住,求:

(1)物体与桌面间的动摩擦因数μ的大小应在什么范围内?

(2)物体停住点离O 点的距离的最大值,并回答这是不是物体在运动过程中所

能达到的左方最远值?为什么?(认为动摩擦因数与静摩擦因数相等)

图5—13

解析:要想物体在第二次经过O 点前,在O 点左方停住,则需克服摩擦力做功消耗掉全部弹性势能,同时还需合外力为零即满足平衡条件。 (1)物体在距离O 点为l 处停住不动的条件是:

a .物体的速度为零,弹性势能的减小等于物体克服滑动摩擦力所做的功。

b .弹簧弹力≤最大静摩擦力 对物体运动做如下分析:

①物体向左运动并正好停在O 点的条件是:

02

02

1mgA kA μ=

得:μ021kA mg =

②若μ021kA mg

<

,则物体将滑过O 点,设它到O 点左方B 处(设OB=L 1)时

速度为零,则有:

)(2

121102

12

0L A mg kL kA +=-

μ ②

若物体能停住,则0131,kA mg

mg kL ≥

≤μμ故得 ③

③如果②能满足,但μ031kA mg

<

,则物体不会停在B 处而要向右运动。μ值越

小,则往右滑动的距离越远。设物体正好停在O 处,则有:

12

12

1mgL kL μ=

得:μ041kA mg

=

。要求物体停在O 点左方,则相应地要求μ041kA mg

>

综合以上分析结果,物体停在O 点左方而不是第二次经过O 点时,μ的取值范围为

041kA mg

<μ<

021kA mg

(2)当μ在

031kA mg

≤μ<

021kA mg

范围内时,

物体向左滑动直至停止而不返回,由②式可求出最远停住点(设为B 1点)到O 点的距离为

.3)3)(2(

20000A mg

kA k

mg A k

mg A L =

-=-

当μ<

031kA mg

时,物体在B 1点(3

01A OB =

)的速度大于零,因此物体将继续

向左运动,但它不可能停在B 1点的左方。因为与B 1点相对应的μ=

031kA mg

L 1=A 0/3,如果停留在B 1点的左方,则物体在B 1点的弹力大于

3

0kA ,而摩擦力

umg

3

0kA ,小于弹力大于摩

擦力,所以物体不可能停住而一定返回,最后停留在O 与B 1之间。

所以无论μ值如何,物体停住与O 点的最大距离为

3

0A ,但这不是物体在运

动过程中所能达到的左方最远值。

例15:使一原来不带电的导体小球与一带电量为Q 的导体大球接触,分开之后,小球获

得电量q 。今让小球与大球反复接触,在每次分开后,都给大球补充电荷,使其带电量恢复到原来的值Q 。求小球可能获得的最大电量。

解析:两球接触后电荷的分配比例是由两球的半径决定的,这个比例是恒定的。

根据两球带电比例恒定,第一次接触,电荷量之比为

q

q Q -

最后接触电荷之比为

q

Q Qq q q Q q

q Q q Q m m

m

-=

∴=

-有

,

此题也可以用递推法求解。

例16:一系列相同的电阻R ,如图5—14所示连接,求AB 间

的等效电阻R A B 。

解析:无穷网络,增加或减小网络的格数,其等效电阻不变, 所以R A B 跟从CD 往右看的电阻是相等的。因此,有 R R R

R R R R R AB AB AB AB )13(2+=++

=解得

例17:如图5—15所示,一个U 形导体框架,宽度L=1m , 其所在平面与水平面的夹角

30=α,其电阻可以忽 略不计,设匀强磁场为U 形框架的平面垂直,磁感

应强度B=1T ,质量0.2kg 的导体棒电阻R=0.1Ω,跨

图5—14

图5—14

放在U 形框上,并且能无摩擦地滑动。求: (1)导体棒ab 下滑的最大速度m v ;

(2)在最大速度m v 时,ab 上释放出来的电功率。

解析:导体棒做变加速下滑,当合力为零时速度最大,以后保持匀速运动

(1)棒ab 匀速下滑时,有R

Blv I BIl mg =

=而,sin α

解得最大速度 s m l

B R

mg v m /1.0sin 2

2

=?=α

(2)速度最大时,ab 释放的电功率1.0sin =?=m v mg P αW

针对训练

1.如图5—16所示,原长L 0为100厘米的轻质弹簧放置在一光滑 的直槽内,弹簧的一端固定在槽的O 端,另一端连接一小球,

这一装置可以从水平位置开始绕O 点缓缓地转到竖直位置。设

弹簧的形变总是在其弹性限度内。试在下述(a )、(b )两种情 况下,分别求出这种装置从原来的水平位置开始缓缓地绕O 点 转到竖直位置时小球离开原水平面的高度h 0。(a )在转动过程 中,发现小球距原水平面的高度变化出现极大值,且极大值h m 为40厘米,(b )在转动的过程中,发现小球离原水平面的高度 不断增大。

2.如图5—17所示,一滑雪运动员自H 为50米高处滑至O 点,由

于运动员的技巧(阻力不计),运动员在O 点保持速率0v 不变,

并以仰角θ起跳,落至B 点,令OB 为L ,试问α为30°时,L 的最大值是多大?当L 取极值时,θ角为多大?

3.如图5—18所示,质量为M 的长滑块静止放在光滑水平面上,左 侧固定一劲度系数为K 且足够长的水平轻质弹簧,右侧用一不可 伸长的细轻绳连接于竖直墙上,细线所能承受的最大拉力为T 。 使一质量为m ,初速度为0v 的小物体,在滑块上无摩擦地向左运 动,而后压缩弹簧。

(1)求出细线被拉断的条件;

(2)滑块在细线拉断后被加速的过程中,所能获得的最大的左向加速度为多大?

(3)物体最后离开滑块时相对于地面速度恰为零的条件是什么?

4.质量m=2.0kg 的小铁块静止于水平导轨AB 的A 端,导轨及支架ABCD 形状及尺寸

如图5—19所示,它只能绕通过支架D 点的垂直于纸面的水平轴转动,其重心在图

图5—16

图5—

17

图5—18

中的O 点,质量M=4.0kg ,现用一细线沿轨拉铁块,拉力F=12N ,铁块和导轨之间的摩擦系数50.0=μ,重力加速度g=10m/s 2,从铁块运动时起,导轨(及支架)能保持静止的最长时间t 是多少?

5.如图5—20所示,在水平桌面上放一质量为M 、截面为直角三角形的物体ABC 。AB

与AC 间的夹角为θ,B 点到桌面的高度为h 。在斜面AB 上的底部A 处放一质量为m 的小物体。开始时两者皆静止。现给小物体一沿斜面AB 方向的初速度0v ,如果小物体与斜面间以及ABC 与水平桌面间的摩擦都不考虑,则0v 至少要大于何值才能使小物体经B 点滑出?

