当前位置:文档之家› 基于有限元分析的某高精度构架式动力机器基础设计

基于有限元分析的某高精度构架式动力机器基础设计

基于有限元分析的某高精度构架式动力机器基础设计
基于有限元分析的某高精度构架式动力机器基础设计

基于有限元分析的某高精度构架式动力机器基础设计

张付可史丙成

(北京首钢设计院北京100043)

[提要] 本工程为某钢铁厂压差发电(TRT)系统的主机设备基础,其基本设计及设备制造由日本厂家MES 完成。该工程为目前MES承担的最大压差发电项目,且业主对设备运行要求高,故MES提出的振动控制要求较国内设计规范严格得多。采用通用有限元分析软件MIDAS对MES提供的方案进行了多次试算,结果表明不能满足其振动控制要求。基于对计算结果的分析,调整了基础的结构方案,经试算该方案可同时满足厂家及业主提出的振动限值及工艺布置要求,同时采用MIDAS完成了该基础的内力分析。

[关键词] 高精度动力机器基础振动控制有限元分析方案调整内力分析

Design of high precision dynamic machine foundation / Zhang Fuke Shi Bingcheng (Beijing Shougang Design Institute, Beijing 100043, China)

Abstract:The project is Top Pressure Recovery Turbine foundation, basic design of the foundation and equipment manufacture are performed by MES. The project is the largest one up to now carried on by MES, considerring high requirement of owner guideposts offered by MES is high precision. Based on finite element analysis of the project offered by MES, the guideposts are not satisfied. The project style of the foundation is modified, and guideposts of the high precision dynamic foundation are satisfied. The inner force of the foundation is finished by MIDAS.

Keywords:high precision dynamic machine foundation; vibration control; finite element analysis; project modification; internal force analysis

1工程概况

钢铁厂炼铁系统中压差发电(以下简称TRT)子系统是利用高炉炼铁后炉顶输出的高压煤气带动透平机转动以输出电力的子系统。该项目TRT系统主机的设备(透平机及电机)制造及设备基础的基本设计由日本厂家MES完成,根据业主提出的设备运行要求由MES提供主机设备基础的结构方案,同时提出为确保设备运转状态良好对设备基础的振动控制要求。

MES提出该TRT主机的设备基础采用钢筋混凝土板柱结构的形式(如图1~图3所示),设备基础顶板在透平机和发电机两侧的厚度分别为1750mm和1680mm,透平机一侧边缘顶板厚度局部为2700mm(如图2所示)。透平机一侧顶板开有3890mm×4500mm的大洞口,以便于工艺管道穿行。电机一侧开有两个2150mm×800mm和两个1400mm×500mm共4个较大的洞口。顶板以下由6根柱支撑,柱截面尺寸为1500mm×1500mm。MES仅负责标高0.000m以上设备基础的基本设计,标高0.000m以下及施工图设计由我院负责完成。

图1 原方案平面及其荷载平面布置图图2 1――1剖面

2设备正常运行时的荷载

该TRT系统主机部分的透平机自重为2196KN,电机自重为883KN,透平机转子的重量为100kN,发电机转子的重量为150kN。根据我国《动力机器基础设计规范》(GB50040-96)公式6.3.2.1确定的透平机

及发电机的设备横向及竖向扰力相同,扰力值分别为

25KN 和37.5KN 。MES 提供的横向及竖向扰力数据如

下:透平机扰力值为90KN ,均匀分布于图1所示的

W1~W4、W7及W8共六个区域上,电机扰力为

118.4KN (50Hz )和332KNKN (100Hz ),作用于W11

和W12区域,轴向扰力可忽略不计。

《动力机器基础设计规范》明确指出,该扰力值应

由厂家提供。对于规范算法确定的扰力值与MES 提供的扰

力值之间存在的较大差异,MES 解释为该系统电机采用两极

的形式,设备正常运行时传递给基础的扰力荷载较按国内计算确定的扰力值大。

3 设备基础的振动控制要求

因该TRT 系统主机部分的透平机及电机设备制造均由MES 完成,对设备基础的振动速度、振动位移和扫频要求三项控制指标均由MES 提出。为确保达到业主提出的设备运行状态良好的要求,MES 提出了较高的控制要求。具体要求为,设备基础的有效振动速度须小于1.8mm/S ,振动位移(P -P 即最大振动位移)须小于8.1μm ,扫频要求为设备基础第一振型的振动频率在设备运行

频率值的25%以外。

其中有效振动速度计算如下: ∫=T rms dt t v T V 02)(1

式中:T :振动周期

)(t v :设备基础控制点的振动速度 根据厂家标准(图4所示),对应设备激振频率为50Hz 时,振幅最大值达到8.1μm 时为振动状态良好(GOOD )的下限,振幅最大值达到20μm (与我国规范要求相同)时为基本良好(NOT BAD )的下限。经与业主及厂家多次交流,确认要求结构的最大振动幅值须小于8.1μm 。我国规范针对透平压缩机的有效振动速度建议取值为S mm V rme /5.3≤ ,与MES 提出的要求差异较大。MES 对扫频范围的要求与我国规范的规定略有差异。综合以上三方面振动控制指标的对比,可见MES 提出的振动控制指标较我国规范建议取值严格得多,这与各国机器制造标准的差异及对设备运行状态的要求等有关系。

4 基于有限元分析的方案校核及改进

基于以上就MES 提出的荷载和振动控制要求两方面与我国常规做法的对比,可见MES 提出的扰力数值大、控制指标严,这为后续设备基础的振动分析及设计均提出了较高的要求。

目前国内动力机器基础的计算主要是通过质量凝聚的方法将基础的结构形式简化为框架结构形式,主要控制质量凝聚后形成的节点处的振动速度和振动位移及结构整体的振动特性。鉴于该设备基础存在扰力大、要求高的特点,本项目采用通用有限元分析软件MIDAS 建立了该设备基础的实体有限元分析模型并进行动力分析。以下就分析的几个主要问题做简要介绍。

4.1 模型的建立及分析

整体几何模型的建立:根据MES 提出的设备基础方案尺寸,采用MIDAS 软件的FX +模块精确建立其几何模型,采用自动网格划分的方法将其进行有限单元的网格划分,形成了四面体的实体有限元几何模型,划分网格时考虑荷载施加区域表面生成的节点数大于该区域的螺栓数目。

荷载的施加:除设备自重及设备正常运行时须考虑的当量静荷载外,施加了设备正常运行时的扰力。施加的扰力类型为正弦激励波,综合考虑MES 提供的设备正常运行时激励频率及设备基础自振频率两方面

图3 A ――A 剖面

图4 振动控制指标

因素,确定荷载施加步长为0.001S,振动分析时间为1S。施加的正弦激励波频率即MES提供的激振频率,振幅值由施加荷载区域的总荷载除以荷载施加区域表面生成的总节点数确定。

振动控制点的选取:以往通过质量凝聚的方法形成的计算模型,控制点为简化后模型的质量凝聚点及框架节点,我国规范规定控制点为设备基础顶板的顶面节点。分析认为结构顶板顶面区域较大,不与设备支座直接接触区域的局部振动不能直接传递至设备,故其振动特性不能体现其对设备正常运行的影响,只须控制与设备支座底面直接接触点的振动位移、振动速度和设备基础的整体振动频率即可。为此与MES 进行交涉,确认控制点可只选择与设备支座直接接触的表面单元节点,通过控制这些节点的振动速度、振动位移和结构整体的振动频率等即可达到控制目的。

