当前位置:文档之家› 三年高考2015_2017高中物理试题分项版解析专题19计算题力与运动基础题

三年高考2015_2017高中物理试题分项版解析专题19计算题力与运动基础题

三年高考2015_2017高中物理试题分项版解析专题19计算题力与运动基础题
三年高考2015_2017高中物理试题分项版解析专题19计算题力与运动基础题

专题19 计算题 力与运动(基础题)

1.【2017·江苏卷】(16分)如图所示,两个半圆柱A 、B 紧靠着静置于水平地面上,其上有一光滑圆柱C ,三者半径均为R .C 的质量为m ,A 、B 的质量都为

2

m

,与地面的动摩擦因数均为μ.现用水平向右的力拉A ,使A 缓慢移动,直至C 恰好降到地面.整个过程中B 保持静止.设最大静摩擦力等于滑动摩擦力,重力加速度为g .求: (1)未拉A 时,C 受到B 作用力的大小F ; (2)动摩擦因数的最小值μ

min

(3)A 移动的整个过程中,拉力做的功W .

【答案】(1)3F =

(2)min 2

μ=(3)(21)W mgR μ=-

(3)C 下降的高度1)h R =A 的位移1)x R =

摩擦力做功的大小1)f W fx mgR μ==

根据动能定理00f W W mgh -+=-

解得(21)W

mgR μ=-

【考点定位】物体的平衡动能定理

【名师点睛】本题的重点的C 恰好降落到地面时,B 物体受力的临界状态的分析,此为解决第二问的关键,也是本题分析的难点.

2.【2016·海南卷】水平地面上有质量分别为m 和4m 的物A 和B ,两者与地面的动摩擦因数均

为μ。细绳的一端固定,另一端跨过轻质动滑轮与A 相连,动滑轮与B 相连,如图所示。初始时,绳出于水平拉直状态。若物块A 在水平向右的恒力F 作用下向右移动了距离s ,重力加速度大小为g 。求:

(1)物块B 克服摩擦力所做的功; (2)物块A 、B 的加速度大小。 【答案】(1)2μmgs (2)

32F mg m μ-34F mg

m

μ-

由A 和B 的位移关系得a A =2a B ⑥ 联立④⑤⑥式得

3=

2A F mg

a m μ-⑦

3=4B F mg a m μ-⑧

【考点定位】牛顿第二定律、功、匀变速直线运动

【名师点睛】采用整体法和隔离法对物体进行受力分析,抓住两物体之间的内在联系,绳中张力大小相等、加速度大小相等,根据牛顿第二定律列式求解即可。解决本题的关键还是抓住联系力和运动的桥梁加速度。

3.【2015·安徽·22】一质量为0.5 kg 的小物块放在水平地面上的A 点,距离A 点5 m 的位置

B 处是一面墙,如图所示。长物块以v o =9 m/s 的初速度从A 点沿AB 方向运动,在与墙壁碰撞前

瞬间的速度为7 m/s ,碰后以6 m/s 的速度把向运动直至静止。g 取10 m/s 2

(1)求物块与地面间的动摩擦因数μ;

(2)若碰撞时间为0.05s ,求碰撞过程中墙面对物块平均作用力的大小F ; (3)求物块在反向运动过程中克服摩擦力所做的功W 。 【答案】(1)0.32μ=(2)130F N =(3)9W J =

考点:本题考查动能定理、动量定理、做功等知识

【名师点睛】动能定理是整个高中物理最重要的规律,计算题肯定会考,一三问都用动能定理;碰撞过程,动量守恒必然用到,学生很容易想到.

4.【2017·天津卷】(16分)如图所示,物块A 和B 通过一根轻质不可伸长的细绳连接,跨放在质量不计的光滑定滑轮两侧,质量分别为m A =2 kg 、m B =1 kg 。初始时A 静止于水平地面上,

B 悬于空中。先将B 竖直向上再举高h =1.8 m (未触及滑轮)然后由静止释放。一段时间后细绳

绷直,A 、B 以大小相等的速度一起运动,之后B 恰好可以和地面接触。取g =10 m/s 2

。空气阻力不计。求:

(1)B 从释放到细绳刚绷直时的运动时间t ; (2)A 的最大速度v 的大小; (3)初始时B 离地面的高度H 。

【答案】(1)0.6s t =(2)2m/s v =(3)0.6m H =

(3)细绳绷直后,A 、B 一起运动,B 恰好可以和地面接触,说明此时A 、B 的速度为零,这一过程中A 、B 组成的系统机械能守恒,有:gH m gH m v m m A B B A =++2)(2

1

解得,初始时B 离地面的高度0.6m H =

【考点定位】自由落体运动,动量守恒定律,机械能守恒定律

【名师点睛】本题的难点是绳子绷紧瞬间的物理规律——是两物体的动量守恒,而不是机械能守恒。

5.(15分)【2016·四川卷】中国科学院2015年10月宣布中国将在2020年开始建造世界上最大的粒子加速器。加速器是人类揭示物质本源的关键设备,在放射治疗、食品安全、材料科学等方面有广泛应用。

如图所示,某直线加速器由沿轴线分布的一系列金属圆管(漂移管)组成,相邻漂移管分别接在高频脉冲电源的两极。质子从K 点沿轴线进入加速器并依次向右穿过各漂移管,在漂移管内做匀速直线运动,在漂移管间被电场加速,加速电压视为不变。设质子进入漂移管B 时速度为8×106

m/s ,进入漂移管E 时速度为1×107

m/s ,电源频率为1×107

Hz ,漂移管间缝隙很小,质子在每个管内运动时间视为电源周期的1/2。质子的荷质比取1×108

C/kg 。求:

(1)漂移管B 的长度; (2)相邻漂移管间的加速电压。 【答案】(1)0.4 m (2)4

610V ?

【解析】(1)设质子进入漂移管B 的速度为B v ,电源频率、周期分别为f 、T ,漂移管A 的长度为L ,则

1

T f

=

① 2

B

T

L v = ② 联立①②式并代入数据得0.4m L =③

考点:动能定理

【名师点睛】此题联系高科技技术-粒子加速器,考查了动能定理的应用,比较简单,只要弄清加速原理即可列出动能定理求解;与现代高科技相联系历来是高考考查的热点问题.

6.【2016·四川卷】(17分)避险车道是避免恶性交通事故的重要设施,由制动坡床和防撞设施等组成,如图竖直平面内,制动坡床视为与水平面夹角为的斜面。一辆长12 m 的载有货物的货车因刹车失灵从干道驶入制动坡床,当车速为23 m/s 时,车尾位于制动坡床的低端,货物开始在车厢内向车头滑动,当货物在车厢内滑动了4 m 时,车头距制动坡床顶端38 m ,再过一段时间,货车停止。已知货车质量是货物质量的4倍,货物与车厢间的动摩擦因数为0.4;货车在制动坡床上运动受到的坡床阻力大小为货车和货物总重的0.44倍。货物与货车分别视为小滑块和平板,取2cos =1sin =0.1=10m /s g θθ,,。求:

(1)货物在车厢内滑动时加速度的大小和方向; (2)制动坡床的长度。

【答案】(1)5m/s 2

,方向沿斜面向下(2)98m

【解析】(1)设货物的质量为m ,货物在车厢内滑动过程中,货物与车厢的动摩擦因数μ=0.4,受摩擦力大小为f ,加速度大小为a 1,则1sin f mg ma θ+=①

cos f mg μθ=②

联立①②并代入数据得a 1=5 m/s③

a 1的方向沿制动坡床向下。

()F k m M g =+⑤ 2111

2s vt a t =-⑥

2221

2

s vt a t =-⑦

12s s s =-⑧ 201l l s s =++⑨

联立①②③-⑨并代入数据得98m l =⑩ 考点:匀变速直线运动的应用;牛顿第二定律

【名师点睛】此题依据高速公路的避嫌车道,考查了牛顿第二定律的综合应用;涉及到两个研究对象的多个研究过程;关键是弄清物理过程,分析货物和车的受力情况求解加速度,然后选择合适的物理过程研究解答;此题属于中等题目.