6.如图5—21所示,长为L 的光滑平台固定在地面上,平台中央放有一小物体A 和B ,

两者彼此接触。物体A 的上表面是半径为R (R<

(1)物体A 和B 刚分离时,物体B 的速度;

(2)物体A 和B 分离后,物体C 所能达到距台面的最大高度;

(3)判断物体A 从平台的左边还是右边落地,并粗略估算物体A 从B 分离后到离开台面所经历的时间。

7.电容器C 1、C 2和可变电阻器R 1、R 2以及电源ε连

接成如图5—22所示的电路。当R 1的滑动触头在

图示位置时,C 1、C 2的电量相等。要使C 1的电量 大于C 2的电量,应 ( ) A .增大R 2 B .减小R 2 C .将R 1的滑动触头向A 端移动 D .将R 1的滑动触头向B 端滑动 8.如图5—23所示的电路中,电源的电动势恒定,要想使灯泡变亮,可以 ( )

A .增大R 1

B .减小R 2

C .增大R 2

D .减小R 2

图5—19 图5—20 图5—

21

图5—

22

图5—23 图5—24 图5—25

9.电路如图5—24所示,求当R ′为何值时,R A B 的阻值与“网格”的数目无关?此时

R A B 的阻值等于什么?

10.如图5—25所示,A 、B 两块不带电的金属板,长为5d ,相距为d ,水平放置,B

板接地,两板间有垂直纸面向里的匀强磁场,现有宽度为d 的电子束从两板左侧水平方向入射,每个电子的质量为m ,电量为e ,速度为v ,要使电子不会从两板间射出,求两板间的磁感应强度应为多大?

11.图5—26中 abcd 是一个固定的U 形金属框架, ad 和cd 边

都很长, bc 边长为L ,框架的电阻可不计, ef 是放置在框 架上与 bc 平行的导体杆,它可在框架上自由滑动(摩擦可 忽略),它的电阻R , 现沿垂直于框架的方向加一恒定的匀 强磁场,磁感应强度为B ,方向垂直于纸面向里,已知当以

恒定力F 向右拉导体杆ef 时,导体杆最后匀速滑动,求匀速滑动,求匀速滑动时的速度?

12.如图5—27所示,导线框abcd 固定在竖直平面内,bc 段的电 阻为R ,其他电阻均可忽略。ef 是一电阻可忽略的水平放置 的导体杆,杆长为L ,质量为m ,杆的两端分别与ab 和cd 保 持良好接触,又能沿它们无摩擦地滑动。整个装置放在磁感应 强度为B 的匀强磁场中,磁场方向与框面垂直。现用一恒力F

竖直向上拉ef ,当ef 匀速上升时,其速度的大小为多大? 图5—27 13.在倾角为 的足够长的两光滑平行金属导轨上,放一质量为

m ,电阻为R 的金属棒ab ,所在空间有磁感应强度为B 的

匀强磁场,方向垂直轨道平面向上,导轨宽度为L ,如图 5—28所示,电源电动势为ε,电源内阻和导轨电阻均不计, 电容器的电容为C 。求:

(1)当开关S 接1时,棒ab 的稳定速度是多大?

(2)当开关S 接2时,达到稳定状态时,棒ab 将做何运动? 14.如图5—29所示,有上下两层水平放置的平行光滑导轨,间 距是L ,上层导轨上搁置一根质量为m 、电阻是R 的金属杆

ST ,下层导轨末端紧接着两根竖直在竖直平面内的半径为R

的光滑绝缘半圆形轨道,在靠近半圆形轨道处搁置一根质量

也是m 、电阻也是R 的金属杆AB 。上下两层平行导轨所在区域里有一个竖直向下的匀强磁场。当闭合开关S 后,有电量q 通过金属杆AB ,杆AB 滑过下层导轨后进入半圆形轨道并且刚好能通过轨道最高点D ′F ′后滑上上层导轨。设上下两层导轨都足够长,电阻不计。 (1)求磁场的磁感应强度。

(2)求金属杆AB 刚滑到上层导轨瞬间,上层导轨和金属杆组成的回路里的电流。 (3)求两金属杆在上层导轨滑动的最终速度。

(4)问从AB 滑到上层导轨到具有最终速度这段时间里上层导轨回路中有多少能量

图5—

26

图5—28

图5—29

转变为内能?

15.位于竖直平面内的矩形平面导线框abcd ,ab 长为l 1,是

水平的,bc 长l 2, 线框的质量为m , 电阻为R , 其下

方有一匀强磁场区域,该区域的上、下边界PP ′和QQ ′ 均与ab 平行,两边界间的距离为H ,H>l 2,磁场的磁感 强度为B ,方向与线框平面垂直,如图5—30所示,令

线框的dc 边从离磁场区域上边界PP ′的距离为h 处自由 下落,已知在线框的dc 边进入磁场以后,ab 边到达边界 PP ′之前的某一时刻线框的速度已达到这一阶段的最大值。问从线框开始下落到dc 边刚刚到达磁场区域下边界QQ ′的过程中,磁场作用于线框的安培力做的总功为多少?

答案:

1.(a)37.5cm (b)50cm

3.K

M m T v T KMv

M

m m M

a mK

T v )()

(1,02

20

0-=

++=

>

4.1.41s 5.

θ

2

)(2mL M gh m M ++ 6.(1)

3

gh (2)R h 4

1- (3)

gh

L 3

7.D 8.B 、C 9.R R )15()15(+-

10.

de

mv

B de

mv 213≤

≤ 11.

2

2

L

B FR 12.

2

2

)(L B R mg F - 13.(1)

2

2

sin L

B mgR BI α

ε- (2)加速度2

2

sin L

CB m mg +α

14.(1)

gR qL

m 5 (2)

R

gR

BL

2 (3)

