当前位置:文档之家› 300W功率PUSH-PULL变压器设计实用文档

300W功率PUSH-PULL变压器设计实用文档

300W功率PUSH-PULL变压器设计实用文档
300W功率PUSH-PULL变压器设计实用文档

变压器的设计实例

摘要:详细介绍了一个带有中间抽头高频大功率变压器设计过程和计算方法,以及要注意问题。根据开关电源变换器性能指标设计出变压器经过在实际电路中测试和验证,效率高、干扰小,表现了优良电气特性。关键词:开关电源变压器;磁芯选择;磁感应强度;趋肤效应;中间抽头 0 引言 随着电子技术和信息技术飞速发展,开关电源SMPS(switch mode power supply)作为各种电子设备、信息设备电源部分,更加要求效率高、成本小、体积小、重量轻、具有可移动性和能够模块化。变压器作为开关电源必不可少磁性元件,对其进行合理优化设计显得非常重要。在高频开关电源设计中,真止难以把握是磁路部分设计,开关电源变压器作为磁路部分核心元件,不但需要满足上述要求,还要求它性能高,对外界干扰小。由于它复杂性,对其设计一、两次往往不容易成功,一般需要多次计算和反复试验。因此,要提高设计效果,设汁者必须有较高理论知识和丰富实践经验。 1 开关电源变换器性能指标 开关电源变换器部分原理图如图1所示。 https://www.doczj.com/doc/b911341057.html,提示请看下图: 其主要技术参数如下: 电路形式半桥式; 整流形式全波整流; 工作频率 f=38kHz; 变换器输入直流电压 Ui=310V; 变换器输出直流电压 Ub=14.7V; 输出电流 Io=25A; 工作脉冲占空度 D=0.25~O.85; 转换效率η≥85%; 变压器允许温升△τ=50℃; 变换器散热方式风冷; 工作环境温度t=45℃~85℃。 2 变压器磁芯选择以及工作磁感应强度确定 2.1 变压器磁芯选择 目前,高频开关电源变压器所用磁芯材料一般有铁氧体、坡莫合金材料、非晶合金和超微晶材料。这些材料中,坡莫合金价格最高,从降低电源产品成本方面来考虑不宜采用。非晶合金和超微晶材料饱和磁感应

油浸电力变压器设计手册-沈阳变压器(1999) 6负载损耗计算

目录 1 概述SB-007.6 第 1 页 2 绕组导线电阻损耗(P R)计算SB-007.6 第 1 页 3 绕组附加损耗(P f)计算SB-007.6 第1页3.1 层式绕组的附加损耗系数(K f %)SB-007.6 第 1 页3.2 饼式绕组的附加损耗系数(K f %)SB-007.6 第 2 页3.3 导线中涡流损耗系数(K w %)计算SB-007.6 第 2 页 3.3.1 双绕组运行方式的最大纵向漏磁通密度(B m)计算SB-007.6 第 2 页3.3.2 降压三绕组变压器联合运行方式的最大纵向漏磁通密度(B m)计算SB-007.6 第 3 页 SB-007.6 第3 页3.3.3 升压三绕组(或高-低-高双绕组)变压器联合运行方式的最大纵向漏 磁通密度(B m)计算 3.3.4 双绕组运行方式的涡流损耗系数(K w %)简便计算SB-007.6 第4 页3.4 环流损耗系数(K C %)计算SB-007.6 第 4 页3. 4.1 连续式绕组的环流损耗系数(K C %)计算SB-007.6 第4 页3.4.2 载流单螺旋―242‖换位的绕组环流损耗系数(K C1 %)计算SB-007.6 第5 页 SB-007.6 第5 页3.4.3 非载流(处在漏磁场中间)单螺旋―242‖换位的绕组环流损耗系数 (K C2 %)计算 3.4.4 载流双螺旋―交叉‖换位的绕组环流损耗系数(K C1 %)计算SB-007.6 第6 页 SB-007.6 第7 页3.4.5 非载流(处在漏磁场中间)双螺旋―交叉‖ 换位的绕组环流损耗 系数(K C2 %)计算 4引线损耗(P y)计算SB-007.6 第7 页5杂散损耗(P ZS)计算SB-007.6 第8 页5.1小型变压器的杂散损耗(P Z S)计算SB-007.6 第8 页5.2中大型变压器的杂散损耗(P Z S)计算SB-007.6 第9 页5.3 特大型变压器的杂散损耗(P Z S)计算SB-007.6 第10 页