边界条件的确定:考虑该项目所在场地条件较差,确定基础形式采用桩基。根据试桩结果确定模型约束节点(桩与底板底面连接节点)沿X、Y、Z三个方向的有限刚度约束。

计算振型数目的确定:经多次试算,所取振型数目须较大(本文所取振型数目为26个)才能满足振型参与质量足够的振动分析要求。为满足工艺布置及设备安装、运行等要求,基础的顶板须开设较多的洞口、油槽且荷载作用区域的标高不一致,由此导致顶板的规则性较差。另一方面,设备基础荷载作用区域较多且较为分散,设备运行时通过十余个荷载施加区域的节点对基础产生激振。综合考虑以上两方面因素,在众多激励荷载的共同作用下,不规则的顶板以局部振动为主的振型占据绝大多数,鉴于大多数局部振动的质量参与系数相对较小,为满足振动分析的精度要求,须考虑较多的振型数。

计算结果确定:通过施加的正弦激励波,可得到结构所有控制点每一激励时刻的振动速度输出,将输出的振动速度导入EXCEL中,通过输出速度平方和均值的开方根形式确定各节点的有效振动速度。振动位移的最大值可由输出结果直接确定。通过有限元分析可确定结构的各个振动频率,根据MES提出的扫频范围确认各个频率是否在扫频范围以外。

4.2MES模型的校核

对MES提供的设备基础方案进行了多次校核,计算结果表明多数扰力施加区域控制节点的振动速度和振动位移沿基础的横向及竖向均不能满足MES提出控制指标的要求,且相差较大。另外因所施加的扰力中心与结构的刚度中心存在一定的差异,结构的扭转效应相对较突出。为此,基于对计算结果的分析提出了基础结构形式的改进方案。以下基于针对各个荷载施加区域计算结果的分析,对基础的结构形式改进做简要介绍。

因基础顶板透平机一侧开有较大洞口3.89m×4m,且W1~W4荷载施加区域均布置于该洞口的四个角部,这些区域的振动约束效果相对较差,另外基础的柱截面尺寸和顶板厚度相对较小,导致其横向抗侧刚度和竖向抗弯刚度较弱,引起W1~W4区域横向及竖向相对较大的振动。因顶板悬挑长度过大(如图3所示,已超越我国规范的规定限值),导致W7和W8加载区域的竖向振动难以控制,且该两个加载区域高出顶板平面的高度(900mm)与其沿基础横向加载面的长度(800mm)相比较大,导致这两个加载区域的横向振动难以控制。W11及W12区域MES提供的荷载过大,且相对较小的柱截面和顶板厚度引起结构的横向抗侧刚度和竖向刚度较小,导致振动无法控制。经MES确认,这两个区域的扰力值应分别为59.2 KN (50Hz)和166 KN(100Hz),较我国规范建议公式确定的数值仍偏大很多。

4.3基础结构方案的改进

在尽可能满足工艺布置要求的前提下,同时考虑须增大结构的横向及其竖向刚度,初步提出将框架柱截面尺寸改为1500mm×2500mm(中柱)和2500mm×2500mm两种,同时将透平机及电机侧的顶板厚度分别加大至3500mm和2430mm。经试算仍不能满足MES提出的振动控制要求。

经与MES多次协商,确定对设备基础的结构形式做如下调整:将底部的支撑体系由6根柱改为8根柱,增加的两根柱截面为1500mm×800mm,位于W7和W8加载区域对应的位置,以减小顶板的外挑长度,限制该区域的竖向振动,同时将透平机一侧局部2700mm厚的顶板延伸至板端部,由此增大这两个荷载作用区域的横向约束长度,以提高其横向抗侧刚度。为限制结构整体的横向振动,同时提高结构的竖向刚度,在原有的6根柱之间沿横向设置剪力墙,为满足工艺管道沿基础纵向穿行的要求,在增设的墙体标高2.5m 处开直径为2.5m的圆形洞口。因基础的横向刚度中心与所施加的扰力中心有所差异,同时考虑电机一侧两

面墙体开大洞口对其刚度的影响,将墙体厚度由左至右逐渐加大,三面墙体的厚度分别为400mm 、500mm 和600mm 。因沿基础纵向设备的扰力值较小,计算结果表明控制点沿基础纵向的振动速度和振动位移尚能满足MES 提出的限值要求,故沿结构纵向未做调整,调整后的基础方案如图5和图6所示。

图5 调整后方案立面示意图 图6 调整后方案剖面 4.4 改进方案的计算结果分析

经试算,结构的横向刚度中心与扰力的荷载中心偏差仅为154mm ,有效的降低了基础扭转效应的不利影响。计算结果表明,W3~W12荷载施加区域控制节点的振动速度和振动位移均小于MES 提出的限值要求。W1和W2加载区域靠近洞口一侧的边缘节点等效振动速度介于1.8mm/S ~2.03mm/S 之间,振动位移介于0.0081mm ~0.0091mm 之间。虽然这些节点的振动略有超越MES 提出的振动控制指标的要求,考虑到设备支座的底面积小于MES 资料所示的荷载施加面的面积,即边缘节点不

会与设备支座直接接触,其振动对设备正常运行应不会产生明显影响,故可

不考虑图6示意的W1和W2边缘节点的影响,认为W1、W2区域的振动速

度和振动位移是满足MES 提出的限值要求的,该建议得到MES 的认可。基

础的主振型对应的结构振动频率大部分在扫频范围37.5Hz ~62.5Hz 以外,但

仍有一部分振型(第9~12振型)的振动频率在扫频范围以内,计算结果表明,对应这四个振型分别在六个自由度方向上的振型参与质量之和均较小(Z 向平动振型参与质量之和最大为2.376%),故其振动对设备基础的影响可忽略不计。因扫频要求的目的是避免设备与基础产生共振,从而避免出现导致较大的振动速度和振动位移的问题,鉴于各有效控制节点的振动速度和振动位移均得到有效控制,故可适当放宽对扫频范围的要求。分析结果表明,结构的第一振型对应的振动频率(6.432Hz )在MES 的扫频范围以外,满足其提出的扫频范围要求。

5 内力分析及设计

针对动力机器基础的设计分析除应满足设备正常运行的扫频、振动速度、振动位移的限值要求,尚应进行结构的承载能力和正常使用分析。

针对该基础的承载能力分析,须另外考虑设备故

障状态和地震作用两种不同的工况。鉴于设备运行瞬

间出现的故障状态和地震荷载同时作用的概率远小

于两者分别出现的概率,设计时不考虑两种荷载同时

出现的荷载组合。由此,针对该设备基础的承载力分

析共考虑三大类荷载工况的组合:第一种为设备正常

运转时的荷载组合,第二种为设备故障状态瞬间的荷

载组合,第三种为设备正常运行时遭遇地震作用的荷

载组合。针对正常使用分析仅考虑设备正常运行时的

荷载组合情况。经与MES 厂家确认,针对两种不同的图7. W1、W2局部节点示意

图8. 六面体有限元分析模型

分析情况,分别采用如上荷载组合的情况是可行的。

采用有限元分析软件对该基础进行分析时,最初采用的是自动网格划分的方法,划分的四面体单元虽可满足振动特性分析的需要,但对于后续结构的承载能力分析和正常使用分析无指导意义。拟通过合理的网格划分形式确定顶板、底板及柱的各截面内力,据此进行基础的设计。为此,在MIDAS软件的FX+模块里,采用构件切割的方法,将几何模型在所有边界面处统一进行切割,并采用实体映射网格的方法将切割后的几何体划分为六面体单元,如图8所示。由此,可通过有限元分析确定各构件的各个控制截面的内力。将所有荷载施加并分析完毕后,可手动形成以上所述的不同荷载工况组合。由组合结果可确定顶板、底板、柱的各控制截面的内力,基于求得的各截面内力确定了各构件的配筋形式,并进行了正常使用状态的构件校核。