R

gR 2 (4)mgR 4

1

15.)(224

4

2

23

h l mg l

B R g m W +-=

P

Q ′ Q P ′

a b d c h l 1

l 2

图5—30

高中物理解题方法---整体法和隔离法

高中物理解题方法---整体法和隔离法 选择研究对象是解决物理问题的首要环节.在很多物理问题中,研究对象的选择方案是多样的,研究对象的选取方法不同会影响求解的繁简程度。合理选择研究对象会使问题简化,反之,会使问题复杂化,甚至使问题无法解决。隔离法与整体法都是物理解题的基本方法。 隔离法就是将研究对象从其周围的环境中隔离出来单独进行研究,这个研究对象可以是一个物体,也可以是物体的一个部分,广义的隔离法还包括将一个物理过程从其全过程中隔离出来。 整体法是将几个物体看作一个整体,或将看上去具有明显不同性质和特点的几个物理过程作为一个整体过程来处理。隔离法和整体法看上去相互对立,但两者在本质上是统一的,因为将几个物体看作一个整体之后,还是要将它们与周围的环境隔离开来的。 这两种方法广泛地应用在受力分析、动量定理、动量守恒、动能定理、机械能守恒等问题中。 对于连结体问题,通常用隔离法,但有时也可采用整体法。如果能够运用整体法,我们应该优先采用整体法,这样涉及的研究对象少,未知量少,方程少,求解简便;不计物体间相互作用的内力,或物体系内的物体的运动状态相同,一般首先考虑整体法。对于大多数动力学问题,单纯采用整体法并不一定能解决,通常采用整体法与隔离法相结合的方法。 一、静力学中的整体与隔离 通常在分析外力对系统的作用时,用整体法;在分析系统内各物体(各部分)间相互作用时,用隔离法.解题中应遵循“先整体、后隔离”的原则。 【例1】 在粗糙水平面上有一个三角形木块a ,在它的两个粗糙斜面上分别放有质量为m1和m2的两个木块b 和c ,如图所示,已知m1>m2,三木块均处于静止,则粗糙地面对于三角形木块( ) A .有摩擦力作用,摩擦力的方向水平向右 B .有摩擦力作用,摩擦力的方向水平向左 C .有摩擦力作用,但摩擦力的方向不能确定 D .没有摩擦力的作用 【解析】由于三物体均静止,故可将三物体视为一个物体,它静止于水平面上,必无摩擦力作用,故选D . 【点评】本题若以三角形木块a 为研究对象,分析b 和c 对它的弹力和摩擦力,再求其合力来求解,则把问题复杂化了.此题可扩展为b 、c 两个物体均匀速下滑,想一想,应选什么? 【例2】有一个直角支架 AOB ,AO 水平放置,表面粗糙,OB 竖直向下,表面光滑,AO 上套有小环P ,OB 上套有小环 Q ,两环 质量均为m ,两环间由一根质量可忽略、不可伸展的细绳相连, 并在某一位置平衡,如图。现将P 环向左移一小段距离,两环再 A O B P Q

(完整word版)高中物理解题方法:图解法

高中物理解题方法:图解法 2012-8-17 图解法,也叫图形法,是一种利用几何的方法解决物理问题的一种方法。解答共点力的平衡问题,动态平衡问题,常用图解法。基本法则有平行四边形法则,矢量三角形法则等,图解法的优点是简捷,方便,直观。可以化繁为简,化难为易,提高解题的效率。 【例题1】 (2012全国新课标).如图,一小球放置在木板与竖直墙面之间。设墙面对球的压力大小为N1,球对木板的压力大小为N2。以木板与墙连接点所形成的水平直线为轴,将木板从图示位置开始缓慢地转到水平位置。不计摩擦,在此过程中 A.N1始终减小,N2始终增大 B.N1始终减小,N2始终减小 C.N1先增大后减小,N2始终减小 D.N1先增大后减小,N2先减小后增大 [答案]B 与N2的合力为定值,与重力反向等大。作图。由图形可 知,当板缓慢转动中,N1与N2的方向便发生如图示变 化,但合力不变,可得答案B 。 【点评】:该题为动态平衡问题,在挡板夹角连续变化中,重力始终保持不变,根据共点力平衡的条件,做出力的平行四边形,可以直观看出合力不变,但水平方向的支持力N1连续减小,挡板的支持力也N2始终减小。 【例题2】如图2所示,用一根长为l 的细绳一端固定在O 点,另一端悬挂质量为m 的小球A ,为使细绳与竖直方向夹30°角且绷紧,小球A 处于静止,对小球施加的最小的力是 ( C ) A.mg 3 B.mg 23 C.mg 2 1- D.mg 33 【解析】:将mg 在沿绳方向与垂直于绳方向分解,如图所示. 所以施加的力与F1等大反向即可使小球静止,故 mg mg F 2 130sin 0min = =,故选C. 答案:C

高中物理:力学模型及方法知识归纳

╰ α 高中物理知识归纳(二) ----------------力学模型及方法 1.连接体模型是指运动中几个物体叠放在一起、或并排在一起、或用细绳、细杆联系在一起的物体组。解决这类问题的基本方法是整体法和隔离法。 整体法是指连接体内的物体间无相对运动时,可以把物体组作为整体,对整体用牛二定律列方程隔离法是指在需要求连接体内各部分间的相互作用( 如求相互间的压力或相互间的摩擦力等)时,把某物体从连接体中隔离出来进行分析的方法。 2斜面模型(搞清物体对斜面压力为零的临界条件) 斜面固定:物体在斜面上情况由倾角和摩擦因素决定 μ=tgθ物体沿斜面匀速下滑或静止μ> tgθ物体静止于斜面 μ< tgθ物体沿斜面加速下滑a=g(sinθ一μcosθ) 3.轻绳、杆模型 向的力。 杆对球的作用力由运动情况决定 只有θ=arctg( g a)时才沿杆方向 最高点时杆对球的作用力;最低点时的速度?,杆的拉力? 若小球带电呢? 假设单B下摆,最低点的速度V B=R 2g?mgR=2 2 1 B mv 整体下摆2mgR=mg 2 R +'2 B '2 A mv 2 1 mv 2 1 +

F 'A 'B V 2V = ? ' A V = gR 53 ; ' A ' B V 2V ==gR 25 6> V B =R 2g 所以AB 杆对B 做正功,AB 杆对A 做负功 若 V 0

高中物理答题技巧归纳大全

高中物理答题技巧归纳大全 一,考场中心态的保持 心态“安静”:心静自然“凉”,脑子自然清醒,精力自然集中,思路自然清晰。心静如水,超然物外,成为时间的主人、学习的主人。情绪稳定,效率提高。心不静,则心乱如麻,心神不定,心不在焉,如坐针毡,眼在此而心在彼,貌似用功,实则骗人。 二,高中物理选择题的答题技巧 选择题一般考查学生对基本知识和基本规律的理解及应用这些知识进行一些定性推理和定量计算。解答选择题时,要注意以下几个问题: 每一选项都要认真研究,选出最佳答案,当某一选项不敢确定时,宁可少选也不错选。 注意题干要求,让你选择的是“不正确的”、“可能的”还是“一定的”。 相信第一判断:凡已做出判断的题目,要做改动时,请十二分小心,只有当你检查时发现第一次判断肯定错了,另一个百分之百是正确答案时,才能做出改动,而当你拿不定主意时千万不要改。特别是对中等程度及偏下的同学这一点尤为重要。 做选择题的常用方法: 筛选(排除)法:根据题目中的信息和自身掌握的知识,从易到难,逐步排除不合理选项,最后逼近正确答案。

特值(特例)法:让某些物理量取特殊值,通过简单的分析、计算进行判断。它仅适用于以特殊值代入各选项后能将其余错误选项均排除的选择题。 极限分析法:将某些物理量取极限,从而得出结论的方法。 直接推断法:运用所学的物理概念和规律,抓住各因素之间的联系,进行分析、推理、判断,甚至要用到数学工具进行计算,得出结果,确定选项。 观察、凭感觉选择:面对选择题,当你感到确实无从下手时,可以通过观察选项的异同、长短、语言的肯定程度、表达式的差别、相应或相近的物理规律和物理体验等,大胆的做出猜测,当顺利的完成试卷后,可回头再分析该题,也许此时又有思路了。 物理实验题的做题技巧 实验题一般采用填空题或作图题的形式出现。作为填空题,数值、单位、方向或正负号都应填全面;作为作图题:对函数图像应注明纵、横轴表示的物理量、单位、标度及坐标原点。对电学实物图,则电表量程、正负极性,电流表内、外接法,变阻器接法,滑动触头位置都应考虑周全。对光路图不能漏箭头,要正确使用虚、实线,各种仪器、仪表的读数一定要注意有效数字和单位;实物连接图一定要先画出电路图(仪器位置要对应);各种作图及连线要先用铅笔(有利于修改),最后用黑色签字笔涂黑。 常规实验题:主要考查课本实验,几年来考查比较多的是试验器材、原理、步骤、读数、注意问题、数据处理和误差分析,解答常