7.【2016·天津卷】(16分)我国将于2022年举办冬奥会,跳台滑雪是其中最具观赏性的项目之一。如图所示,质量m =60 kg 的运动员从长直助滑道AB 的A 处由静止开始以加速度a =3.6 m/s 2匀加速滑下,到达助滑道末端B 时速度v B =24 m/s ,A 与B 的竖直高度差H =48 m 。为了改变运动员的运动方向,在助滑道与起跳台之间用一段弯曲滑道衔接,其中最低点C 处附近是一段以O 为圆心的圆弧。助滑道末端B 与滑道最低点C 的高度差h =5 m ,运动员在B 、C 间运动时阻力做功W =–1 530 J ,取g =10 m/s 2。

(1)求运动员在AB 段下滑时受到阻力F f 的大小;

(2)若运动员能够承受的最大压力为其所受重力的6倍,则C 点所在圆弧的半径R 至少应为多大。

【答案】(1)144 N (2)12.5 m

(2)设运动员到达C 点时的速度为v C ,在由B 到达C 的过程中,由动能定理有

mgh+W=1

2

m2

C

v–

1

2

m2

B

v④

设运动员在C点所受的支持力为F N,由牛顿第二定律有F N–mg=

2

C

v

R

由运动员能够承受的最大压力为其所受重力的6倍,联立④⑤式,代入数据解得R=12.5 m⑥【考点定位】动能定理、牛顿第二定律的应用

【名师点睛】此题是力学综合题,主要考查动能定理及牛顿第二定律的应用;解题的关键是搞清运动员运动的物理过程,分析其受力情况,然后选择合适的物理规律列出方程求解;注意第(1)问中斜面的长度和倾角未知,需设出其中一个物理量。

8.【2016·浙江卷】(16分)在真空环境内探测微粒在重力场中能量的简化装置如图所示。P 是一个微粒源,能持续水平向右发射质量相同、初速度不同的微粒。高度为h的探测屏AB 竖直放置,离P点的水平距离为L,上端A与P点的高度差也为h。

(1)若微粒打在探测屏AB的中点,求微粒在空中飞行的时间;

(2)求能被屏探测到的微粒的初速度范围;

(3)若打在探测屏A、B两点的微粒的动能相等,求L与h的关系。

【答案】(1)t=2)v

≤≤3)L=

(3)由能量关系

222111

222

mv mgh mv mgh +=+⑦

代入④、⑤式L =⑧ 【考点定位】动能定理;平抛运动

【名师点睛】此题是对平抛运动的考查;主要是掌握平抛运动的处理方法,在水平方向是匀速运动,在竖直方向是自由落体运动;解题时注意找到临界点;此题难度不算大,意在考查学生对物理基本方法的掌握情况。

9.【2015·四川·9】严重的雾霾天气,对国计民生已造成了严重的影响,汽车尾气是形成雾霾的重要污染源,“铁腕治污”已成为国家的工作重点,地铁列车可实现零排放,大力发展地铁,可以大大减少燃油公交车的使用,减少汽车尾气排放。

若一地铁列车从甲站由静止启动后做直线运动,先匀加速运动20s 达到最高速度72km/h ,再匀速运动80s ,接着匀减速运动15s 到达乙站停住。设列车在匀加速运动阶段牵引力为1×106

N ,匀速阶段牵引力的功率为6×103

kW ,忽略匀减速运动阶段牵引力所做的功。

(1)求甲站到乙站的距离;

(2)如果燃油公交车运行中做的功与该列车从甲站到乙站牵引力做的功相同,求公交车排放气体污染物的质量。(燃油公交车每做1焦耳功排放气体污染物3×10-6

克) 【答案】(1)s =1950m ;(2)m =2.04kg

(2)地铁列车在从甲站到乙站的过程中,牵引力做的功为:W 1=Fs 1+Pt 2⑤ 根据题意可知,燃油公交车运行中做的功为:W 2=W 1⑥ 由①⑤⑥式联立,并代入数据解得:W 2=6.8×108

J

所以公交车排放气体污染物的质量为:m =3×10-9

×6.8×108

kg =2.04kg 【考点定位】匀速直线运动与匀变速直线运动规律的应用,以及功大小的计算。

【名师点睛】分清运动的过程、熟练掌握相关物理规律及其适用条件或范围。在实际应用问题中,要细心、耐心读题,提取有用信息,处理多过程运动时,往往采用分段处理法,同时要紧扣分段点(速度),这是前后运动过程的联系纽带。匀变速直线运动中要善于使用平均速度公式:

x ==

t v v t

?+2

0。注意区分功大小的两种计算方法:恒力的功:W =Fs cos α,恒定功率的功:W =Pt 。

10.【2015·上海·31】质量为m 的小球在竖直向上的恒定拉力作用下,由静止开始从水平地面向上运动,经一段时间,拉力做功为W ,此后撤去拉力,球又经相同时间回到地面,以地面为零势能面,不计空气阻力。求: (1)球回到地面时的动能K E ;

(2)撤去拉力前球的加速度大小a 及拉力的大小F ; (3)球动能为W /5时的重力势能p E 。 【答案】(1)W ;(2)mg F 3

4=

;(3)W 53或W 54

【解析】(1)撤去拉力时球的机械能为W ,由机械能守恒定律,回到地面时的动能

W E K =1

(2)设拉力作用时间为t ,在此过程中球上升h ,末速度为v ,则

2

21at h =

v =at

由题意有22

1gt vt h -=- 解得g a 3

1=

根据牛顿第二定律,F -mg =ma ,解得mg F 3

4

=

设球的位置在h 下上方离地h ''处 由机械能守恒定律W h mg W =''+5

1 因此重力势能W h mg E p 5

4=

''= 【考点定位】牛顿第二定律;机械能守恒定律;匀变速直线运动公式

【名师点睛】本题考查动力学综合问题,属于动力学中常见的多过程问题,解决这类问题的关键是分析清楚每一个过程中的受力情况;还要注意到球动能为W /5时有两个位置。选取研究对象,选取研究过程,分段处理。

11.【2015·山东·23】如图甲所示,物块与质量为m 的小球通过不可伸长的轻质细绳跨过两等高定滑轮连接。物块置于左侧滑轮正下方的表面水平的压力传感装置上,小球与右侧滑轮的距离为l 。开始时物块和小球均静止,将此时传感装置的示数记为初始值。现给小球施加一始终垂直于l 段细绳的力,将小球缓慢拉起至细绳与竖直方向成60o

角,如图乙所示,此时传感装置的示数为初始值的1.25倍;再将小球由静止释放,当运动至最低位置时,传感装置的示数为初始值的0.6倍.不计滑轮的大小和摩擦,重力加速度的大小为g 。求:

(1)物块的质量;

(2)从释放到运动至最低位置的过程中,小球克服阻力所做的功。 【答案】(1)3m ;(2)0.1mgl

【考点定位】物体的平衡;牛顿第二定律;动能定理.

【规律总结】此题是力学的综合问题,主要考查动能定理及牛顿第二定律的应用;搞清物理过程,对研究对象正确的受力分析是解题的基础.

12.【2015·海南·14】如图,位于竖直水平面内的光滑轨道由四分之一圆弧ab 和抛物线bc

组成,圆弧半径Oa 水平,b 点为抛物线顶点。已知h =2m,,s 。取重力加速度大小

210/g m s =。

(1)一小环套在轨道上从a 点由静止滑下,当其在bc 段轨道运动时,与轨道之间无相互作用力,求圆弧轨道的半径;

(2)若环从b 点由静止因微小扰动而开始滑下,求环到达c 点时速度的水平分量的大小。

【答案】(1)0.25m (2)/x v s =

(2)环由b 处静止下滑过程中机械能守恒,设环下滑至c 点的速度大小为v ,有

2

12

mgh mv =

⑤ 环在c 点的速度水平分量为cos x v v θ=⑥

式中,为环在c 点速度的方向与水平方向的夹角,由题意可知,环在c 点的速度方向和以初速度0v 做平抛运动的物体在c 点速度方向相同,而做平抛运动的物体末速度的水平分量为

'0x v v =,竖直分量'y v 为

'y v =

因此cos θ=

联立可得/x v s =

⑨ 【考点定位】机械能守恒定律,平抛运动,动能定理

【名师点睛】做此类综合性较强的题目时,一定要弄清楚,物体在各个阶段的运动性质,受力情况,以及题目上给出的一些比较有价值的信息,如本题的“当其在bc 段轨道运动时,与轨道之间无相互作用力,”之类的信息。