6结语

1)采用有限元分析软件建立的实体模型并进行分析,较以往过于简化的分析方法可取得更高精度的分析结果,同时可确定顶板顶面各加载区域有效控制点的振动指标和基础整体的振动特性。

2)通过有限元网格的合理划分,可分别确定顶板、底板、柱的各控制截面在不同工况组合下的内力,用以指导结构承载能力和正常使用状态下的构件设计、校核。

3)采用有限元分析软件建立的实体有限元分析模型,可只选取与设备支座接触的节点作为对设备基础振动的有效控制点。

4)在较大扰力作用下,通过对基础结构形式的合理改进,满足了MES提出的较高精度的振动控制要求,同时通过在墙体上开洞的方式满足了工艺管道穿行的要求。

5)在有效控制点的振动速度和振动位移得到合理控制的前提下,可适当放宽对动力机器基础扫频范围的要求。

参考文献

[1] 动力机器基础设计规范(GB50040-96)[S]

[2] MITSUI ENGINEERING STANDARD [S]

[3] MIDAS/Gen Analysis & Design. 2005

机械设计 1 机械与结构设计基础知识(简化)

1机械与结构设计基础知识 第一节机械与结构设计(基础)概述 一、机械与结构设计(基础)在工业设计中的地位 工业设计的核心是产品设计,而产品设计离不开机械设计。 随着专业分工的细化,团队工作(team work)已成为产品开发设计的主要工作方式。工业设计师作为团队的一员,需要与其他成员进行交流,特别是要与机械与结构设计工程师就工业产品的原理、结构、材料、工艺及加工设备等方面进行交流与讨论。 一定的工程技术知识,包括机械设计与结构设计知识是团队合作交流的基础,特别是与工程技术人员的交流。 另外,为了使设计具有工程技术、生产加工的可能性、合理性、经济性,工业设计师需要具备一定的工程技术知识,包括机械设计与结构设计知识。 如,设计某种洗衣机时,工业设计师就要首先了解洗衣机的工作原理、结构、材料工艺与加工设备等,并在设计过程中就这方面的问题频繁地与各种工程师,包括机械与结构设计工程师进行切磋与沟通。 本课程(专业基础课)学习目的: 学习机械与结构设计基本知识,帮助同学提高工程技术素养,提高相关能力,力求实现以下目标: 1、初步具备机械与结构基本常识,有能力与机械或结构工程师就相关问题进行一般的交流沟通; 2、使产品设计方案具有更多的工程技术尤其是结构、机构方面的合理性; 3、为进一步深入学习机械与结构设计与其它工程技术知识打下初步的基础。

二、机械与结构设计(基础)研究对象和任务 (一)、机械、机器、机构、构件、零件的概念 机械--- 机器与机构的总称,如工程机械、包装机械、农业机械、矿山机械、化工机械等。机器--- 一种用来转换或传递能量、物料和信息的、能执行机械运动的装置,具有以下特征: 1、人为的实物(机件)的组合体。 2、各个部分间具有确定的相对运动。 3、能够用来转换能量,完成有用功或处理信息等。如电动工具、车辆、计算机等 机构--- 能实现预期的机械运动的各实物的组合体。常用机构:连杆机构、凸轮机构、齿轮机构等。具有以下特征: 1、人为的实物(机件)的组和体。 2、各个部分间具有确定的相对运动。 构件--- 机构中的运动单元或构造单元,由一个或几个零件组成的刚性结构。 零件--- 制造的基本单元。零件又分:通用零件、标准件,专用零件、非标准件等,可以是各种材料制成的。 因此,机械产品(机器)由三个层面构成: 机构、构件、零件 1、内燃机分析示例

机器人基础考试试题重点

(二)简答题 1.智能机器人的所谓智能的表现形式是什么? 答:推理判断、记忆 2.机器人分为几类? 答:首先,机器人按应用分类可分为工业机器人、极限机器人、娱乐机器人。 1)工业机器人有搬运、焊接、装配、喷漆、检验机器人,主要用于现代化的工厂和柔性加工系统中。 2)极限机器人主要是指用在人们难以进入的核电站、海底、宇宙空间进行作业的机器人,包括建筑、农业机器人。 3)娱乐机器人包括弹奏机器人、舞蹈机器人、玩具机器人等。也有根据环境而改变动作的机器人。 其次,按照控制方式机器人可分为操作机器人、程序机器人、示教机器人、智能机器人和综合机器人。 3. 机器人由哪几部分组成? 机器人由三大部分六个子系统组成。三大部分是机械部分、传感部分和控制部分。六个子系统是驱动系统、机械结构系统、感受系统、机器人一环境交换系统、人机交换系统和控制系统。 4. 什么是自由度? 答:人们把构建相对于参考系具有的独立运动参数的数目称为自由度。 5. 机器人技术参数有哪些?各参数的意义是什么? 答:机器人技术参数有:自由度、精度、工作范围、速度、承载能力 1)自由度:是指机器人所具有的独立坐标轴的数目,不包括手爪(末端操作器)的开合自由度。在三维空间里描述一个物体的位置和姿态需要六个自由度。但是,工业机器人的自由度是根据其用途而设计的,也可能小于六个自由度,也可能大于六个自由度。

2)精度:工业机器人的精度是指定位精度和重复定位精度。定位精度是指机器人手部实际到达位置与目标位置之间的差异。重复定位精度是指机器人重复定位其手部于同一目标位置的能力,可以用标准偏差这个统计量来表示,它是衡量一列误差值的密集度(即重复度)。 3)工作范围:是指机器人手臂末端或手腕中心所能到达的所有点的集合,也叫工作区域。 4)速度;速度和加速度是表明机器人运动特性的主要指标。 5)承载能力:是指机器人在工作范围内的任何位姿上所能承受的最大质量。承载能力不仅取决于负载的质量,而且还与机器人运行的速度和加速度的大小和方向有关。为了安全起见,承载能力这一技术指标是指高速运行时的承载能力。通常,承载能力不仅指负载,而且还包括机器人末端操作器的质量。 6. 机器人手腕有几种?试述每种手腕结构。 答:机器人的手臂按结构形式分可分为单臂式,双臂式及悬挂式按手臂的运动形式区分,手臂有直线运动的。如手臂的伸缩,升降及横向移动,有回转运动的如手臂的左右回转上下摆动有复合运动如直线运动和回转运动的组合。2直线运动的组合2回转运动的组合。手臂回转运动机构,实现机器人手臂回转运动的机构形式是多种多样的,常用的有叶片是回转缸,齿轮转动机构,链轮传动和连杆机构手臂俯仰运动机构,一般采用活塞油(气)缸与连杆机构联用来实现手臂复合运动机构,多数用于动作程度固定不变的专用机器人。 7. 机器人机座有几种?试述每种机座结构。 答:机器人几座有固定式和行走时2种 1)固定式机器人的级左右直接接地地面基础上,也可以固定在机身上 2)移动式机器人有可分为轮车机器人,有3组轮子组成的轮系四轮机器人三角论系统,全方位移动机器人,2足步行式机器人,履带行走机器人 8. 试述机器人视觉的结构及工作原理 答:机器人视觉由视觉传感器摄像机和光源控制计算器和图像处理机组成原理:由视觉传感器讲景物的光信号转换成电信号经过A/D转换成数字信号传递给图像处理器,同时光源控制器和32 摄像机控制器把把光线,距离颜色光源方向等等参数传递给图像处理器,图像处理器对图像数据做一些简单的处理将数据传递给计算机最后由计算器存储和处理。 9. 工业机器人控制方式有几种?