计算变压器的功率

计算变压器的功率 变压器功率= 输出电压X 输出电流 根据电路要求需要输出电压36V、电流2A的变压器, 36V X 2A = 72W(变压器功率) 2 计算变压器的铁芯截面积 变压器功率X 1.44 = Y ,Y开根X 1.06 = 铁芯截面积 变压器功率72W X 1.44 = 103.68,103.68开根X 1.06 = 10.79平方厘米(铁芯截面积)10.79平方厘米= 1079平方毫米(铁芯截面积) 3 计算变压器铁芯叠厚 铁芯截面积(平方毫米)/ 矽钢片舌宽(毫米)= 铁芯叠厚 1079平方毫米/ 40毫米=26毫米(叠厚),铁芯规格采用舌宽40的矽钢片,叠厚为26毫米。 4 骨架的选用 铁芯截面积为E40 X 26,那么骨架就用E40 X 26的,对照变压器骨架规格表刚好有这种规格的骨架,如果实在没有,选叠厚大一规格的也行。5 计算线圈输入初级匝数 45 / 铁芯截面积(平方厘米)X 220V = 输入初级匝数, (45/10.79平方厘米)X 220 = 匝(输入初级匝数) 6 计算线圈输出次级匝数 (输入初级匝数/220)X 输出电压= 输出次级匝数 ( /220)X 36V = (取整数匝) 7 计算绕制的漆包线线径 电流(开根)X 0.7 = 线径 输出电流10A(开根)X 0.7 = 2.21(输出30V线径), 输入电流=(300W变压器功率/220V输入电压)开根X 0.7=0.81(输入220V线径) 8 计算结果 矽钢片规格E40mm、叠厚26mm;变压器骨架规格E40 X 26;输入线圈匝数匝、线径0.81铜漆包线;输出线圈匝数匝、线径2.21铜漆包线。

大功率电源设计

《电力电子技术》课程设计说明书 大功率电源设计 院、部:电气与信息工程学院 学生姓名: 指导教师: 专业: 班级: 完成时间:2014年5月29日

摘要 主要介绍36kW 大功率高频开关电源的研制。阐述国内外开关电源的现状.分析全桥移相变换器的工作原理和软开关技术的实现。软开关能降低开关损耗,提高电路效率。给出电源系统的整体设计及主要器件的选择。试验结果表明,该装置完全满足设计要求,并成功应用于电镀生产线。 关键词:高频开关电源;全桥移相;零电压开关;软开关技术

ABSTRACT The analysis and design of 36 kW high frequency switching power supply are presented.The present state of switching power supply is explained.The operating principle of full bridge phase—shifted converter and realization of soft switching techniques are analysed.Soft switching can reduce switching loss and increase circuit s efficiency.Integer designing of power supply system and selection of main device parameters are also proposed.The experiment results demonstrate the power supply device satisfies design requirements completely.It has been applied in electric plating production line success—fully. Keywords:high frequency switching power supply;full bridge phase—shifted;zero voltage switching;soft switching tech— nlques