13.【2015·全国新课标Ⅰ·35(2)】如图,在足够长的光滑水平面上,物体A 、B 、C 位于同一直线上,A 位于B 、C 之间。A 的质量为m ,B 、C 的质量都为M ,三者都处于静止状态,现使

A 以某一速度向右运动,求m 和M 之间满足什么条件才能使A 只与

B 、

C 各发生一次碰撞。设

物体间的碰撞都是弹性的。

【答案】2)m M ≥

134mv mv Mv =+

222134111

222

mv mv Mv =+ 整理可得

31m M

v v m M -=

+

412m v v m M =+

由于m M <,所以A 还会向右运动,根据要求不发生第二次碰撞,需要满足32v v < 即2

212()m M m m M v v v v m M m M m M

--=

>=+++

整理可得2

2

4m Mm M +>

解方程可得2)m M ≥ 【考点定位】弹性碰撞

【名师点睛】对于弹性碰撞的动量守恒和能量守恒要熟知,对于和一个静止的物体发生弹性碰撞后的速度表达式要熟记,如果考场来解析,太浪费时间。

14.【2015·全国新课标Ⅱ·35(2)】滑块a 、b 沿水平面上同一条直线发生碰撞;碰撞后两者粘在一起运动;经过一段时间后,从光滑路段进入粗糙路段。两者的位置x 随时间t 变化的图像如图所示。求:

(ⅰ)滑块a 、b 的质量之比;

(ⅱ)整个运动过程中,两滑块克服摩擦力做的功与因碰撞而损失的机械能之比。 【答案】(1)

8

121=m m ;

(2)21

=?E W

(2)由能量守恒得。两滑块因碰撞而损失的机械能为

2212

22211)(2

12121v m m v m v m E +-+=

? 由图像可知,两滑块最后停止运动,由动能定理得,两滑块克服摩擦力所做的功为

221)(21

v m m W +=

解得

21

=?E W 【考点定位】动量守恒定律;能量守恒定律

【方法技巧】本题主要是碰撞过程的动量守恒和能量守恒,但机械能是不一定守恒。要求掌握从动量和能量两个角度认识碰撞问题。

15.(8分)【2016·海南卷】如图,物块A 通过一不可伸长的轻绳悬挂在天花板下,初始时静止;从发射器(图中未画出)射出的物块B 沿水平方向与A 相撞,碰撞后两者粘连在一起运动;碰撞前B 的速度的大小v 及碰撞后A 和B 一起上升的高度h 均可由传感器(图中未画出)测得。某同学以h 为纵坐标,v 2为横坐标,利用实验数据作直线拟合,求得该直线的斜率为k =1.92 ×10-3 s 2/m 。已知物块A 和B 的质量分别为m A =0.400 kg 和m B =0.100 kg ,重力加速度大小g =9.80 m/s 2。

(i )若碰撞时间极短且忽略空气阻力,求h –v 2直线斜率的理论值k 0; (ii )求k 值的相对误差δ(δ=

00

k k k -×100%,结果保留1位有效数字)。

【答案】(i )2.04×10–3

s 2

/m (ii )

6%

(ii )按照定义δ=

00

k k k -×100%⑥

由⑤⑥式和题给条件得δ=6%⑦

【考点定位】动量守恒定律、机械能守恒定律

【名师点睛】本题考查动量守恒定律的应用,要注意正确选择研究对象,并分析系统是否满足动量守恒以及机械能守恒,然后才能列式求解。

备战2020年高考物理计算题专题复习《向心力的计算》(解析版)

《向心力的计算》 一、计算题 1.如图所示,长为L的细绳一端与一质量为m的小球可看成质点 相连,可绕过O点的水平转轴在竖直面内无摩擦地转动.在最 低点a处给一个初速度,使小球恰好能通过最高点完成完整的圆 周运动,求: 小球过b点时的速度大小; 初速度的大小; 最低点处绳中的拉力大小. 2.如图所示,一条带有圆轨道的长轨道水平固定,圆轨道竖直,底端分别与两侧的直 轨道相切,半径,物块A以的速度滑入圆轨道,滑过最高点Q,再沿圆轨道滑出后,与直轨上P处静止的物块B碰撞,碰后粘在一起运动。P点左侧轨道光滑,右侧轨道呈粗糙段,光滑段交替排列,每段长度都为。物块与各粗糙段间的动摩擦因数都为,A、B的质量均为重力加速度g 取;A、B视为质点,碰撞时间极短。 求A滑过Q点时的速度大小V和受到的弹力大小F; 若碰后AB最终停止在第k个粗糙段上,求k的数值; 求碰后AB滑至第n个光滑段上的速度与n的关系式。

3.如图所示,一个固定在竖直平面上的光滑半圆形管道,管道里有一个直径略小于管 道内径的小球,小球在管道内做圆周运动,从B点脱离后做平抛运动,经过秒后又恰好垂直与倾角为的斜面相碰到。已知圆轨道半径为,小球的质量为,g取求 小球在斜面上的相碰点C与B点的水平距离 小球经过圆弧轨道的B点时,受到轨道的作用力的大小和方向? 小球经过圆弧轨道的A点时的速率。 4.如图所示,倾角为的粗糙平直导轨与半径为R的光 滑圆环轨道相切,切点为B,整个轨道处在竖直平面内。一 质量为m的小滑块从轨道上离地面高为的D处无初速 下滑进入圆环轨道,接着小滑块从圆环最高点C水平飞出, 恰好击中导轨上与圆心O等高的P点,不计空气阻力。求: 小滑块在C点飞出的速率; 在圆环最低点时滑块对圆环轨道压力的大小; 滑块与斜轨之间的动摩擦因数。

海南省高中物理会考知识点汇编()

高中物理会考知识点汇编 知识框架 力和运动 功和能 电磁学 1、机械运动 (1)一个物体相对于另一个物体的位置的改变,叫做机械运动. ①运动是绝对的,静止是相对的.②宏 观、微观物体都处于永恒的运动中. (2).参考系 :在描述一个物体的运动时,用来做参考的物体称为参考系。 2.质点 用来代替物体的有质量的点称为质点。这是为研究物体运动而提出的理想化模型。 当物体的形状和大小对研究的问题没有影响或影响不大的情况下,物体可以抽象为质点。 3.路程和位移 路程是质点运动轨迹的长度,路程是标量。(在物体做单向直线运动时,位移的大小等于路程。) 位移表示物体位置的改变,大小等于始末位置的直线距离,方向由始位置指向末位置。位移是矢量。 4.速度 平均速度和瞬时速度 速度是描述物体运动快慢的物理,s v t ?=?,速度是矢量,方向与运动方向相同。 平均速度:运动物体某一时间(或某一过程)的速度。 瞬时速度:运动物体某一时刻(或某一位置)的速度,方向沿轨迹上质点所在点的切线方向。 5.匀速直线运动(速度不变的运动 ) 在直线运动中,物体在任意相等的时间内位移都相等的运动称为匀速直线运动。x=vt 6.加速度 加速度是描述速度变化快慢的物理量,它等于速度变化量跟发生这一变化量所用时间的比值,定义式是t v v t v a t 0-=??=,加速度是矢量,其方向与速度变化量的方向相同,与速度的方向无关。 7.用电火花计时器(或电磁打点计时器)测速度 电磁打点计时器使用交流电源,工作电压在10V(4-6V)以下。电火花计时器使用交流电源,工作电压220V 。当电源的频率是50H z时,它们都是每隔0.02s打一个点。 8.用电火花计时器(或电磁打点计时器)探究匀变速直线运动的速度随时间的变化规律 匀变速直线运动时,物体某段时间的中间时刻速度等于这段过程的平均速度 9.匀变速直线运动规律 速度公式:0v v at =+ 位移公式: 20s v t at =+ 位移速度公式:22212as v v =- 平均速度公式:_02 2t t v v x v v t +?===? 10.匀变速直线运动规律的速度时间图像 :加速度指速度的变化率,也就是说加速度是V —t 图像的斜率。