机械基础《习题册》答案

机械基础《习题册》答案(部分) 绪论 任务 一、填空题 1、人为的实体,确定相对,能量,有用机械功; 2、动力部分,传动部分,执行部分,控制部分; 3、动力,工作,信息; 4、运动,力; 5、机器,机构; 6、构件,零件; 7、直接接触,可动; 8、低副,高副; 9、移动副,转动副,螺旋副; 10、电气,液压; 11、往复移动,连续转动; 12、机构运动简图。 二、判断题 1 ×2×3√4×5√6√7×8√9×10× 三、选择题 1 B 2D 3C 4B 5B 6D 7C 四、名词解释 机构:若干构件通过运动副连接而成的各部分间具有确定相对运动的构件组合体。 构件:机构中独立的运动单元; 零件:机器中最小的制造单元; 运动副:两个构件直接接触且能够产生相对运动的连接。 五、简答题 1、动力部分:机器工作的动力源; 执行部分:直接完成机器预定工作任务的部分; 传动部分:将动力部分的运动和动力传递给执行部分的中间环节; 控制部分:控制机器动作的其他组成部分; 辅助部分 2、构件是机器中取小的运动单元,零件是机器中最小的制造单元。构件可以是一个零件,也可以是由若干个零件组成,如内燃机中的连杆。 3、低副是面接触,易加工,承载能力大,效率低,不能传递复杂的运动; 高副是点红接触,难加工,易磨损,寿命低,能传递复杂的运动。

模块一 任务一 一、填空题 1、主要参数,接头,安装方法; 2、主动带轮,从动带轮,传动带; 3、摩擦型,啮合型; 4、平带,V 带,多楔带,圆带; 5、矩形、内表面; 6、开口传动,交叉传动,半交叉传动; 7、黏接,带扣,螺栓; 8、打滑,其他零件损坏。 二、判断题 1× 2√ 3√ 4× 5√ 6√ 7√ 三、选择题 1D 2B 3C 4C 5A 四、简答题 2、1)改变中心距的方法:①定期张紧,②自动张紧; 2)使用张紧轮。 任务二 一、填空题 1、等腰梯形,两侧面; 2、伸张层,压缩层; 3、帘布芯,绳芯; 4、7,Y ,E ; 5、型号,基准长度,标准编号; 6、轮缘,轮毂,轮辐; 7、铸铁,HT150,HT200; 8、定期检查,重新张紧,张紧力; 9、平行,重合; 10、带齿,轮齿; 11、链,齿轮; 12、>30m/s ,104~5×105r/min ; 13、平带,V 带 二、判断题 1√ 2× 3× 4√ 5√ 6× 7√ 8× 9× 三、选择题 1B 2C 3D 4D 5C 6D 7A 8C 9A 10D 11A 五、简答题 1、普通V 带分为Y 、Z 、A 、B 、C 、D 、E 七种型号,按次序其截面面积依次增大,传递的功率随截面面积的增大而增大。 六、计算题 1、解:5.21002501212=== d d d d i

地基动力特征参数的选用

地基动力特征参数的选用 浙江国土工程勘察有限公司 华维松 浙江泛华工程有限公司勘察院 汪永森 一、概述 动力机器基础设计与其它结构物基础设计有着明显不同,其主要区别在于动力机器基础上部作用有由机器传来的动力。由于这种动力引起基础本身的振动,甚至影响到周围建筑物的振动。国标《动力机器基础设计规范》(CTB50040-96)(以下简称《动规》)确定的机器基础设计要求是使基础由于动荷载而引起的振动幅值,不能超过某一限值。这个限值的确定主要取决于:保证机器的正常运转以及由于基础振动所产生的振动波,通过土体的传播,对附近的人员、仪器设备 及建筑物不产生有害的影响。 机器在运转过程中,必然会产生动力荷载,按其动力作用的时间形式不同,大致可以分为三类:一类是旋转式机器的动荷载;一类是往复式机器的动荷载; 一类是瞬态脉冲动荷载(冲击荷载)。 动力机器基础设计的一般原则,除了要保证相邻基础不受其动力作用而产生过大的沉降(或不均匀沉降)外,还要求动力机器基础本身能满足下式要求: P≤γf f 式中:P ——基础底面地基的平均静压力设计值(KPa ) γf ——地基承载力的动力折减系数; f ——地基承载力设计值(KPa ) 动力基础设计时,应取得下列资料: 1 、机器的型号、转速、功率、规格及轮廓尺寸图等; 2 、机器自重及重心位置; 3、机器底座外郭图、辅助设备、管道位置和坑、沟、孔洞尺寸及灌浆层厚度、地脚螺栓和预埋件的位置等;

4、机器的扰力和扰力矩及其方向; 5、基础的位置及其邻近建筑物的基础图; 6、建筑场地的地质勘察资料及地基动力试验资料。 其中第6条就是地质勘察部门所要提供的资料。动力机器基础勘察要求较高,除了需要提供一般建筑勘察所需的岩土试验成果外,还要提供地基动力特征参数,这些参数主要包括以下9项:①天然地基抗压刚度系数;②地基土动弹性模量; ③地基土动剪变模量;④动泊松比;⑤天然地基地基土动沉陷影响系数⑥桩周土当量抗剪刚度系数;⑦桩尖土当量抗压刚度系数;⑧天然地基竖向阻尼比;⑨桩 基竖向阻尼比。 有关地基动力特征参数如何选择,应考虑哪些因素,如何应用等方面的专题论文很少,有的勘察人员不知道这些参数如何提供,提多大合适,感到困惑不解。本文通过位于萧山经济技术开发区的“通用电气亚洲水利项目”这一大型工程 的详细勘察,按照设计要求,结合场地地质条件,经过公式计算,通过地质类比法,现场测试,参照《动力机器基础设计规范》提供了设计所需的动力参数,施工中又进行了检测,还进行静力触探对比试验,并对试验成果进行评价达到了设计要求。 二、工程概况及地质条件 该工程位于萧山经济开发区,主体建筑物为1栋机器制造联合厂房,单层高24.9m。1栋二层办公楼及其辅助建筑物;(1、液氧站2、空压站3、废水处理4、 油化库等)还有动力机器基础,总建筑面积60400平方米。 (一)重型厂房、动力机器基础的特点及对勘察的要求 1、重型厂房一层高24.9m,框架结构,屋顶轻钢结构,柱网是12×24m,厂房内设有两台150T行车,柱下最大轴力设计值8000KN/柱。 2、动力机器基础,基础形式以实体(大块)式基础为主,最大基础面积 20×20m,基础砌置深度4.0m,设计单桩竖向承载力3650KN/柱,主要设备:液压试验台200~400T油压机,数挖镗洗床,三辊卷板机,其它车、洗、镗、立式钻床等振动方式以垂直振动为主,也有水平回转,大型动力设备基础,拟采取隔振消振措施,对重型厂房,动力设备基础设计拟采用桩基础,办公楼、辅助厂房 设计拟采用天然地基。