高中物理整体法和隔离法试题演示教学

整体法和隔离法 1. 在粗糙水平面上有一个三角形木块a ,在它的两个粗糙斜面上分别放有质量为m1和m2的两个木块b 和c ,如图所示,已知m1>m2,三木块均处于静止,则粗糙地面对于三角形木块( ) A .有摩擦力作用,摩擦力的方向水平向右 B .有摩擦力作用,摩擦力的方向水平向左 C .有摩擦力作用,但摩擦力的方向不能确定 D .没有摩擦力的作用 2.有一个直角支架 AOB ,AO 水平放置,表面粗糙,OB 竖直向下,表面光滑,AO 上套有小环P ,OB 上套有小环 Q ,两环质量均为m ,两环间由一根质量可忽略、不可伸展的细绳相连,并在某一位置平衡,如图。现将P 环向左移一小段距离,两环再次达到平衡,那么将移动后的平衡状态和原来的平衡状态比较,AO 杆对P 环的支持力N 和细绳上的拉力T 的变化情况是( ) A .N 不变,T 变大 B .N 不变,T 变小 C .N 变大,T 变大 D .N 变大,T 变小 3.如图所示,设A 重10N ,B 重20N ,A 、B 间的动摩擦因数为0.1,B 与地面的摩擦因数为0.2.问:(1)至少对B 向左施多大的力,才能使A 、B 发生相对滑动?(2)若A 、B 间μ1=0.4,B 与地间μ2=0.l ,则F 多大才能产生相对滑动? 4.将长方形均匀木块锯成如图所示的三部分,其中B 、C 两部分完全对称,现将三部分拼在一起放在粗糙水平面上,当用与木块左侧垂直的水平向右力F 作用时,木块恰能向右匀速运动,且A 与B 、A 与C 均无相对滑动,图中的θ角及F 为已知,求A 与B 之间的压力为多少? 5.如图所示,在两块相同的竖直木板间,有质量均为m 的四块相同的砖,用两个大小均为F 的水平力压木板,使砖静止不动,则左边木板对第一块砖,第二块砖对第三块砖的摩擦力分别为( ) A .4mg 、2mg B .2mg 、0 C .2mg 、mg D .4mg 、mg 6.如图所示,两个完全相同的重为G 的球,两球与水平地面间的动摩擦因市委都是μ,一根轻绳两端固接在两个球上,在绳的中点施加一个竖直向上的拉力,当绳被拉直后,两段绳间的夹角为θ。问当F 至少多大时,两球将发生滑动?

高中物理解题方法

高中物理解题方法专题指导 方法专题一:图像法解题 一、方法简介 图像法是根据题意把抽像复杂的物理过程有针对性地表示成物理图像,将物理量间的代数关系转变为几何关系,运用图像直观、形像、简明的特点,来分析解决物理问题,由此达到化难为易、化繁为简的目的. 高中物理学习中涉及大量的图像问题,运用图像解题是一种重要的解题方法.在运用图像解题的过程中,如果能分析有关图像所表达的物理意义,抓住图像的斜率、截距、交点、面积、临界点等几个要点,常常就可以方便、简明、快捷地解题. 二、典型应用 1.把握图像斜率的物理意义 在v-t图像中斜率表示物体运动的加速度,在s-t图像中斜率表示物体运动的速度,在U-I图像中斜率表示电学元件的电阻,不同的物理图像斜率的物理意义不同. 2.抓住截距的隐含条件 图像中图线与纵、横轴的截距是另一个值得关注的地方,常常是题目中的隐含条件. 例1、在测电池的电动势和内电阻的实验中, 根据得出的一组数据作出U-I图像,如图所示, 由图像得出电池的电动势E=______ V,内电阻 r=_______ Ω. 3.挖掘交点的潜在含意 一般物理图像的交点都有潜在的物理含意,解题中往往又是一个重要的条件,需要我们多加关注.如:两个物体的位移图像的交点表示两个物体“相遇”. 例2、A、B两汽车站相距60 km,从A站每隔10 min向B站开出一辆汽车,行驶速度为60 km/h.(1)如果在A站第一辆汽车开出时,B站也有一辆汽车以同样大小的速度开往A站,问B站汽车在行驶途中能遇到几辆从A站开出的汽车?(2)如果B站汽车与A站另一辆汽车同时开出,要使B站汽车在途中遇到从A站开出的车数最多,那么B站汽车至少应在A站第一辆车开出多长时间后出发(即应与A站第几辆车同时开出)?最多在途中能遇到几辆车?(3)如果B站汽车与A站汽车不同时开出,那么B站汽车在行驶途中又最多能遇到几辆车?

高三物理巧用极限法分析临界问题(附答案)

高三物理巧用极限法分析临界问题 临界问题的分析是中学物理中较为常见,也是很多同学感到困难的问题之一,这就要求我们在教学中能不断探索这类问题的分析方法。 极限法分析临界问题,是通过分析把关键物理量同时推向极大和极小时的物理现象,从而找出解决问题的突破口的一种方法。下面通过几种情况的分析来体会: 一、关键物理量“力F ” 【例1】如图1所示,物体A 的质量为2kg ,两轻绳AB 和AC(L AB =2L AC )的一端连接在竖直墙上,另一端系在物体A 上,今在物体A 上另施加一个与水平方向成α=600角的拉力F 。要使两绳都能伸直,试求拉力F 的大小范围。(g=10m/s 2) 分析与解 如果F 很小,由竖直方向平衡知轻绳AB 中必有张力,当AC 中张力恰为零时,F 最小;如果F 很 大,由竖直方向平衡知轻绳AC 中必有张力,当AB 中张 力恰好为零时,F 最大。 设物体的质量为m ,轻绳AB 中的张力为T AB ,AC 中的张力为T AC ,F 的最小值为F 1,最大值为F 2 L AB =2L AC ,有∠CAB=600 由平衡条件有: F 1sin600+T AB sin600=mg , F 1cos600=T AB cos600 F 2sin600=mg 以上各式代入数据得:F 1=20√3/3N ,F 2=40√3/3N 因此,拉力F 的大小范围:20√3/3N <F <40√3/3N 此题也可由平衡条件直接列方程,结合不等式关系T AB >0,T AC >0求解。 二、关键物理量“加速度a ” 【例2】质量为0.2kg 的小球用细绳吊在倾角θ=600的斜面体的顶端,斜面体静止时,小球紧靠在斜面上,线与斜面平行,如图2所示,不计摩擦,求当斜面体分别以(1)2√3m/s 2, (2)4√3m/s 2的加速度向右加速时,线对小球的拉力。 分析与解 很多同学看到题目就会不加分析的列方程 求解,从而出现解出的结果不符合实际。其实,如果我们 仔细审题就会发现题目设问的着眼点是加速度。当小球向 图1 图2—1