设备功率计算变压器容量

根据设备功率计算变压器容量(一) 一)根据你提供的设备清单如下: 电焊机25 台,功率分别为: 3.0KVA*8 ;8KVA*6 ;16KVA*5 ;30KVA*2 ;180KVA*2 ; 200KVA*2 ; & =50% 电焊机,Kx=0.35, 二)你厂所需500KVA 的变压器理由计算如下: KVA 即千伏安,表示电焊机的容量, & =50%表示电焊机的额定暂载率是50%,在进行负荷计算的时候,电焊机应该统一换算到 1 00 %来计算。 Kx=0.35, 表示电焊机的需用系数是0.35。需用系数是综合了同时系数、负荷系数、设备效率、线路效率之后得到的一个系数。各种设备不尽相同。 P js表示计算负荷的有功功率。是综合了各类因素后,得到的设备计算功率。 Q js 表示计算负荷的无功功率。有功功率乘以功率因数角度的正切值,等于无功 功率。也就是你上面的Q js=P js*tg① cos①表示功率因数。功率因数越高,系统的无功功率越低。不同的设备,功率因数也不尽相同。在你的计算式中,取了电焊机的功率因数为0.7。如果是我计算的话,我就取0.4?0.45,呵呵!因为我觉得电焊机的功率因数是没有0.7的。 另外,在你的计算中,没有对焊接设备进行容量转换。我上面说了,电焊机应该统一将暂载率换算到100 %来计算。换算公式为:P e=P N* ((额定暂载率除以100%暂载率)开根号) P e是换算后的功率,P N是额定功率 额定功率二额定容量*功率因数 因此,你的共计25 台焊机的额定容量应该是S二 3.0KVA*8+8KVA*6+16KVA*5+30KVA*2+180KVA*2+200KVA*2 = 972KVA 则额定功率为972KVA*0.4 = 388.8KW (我这里计算是取的功率因数为0.4,没有按你的0.7 计算) 那么换算功率为388.8KW* (50% /100 %)开根号= 388.8KW*根号0.5 = 388.8*0.707 = 274.9KW 然后将需用系数Kx=0.35代入,则计算负荷P js=K x*P e = 274.9KW*0.35 = 96.2KW 到这里,又出现了一个问题。因为大家都知道,电焊机属于单相负载(不论接一零一火220V或者接两根火线380V,都成为单相负载),因此计算负荷有个单相到三相转换的过程。转换方法就是,如果接的是220V,也就是接入相电压时,等效功率要乘以3,如果接的是380V,也就是接入线电压时,等效功率要乘以根号3。因为

变压器的选择与容量计算

变压器的选择与容量计算 电力变压器是供电系统中的关键设备,其主要功能是升压或降压以利于电能的合理输送、分配和使用,对变电所主接线的形式及其可靠与经济有着重要影响。所以,正确合理地选择变压器的类型、台数和容量,是主接线设计中一个主要问题。选用配电变压器时,如果 把容量选择过大,就会形成“大马拉小车”的现象。不仅增加了设备投资,而且还会使变压 器长期处于空载状态,使无功损失增加。如果变压器容量选择过小,将会使变压器长期处与 过负荷状态。易烧毁变压器。依据“小容量,密布点”的原则,配电变压器应尽量位于负荷 中心,供电半径不超过0.5千米。配电变压器的负载率在0.5?0.6之间效率最高,此时变压器的 容量称为经济容量。如果负载比较稳定,连续生产的情况可按经济容量选择变压器容量。对于仅向 排灌等动力负载供电的专用变压器,一般可按异步电动机铭牌功率的 1.2倍选 用变压器的容量。一般电动机的启动电流是额定电流的4~7倍,变压器应能承受住这种冲击, 直接启动的电动机中最大的一台的容量,一般不应超过变压器容量的30就右。应当指出的 是:排灌专用变压器一般不应接入其他负荷,以便在非排灌期及时停运,减少电能损失。对 于供电照明、农副业产品加工等综合用电变压器容量的选择,要考虑用电设备的同时功率,可按实 际可能出现的最大负荷的 1.25倍选用变压器的容量。根据农村电网用户分散、负荷 密度小、负荷季节性和间隙性强等特点,可采用调容量变压器。调容量变压器是一种可以根据负荷 大小进行无负荷调整容量的变压器,它适宜于负荷季节性变化明显的地点使用。对于 变电所或用电负荷较大的工矿企业,一般采用母子变压器供电方式,其中一台(母变压器)按 最大负荷配置,另一台(子变压器)按低负荷状态选择,就可以大大提高配电变压器利用率,降低配电变压器的空载损耗。针对农村中某些配变一年中除了少量高峰用电负荷外,长时间处于低负荷运行状态实际情况,对有条件的用户,也可采用母子变或变压器并列运行的供电方式。在负荷变化较大时,根据电能损耗最低的原则,投入不同容量的变压器。变压器的容 量是个功率单位(视在功率),用AV (伏安)或KVA(千伏安)表示。它是交流电压和交流