最新整理机械结构设计基础知识复习过程

机械结构设计基础知识 1前言 1.1机械结构设计的任务 机械结构设计的任务是在总体设计的基础上,根据所确定的原理方案,确定并绘出具体的结构图,以体现所要求的功能。是将抽象的工作原理具体化为某类构件或零部件,具体内容为在确定结构件的材料、形状、尺寸、公差、热处理方式和表面状况的同时,还须考虑其加工工艺、强度、刚度、精度以及与其它零件相互之间关系等问题。所以,结构设计的直接产物虽是技术图纸,但结构设计工作不是简单的机械制图,图纸只是表达设计方案的语言,综合技术的具体化是结构设计的基本内容。 1.2机械结构设计特点 机械结构设计的主要特点有:(1)它是集思考、绘图、计算(有时进行必要的实验)于一体的设计过程,是机械设计中涉及的问题最多、最具体、工作量最大的工作阶段,在整个机械设计过程中,平均约80%的时间用于结构设计,对机械设计的成败起着举足轻重的作用。(2)机械结构设计问题的多解性,即满足同一设计要求的机械结构并不是唯一的。(3)机械结构设计阶段是一个很活跃的设计环节,常常需反复交叉的进行。为此,在进行机械结构设计时,必须了解从机器的整体出发对机械结构的基本要求 2机械结构件的结构要素和设计方法 2.1结构件的几何要素 机械结构的功能主要是靠机械零部件的几何形状及各个零部件之间的相对位置关系实现的。零部件的几何形状由它的表面所构成,一个零件通常有多个表面,在这些表面中有的与其它零部件表面直接接触,把这一部分表面称为功能表面。在功能表面之间的联结部分称为联接表面。 零件的功能表面是决定机械功能的重要因素,功能表面的设计是零部件结构设计的核心问题。描述功能表面的主要几何参数有表面的几何形状、尺寸大小、表面数量、位置、顺序等。通过对功能表面的变异设计,可以得到为实现同一技术功能的多种结构方案。 2.2结构件之间的联接 在机器或机械中,任何零件都不是孤立存在的。因此在结构设计中除了研究零件本身的功能和其它特征外,还必须研究零件之间的相互关系。 零件的相关分为直接相关和间接相关两类。凡两零件有直接装配关系的,成为直接相关。没有直接装配关系的相关成为间接相关。间接相关又分为位置相关和运动相关两类。位置相关是指两零件在相互位置上有要求,如减速器中两相邻的传动轴,其中心距必须保证一定的精度,两轴线必须平行,以保证齿轮的正常啮合。运动相关是指一零件的运动轨迹与另一零件有关,如车床刀架的运动轨迹必须平行于于主轴的中心线,这是靠床身导轨和主轴轴线相平行来保证的,所以,主轴与导轨之间位置相关;而刀架与主轴之间为运动相关。 多数零件都有两个或更多的直接相关零件,故每个零件大都具有两个或多个部位在结构上与其它零件有关。在进行结构设计时,两零件直接相关部位必须同时考虑,以便合理地选择材料的热处理方式、形状、尺寸、精度及表面质量等。同时还必须考虑满足间接相关条件,如进行尺寸链和精度计算等。一般来说,若某零件直接相关零件愈多,其结构就愈复杂;零件的间接相关零件愈多,其精度要求愈高。例如,轴毂联接见图1。 2.3结构设计据结构件的材料及热处理不同应注意的问题 机械设计中可以选择的材料众多,不同的材料具有不同的性质,不同的材料对应不同的加工工艺,结构设计中既要根据功能要求合理地选择适当的材料,又要根据材料的种类确定适当的加工工艺,并根据加工工艺的要求确定适当的结构,只有通过适当的结构设计才能使所选择的材料最充分的发挥优势。 设计者要做到正确地选择材料就必须充分地了解所选材料的力学性能、加工性能、使用成本等信息。结构设计中应根据所选材料的特性及其所对应的加工工艺而遵循不同的设计原则。

机械结构设计知识

机械结构设计 一、机械结构设计的内容 具体内容为在确定结构件的材料、形状、尺寸、公差、热处理方式和表面状况的同时,还须考虑其加工工艺、强度、刚度、精度以及与其它零件相互之间关系等问题。 二、机械结构设计特点 机械结构设计的主要特点有:(1)它是集思考、绘图、计算(有时进行必要的实验)于一体的设计过程,是机械设计中涉及的问题最多、最具体、工作量最大的工作阶段,在整个机械设计过程中,平均约80%的时间用于结构设计,对机械设计的成败起着举足轻重的作用。(2)机械结构设计问题的多解性,即满足同一设计要求的机械结构并不是唯一的。(3)机械结构设计阶段是一个很活跃的设计环节,常常需反复交叉的进行。 三、结构件的几何要素 在功能表面之间的联结部分称为联接表面。零件的功能表面是决定机械功能的重要因素,功能表面的设计是零部件结构设计的核心问题。描述功能表面的主要几何参数有表面的几何形状、尺寸大小、表面数量、位置、顺序等。通过对功能表面的变异设计,可以得到为实现同一技术功能的多种结构方案。 四、结构件之间的联接 零件的相关分为直接相关和间接相关两类。凡两零件有直接装配关系的,成为直接相关。没有直接装配关系的相关成为间接相关。间接相关又分为位置相关和运动相关两类。位置相关是指两零件在相互位置上有要求,如减速器中两相邻的传动轴,其中心距必须保证一定的精度,两轴线必须平行,以保证齿轮的正常啮合。运动相关是指一零件的运动轨迹与另一零件有关,如车床刀架的运动轨迹必须平行于于主轴的中心线. 在进行结构设计时,两零件直接相关部位必须同时考虑,以便合理

地选择材料的热处理方式、形状、尺寸、精度及表面质量等。同时还必须考虑满足间接相关条件,如进行尺寸链和精度计算等。 五、结构件的材料及热处理 设计者要做到正确地选择材料就必须充分地了解所选材料的力学性能、加工性能、使用成本等信息。结构设计中应根据所选材料的特性及其所对应的加工工艺而遵循不同的设计原则。 如:钢材受拉和受压时的力学特性基本相同,因此钢梁结构多为对称结构。铸铁材料的抗压强度远大于抗拉强度,因此承受弯矩的铸铁结构截面多为非对称形状,以使承载时最大压应力大于最大拉应力. 对于需要热处理加工的零件,在进行结构设计时的要求有如下几点:(1)零件的几何形状应力求简单、对称,理想的形状为球形。(2)具有不等截面的零件,其大小截面的变化必须平缓,避免突变。如果相邻部分的变化过大,大小截面冷却不均,必然形成内应力。(3)避免锐边尖角结构,为了防止锐边尖角处熔化或过热,一般在槽或孔的边缘上切出2~3mm的倒角。(4)避免厚薄悬殊的截面,厚薄悬殊的截面在淬火冷却时易变形,开裂的倾向较大。 六、机械结构设计的基本要求 下面就机械结构设计的三个不同层次来说明对结构设计的要求:1. 功能设计 满足主要机械功能要求,在技术上的具体化。如工作原理的实现、工作的可靠性、工艺、材料和装配等方面。 2. 质量设计 兼顾各种要求和限制,提高产品的质量和性能价格比,它是现代工程设计的特征。具体为操作、美观、成本、 安全、环保等众多其它要求和限制。 在现代设计中,质量设计相当重要,往往决定产品的竞争力。那种只满足主要技术功能要求的机械设计时代已经过去,统筹兼顾各种要求,提高产品的质量,是现代机械设计的关键所在。与考虑工作原理相比,兼顾各种要求似乎只是设计细节上的问题,然而细节的总和是质量,产品质量问题不仅是工艺和材料的问题,提高质量应始于设