高中物理-整体法.doc

整 体 法 整体是以物体系统为研究对象,从整体或全过程去把握物理现象的本质和规律,是一种把具有相互联系、相互依赖、相互制约、相互作用的多个物体,多个状态,或者多个物理变化过程组合作为一个融洽加以研究的思维形式。整体思维是一种综合思维,也可以说是一种综合思维,也是多种思维的高度综合,层次深、理论性强、运用价值高。因此在物理研究与学习中善于运用整体研究分析、处理和解决问题,一方面表现为知识的综合贯通,另一方面表现为思维的有机组合。灵活运用整体思维可以产生不同凡响的效果,显现“变”的魅力,把物理问题变繁为简、变难为易。 好题精讲 例1:如图1—1所示,人和车的质量分别为m 和M , 人用水平力F 拉绳子,图中两端绳子均处于水平方向,不 计滑轮质量及摩擦,若人和车保持相对静止,且水平地面 是光滑的,则车的加速度为 。 解析:要求车的加速度,似乎需将车隔离出来才能求 解,事实上,人和车保持相对静止,即人和车有相同的加 速度,所以可将人和车看做一个整体,对整体用牛顿第二 定律求解即可。 将人和车整体作为研究对象,整体受到重力、水平面的支持力和两条绳的拉力。在竖直方向重力与支持力平衡,水平方向绳的拉力为2F ,所以有: 2F = (M + m)a ,解得:a =2F M m 例2:用轻质细线把两个质量未知的小球悬挂起来,如图1—2所示,今对小球a 持续施加一个向左偏下30°的恒力,并对小球b 持续施加一个向右偏上30°的同样大小的恒力,最后达到平衡,表示平衡状态的图可能是( ) 解析:表示平衡状态的图是哪一个,关键是要求出两条轻质细绳对小球a 和小球b 的拉力的方向,只要拉力方向求出后,。图就确定了。 先以小球a 、b 及连线组成的系统为研究对象,系统共受五个力的作用,即两个重力(m a + m b )g ,作用在两个小球上的恒力F a 、F b 和上端细线对系统的拉力T 1 。因为系统处于平衡状态,所受合力必为零,由于F a 、F b 大小相等,方向相反,可以抵消,而(m a + m b )g 的方向竖直向下,所以悬线对系统的拉力T 1的方向必然竖直向上。再以b 球为研究对象,b 球在重力m b g 、恒力F b 和连线拉力T 2三个力的作用下处于平衡状态,已知恒力向右偏上30°,重力竖直向下,所以平衡时连线拉力T 2的方向必与恒力F b 和重力m b g 的合力方向相反,如图 所示,故应选A 。

最新最全,高中物理选择题,解题方法与技巧汇总,(附详细例题,与完整参考答案)

最新最全高中物理选择题解题方法与技巧汇总(附详细例题与完整想看答案) 一、比较排除法 二、特殊值代入法 三、极限思维法 四、逆向思维法 五、对称思维法 六、等效转换法 七、图象分析法 八、类比分析法

选择题在高考中属于保分题目,只有“选择题多拿分,高考才能得高分”,在平时的训练中,针对选择题要做到两个方面: 一是练准度:高考中遗憾的不是难题做不出来,而是简单题和中档题做错;平时会做的题目没做对,平时训练一定要重视选择题的正答率. 二是练速度:提高选择题的答题速度,能为攻克后面的解答题赢得充足时间. 解答选择题时除了掌握直接判断和定量计算等常规方法外,还要学会一些非常规巧解妙招,针对题目特性“不择手段”,达到快速解题的目的. 一、比较排除法 通过分析、推理和计算,将不符合题意的选项一一排除,最终留下的就是符合题意的选项.如果选项是完全肯定或否定的判断,可通过举反例的方式排除;如果选项中有相互矛盾或者是相互排斥的选项,则两个选项中只可能有一种说法是正确的,当然,也可能两者都错. [例1] 如图1所示,宽度均为d 且足够长的两相邻条形区域内,分别存在磁感应强度大小为B 、方向相反的匀强磁场.总电阻为R ,边长为433 d 的等边三角形金属框的AB 边与磁场边界平行,金属框从图示位置沿垂直于AB 边向右的方向做匀速直线运动.取逆时

针方向电流为正,从金属框C 端刚进入磁场开始计时,下列关于框中产生的感应电流随时间变化的图象正确的是( ) 图1 【解析】 感应电流随时间变化的图线与横轴所围的面积表示电荷量,其中第一象限面积取正,第四象限面积取负.金属框 从进入到穿出磁场,通过金属框的电荷量q =It =E R t =Φt -Φ0R =0,故感应电流随时间变化的图线与横轴所围的面积也应该为零,B 、C 选项显然不符合.金属框在最后离开磁场过程中切割磁感线的有效长度越来越大,故产生的感应电流也越来越大,排除D. 【答案】 A 【点评】 运用排除法解题时,对于完全肯定或完全否定的判断,可通过举反例的方式排除;对于相互矛盾或者相互排斥的

极限思维法、特殊值法、量纲法、等解高中物理选择题

高中物理“超纲”选择题解题方法 1.有一些问题你可能不会求解,但是你仍有可能对这些问题的解是否合理进行分析和判断。例如从解的物理量的单位,解随某些已知量变化的趋势,解在一定特殊条件下的结果等方面进行分析,并与预期结果、实验结论等进行比较,从而判断解的合理性或正确性。 举例如下:如图所示,质量为M、倾角为θ的滑块A放于水平地面上。把质量为m的滑块B放在A的斜面上。忽略 一切摩擦,有人求得B相对地面的加速度a = M+m gsinθ,式中g为重力加速度。 M+msin2θ 对于上述解,某同学首先分析了等号右侧量的单位,没发现问题。 他进一步利用特殊条件对该解做了如下四项分析和判断,所得结论都 是“解可能是对的”。但是,其中有一项是错误 ..的。请你指出该项。 () A.当θ=0?时,该解给出a=0,这符合常识,说明该解可能是对的 B.当θ=90?时,该解给出a=g,这符合实验结论,说明该解可能是对的 C.当M≥m时,该解给出a=gsinθ,这符合预期的结果,说明该解可能是对的