2019高考物理真题汇编——计算题

目录 牛顿第二定律 (2) 功能 (3) 动量 (3) 力学综合 (3) 动量能量综合 (4) 带电粒子在电场中的运动 (6) 带电粒子在磁场中的运动 (7) 电磁感应 (8) 法拉第电磁感应定律(动生与感生电动势) (8) 杆切割 (8) 线框切割 (9) 感生电动势 (9) 电磁感应中的功能问题 (10) 电磁科技应用 (11) 热学 (12) 光学 (14) 近代物理 (15) 思想方法原理类 (16)

牛顿第二定律 1.【2019天津卷】完全由我国自行设计、建造的国产新型航空母舰已完成多次海试,并 取得成功。航母上的舰载机采用滑跃式起飞,故甲板是由水平甲板和上翘甲板两部分构成,如图1所示。为了便于研究舰载机的起飞过程,假设上翘甲板BC是与水平甲板AB相切的一段圆弧,示意如图2,AB长L1=150m,BC水平投影L2=63m,图中C点切线方向与水平方向的夹角θ=12°(sin12°≈0.21)。若舰载机从A点由静止开始做匀加速直线运动,经t=6s到达B点进入BC.已知飞行员的质量m=60kg,g=10m/s2,求 (1)舰载机水平运动的过程中,飞行员受到的水平力所做功W; (2)舰载机刚进入BC时,飞行员受到竖直向上的压力F N多大。 2.【2019江苏卷】如图所示,质量相等的物块A和B叠放在水平地面上,左边缘对齐。 A与B、B与地面间的动摩擦因数均为μ.先敲击A,A立即获得水平向右的初速度,在B上滑动距离L后停下。接着敲击B,B立即获得水平向右的初速度,A、B都向右运动,左边缘再次对齐时恰好相对静止,此后两者一起运动至停下。最大静摩擦力等于滑动摩擦力,重力加速度为g。求: (1)A被敲击后获得的初速度大小v A; (2)在左边缘再次对齐的前、后,B运动加速度的大小a B、a B′; (3)B被敲击后获得的初速度大小v B。

高中物理会考复习资料

高中物理会考复习资料 1)匀变速直线运动 1.平均速度V平=S/t (定义式) 2.有用推论Vt^2 –Vo^2=2as 3.中间时刻速度Vt/2=V平=(Vt+Vo)/2 4.末速度Vt=Vo+at 5.中间位置速度Vs/2=[(Vo^2 +Vt^2)/2]1/2 6.位移S= V平t=Vot + at^2/2=Vt/2t 7.加速度a=(Vt-Vo)/t 以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0 8.实验用推论ΔS=aT^2 ΔS为相邻连续相等时间(T)内位移之差 9.主要物理量及单位:初速(Vo):m/s 加速度(a):m/s^2 末速度(Vt):m/s 时间(t):秒(s) 位移(S):米(m)路程:米速度单位换算:1m/s=3.6Km/h 注:(1)平均速度是矢量。(2)物体速度大,加速度不一定大。(3)a=(Vt-Vo)/t只是量度式,不是决定式。(4)其它相关内容:质点/位移和路程/s--t图/v--t图/速度与速率/ 2) 自由落体 1.初速度Vo=0 2.末速度Vt=gt 3.下落高度h=gt^2/2(从Vo位置向下计算) 4.推论Vt^2=2gh 注:(1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速度直线运动规律。 (2)a=g=9.8 m/s^2≈10m/s^2 重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下。 3) 竖直上抛 1.位移S=Vot- gt^2/2 2.末速度Vt= Vo- gt (g=9.8≈10m/s2 ) 3.有用推论Vt^2 –Vo^2=-2gS 4.上升最大高度Hm=Vo^2/2g (抛出点算起) 5.往返时间t=2Vo/g (从抛出落回原位置的时间) 注:(1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值。(2)分段处理:向上为匀减速运动,向下为自由落体运动,具有对称性。(3)上升与下落过程具有对称性,如在同点速度等值反向等。 二、质点的运动(2)----曲线运动万有引力 1)平抛运动 1.水平方向速度Vx= Vo 2.竖直方向速度Vy=gt 3.水平方向位移Sx= Vot 4.竖直方向位移(Sy)=gt^2/2 5.运动时间t=(2Sy/g)1/2 (通常又表示为(2h/g)1/2) 6.合速度Vt=(Vx^2+Vy^2)1/2=[Vo^2+(gt)^2]1/2 合速度方向与水平夹角β: tgβ=Vy/Vx=gt/Vo 7.合位移S=(Sx^2+ Sy^2)1/2 , 位移方向与水平夹角α: tgα=Sy/Sx=gt/2Vo 注:(1)平抛运动是匀变速曲线运动,加速度为g,通常可看作是水平方向的匀速直线运动与竖直方向的自由落体运动的合成。(2)运动时间由下落高度h(Sy)决定与水平抛出速度无关。(3)θ与β的关系为tgβ=2tgα 。(4)在平抛运动中时间t是解题关键。(5)曲线运动的物体必有加速度,当速度方向与所受合力(加速度)方向不在同一直线上时物体做曲线运动。 2)匀速圆周运动

高中物理3-3《热学》计算题专项练习题(含答案)

高中物理3-3《热学》计算题专项练习题(含 答案) -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

热学计算题(二) 1.如图所示,一根长L=100cm、一端封闭的细玻璃管开口向上竖直放置,管内用h=25cm长的水银柱封闭了一段长L1=30cm的空气柱.已知大气压强为75cmHg,玻璃管周围环境温度为27℃.求: Ⅰ.若将玻璃管缓慢倒转至开口向下,玻璃管中气柱将变成多长? Ⅱ.若使玻璃管开口水平放置,缓慢升高管内气体温度,温度最高升高到多少摄氏度时,管内水银不能溢出. 2.如图所示,两端开口、粗细均匀的长直U形玻璃管内由两段水银柱封闭着长度为15cm的空气柱,气体温度为300K时,空气柱在U形管的左侧. (i)若保持气体的温度不变,从左侧开口处缓慢地注入25cm长的水银柱,管内的空气柱长为多少? (ii)为了使空气柱的长度恢复到15cm,且回到原位置,可以向U形管内再注入一些水银,并改变气体的温度,应从哪一侧注入长度为多少的水银柱气体的温度变为多少(大气压强P0=75cmHg,图中标注的长度单位均为cm) 3.如图所示,U形管两臂粗细不等,开口向上,右端封闭的粗管横截面积是开口的细管的三倍,管中装入水银,大气压为76cmHg。左端开口管中水银面到管口距离为11cm,且水银面比封闭管内高4cm,封闭管内空气柱长为11cm。现在开口端用小活塞封住,并缓慢推动活塞,使两管液面相平,推动过程中两管的气体温度始终不变,试求: ①粗管中气体的最终压强;②活塞推动的距离。

4.如图所示,内径粗细均匀的U形管竖直放置在温度为7℃的环境中,左侧管上端开口,并用轻质活塞封闭有长l1=14cm,的理想气体,右侧管上端封闭,管上部有长l2=24cm的理想气体,左右两管内水银面高度差h=6cm,若把该装置移至温度恒为27℃的房间中(依然竖直放置),大气压强恒为p0=76cmHg,不计活塞与管壁间的摩擦,分别求活塞再次平衡时左、右两侧管中气体的长度. 5.如图所示,开口向上竖直放置的内壁光滑气缸,其侧壁是绝热的,底部导热,内有两个质量均为m的密闭活塞,活塞A导热,活塞B绝热,将缸内理想气体分成Ⅰ、Ⅱ两部分.初状态整个装置静止不动且处于平衡状态,Ⅰ、Ⅱ两部分气体的高度均为l0,温度为T0.设外界大气压强为P0保持不变,活塞横截面积为S,且mg=P0S,环境温度保持不变.求:在活塞A上逐渐添加铁砂,当铁砂质量等于2m时,两活塞在某位置重新处于平衡,活塞B下降的高度. 6.如图,在固定的气缸A和B中分别用活塞封闭一定质量的理想气体,活塞面积之比为S A:S B=1:2,两活塞以穿过B的底部的刚性细杆相连,可沿水平方向无摩擦滑动.两个气缸都不漏气.初始时,A、B 中气体的体积皆为V0,温度皆为T0=300K.A中气体压强P A=1.5P0,P0是气缸外的大气压强.现对A加热,使其中气体的体积增大V0/4,,温度升到某一温度T.同时保持B中气体的温度不变.求此时A中气体压强(用P 0表示结果)和温度(用热力学温标表达)