动力机器基础设计规范 GB 50040-96

动力机器基础设计规范 GB50040-96 主编部门:中华人民共和国机械工业部 批准部门:中华人民共和国建设部 施行日期:1997年1月1日 关于发布国家标准《动力机器基础设计规范》的通知 建标[1996]428号 根据国家计委计综(1987)2390号文的要求,由机械工业部会同有关部门共同修订的《动力机器基础设计规范》已经有关部门会审,现批准《动力机器基础设计规范》GB50040-96为强制性国家标准,自一九九七年一月一日起施行。原国家标准《动力机器基础设计规范》GBJ40-79同时废止。 本标准由机械工业部负责管理,具体解释等工作由机械工业部设计研究院负责,出版发行由建设部标准定额研究所负责组织。 中华人民共和国建设部 一九九六年七月二十二日 1 总则 1.0.1 为了在动力机器基础设计中贯彻执行国家的技术经济政策,确保工程质量,合理地选择有关动力参数和基础形式,做到技术先进、经济合理、安全适用,制订本规范。 1.0.2 本规范适用于下列各种动力机器的基础设计: (1)活塞式压缩机; (2)汽轮机组和电机; (3)透平压缩机; (4)破碎机和磨机; (5)冲击机器(锻锤、落锤); (6)热模锻压力机; (7)金属切削机床。

1.0.3 动力机器基础设计时,除采用本规范外,尚应符合国家现行有关标准、规范的规定。 2 术语、符号 2.1 术语 2.1.1 基组foundation set 动力机器基础和基础上的机器、附属设备、填土的总称。 2.1.2 当量荷载equivalent load 为便于分析而采用的与作用于原振动系统的动荷载相当的静荷载。 2.1.3 框架式基础frame type foundation 由顶层梁板、柱和底板连接而构成的基础。 2.1.4 墙式基础wall type foundation 由顶板、纵横墙和底板连接而构成的基础。 2.1.5 地基刚度stiffness of subsoil 地基抵抗变形的能力,其值为施加于地基上的力(力矩)与它引起的线变位(角变位)之比。 2.2 符号 2.2.1 作用和作用响应 Pz——机器的竖向扰力; Px——机器的水平扰力; p——基础底面平均静压力设计值; Mφ——机器的回转扰力矩; Mψ——机器的扭转扰力矩; Az——基组(包括基础和基础上的机器附属设备和土等)重心处的竖向振动线位移;Ax——基组重心处或基础构件的水平向振动线位移;

管道机器人结构设计

φ700mm-φ1000mm管道机器人结构设计 在工农业生产及日常生活中,管道作为一种重要的物料运输手段,其应用范围极为广泛。管道在使用过程中,由于各种因素的影响,会产生各种各样的管道堵塞与管道故障和损伤。如果不及时的管道进行检测、维修及清理就可能产生事故,造成不必要的损失。然而,管道所处的环境往往是不易直接达到或不允许人们直接进入的,检测及清洗难度很大。因此最有效的方法之一就是利用管道机器人来实现管道内的在线检测、维修和清洗。管道机器人在我国处于发展阶段,具有广阔的市场前景。管道机器人相对于人工操作来说,有无可比拟的优势。管道机器人在计算机控制下,可进行采样、检测等动作。而单片机技术的发展,为管道机器人的方便应用提供了一个良好的基础技术。利用单片机,可以实现管道机器人的控制,是管道机器人设计中较好的选择。 通过对国内外管道机器人研究现状分析,总体看来,国内外已经在管内作业机器人领域取得了大量的成果,主要应用在管道检测、维修及空调通风管道的清洗等方面。但对于金属冶炼厂烟气输送管道中烟灰堆积层的清理这种特殊管内作业的自动化装置研究目前少有报道。因此研制适应于金属冶炼厂烟气管道烟灰清理的管道清灰机器人将具有重大的现实意义。 此次设计的管道机器人主要应用在金属冶炼厂、化工企业等烟气输送管道烟灰堆积层的清理,作为载体,通过安装不同的设备可实现排水管道的监测、清理。 编辑:林冰宁波广强机器人科技有限公司管道检测机器人是由控制器、爬行器、高清摄像头、电缆等组成。在作业的时候主要是由控制器控制爬行器搭载检测设备进入管道进行检测。检测过程中,管道机器人可以实时传输管道内部情况视频图片以供专业维修人员分析管道内部故障问题。 使用管道检测机器人的优势: 1.安全性高。使用广强管道机器人进入管道查明管道内部情况或排除管道隐患,如果是人工作业的话,往往存在较大的安全隐患,而且劳动强度高,不利于工人的健康。广强管道机器人智能作业可有效提高作业的安全性能。 2.节省人工。管道检测机器人小巧轻便,一个人即可完成作业,控制器可装载在车上,节省人工,节省空间。 3.提高效率和品质。广强管道机器人智能作业定位准确,可实时显示出日期时间、爬行器倾角(管道坡度)、气压、爬行距离(放线米数)、激光测量结果、方位角度(选配)等信息,并可通过功能键设置这些信息的显示状态;镜头视角时钟显示(管道缺陷方位定位)。 4.防护等级高,摄像头防护等级IP68,可用于5米水深,爬行器防护等级IP68,可用于10米水深,均有气密保护,材质防水防锈防腐蚀,无需担心质量问题,因为广强只做国内 最好的管道机器人。 5.高精度电缆盘,收放线互不影响,可选配长度。

《机械设计基础》答案.. ()()

《机械设计基础》作业答案 第一章 平面机构的自由度和速度分析 1-1 1-2 1-3 1-4 1-5 自由度为: 或: 1-6 自由度为 或: 1-10 自由度为: 或: 1-11 1-13:求出题1-13图导杆机构的全部瞬心和构件1、3的角速度比。 1-14:求出题1-14图正切机构的全部瞬心。设s rad /101=ω,求构件3的速度3v 。 1-15:题1-15图所示为摩擦行星传动机构,设行星轮2与构件1、4保持纯滚动接触,试用瞬心法求轮1与轮2的角速度比21/ωω。 构件1、2的瞬心为P 12 P 24、P 14分别为构件2与构件1相对于机架的绝对瞬心

1-16:题1-16图所示曲柄滑块机构,已知:s mm l AB /100=,s mm l BC /250=, s rad /101=ω,求机构全部瞬心、滑块速度3v 和连杆角速度2ω。 在三角形ABC 中, BCA AB BC ∠= sin 45sin 0 ,52sin = ∠BCA ,5 23cos =∠BCA , 0 45 sin sin BC ABC AC =∠,mm AC 7.310≈ 1-17:题1-17图所示平底摆动从动件凸轮1为半径20=r 的圆盘,圆盘中心C 与凸轮回转中心的距离mm l AC 15=,mm l AB 90=,s rad /101=ω,求00=θ和0180=θ时,从动件角速度2ω的数值和方向。 00=θ时 方向如图中所示 当0180=θ时 方向如图中所示

第二章 平面连杆机构 2-1 试根据题2-1图所注明的尺寸判断下列铰链四杆机构是曲柄摇杆机构、双曲柄机构还是双摇杆机构。 (1)双曲柄机构 (2)曲柄摇杆机构 (3)双摇杆机构 (4)双摇杆机构 2-3 画出题2-3图所示各机构的传动角和压力角。图中标注箭头的构件为原动件。 2-4 已知某曲柄摇杆机构的曲柄匀速转动,极位夹角θ为300,摇杆工作行程需时7s 。试问:(1)摇杆空回程需时几秒?(2)曲柄每分钟转数是多少? 解:(1)根据题已知条件可得: 工作行程曲柄的转角01210=? 则空回程曲柄的转角02150=? 摇杆工作行程用时7s ,则可得到空回程需时: (2)由前计算可知,曲柄每转一周需时12s ,则曲柄每分钟的转数为 2-5 设计一脚踏轧棉机的曲柄摇杆机构,如题2-5图所示,要求踏板CD 在水平位置上下各摆100,且mm l mm l AD CD 1000,500==。(1)试用图解法求曲柄AB 和连杆BC 的长度;(2)用式(2-6)和式(2-6)'计算此机构的最小传动角。 解: 以踏板为主动件,所以最小传动角为0度。 2-6 设计一曲柄摇杆机构。已知摇杆长度mm l 1003=,摆角030=ψ,摇杆的行程速比变化系数2.1=K 。(1)用图解法确定其余三杆的尺寸;(2)用式(2-6)和式(2-6)'