D .当m ≥M 时,该解给出a =sin g θ ,这符合预期的结果,说明该解可能是对的 2.某个由导电介质制成的电阻截面如图所示。导电介质的电阻率为ρ、制成内、外半径分别为a 和b 的半球壳层形状(图中阴影部分),半径为a 、电阻不计的球形电极被嵌入导电介质的球心为一个引出电极,在导电介质的外层球壳上镀上一层电阻不计的金属膜成为另外一个电极。设该电阻的阻值为R 。下面给出R 的四个表达式中只有一个是合理的,你可能不会求解R ,但是你可以通过一定的物理分析,对下列表达式的合理性做出判断。根据你的判断,R 的合理表达式应为 ( ) A .R= ab a b πρ2) (+ B .R= ab a b πρ2) (- C .R=) (2a b ab -πρ D .R= ) (2a b ab +πρ 3.图示为一个半径为R 的均匀带电圆环,其单位长度带电量为η。取环面中心O 为原点,以垂直于环面的轴线为x 轴。设轴上任意点P 到O 点的距离为x ,以无限远处为零电势,P 点电势的大小为Φ。下面给出 Φ的四个表达式(式中k 为静电力常量),其中只有一个是合理的。你 可能不会求解此处的电势Φ,但是你可以通过一定的物理分析,对下列表达式的合理性做出判断。根据你的判断,Φ的合理表达式应为 ( ) I

高考物理复习高中物理解题方法归类总结高中物理例题解析,原来还有这么巧妙的方法!

高考物理复习高中物理解题方法归类总结 (高中物理例题解析) 方法一:图像法解题 一、方法简介 图像法是根据题意把抽像复杂的物理过程有针对性地表示成物理图像,将物理量间的代数关系转变为几何关系,运用图像直观、形像、简明的特点,来分析解决物理问题,由此达到化难为易、化繁为简的目的. 高中物理学习中涉及大量的图像问题,运用图像解题是一种重要的解题方法.在运用图像解题的过程中,如果能分析有关图像所表达的物理意义,抓住图像的斜率、截距、交点、面积、临界点等几个要点,常常就可以方便、简明、快捷地解题. 二、典型应用 1.把握图像斜率的物理意义

在v-t图像中斜率表示物体运动的加速度,在s-t图像中斜率表示物体运动的速度,在U-I图像中斜率表示电学元件的电阻,不同的物理图像斜率的物理意义不同. 2.抓住截距的隐含条件 图像中图线与纵、横轴的截距是另一个值得关注的地方,常常是题目中的隐含条件. 例1、在测电池的电动势和内电阻的实验中,根据得出的一组数据作出U-I图像,如图所示,由图像得出电池的电动势E=______ V,内电阻r=_______ Ω. 【解析】电源的U-I图像是经常碰到的,由图线与纵轴的截距容易得出电动势E=1.5 V,图线与横轴的截距0.6 A是路端电压为0.80伏特时的电流,(学生在这里常犯的错误是把图线与横轴的截距0.6 A当作短路电流,而得出r=E/I 短=2.5Ω的错误结论.)故电源的内阻为:r=△U/△I=1.2Ω 3.挖掘交点的潜在含意

一般物理图像的交点都有潜在的物理含意,解题中往往又是一个重要的条件,需要我们多加关注.如:两个物体的位移图像的交点表示两个物体“相遇”. 例2、A、B两汽车站相距60 km,从A站每隔10 min向B站开出一辆汽车,行驶速度为60 km/h.(1)如果在A站第一辆汽车开出时,B站也有一辆汽车以同样大小的速度开往A站,问B站汽车在行驶途中能遇到几辆从A站开出的汽车?(2)如果B站汽车与A站另一辆汽车同时开出,要使B站汽车在途中遇到从A站开出的车数最多,那么B站汽车至少应在A站第一辆车开出多长时间后出发(即应与A站第几辆车同时开出)?最多在途中能遇到几辆车?(3)如果B站汽车与A站汽车不同时开出,那么B站汽车在行驶途中又最多能遇到几辆车? 【解析】依题意在同一坐标系中作出分别从A、B站由不同时刻开出的汽车做匀速运动的s一t图像,如图所示. 从图中可一目了然地看出:(1)当B站汽车与A站第一辆汽车同时相向开出时,B站汽车的s一t图线CD与A站汽车的s-t图线有6个交点(不包括在t轴上的交点),这表明B站汽车在途中(不包括在站上)能遇到6辆从A站开出的汽车.(2)要使B站汽车在途中遇到的车最多,它至少应在A站第一辆车开出50 min后出发,即应与A站第6辆车同时开出此时对应B站汽车的s—t图线MN与A 站汽车的s一t图线共有11个交点(不包括t轴上的交点),所以B站汽车在途中(不包括在站上)最多能遇到1l辆从A站开出的车.(3)如果B站汽车与A站汽

高中物理整体法隔离法解决物理试题答题技巧及练习题

高中物理整体法隔离法解决物理试题答题技巧及练习题 一、整体法隔离法解决物理试题 1.a、b两物体的质量分别为m1、m2,由轻质弹簧相连。当用大小为F的恒力沿水平方向拉着 a,使a、b一起沿光滑水平桌面做匀加速直线运动时,弹簧伸长量为x1;当用恒力F竖直向上拉着 a,使a、b一起向上做匀加速直线运动时,弹簧伸长量为x2;当用恒力F倾斜向上向上拉着 a,使a、b一起沿粗糙斜面向上做匀加速直线运动时,弹簧伸长量为x3,如图所示。则() A.x1= x2= x3 B.x1 >x3= x2 C.若m1>m2,则 x1>x3= x2 D.若m1

最新高中物理解题方法+高考物理知识点总结优秀名师资料

高中物理解题方法高考物理知识点总结物理题解常用的两种方法: 分析法的特点是从待求量出发,追寻待求量公式中每一个量的表达式,(当然结合题目所给的已知量追寻),直至求出未知量。这样一种思维方式“目标明确”,是一种很好的方法应当熟练掌握。 综合法,就是“集零为整”的思维方法,它是将各个局部(简单的部分)的关系明确以后,将各局部综合在一起,以得整体的解决。 综合法的特点是从已知量入手,将各已知量联系到的量(据题目所给条件寻找)综合在一起。 实际上“分析法”和“综合法”是密不可分的,分析的目的是综合,综合应以分析为基础,二者相辅相成。 正确解答物理题应遵循一定的步骤 第一步:看懂题。所谓看懂题是指该题中所叙述的现象是否明白?不可能都不明白,不懂之处是哪,哪个关键之处不懂,这就要集中思考“难点”,注意挖掘“隐含条件。”要养成这样一个习惯:不懂题,就不要动手解题。 若习题涉及的现象复杂,对象很多,须用的规律较多,关系复杂且隐蔽,这时就应当将习题“化整为零”,将习题化成几个过程,就每一过程进行分析。 第二步:在看懂题的基础上,就每一过程写出该过程应遵循的规律,而后对各个过程组成的方程组求解。 第三步:对习题的答案进行讨论(讨论不仅可以检验答案是否合理,还能使读者获得进一步的认识,扩大知识面。 一、静力学问题解题的思路和方法