变压器计算公式

变压器计算公式已知容量,求其各电压等级侧额定电流 口诀a : 容量除以电压值,其商乘六除以十。 说明:适用于任何电压等级。 在日常工作中,有些只涉及一两种电压等级的变压器额定电流的计算。将以上口诀简化,则可推导出计算各电压等级侧额定电流的口诀: 容量系数相乘求。 已知变压器容量,速算其一、二次保护熔断体(俗称保险丝)的电流值。 口诀b : 配变高压熔断体,容量电压相比求。 配变低压熔断体,容量乘9除以5。 说明: 正确选用熔断体对变压器的安全运行关系极大。当仅用熔断器作变压器高、低压侧保护时,熔体的正确选用更为重要。 这是电工经常碰到和要解决的问题。 已知三相电动机容量,求其额定电流 口诀(c):容量除以千伏数,商乘系数点七六。 说明: (1)口诀适用于任何电压等级的三相电动机额定电流计算。由公式及口诀均可说明容量相同的电压等级不同的电动机的额定电流是不相同的,即电压千伏数不一样,去除以相同的容量,所得“商数”显然不相同,不相同的商数去乘相同的系数,所得的电流值也不相同。若把以上口诀叫做通用口诀,则可推导出计算220、380、660、电压等级电动机的额定电流专用计算口诀,用专用计算口诀计算某台三相电动机额定电流时,容量千瓦与电流安培关系直接倍数化, 省去了容量除以千伏数,商数再乘系数。 三相二百二电机,千瓦三点五安培。 常用三百八电机,一个千瓦两安培。 低压六百六电机,千瓦一点二安培。

高压三千伏电机,四个千瓦一安培。 高压六千伏电机,八个千瓦一安培。 (2)口诀c 使用时,容量单位为kW,电压单位为kV,电流单位为A,此点一定要注意。 (3)口诀c 中系数是考虑电动机功率因数和效率等计算而得的综合值。功率因数为,效率不,此两个数值比较适用于几十千瓦以上的电动机,对常用的10kW以下电动机则显得大些。这就得使用口诀c计算出的电动机额定电流与电动机铭牌上标注的数值有误差,此误差对10kW以下电动机按额定电流先开关、接触器、导线等影响很小。 (4)运用口诀计算技巧。用口诀计算常用380V电动机额定电流时,先用电动机配接电压数去除、商数2去乘容量(kW)数。若遇容量较大的6kV电动机,容量kW 数又恰是6kV数的倍数,则容量除以千伏数,商数乘以系数。 (5)误差。由口诀c 中系数是取电动机功率因数为、效率为而算得,这样计算不同功率因数、效率的电动机额定电流就存在误差。由口诀c 推导出的5个专用口诀,容量(kW)与电流(A)的倍数,则是各电压等级(kV)数除去系数的商。专用口诀简便易心算,但应注意其误差会增大。一般千瓦数较大的,算得的电流比铭牌上的略大些;而千瓦数较小的,算得的电流则比铭牌上的略小些。对此,在计算电流时,当电流达十多安或几十安时,则不必算到小数点以后。可以四舍而五不入,只取整数,这样既简单又不影响实用。对于较小的电流也只要算到一位小数即可。 *测知电流求容量 测知无铭牌电动机的空载电流,估算其额定容量 口诀: 无牌电机的容量,测得空载电流值, 乘十除以八求算,近靠等级千瓦数。 说明:口诀是对无铭牌的三相异步电动机,不知其容量千瓦数是多少,可按通过测量电动机空载电流值,估算电动机容量千瓦数的方法。 测知电力变压器二次侧电流,求算其所载负荷容量 口诀: 已知配变二次压,测得电流求千瓦。 电压等级四百伏,一安零点六千瓦。