热能与动力机械基础

制冷和空调是相互联系又相互独立的两个领域。制冷是一种冷却过程,除用于食品冷冻加工、化工和机械加工等工业制冷外,其最主要的应用是空调。空调中既有冷却,也包括括供暖、加湿、去湿以及流速、热辐射和空气质量的调节等。 本章将以制冷循环或逆向循为核心,重点阐述制冷与空调系统中的能量转换关系和性能评价等内容。 第一节概述 一、制冷的定义与分类 制冷是指用人工的方法在一定时间和一定空间内将物体冷却,使其温度降低到环境温度以下,保持并利用这个温度。按照所获得的温度,通常将制冷的温度范围划分为以下几个领域:120K以上,普冷;120N0.3K,深冷(又称低温);0.3K以下,极低温。 由于温度范围不同,所采用的降温方式,使用的工质、机器设备以及依据的具体原理有很大差别。工程应用上有多种人工制冷方法,如适用于普通制冷的蒸气压缩式制冷、吸收式制冷、蒸气喷射式制冷,适用于深度制冷(制冷温度为20~160K)的气体膨胀制冷、半导体体制冷、磁制冷等。空气调节系统中所用的人工制冷方法主要是蒸气压缩式、吸收式制冷。 二、制冷研究的内容 制冷研究的内容可以概括为以下四个方面: 1)研究获得低于环境温度的方法、机理以及与此对应的循环,并对循环进行热力学的 分析和计算。 2)研究循环中使用的工质的性质,从而为制冷机提供合适的工作介质。 3)研究气体的液化和分离技术。例如液化氧、氮、氢、氦等气体,将空气或天然气液化、分离,均涉及一系列的制冷技术。 4)研究所需的各种机械和设备,包括它们的工作原理、性能分析、结构设计。 三、制冷技术的应用 制冷技术的应用几乎渗透到各个生产技术、科学研究领域,并在改善人类的生活质量方面发挥了巨大作用。 1.商业及人民生活 食品冷冻冷藏和舒适性空气调节是制冷技术应用最为量大、面广的领域。 商业制冷主要用于各类食品冷加工、冷藏储存和冷藏运输,使之保质保鲜。现代的食品工业,从生产、储运到销售,有一条完整的“冷链”。所使用的制冷装置有:各种食品冷加工装置、大型冷库、冷藏汽车、冷藏船等,直至家庭用的电冰箱。 舒适性空气调节为人们创造适宜的生活和工作环境。如家庭、办公室用的局部空调装置;大型建筑、车站、机场、宾馆、商厦等使用的集中式。空调系统;各种交通工具,如轿

设备基础计算书

设备基础计算书 1.计算依据 《动力机器基础设计规范》 (GB50040-96) 《建筑地基基础设计规范》 (GB50007-2002) 《混凝土结构设计规范》 (GB50010-2010) 《重载地面、轨道及特殊楼地面》(06J305) 《动力机器基础设计手册》 (中国建筑工业出版社) 2.工程概况 设备静载按G1=10t/m2=100KN/m2; 地基承载力特征值fa=180kPa; 采用C30混凝土,设备基础高度250mm,钢筋采用I级钢(HPB300) 根据所提资料计算160T冲床设备基础的承载力计算,设备基础根据设备脚架尺寸每边向外扩300mm进行计算。160T冲床设备基础示意图如下图所示 设备基础示意图 3.计算过程 设备基础正截面受压承载力计算() *fc*A=**1000000*A=*106A N=*G1*A =*105*A<*fcA 即设备基础正截面受压满足要求 3.2设备基础正截面受弯承载力计算 (仅计算长度方向,取土重度gma=20kN/m3,混凝土保护层厚度取30mm) pk=G1+G2=*105 +25*1000*= 单位宽度基地净反力 p=*( G1+G2-gma*h)=**103-20*103*=m 计算可得最大正弯矩为M=,支座最大负弯矩为M=根据()计算可得 基础底面计算配筋面积As1=565mm2 基础顶面计算配筋面积As2=258mm2 根据(GB50010-2010)取最小配筋率ρmin= 0. 2% 最小配筋面积为Asmin=%*1000*250=500 mm2 基础顶部和底部可配12200(As=565mm2) 3.3地脚螺栓抗倾覆验算(每个设备基础共四个地脚螺栓孔) 取每个地脚的上拔力设计值 q1=* *(G1+G2)* A=****= 倾覆力矩MS=q1*=有设备基础的大小可知抗倾覆力矩

履带式机器人结构设计

摘要 在微小型履带机器人方面美国走在了世界的前列,代表机器人有Packbot机器人,Talon机器人,NUGV等。 我国微小型机器人的研究和开发晚于西方的一些发达国家,我国是从20世纪80年代开始机器人领域的研究的。其中具有代表性的有中国科学院研制的复合移动机器人“灵晰-B”型排爆机器人,“龙卫士Dragon Guard X3B 反恐机器人”,“JW-901 排爆机器人”等。 此设计的目的设计结构新颖,能实现过坑、越障等动作。通过在机器人机架上加装其他功能的模块来实现不同的使用功能,本研究的意义是为机器人提供一个动力输出平台,为开发各种功能的机器人提供基础平台。 此设计移动方案的选择是采用了履带式驱动结构。结构整体使用模块化设计,以便后续拆卸维修,可以适应于各种复杂的路面,并可主动控制前后两侧摇臂的转动来调节机器人的运动姿态,从而达到辅助过坑、越障等动作。经过合理的设计后机器人将具有很好的环境适应能力、机动能力并能承受一定的掉落冲击,此设计的移动机构主要由四部分组成:主动轮减速机构、翼板转动机构、自适应路面执行机构、履带及履带轮运动机构。 关键词:履带机器人;履带移动机构;模块化设计

Abstract In terms of micro small crawler robots walk in the forefront of the world in the United States, on behalf of the robot has disposal robot, Talon robot, NUGV, etc. Miniature robot research and development in our country later than some developed western countries, our country from the 1980 s began to research in the field of robot. One of the typical composite mobile robot developed by the Chinese academy of sciences \"norm of spirit - B\" type eod robots, \"Dragon Guard Dragon Guard X3B anti-terrorism robot\", \"JW - 901 eod robot\", etc. The design is novel, the purpose of this design can achieve pit, surmounting obstacles. Through in the robot arm with other function modules to realize different use function, the significance of this study is to provide a power output for robot platform, provides the basis for the development of all sorts of function of robot platform. This design is the choice of mobile solutions adopted crawler drive structure. Structure of the overall use of modular design, in order to follow-up maintenance, removal can be adapted to various complicated road, and can turn on either side of the rocker arm before and after active control to regulate the robot's motion, so as to achieve auxiliary pit, surmounting obstacles. After reasonable design robots will have good environmental adaptability, mobility and can absorb a certain amount of drop impact, this design of the mobile mechanism is mainly composed of four parts: the driving wheel deceleration institutions, wing rotating mechanism, adaptive pavement actuators, track and track wheel motion mechanism. Keywords: tracked robot; tracked mobile mechanism;the modular design

机械基础第五版教材及习题册参考答案(供参考)