1.确定研究对象:并将“对象”隔离出来-。必要时应转换研究对象。这种转换,一种情况是换为另一物体,一种情况是包括原“对象”只是扩大范围,将另一物体包括进来。 2.分析“对象”受到的外力,而且分析“原始力”,不要边分析,边处理力。以受力图表示。 3.根据情况处理力,或用平行四边形法则,或用三角形法则,或用正交分解法则,提高力合成、分解的目的性,减少盲目性。 4.对于平衡问题,应用平衡条件?F,0,?M,0,列方程求解,而后讨论。 5.对于平衡态变化时,各力变化问题,可采用解析法或图解法进行研究。 静力学习题可以分为三类: ? 力的合成和分解规律的运用。 ? 共点力的平衡及变化。 ? 固定转动轴的物体平衡及变化。 认识物体的平衡及平衡条件 ,对于质点而言,若该质点在力的作用下保持静止或匀速直线运动,即加速度为零,则称为平衡,欲使质点平衡须有?F,0。若将各力正交分解则 有:?F,0,?F,0 。 XY ,对于刚体而言,平衡意味着,没有平动加速度即,0,也没有转动加速度即,,0(静止或匀逮转动),此时应有:?F,0,?M,0。 这里应该指出的是物体在三个力(非平行力)作用下平衡时,据?F,0可以引伸得出以下结论: be carried out in time rust and antirust paint twice. While skeleton construction curtain wall fireproof, antisepsis, mine should be simultaneously, all skeletons complete after the required time and

高中物理极限法的应用

极限法的应用 一. 本周教学容: 物理解题方法复习专题——极限法的应用 二. 重点、难点: (一)物理思想 在物理问题中,有些物理过程虽然比较复杂,但这个较为复杂的物理过程又包含在一个更复杂的物理过程中。若把这个复杂的物理过程分解成几个小过程,且这些小过程的变化是单一的。那么,选取全过程的两个端点及中间的奇变点来进行分析,其结果必然可以反映所要讨论的物理过程,从而能使求解过程简单、直观,这就是极限思维法的物理思想。 极限法是一种直观、简捷的科学方法。在我们已学过的物理规律中,常能看到科学家们利用这种思维方法得到的物理规律。例如伽利略在研究从斜面上滚下的小球的运动时就运用了极限思维法将第二斜面外推到极限——水平面;开尔文把查理定律外推到压强为零这一极限制,而引入了热力学温标……这些例子说明,在物理学的发展和物理问题的研究中,极限思维法是一种重要的方法。(二)如何应用极限法解决问题 应用极限思维法时,特别要注意到所选取的某段物理过程研究的物理量的变化应是单一的。如增函数或减函数。但不能在所选过程中既包含有增函数,又包含有减函数的关系,

这种题目的解答是不能应用极限法的。因此,在解题时,一定要先判定物理量间的变化关系是否为单调变化。若物理量间的变化关系为单调变化,可假设某种变化的极端情况,从而得出结论或作出判断。 极限法常见用于解答定性判断题和选择题,或者在解答某些大题时,用极限法确定“解题方向”。在解题过程中,极限法往往能化难为易,达到“事半功倍”的效果。 【典型例题】 例1. 如图所示电路中,当可变电阻R的阻值增大时() A. A、B两点间的电压U增大 B. A、B 两点间的电压U减小 C. 通过R的电流I增大 D. 通过R 的电流I减小 分析: 可变电阻R的变化围在零到无穷大之间连续变化。当R=0 ;当R→∞时,R断路,时,A、B间短路,此时U=0,I E R r =+ () 1 ,()。可见,当R的阻值增大时,U增大而I ==++ I U ER R R r 212 减小,因此A、D选项正确。 点拨:

高中物理解题技巧及例题

时间+汗水≠效果 苦学、蛮学不如巧学 第一部分高中物理活题巧解方法总论 整体法隔离法力的合成法力的分解法力的正交分解法加速度分解法加速度合成法速度分解法速度合成法图象法补偿法(又称割补法)微元法对称法假设法临界条件法动态分析法利用配方求极值法等效电源法相似三角形法矢量图解法等效摆长法 等效重力加速度法特值法极值法守恒法模型法模式法转化法气体压强的参考液片法气体压强的平衡法气体压强的动力学法平衡法(有收尾速度问题)穷举法通式法 逆向转换法比例法推理法密度比值法程序法等分法动态圆法放缩法电流元分析法估算法节点电流守恒法拉密定理法代数法几何法 第二部分部分难点巧学 一、利用“假设法”判断弹力的有无以及其方向 二、利用动态分析弹簧弹力 三、静摩擦力方向判断 四、力的合成与分解 五、物体的受力分析 六、透彻理解加速度概念 七、区分s-t 图象和v-t图象 八、深刻领会三个基础公式 九、善用匀变速直线运动几个重要推论 十、抓住时空观解决追赶(相遇)问题 十一、有关弹簧问题中应用牛顿定律的解题技巧 十二、连接体问题分析策略——整体法与隔离法 十三、熟记口诀巧解题 十四、巧作力的矢量图,解决力的平衡问题 十五、巧用图解分析求解动态平衡问题 十六、巧替换、化生僻为熟悉,化繁难就简易

十七、巧选研究对象是解决物理问题的关键环节 十八、巧用“两边夹”确定物体的曲线运动情况 十九、效果法——运动的合成与分解的法宝 二十、平抛运动中的“二级结论”有妙用 二十一、建立“F供=F需”关系,巧解圆周运动问题 二十二、把握两个特征,巧学圆周运动 二十三、现代科技和社会热点问题——STS问题 二十四、巧用黄金代换式“GM=R2g” 二十五、巧用“比例法”——解天体运动问题的金钥匙 二十六、巧解天体质量和密度的三种方法 二十七、巧记同步卫星的特点——“五定” 二十八、“六法”——求力的功 二十九、“五大对应”——功与能关系 三十、“四法”——判断机械能守恒 三十一、“三法”——巧解链条问题 三十二、两种含义——正确理解功的公式,功率的公式 三十三、解题的重要法宝之一——功能定理 三十四、作用力与反作用力的总功为零吗——摩擦力的功归类 三十五、“寻”规、“导”矩学动量 三十六、巧用动量定理解释常用的两类物理现象 三十七、巧用动量定理解三类含“变”的问题 三十八、动量守恒定律的“三适用”“三表达”——动量守恒的判断 三十九、构建基本物理模型——学好动量守恒法宝 四十、巧用动量守恒定律求解多体问题 四十一、巧用动量守恒定律求解多过程问题 四十二、从能量角度看动量守恒问题中的基本物理模型——动量学习的提高篇四十三、一条连等巧串三把“金钥匙”