2020高考物理计算题专题练习题含答案

计算题 1.如图所示的电路中,用电动势E=6V,内阻不计的电池组向电阻R0=20Ω,额电压U0=4.5V的灯泡供电,求: (1)要使系统的效率不低于η0=0.6,变阻器的阻值及它应承受的最大电流是多大? (2)处于额定电压下的灯泡和电池组的最大可能效率是多少?它们同时适当选择的变阻器如何连接,才能取得最大效率? 2.环保汽车将为2008年奥运会场馆服务。某辆以蓄电池为驱动能源的环保汽车,总质量3 m=?。当它在水平路面上以v=36km/h的速度匀速行驶310kg 时,驱动电机的输入电流I=50A,电压U=300V。在此行驶状态下 ; (1)求驱动电机的输入功率P 电 (2)若驱动电机能够将输入功率的90%转化为用于牵引汽车前进的机械功率P机,求汽车所受阻力与车重的比值(g取10m/s2);

(3)设想改用太阳能电池给该车供电,其他条件不变,求所需的太阳能电池板的最小面积。结合计算结果,简述你对该设想的思考。 已知太阳辐射的总功率260410W P =?,太阳到地球的距离111.510m r =?,太阳光传播到达地面的过程中大约有30%的能量损耗,该车所用太阳能电池的能量转化效率约为15%。

3.太阳与地球的距离为1.5×1011m,太阳光以平行光束入射到地面。地球表面2/3的面积被水面所覆盖,太阳在一年中辐射到地球表面水面部分的总能量W约为1.87×1024J。设水面对太阳辐射的平均反射率为7%,而且将吸收到的35%能量重新辐射出去。太阳辐射可将水面的水蒸发(设在常温、常压下蒸发1 kg水需要2.2×106 J的能量),而后凝结成雨滴降落到地面。 (1)估算整个地球表面的年平均降雨量(以毫米表示,球面积为4πR2 地球的半径R=6.37×106 m)。 (2)太阳辐射到地球的能量中只有约50%到达地面,W只是其中的一部分。太阳辐射到地球的能量没能全部到达地面,这是为什么?请说明二个理由。

高中物理会考知识点大总结

高中物理会考知识点大总结 高中物理会考知识点总结 第1章力 一、力:力是物体间的相互作用。 1、力的国际单位是牛顿,用N表示; 2、力的图示:用一条带箭头的有向线段表示力的大小、方向、作用点; 3、力的示意图:用一个带箭头的线段表示力的方向; 4、力按照性质可分为:重力、弹力、摩擦力、分子力、电场力、磁场力、核力等等; (1)重力:由于地球对物体的吸引而使物体受到的力; (A)重力不是万有引力而是万有引力的一个分力; (B)重力的方向总是竖直向下的(垂直于水平面向下) (C)测量重力的仪器是弹簧秤; (D)重心是物体各部分受到重力的等效作用点,只有具有规则几何外形、质量分布均匀的物体其重心才是其几何中心; (2)弹力:发生形变的物体为了恢复形变而对跟它接触的物体产生的作用力; (A)产生弹力的条件:二物体接触、且有形变;施力物体发生形变产生弹力; (B)弹力包括:支持力、压力、推力、拉力等等;

(C)支持力(压力)的方向总是垂直于接触面并指向被支持或被压的物体;拉力的方向总是沿着绳子的收缩方向; (D)在弹性限度内弹力跟形变量成正比;F=Kx (3)摩擦力:两个相互接触的物体发生相对运动或相对运动趋势时,受到阻碍物体相对运动的力,叫摩擦力; (A)产生磨擦力的条件:物体接触、表面粗糙、有挤压、有相对运动或相对运动趋势;有弹力不一定有摩擦力,但有摩擦力二物间就一定有弹力; (B)摩擦力的方向和物体相对运动(或相对运动趋势)方向相反; (C)滑动摩擦力的大小F滑=μFN压力的大小不一定等于物体的重力; (D)静摩擦力的大小等于使物体发生相对运动趋势的外力; (4)合力、分力:如果物体受到几个力的作用效果和一个力的作用效果相同,则这个力叫那几个力的合力,那几个力叫这个力的分力; (A)合力与分力的作用效果相同; (B)合力与分力之间遵守平行四边形定则:用两条表示力的线段为临边作平行四边形,则这两边所夹的对角线就表示二力的合力; (C)合力大于或等于二分力之差,小于或等于二分力之

高中物理经典题库_力学计算题49个

四、力学计算题集粹(49个) 1.在光滑的水平面,一质量m=1kg的质点以速度v0=10m/s沿x轴正方向运动,经过原点后受一沿y轴正方向的恒力F=5N作用,直线OA与x轴成37°角,如图1-70所示,求: 图1-70 (1)如果质点的运动轨迹与直线OA相交于P点,则质点从O点到P点所经历的时间以及P的坐标;(2)质点经过P点时的速度. 2.如图1-71甲所示,质量为1kg的物体置于固定斜面上,对物体施以平行于斜面向上的拉力F,1s末后将拉力撤去.物体运动的v-t图象如图1-71乙,试求拉力F. 图1-71 3.一平直的传送带以速率v=2m/s匀速运行,在A处把物体轻轻地放到传送带上,经过时间t=6s,物体到达B处.A、B相距L=10m.则物体在传送带上匀加速运动的时间是多少?如果提高传送带的运行速率,物体能较快地传送到B处.要让物体以最短的时间从A处传送到B处,说明并计算传送带的运行速率至少应为多大?若使传送带的运行速率在此基础上再增大1倍,则物体从A传送到B的时间又是多少? 4.如图1-72所示,火箭平台上放有测试仪器,火箭从地面起动后,以加速度g/2竖直向上匀加速运动,升到某一高度时,测试仪器对平台的压力为起动前压力的17/18,已知地球半径为R,求火箭此时离地面的高度.(g为地面附近的重力加速度) 图1-72 5.如图1-73所示,质量M=10kg的木楔ABC静止置于粗糙水平地面上,摩擦因素μ=0.02.在木楔的倾角θ为30°的斜面上,有一质量m=1.0kg的物块由静止开始沿斜面下滑.当滑行路程s=1.4m时,其速度v=1.4m/s.在这过程中木楔没有动.求地面对木楔的摩擦力的大小和方向.(重力加速度取g=10/m·s2) 图1-73 6.某航空公司的一架客机,在正常航线上作水平飞行时,由于突然受到强大垂直气流的作用,使飞机在10s高度下降1700m造成众多乘客和机组人员的伤害事故,如果只研究飞机在竖直方向上的运动,且假定这一运动是匀变速直线运动.试计算: (1)飞机在竖直方向上产生的加速度多大?方向怎样? (2)乘客所系安全带必须提供相当于乘客体重多少倍的竖直拉力,才能使乘客不脱离座椅?(g取10m/s2) (3)未系安全带的乘客,相对于机舱将向什么方向运动?最可能受到伤害的是人体的什么部位? (注:飞机上乘客所系的安全带是固定连结在飞机座椅和乘客腰部的较宽的带子,它使乘客与飞机座椅

2020高考物理计算题专题训练含答案

计算题 1.为了使航天员能适应在失重环境下是的工作和生活,国家航天局组织对 航天员进行失重训练。故需要创造一种失重环境;航天员乘坐到民航客机 上后,训练客机总重5×104kg,以200m/s速度沿300倾角爬升到7000米 高空后飞机向上拉起,沿竖直方向以200m/s 的初速度向上作匀减速直线 运动,匀减速的加速度为g,当飞机到最高点后立即掉头向下,仍沿竖直 方向以加速度为g加速运动,在前段时间内创造出完全失重,当飞机离地 2000米高时为了安全必须拉起,后又可一次次重复为航天员失重训练。若 飞机飞行时所受的空气阻力f=Kv(k=900N·s/m),每次飞机速度达到 350m/s 后必须终止失重训练(否则Array飞机可能失速)。 求:(1)飞机一次上下运动为航天员创 造的完全失重的时间。 (2)飞机下降离地4500米时飞机 发动机的推力(整个运动空间重力加速 度不变)。 (3)经过几次飞行后,驾驶员想在保持其它不变,在失重训练时间不 变的情况下,降低飞机拉起的高度(在B点前把飞机拉起)以节约燃油, 若不考虑飞机的长度,计算出一次最多能节约的能量。