机械基础习题册(第五版)参考答案 劳动社会保障出版社 绪论 一、选择题 二、判断题 三、填空题 1.机械传动常用机构轴系零件液压与气动 2.信息 3.动力部分执行部分传动部分控制部分 4.制造单元 5.高副 6.滚动轮接触凸轮接触齿轮接触 7.滑动大低不能 8.机械运动变换传递代替或减轻 四、术语解释 1.机器——是人们根据使用要求而设计的一种执行机械运动的装置,其用来变换或传递能量、物料与信息,以代替或减轻人类的体力劳动和脑力劳动。 2.机构——具有确定相对运动的构件的组合。 3.运动副——两构件直接接触而又能产生一定形式相对运动的可动连接。 4.机械传动装置——用来传递运动和动力的机械装置称为机械传动装置。 五、应用题 1.答:

2.答: 零件:螺钉、起重吊钩、缝纫机踏板、曲轴、构件:自行车链条 机构:台虎钳、水泵、 机器:车床、洗衣机、齿轮减速器、蒸汽机、3.答:动力部分:发动机 传动部分:离合器、变速箱、传动轴、 执行部分:车轮 控制部分:方向盘、排挡杆、刹车、油门

*4.答:略 第一章带传动 一、选择题 二、判断题 三、填空题 1. 主动轮从动轮挠性带 2. 摩擦型啮合型 3. 摩擦力运动动力。 4. 打滑薄弱零件安全保护 5. 无两侧面不接触。 6. 帘布芯绳芯包布顶胶抗拉体底胶7.Y、Z、A、B、C、D、E 8.几何尺寸标记。 9.型号基准长度标准编号 10.实心式腹板式孔板式轮辐式 11.平行重合 12.调整中心距安装张紧轮 13.弧形凹形变直摩擦力传动能力

14.SPZ SPA SPB SPC 15.型号基准长度 16.啮合带传动齿轮传动 17.单面带双面带节距 18. 仪表、仪器、机床、汽车、轻纺机械、石油机械 四、术语(标记)解释 1.机构传动比-----机构中输入角速度与输出角速度的比值。 2.V带中性层-----当V带绕带轮弯曲时,其长度和宽度均保持不变的层面称为中性层。 3.V带基准长度L d-----在规定的张紧力下,沿V带中性层量得的周长,称 为V带基准长度。 4. 5.同步带传动------依靠同步带齿与同步带轮齿之间的啮合传递运动和动力,两者无相对滑动,而使圆周速度同步的一种啮合传动,称为同步带传动。 五、应用题 1.答:包角是带与带轮接触弧所对应的圆心角。 包角的大小,反映带与带轮轮缘表面间接触弧的长短。包角越大,带与带轮接触弧的越长,带能传递的功率就越大;反之,所能传递的功率就越小。 为了使带传动可靠,一般要求小带轮的包角a1≥120o。

工业机器人内部结构及基本组成原理详解

工业机器人内部结构及基本组成原理详解 工业机器人详解你对工业机器人有着什么样的了解?关于工业机器人,我们过去也反反复复推送了很多的文章,在这一次,我们将尝试解决有关--- 在工业环境中使用的最常见的机器人和作业时经常会遇到的问题。关于工业机器人定义什么可以被认为是一个工业机器人?什么不能被称为工业机器人?工业机器人直到最近才能避开这种混乱。不是在工业环境中使用的每个机电设备都可以被认为是机器人。根据国际标准组织的定义,工业机器人是一种可编程的三自由度或多轴自动控制的可编程多用途机械手。这几乎是在谈论工业机器人时被接受的定义。工业机器人自中年以来发生了什么变化?越来越多的工程师和企业家正在寻找越来越多的机器人技术,帮助在工业环境中优化工作流程的方式。随着时代的发展和机器人技术的进步,机器人手臂必须为诸如仓储中使用的群组AGV 等新手铺路。我们经常说典型的工业机器人由工具,工业机器人手臂,控制柜,控制面板,示教器以及其他外围设备组成。那么这些是什么?这些部分通常都在一起,控制柜类似于机器人的大脑。控制面板和示教器构成用户环境。工具(也称为末端执行器)是为特定任务设计的设备(例如焊接或喷涂)。机器人手臂基本上是移动工具的 东西。但并不是每个工业机器人都像一个手臂。不同机器人有不同 类型的结构。控制面板--- 操作员使用控制面板来执行一些常规任

务。(例如:改变程序或控制外围设备)。应用“机器人工人” --------------- 什么时候应该使用工业机器人而不是 人工?相信这个问题大家思考的次数并不少了。理想情况下,这应该是双赢的。想快速看到效果,你需要知道什么是别人最不喜欢的工作。想得最多的是那些重复的,乏味的工作,需要从工作人员那边进行大量单调的行动,这个思考是正确的,因为正是如此,例如从一个输送机到另一个输送机。如果总是相同的任务,您可以使用专门针对您的需求量身定制的自动化解决方案。工厂的工作处理需要越来越灵活,在这些情况下,正确的解决方案是:可以试用用于不同任务的可重新编程的机器人进行任务操作。此外,就是那些对人类工作有害的任务。(例如:用危险化学品进行表面处理,这是在有害环境中工作。在许多情况下,长期使用机器人比聘用工人更聪明和便宜。)当然,还有的是人类难以操作的工作。(例如:举或搬运重物或在不适合人类生活的条件下工作。)同样,在许多这些情况下,可以应用特定的自动化解决方案。然而,如果任务需要灵活性处理,还需要考虑要用到的机器人。以下是最常见的机器人应用程序列表:电弧焊、部件、涂层、去毛刺、压铸、造型、物料搬运、选择、码垛、打包、绘画、点焊、运输,仓储关于工 业机器人的结构-- 如何构建机器人手臂?(这很重要)在 本文中,将只列出工业机器人中使用的最常见的机器人结构类型。(详细内容公众号历史记录在“机器人类型”部分深入介绍这些类

《机械设计基础》试题及答案讲解学习

《机械设计基础》试 题及答案

机械设计基础 一.填空题: 1 .凸轮主要由(凸轮),(从动件)和 ( 机架 )三个基本构件组成。 2 .凸轮机构从动件的形式有由(尖顶)从动件,( 滚子)从动件和(平底)从动件。 3 .按凸轮的形状可分为(盘型)凸轮、(移动)凸轮、(圆柱)凸轮、(曲面) 4. 常用的间歇运动机构有(棘轮)机构,(槽轮)机构,(凸轮间歇)机构和 ( 不完全齿 ) 机构等几种。 5 螺纹的旋向有(左旋)和(右旋); 牙形有 ( 三角形 ). ( 梯形 ). ( 矩形 ). ( 锯齿形 ) 6.标准外啮合斜齿轮传动的正确啮合条件是:两齿轮的(法面模数)和 (法面压力 角)都相等,齿轮的(螺旋)相等(旋向)_相反 7 已知一平面铰链四杆机构的各杆长度分别为a=150, b=500, c=300, d=400,当取c 杆为机架时,它为(曲柄摇杆)机构;当取d杆为机架时,则为(双摇杆)机构。 8 平面连杆机构当行程速比K(>1 )时,机构就具有急回特性。 9 曲柄摇杆机构产生“死点”位置的条件是:当为(曲柄)主动件(曲柄与机架)共线时。 13 螺纹联接的基本类型有(螺栓联接)、(双头螺柱联接)、(螺钉联接)、(紧定螺钉联接)四种。 14 轮系按其轴相对机架是固定还是运动的可分为(定轴)轮系和(周转)轮系。 15 滚动轴承代号为62305/P5;各部分的含义是:“6”表示(沟球轴承);“23”表示(宽度系数);“05”表示(内径代号);P5表示(精度公差等级)。 16.螺纹的公称直径是指它的(大径),螺纹“M12X1.5左”的含义是(左旋细牙螺纹公称直径12 )。

相关主题
文本预览
相关文档 最新文档