高中物理解题方法整体法和隔离法

高中物理解题方法---整体法和隔离法 选择研究对象是解决物理问题的首要环节.在很多物理问题中,研究对象的选择方案是多样的,研究对象的选取方法不同会影响求解的繁简程度。合理选择研究对象会使问题简化,反之,会使问题复杂化,甚至使问题无法解决。隔离法与整体法都是物理解题的基本方法。 隔离法就是将研究对象从其周围的环境中隔离出来单独进行研究,这个研究对象可以是一个物体,也可以是物体的一个部分,广义的隔离法还包括将一个物理过程从其全过程中隔离出来。 整体法是将几个物体看作一个整体,或将看上去具有明显不同性质和特点的几个物理过程作为一个整体过程来处理。隔离法和整体法看上去相互对立,但两者在本质上是统一的,因为将几个物体看作一个整体之后,还是要将它们与周围的环境隔离开来的。 这两种方法广泛地应用在受力分析、动量定理、动量守恒、动能定理、机械能守恒等问题中。 对于连结体问题,通常用隔离法,但有时也可采用整体法。如果能够运用整体法,我们应该优先采用整体法,这样涉及的研究对象少,未知量少,方程少,求解简便;不计物体间相互作用的内力,或物体系内的物体的运动状态相同,一般首先考虑整体法。对于大多数动力学问题,单纯采用整体法并不一定能解决,通常采用整体法与隔离法相结合的方法。 一、静力学中的整体与隔离 通常在分析外力对系统的作用时,用整体法;在分析系统内各物体(各部分)间相互作用时,用隔离法.解题中应遵循“先整体、后隔离”的原则。 【例1】在粗糙水平面上有一个三角形木块a ,在它的两个粗糙斜面上分别放有质量为m1和m2的两个木块b 和c ,如图所示,已知m1>m2,三木块均处于静止,则粗糙地面对于三角形木块( ) A .有摩擦力作用,摩擦力的方向水平向右 B .有摩擦力作用,摩擦力的方向水平向左 C .有摩擦力作用,但摩擦力的方向不能确定 D .没有摩擦力的作用 【解析】由于三物体均静止,故可将三物体视为一个物体,它静止于水平面上,必无摩擦力作用,故选D . 【点评】本题若以三角形木块a 为研究对象,分析b 和c 对它的弹力和摩擦力,再求其合力来求解,则把问题复杂化了.此题可扩展为b 、c 两个物体均匀速下滑,想一想,应选什么? 【例2】有一个直角支架AOB ,AO 水平放置,表面粗糙,OB 竖直向下,表面光滑,AO 上套有小环P ,OB 上套有小环Q ,两环质量均为m ,两环间由一根质量可忽略、不可伸展的细绳相连,并在某一位置平衡,如图。现将P 环向左移一小段距离,两 环再次 A O B P Q

(完整版)高中物理解题技巧

物理快速解题技巧 技巧一、巧用合成法解题 【典例1】 一倾角为θ的斜面放一木块,木块上固定一支架,支架末端用丝线悬挂一小球,木块在斜面上下滑时,小球与木块相对静止共同运动,如图2-2-1所 示,当细线(1)与斜面方向垂直;(2)沿水平方向,求上述两种情况下木 块下滑的加速度. 解析:由题意可知小球与木块相对静止共同沿斜面运动,即小球与木块 有相同的加速度,方向必沿斜面方向.可以通过求小球的加速度来达到求解 木块加速度的目的. (1)以小球为研究对象,当细线与斜面方向垂直时,小球受重力mg 和细线的拉力T ,由题意可知,这两个力的合力必沿斜面向下,如图2-2-2 所示.由几何关系可知F 合=mgsin θ 根据牛顿第二定律有mgsin θ=ma 1 所以a 1=gsin (2)当细线沿水平方向时,小球受重力mg 和细线的拉力T ,由题意可知,这两个力的合力也必沿斜面向下,如图2-2-3所示.由几何关系可知F 合=mg /sin θ 根据牛顿第二定律有mg /sin θ=ma 2 所以a 2=g /sin θ. 【方法链接】 在本题中利用合成法的好处是相当于把三个力放在一个直角三角形中,则利用三角函数可直接把三个力联系在一起,从而很方便地进行力的定量计算或利用角边关系(大角对大边,直角三角形斜边最长,其代表的力最大)直接进行力的定性分析.在三力平衡中,尤其是有直角存在时,用力的合成法求解尤为简单;物体在两力作用下做匀变速直线运动,尤其合成后有直角存在时,用力的合成更为简单. 技巧二、巧用超、失重解题 【典例2】 如图2-2-4所示,A 为电磁铁,C 为胶木秤盘,A 和C (包括支架)的总质量为M ,B 为铁片,质量为m ,整个装置 用轻绳悬挂于O 点,当电磁铁通电,铁片被吸引上升的过程中,轻 绳上拉力F 的大小满足 A.F=Mg B.Mg <F <(M+m )g C .F=(M+m )g D.F >(M+m )g 解析:以系统为研究对象,系统中只有铁片在电磁铁吸引下向上做加速运动,有向上的 θ 图2-2-1 θ mg T F 合 图2-2-2 θ mg F 合 T 图2-2-3 图2-2-4

极限法(特殊值法)在物理高考中的应用Word版

极限法(特殊值法)在物理高考中的应用 “极限法”是一种特殊的方法,它的特点是运用题中的隐含条件,或已有的概念,性质,对选项中的干扰项进行逐个排除,最终达到选出正确答案的目的。 极限法在物理解题中有比较广泛的应用,将貌似复杂的问题推到极端状态或极限值条件下进行分析,问题往往变得十分简单。利用极限法可以将倾角变化的斜面转化成平面或竖直面。可将复杂电路变成简单电路,可将运动物体视为静止物体,可将变量转化成特殊的恒定值,可将非理想物理模型转化成理想物理模型,从而避免了不必要的详尽的物理过程分析和繁琐的数学推导运算,使问题的隐含条件暴露,陌生结果变得熟悉,难以判断的结论变得一目了然。 1.(12安徽)如图1所示,半径为R 均匀带电圆形平板,单位面积带电量为σ,其轴线上任意一点P (坐标为x )的电场强度可以由库仑定律和电场强度的叠加原理求出: E =2πκσ()????????+-21221x r x ,方向沿x 轴。现考虑单位面积带电量为0σ的无限大均匀带电平板,从其中间挖去一半径为r 的圆板,如图2所示。则圆孔轴线上任意一点Q (坐标为x )的电场强度为 ( ) A. 2πκ0σ()2122x r x + B. 2πκ0σ()2122x r r + C. 2πκ0 σr x D. 2πκ0σx r 【解析】当→∝R 时,22x R x +=0,则0k 2E δπ=,当挖去半径为r 的圆孔时,应在E 中减掉该圆孔对应的场强)(220r x r x - 12E +=πκδ,即21220x r x 2E )(+='πκδ。选项A 正确。 2.(11福建)如图,一不可伸长的轻质细绳跨过滑轮后,两端分别悬挂质 量为m 1和m 2的物体A 和B 。若滑轮有一定大小,质量为m 且分布均匀,滑 轮转动时与绳之间无相对滑动,不计滑轮与轴之间的磨擦。设细绳对A 和B 的拉力大小分别为T 1和T 2,已知下列四个关于T 1的表达式中有一个是正确 的,请你根据所学的物理知识,通过一定的分析判断正确的表达式是( ) O R ● x P 图1 O r ● x Q 图2

相关主题
文本预览
相关文档 最新文档