2.如图所示是一种测定风速的装置,一个压力传感器固定在竖直墙上,一弹簧一端固定在传感器上的M 点,另一端N 与导电的迎风板相连,弹簧穿在光滑水平放置的电阻率较大的金属细杆上,弹簧是不导电的材料制成的。测得该弹簧的形变量与压力传感器示数关系见下表。 迎风板面积S =0.50m 2,工作时总是正对着风吹来的方向。电路的一端与迎风板相连,另一端在M 点与金属杆相连。迎风板可 在金属杆上滑动,且与金属杆接触良好。定值电阻R =1.0Ω,电源的电动势E =12V ,内阻r =0.50Ω。闭合开关,没有风吹时,弹簧处于原长L 0=0.50m ,电压 传感器的示数U 1=3.0V ,某时刻由于风吹迎风板,电压传感器的示数变为 U 2=2.0V 。求: (1)金属杆单位长度的电阻; 形变量(m ) 0 0.1 0.2 0.3 0.4 压 力(N ) 0 130 260 390 520

高考物理计算题

考前题 1.(18分)如图所示,O 点为固定转轴,把一个长度为l 的细绳上端固定在O 点,细绳下端系一个质量为m 的小摆球,当小摆球处于静止状态时恰好与平台的右端点B 点接触,但无压力。一个质量为M 的小钢球沿着光滑的平台自左向右运动到B 点时与静止的小摆球m 发生正碰,碰撞后摆球在绳的约束下作圆周运动,且恰好能够经过最高点A ,而小钢球M 做平抛运动落在水平地面上的C 点。测得B 、C 两点间的水平距离DC=x ,平台的高度为h ,不计空气阻力,本地的重力加速度为g ,请计算: (1)碰撞后小钢球M 做平抛运动的初速度大小; (2)小把球m 经过最高点A 时的动能; (3)碰撞前小钢球M 在平台上向右运动的速度大小。 1.解析 (1)设M 做平抛运动的初速度是v , 2 21,gt h vt x = = h g x v 2= (2)摆球m 经最高点A 时只受重力作用, l v m mg A 2 = 摆球经最高点A 时的动能为A E ; mgl mv E A A 2 1212= = (3)碰后小摆球m 作圆周运动时机械能守恒, mgl mv mv A B 22 12 1 22+= gl v B 5= 设碰前M 的运动速度是 v ,M 与m 碰撞时系统的动量守恒 B mv Mv Mv +=0 gl M m h g x v 52+ = 2.如图,光滑轨道固定在竖直平面内,水平段紧贴地面,弯曲段的顶部切线水平、离地高为h ;滑块A 静止在水平轨道上, v 0=40m/s 的子弹水平射入滑块A 后一起沿轨道向右运动,并从轨道顶部水平抛出.已知滑块A 的质量是子弹的3倍,取g=10m/s 2,不计空气阻力.求: (1)子弹射入滑块后一起运动的速度; (2)水平距离x 与h 关系的表达式; (3)当h 多高时,x 最大,并求出这个最大值.

高中物理会考知识点汇总

会考知识点复习 第一、二章 运动的描述和匀变速直线运动 一、质点 1.定义:用来代替物体而具有质量的点。 2.实际物体看作质点的条件:当物体的大小和形状相对于所要研究的问题可以忽略不计时,物体可看作质点。 二、描述质点运动的物理量 1.时间:时间在时间轴上对应为一线段,时刻在时间轴上对应于一点。与时间对应的物理量为过程量,与时刻对应的物理量为状态量。 2.位移:用来描述物体位置变化的物理量,是矢量,用由初位置指向末位置的有向线段表示。路程是标量,它是物体实际运动轨迹的长度。只有当物体作单方向直线运动时,物体位移的大小才与路程相等。 3.速度:用来描述物体位置变化快慢的物理量,是矢量。 (1)平均速度:运动物体的位移与时间的比值,方向和位移的方向相同。 (2)瞬时速度:运动物体在某时刻或位置的速度。瞬时速度的大小叫做速率。 (3)速度的测量(实验) ①原理:t x v ??=。当所取的时间间隔越短,物体的平均速度v 越接近某点的瞬时速度v 。然而时间间隔取得过小,造成两点距离过小则测量误差增大,所以应根据实际情况选取两个测量点。 ②仪器:电磁式打点计时器(使用4∽6V 低压交流电,纸带受到的阻力较大)或者电火花计时器(使用220V 交流电,纸带受到的阻力较小)。若使用50Hz 的交流电,打点的时间间隔为0.02s 。还可以利用光电门或闪光照相来测量。 4.加速度 (1)意义:用来描述物体速度变化快慢的物理量,是矢量。 (2)定义:t v a ??=,其方向与Δv 的方向相同或与物体受到的合力方向相同。 (3)当a 与v 0同向时,物体做加速直线运动;当a 与v 0反向时,物体做减速直线运动。加速度与速度没有必然的联系。 三、匀变速直线运动的规律 1.匀变速直线运动 (1)定义:在任意相等的时间内速度的变化量相等的直线运动。 (2)特点:轨迹是直线,加速度a 恒定。当a 与v 0方向相同时,物体做匀加速直线运动;反之,物体做匀减速直线运动。 2.匀变速直线运动的规律 (1)基本规律 ①速度时间关系:at v v +=0 ②位移时间关系:202 1at t v x + = (2)重要推论

高中物理磁场经典计算题专题

高中物理磁场经典计算 题专题 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

1、弹性挡板围成边长为L= 100cm 的正方形abcd ,固定在光滑的水平面上,匀强磁场竖直向下,磁感应强度为B = 0.5T ,如图所示. 质量为m=2×10-4kg 、带电量为q=4×10-3C 的小球,从cd 边中点的小孔P 处以某一速度v 垂直于cd 边和磁场方向射入,以后小球与挡板的碰撞过程中没有能量损失. (1)为使小球在最短的时间内从P 点垂直于dc 射出来,小球入射的速度v 1是多少? (2)若小球以v 2 = 1 m/s 的速度入射,则需经过多少时间才能由P 点出来? 2、如图所示, 在区域足够大空间中充满磁感应强度大小为B 的匀强磁场,其方向垂直于纸面向里.在纸面内固定放置一绝缘材料制成的边长为L 的等边三角形框架DEF, DE 中点S 处有一粒子发射源,发射粒子的方向皆在图中截面内且垂直于DE 边向下,如图(a )所示.发射粒子的电量为+q,质量为m,但速度v 有各种不同的数值.若这些粒子与三角形框架碰撞时均无能量损失,并要求每一次碰撞时速度方向垂直于被碰的边.试求: (1)带电粒子的速度v 为多大时,能够打到E 点? (2)为使S 点发出的粒子最终又回到S 点,且运动时间最短,v 应为多大最短时间为多少 (3)若磁场是半径为a 的圆柱形区域,如图(b )所示(图中圆为其横截面),圆柱的轴线通过等边三角形的 中心O ,且a=) 10133( L.要使S 点发出的粒子最终又回到S 点,带电粒子速度v 的大小应取哪些数值? 3、在直径为d 的圆形区域内存在匀强磁场,磁场方向垂直于圆面指向纸外.一电荷量为q ,质量为m 的粒子,从磁场区域的一条直径AC 上的A 点射入磁场,其速度大小为v 0,方向与AC 成 磁场区域圆周上D 点,AD 与AC 的夹角为β,如图所示.求该匀强磁场的磁感强度 a b c d A F D (a ) (b )

高考物理-计算题专题突破

计算题专题突破 计算题题型练3-4 1.一列横波在x轴上传播,t1=0和t2=0.005 s时的波形如图中的实线和虚线所示. (1)设周期大于(t2-t1),求波速; (2)设周期小于(t2-t1),并且波速为6 000 m/s,求波的传播方向. 解析:当波传播时间小于周期时,波沿传播方向前进的距离小于一个波长;当波传播时间大于周期时,波沿传播方向前进的距离大于一个波长,这时从波形的变化上看出的传播距离加上n个波长才是波实际传播的距离. (1)因Δt=t2-t1T,所以波传播的距离大于一个波长,在0.005 s内传播的距离为 Δx=vΔt=6 000×0.005 m=30 m. 而Δx λ= 30 m 8 m=3 3 4,即Δx=3λ+ 3 4λ.

因此可得波的传播方向沿x轴负方向. 答案:(1)波向右传播时v=400 m/s;波向左传播时v=1 200 m/s(2)x轴负方向 2. (厦门一中高三检测)如图所示,上下表面平行的玻璃砖折射率为n=2,下表面镶有银反射面,一束单色光与界面的夹角θ=45°射到玻璃表面上,结果在玻璃砖右边竖直光屏上出现相距h=2.0 cm的光点A和B(图中未画出). (1)请在图中画出光路示意图(请使用刻度尺); (2)求玻璃砖的厚度d. 解析:(1)画出光路图如图所示. (2)设第一次折射时折射角为θ1,

2020年高考物理计算题强化专练-热学解析版

计算题强化专练-热学 一、计算题(本大题共5小题,共50.0分) 1.如图所示,质量为m=6kg的绝热气缸(厚度不计),横截面积为S=10cm2,倒扣在 水平桌面上(与桌面有缝隙),气缸内有一绝热的“T”型活塞固定在桌面上,活塞与气缸封闭一定质量的理想气体,活塞在气缸内可无摩擦滑动且不漏气.开始时,封闭气体的温度为t0=27℃,压强P=0.5×105P a,g取10m/s2,大气压强为 P0=1.0×105P a.求: ①此时桌面对气缸的作用力大小; ②通过电热丝给封闭气体缓慢加热到t2,使气缸刚好对水平桌面无压力,求t2的值 . 2.如图所示,用质量为m=1kg、横截面积为S=10cm2的活塞在气 缸内封闭一定质量的理想气体,活塞与气缸壁之间的摩擦忽 略不计。开始时活塞距气缸底的高度为h=10cm且气缸足够 高,气体温度为t=27℃,外界大气压强为p0=1.0×105Pa,取 g=10m/s2,绝对零度取-273℃.求: (i)此时封闭气体的压强; (ii)给气缸缓慢加热,当缸内气体吸收4.5J的热量时,内能 的增加量为2.3J,求此时缸内气体的温度。

3.如图所示,竖直放置的U形管左端封闭,右端开口,左管横截面积为右管横截面 积的2倍,在左管内用水银封闭一段长为l,温度为T的空气柱,左右两管水银面高度差为hcm,外界大气压为h0cmHg . (1)若向右管中缓慢注入水银,直至两管水银面相平(原右管中水银没全部进入水平 部分),求在右管中注入水银柱的长度h1(以cm为单位); (2)在两管水银面相平后,缓慢升高气体的温度至空气柱的长度变为开始时的长度l ,求此时空气柱的温度T′. 4.一内壁光滑、粗细均匀的U形玻璃管竖直放置,左端开口,右端封闭,左端上部 有一轻活塞.初始时,管内水银柱及空气柱长度如图所示.已知大气压强p0=75cmHg ,环境温度不变. (1)求右侧封闭气体的压强p右; (2)现用力向下缓慢推活塞,直至管内两边水银柱高度相等并达到稳定.求此时右侧封闭气体的压强p右; (3)求第(2)问中活塞下移的距离x.

高中物理会考知识点总结

高中物理会考知识点总结 1.质点 A 用来代替物体的有质量的点称为质点。这是为研究物体运动而提出的理想化模型。 当物体的形状和大小对研究的问题没有影响或影响不大的情况下,物体可以抽象为质点。 2.参考系 A 在描述一个物体的运动时,用来做参考的物体称为参考系。 3.路程和位移 A 路程是质点运动轨迹的长度,路程是标量。 位移表示物体位置的改变,大小等于始末位置的直线距离,方向由始位置指向末位置。位移是矢量。 在物体做单向直线运动时,位移的大小等于路程。 4.速度 平均速度和瞬时速度 A 速度是描述物体运动快慢的物理,t x v ??=/,速度是矢量,方向与运动方向相同。 平均速度:运动物体某一时间(或某一过程)的速度。 瞬时速度:运动物体某一时刻(或某一位置)的速度,方向沿轨迹上质点所在点的切线方向。 5.匀速直线运动 A 在直线运动中,物体在任意相等的时间内位移都相等的运动称为匀速直线运动。匀速直线运动又叫速度不变的运动。 6.加速度 A 加速度是描述速度变化快慢的物理量,它等于速度变化量跟发生这一变化量所用时间的比值,定义式是t V V t V a t ?-=??= 0,加速度是矢量,其方向与速度变化量的方向相同,与速度的方向无关。 7.用电火花计时器(或电磁打点计时器)测速度 A 电磁打点计时器使用交流电源,工作电压在10V 以下。电火花计时器使用交流电源,工作电压220V 。当电源的频率是50H z时,它们都是每隔0.02s打一个点。 若t ?越短,平均速度就越接近该点的瞬时速度 8.用电火花计时器(或电磁打点计时器)探究匀变速直线运动的速度随时间的变化规律 A 匀变速直线运动时,物体某段时间的中间时刻速度等于这段过程的平均速 度 t S V V = =21

2020年高中物理计算题专题复习 (3)

2020年高中物理计算题专题复习 (3) 1.如图所示,坐标平面第Ⅰ象限内存在大小为、方向水平向左的匀强电场,在 第Ⅱ象限内存在方向垂直纸面向里的匀强磁场比荷的带正电的粒子,以初速度从x轴上的A点垂直x轴射入电场,,经偏转电场后进入磁场,在磁场中发生偏转,轨迹恰好与x轴相切,不计粒子的重力求: 粒子在电场中运动的加速度大小 求粒子经过y轴时的位置到原点O的距离 求磁感应强度B 2.如图甲所示为倾斜的传送带,正以恒定的速度v,沿顺时针方向转动,传送带的倾角为。一 质量的物块以初速度vo从传送带的底部冲上传送带并沿传送带向上运动,物块到传送带顶端的速度恰好为零,其运动的图像如图乙所示,已知重力加速度为,,求: 内物块的加速度a及传送带底端到顶端的距离x;

物块与传送带闻的动摩擦因数; 物块与传送带间由于摩擦而产生的热量Q。 3.如图所示,水平传送带AB足够长,质量为的木块随传送带一起以的速度 向左匀速运动传送带的速度恒定,木块与传送带的动摩擦因数。当木块运动到最左端A点时,一颗质量为的子弹,以的水平向右的速度,正对射入木块并穿出,穿出速度,设子弹射穿木块的时间极短,取。求: 木块遭射击后远离A端的最大距离; 木块遭击后在传送带上向左运动所经历的时间。 4.如图所示,圆心角的圆弧轨道JK与半圆弧轨道GH都固定在竖直平面内,在两者之间 的光滑地面上放置质量为M的木板,木板上表面与H、K两点相切,木板右端与K端接触,左端与H点相距L,木板长度。两圆弧轨道均光滑,半径为R。现在相对于J点高度为3R的P点水平向右抛出一可视为质点的质量为m的木块,木块恰好从J点沿切线进入圆弧轨道,然后滑上木板,木块与木板间的动摩擦因数;当木板接触H点时即被黏住,木块恰好能运动到半圆弧轨道GH的中点。已知,重力加速度为g。

高考物理二轮复习 计算题专题训练

计算题专题训练 第1组 1.(2012·惠州一中月考)如图所示,一弹丸从离地高度H =1.95 m 的A 点以v 0=8.0 m/s 的初速度水平射出,恰以平行于斜面的速度射入静止在固定斜面顶端C 处的一木块中,并立 即与木块具有相同的速度(此速度大小为弹丸进入木块前一瞬间速度的1 10 )共同运动,在斜 面下端有一垂直于斜面的挡板,木块与它相碰没有机械能损失,碰后恰能返回C 点。已知斜面顶端C 处离地高h =0.15 m ,求:(1)A 点和C 点间的水平距离。(2)木块与斜面间的动摩擦因数μ。(3)木块从被弹丸击中到再次回到C 点的时间t 。 2.(2012·广州一模,35)如图所示,有小孔O 和O ′的两金属板正对并水平放置,分别与平行金属导轨连接,Ⅰ、Ⅱ、Ⅲ区域有垂直导轨所在平面的匀强磁场。金属杆ab 与导轨垂直且接触良好,并一直向右匀速运动。某时刻ab 进入Ⅰ区域,同时一带正电小球从O 孔竖直射入两板间。ab 在Ⅰ区域运动时,小球匀速下落;ab 从Ⅲ区域右边离开磁场时,小球恰好从O ′孔离开。已知板间距为3d ,导轨间距为L ,Ⅰ、Ⅱ、Ⅲ区域的磁感应强度大小相等、宽度均为d 。带电小球质量为m ,电荷量为q ,ab 运动的速度为v 0,重力加速度为g 。求: (1)磁感应强度的大小。 (2)ab 在Ⅱ区域运动时,小球的加速度大小。 (3)小球射入O 孔时的速度v 。 第2组 3.如图所示,AB 、BC 、CD 三段轨道交接处均由很小的圆弧平滑连接,其中轨道AB 、CD 段是光滑的,水平轨道BC 的长度L =5 m ,轨道CD 足够长且倾角θ=37°,A 点离轨道BC 的高度为H =4.30 m 。质量为m 的小滑块自A 点由静止释放,已知小滑块与轨道BC 间的动摩擦 因数μ=0.5,重力加速度g 取10 m/s 2 ,sin 37°=0.6,cos 37°=0.8,求: (1)小滑块第一次到达C 点时的速度大小; (2)小滑块第一次与第二次通过C 点的时间间隔; (3)小滑块最终停止位置距B 点的距离。 4.如图所示,磁感应强度为B =2.0×10-3 T 的磁场分布在xOy 平面上的MON 三角形区域,其中M 、N 点距坐标原点O 均为1.0 m ,磁场方向垂直纸面向里。坐标原点O 处有一个粒子源,不断地向xOy 平面发射比荷为q m =5×107 C/kg 的带正电粒子,它们的速度大小都是v =5×104

高考物理计算题(共29题)

高考物理计算题(共29 题) -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

学生错题之计算题(共29题) 计算题力学部分:(共12题) (2) 计算题电磁学部分:(共13题) (15) 计算题气体热学部分:(共3题) (35) 计算题原子物理部分:(共1题) (38) 计算题力学部分:(共12题) 1.长木板A静止在水平地面上,长木板的左端竖直固定着弹性挡板P,长木板A的上表面分为三个区域,其中PO段光滑,长度为1 m;OC段粗糙,长度为1.5 m;CD段粗糙,长度为1.19 m。可视为质点的滑块B静止在长木板上的O点。已知滑块、长木板的质量均为1 kg,滑块B与OC段动摩擦因数为0.4,长木板与地面间的动摩擦因数为0.15。现用水平向右、大小为11 N的恒力拉动长木板,当弹性挡板P将要与滑块B相碰时撤去外力,挡板P与滑块B发生弹性碰撞,碰后滑块B最后停在了CD段。已知质量相等的两个物体发生弹性碰撞时速度互换,g=10 m/s2,求: (1)撤去外力时,长木板A的速度大小; (2)滑块B与木板CD段动摩擦因数的最小值; (3)在(2)的条件下,滑块B运动的总时间。 答案:(1)4m/s (2)0.1(3)2.45s 【解析】(1)对长木板A由牛顿第二定律可得,解得; 由可得v=4m/s; (2)挡板P与滑块B发生弹性碰撞,速度交换,滑块B以4m/s的速度向右滑行,长木板A静止,当滑上OC段时,对滑块B有,解得 滑块B的位移; 对长木板A有; 长木板A的位移,所以有,可得或(舍去) (3)滑块B匀速运动时间;

滑块B在CD段减速时间; 滑块B从开始运动到静止的时间 2.如图所示,足够宽的水平传送带以v0=2m/s的速度沿顺时针方向运行,质量m=0.4kg的小滑块被光滑固定挡板拦住静止于传送带上的A点,t=0时,在小滑块上施加沿挡板方向的拉力F,使之沿挡 板做a=1m/s2的匀加速直线运动,已知小滑块与传送带间的动摩擦因数,重力加速度g=10m /s2,求: (1)t=0时,拉力F的大小及t=2s时小滑块所受摩擦力的功率; (2)请分析推导出拉力F与t满足的关系式。 答案: (1)0.4N;(2) 【解析】(1)由挡板挡住使小滑块静止的A点,知挡板方向必垂直于传送带的运行方向; t=0时对滑块:F=ma 解得F=0.4N;t=2s时, 小滑块的速度v=at=2m/s摩擦力方向与挡板夹角,则θ=450 此时摩擦力的功率P=μmgcos450v, 解得 (2)t时刻,小滑块的速度v=at=t, 小滑块所受的摩擦力与挡板的夹角为 由牛顿第二定律 解得(N)

高中物理会考知识点(理科)

高中物理会考知识点(理科) 运动学知识点 第一节机械运动 一.参照物 (1)机械运动是一个物体相对于别的物体的位置的变化.宇宙万物都在不停地运动着.运动是绝对的,一些看起来不动的物体如房屋、树木,都随地球一起在转动. (2)为了研究物体的运动而被假定为不动的物体,叫做参照物. (3)同一个运动,由于选择的参照物不同,就有不同的观察结果及描述,运动的描述是相对的,静止是相对的. 二.质点的概念 (1)如果研究物体的运动时,可以不考虑它的大小和形状,就可以把物体看作一个有质量的点.用来代替物体的有质量的点叫做质点. (2)质点是对实际物体进行科学抽象而得到的一种理想化模型.对具体物体是否能视作质点,要看在所研究的问题中,物体的大小形状是否属于无关因素或次要因素. 三、描述运动的物理量 (一)时间和时刻 (1)在表示时间的数轴上,时刻对应数轴上的各个点,时间则对应于某一线段;时刻指过程的各瞬时,时间指两个时刻之间的时间间隔。 (2)时间的法定计量单位是秒、分、时,实验室里测量时间的仪器秒表、打点计时器。(二)位移和路程 1、位移 (1)位移是描述物体位置变化的物理量:用初、末位置之间的距离来反映位置变化的多少,用初位置对末位置的指向表示位置变化的方向. (2)位移的图示是用一根带箭头的线段,箭头表示位移的方向,线段的长度表示位移的大小. 2.位移和路程的比较 位移和路程是不同的物理量,位移是矢量,用从物体运动初位置指向末位置的有向线段来表示,路程是标量,用物体运动轨迹的长度来表示. (三)速度

1.速度——描述运动快慢的物理量,是位移对时间的变化率。(变化率J 是表示变化的快慢,不表示变化的大小。) 2.平均速度的定义 (1)运动物体的位移与发生这段位移所用时间的比值,叫做这段时间内的平均速度.定义式是V =s/t .国际单位制中的单位是米/秒,符号m /s ,也可用千米/时(km /h ),厘米/秒(cm/s )等. (3) 平均速度可以粗略地描述做变速运动的物体运动的快慢. 3.平均速度的计算 平均速度的数值跟在哪一段时间内计算平均速度有关系.用平均速度定义式计算平均速度时,必须使物体的位移S 与发生这个位移的时间t 相对应。. 4.瞬时速度 (1)运动物体在某一时刻或某一位置的速度,叫做瞬时速度.瞬时速度能精确地描述变速运动.变速运动的物体在各段时间内的平均速度只能粗略地描述各段时间内的运动情况,如果各时间段取情越小,各段时间内的平均速度对物体运动情况的描述就越细致,当把时间段取极小值时,这极小段时间内的平均速度就能精确描述出运动物体各个时刻的速度,这就是瞬时速度. (2)若物体在某一时刻的瞬时速度是对(m /s ),则就意味着该物体假如从这一时刻开始做匀速运动,每1s 内的位移就是v (m ). 4.速度和速率 速度是矢量,既有大小又有方向,速度的大小叫速率 (四)加速度 1.加速度 (l )在变速运动中,速度的变化和所用时间的比值,叫加速度. (2)加速度的定义式是a=t v v t 0 . (3)加速度是描述变速运动速度改变的快慢程度的物理量,是速度对时间的变化率。加速度越大,表示在单位时间内运动速度的变化越大. (4)加速度是矢量,不但有大小,而且有方向.在直线运动中,加速度的方向与速度方向相同,表示速度增大;加速度的方向与速度方向相反,表示速度减小.当加速度方向与速度

相关主题
文本预览
相关文档 最新文档