变压器功率计算方法

0.65和0.8的系数来自实用电工速算口诀 已知变压器容量,求其各电压等级侧额定电流 口诀 a : 容量除以电压值,其商乘六除以十。 说明:适用于任何电压等级。 在日常工作中,有些电工只涉及一两种电压等级的变压器额定电流的计算。将以上口诀简化,则可推导出计算各电压等级侧额定电流的口诀: 容量系数相乘求。 已知变压器容量,速算其一、二次保护熔断体(俗称保险丝)的电流值。 口诀 b : 配变高压熔断体,容量电压相比求。 配变低压熔断体,容量乘9除以5。 说明: 正确选用熔断体对变压器的安全运行关系极大。当仅用熔断器作变压器高、低压侧保护时,熔体的正确选用更为重要。这是电工经常碰到和要解决的问题。 已知三相电动机容量,求其额定电流 口诀(c):容量除以千伏数,商乘系数点七六。 说明: (1)口诀适用于任何电压等级的三相电动机额定电流计算。由公式及口诀均可说明容量相同的电压等级不同的电动机的额定电流是不相同的,即电压千伏数不一样,去除以相同的容量,所得“商数”显然不相同,不相同的商数去乘相同的系数0.76,所得的电流值也不相同。若把以上口诀叫做通用口诀,则可推导出计算220、380、660、3.6kV电压等级电动机的额定电流专用计算口诀,用专用计算口诀计算某台三相电动机额定电流时,容量千瓦与电流安培关系直接倍数化,省去了容量除以千伏数,商数再乘系数0.76。 三相二百二电机,千瓦三点五安培。 常用三百八电机,一个千瓦两安培。 低压六百六电机,千瓦一点二安培。 高压三千伏电机,四个千瓦一安培。 高压六千伏电机,八个千瓦一安培。 (2)口诀c 使用时,容量单位为kW,电压单位为kV,电流单位为A,此点一定要注意。 (3)口诀c 中系数0.76是考虑电动机功率因数和效率等计算而得的综合值。功率因数为0.85,效率不0.9,此两个数值比较适用于几十千瓦以上的电动机,对常用的10kW以下电动机则显得大些。这就得使用口诀c计算出的电动机额定电流与电动机铭牌上标注的数值有误差,此误差对10kW以下电动机按额定电流先开关、接触器、导线等影响很小。 (4)运用口诀计算技巧。用口诀计算常用380V电动机额定电流时,先用电动机配接电源电压0.38kV数去除0.76、商数2去乘容量(kW)数。若遇容量较大的6kV电动机,容量kW数又恰是6kV数的倍数,则容量除以千伏数,商数乘以0.76系数。 (5)误差。由口诀c 中系数0.76是取电动机功率因数为0.85、效率为0.9而算得,这样计算不同功率因数、效率的电动机额定电流就存在误差。由口诀c 推

设计变压器的基本公式精编版

设计变压器的基本公式 为了确保变压器在磁化曲线的线性区工作,可用下式计算最大磁通密度(单位:T) Bm=(Up×104)/KfNpSc 式中:Up——变压器一次绕组上所加电压(V) f——脉冲变压器工作频率(Hz) Np——变压器一次绕组匝数(匝) Sc——磁心有效截面积(cm2) K——系数,对正弦波为4.44,对矩形波为4.0 一般情况下,开关电源变压器的Bm值应选在比饱和磁通密度Bs低一些。 变压器输出功率可由下式计算(单位:W) Po=1.16BmfjScSo×10-5 式中:j——导线电流密度(A/mm2) Sc——磁心的有效截面积(cm2) So——磁心的窗口面积(cm2) 3对功率变压器的要求 (1)漏感要小 图9是双极性电路(半桥、全桥及推挽等)典型的电压、电流波形,变压器漏感储能引起的电压尖峰是功率开关管损坏的原因之一。 图9双极性功率变换器波形 功率开关管关断时电压尖峰的大小和集电极电路配置、电路关断条件以及漏感大小等因素有关,仅就变压器而言,减小漏感是十分重要的。 (2)避免瞬态饱和

一般工频电源变压器的工作磁通密度设计在B-H曲线接近拐点处,因而在通电瞬间由于变压器磁心的严重饱和而产生极大的浪涌电流。它衰减得很快,持续时间一般只有几个周期。对于脉冲变压器而言如果工作磁通密度选择较大,在通电瞬间就会发生磁饱和。由于脉冲变压器和功率开关管直接相连并加有较高的电压,脉冲变压器的饱和,即使是很短的几个周期,也会导致功率开关管的损坏,这是不允许的。所以一般在控制电路中都有软启动电路来解决这个问题。 (3)要考虑温度影响 开关电源的工作频率较高,要求磁心材料在工作频率下的功率损耗应尽可能小,随着工作温度的升高,饱和磁通密度的降低应尽量小。在设计和选用磁心材料时,除了关心其饱和磁通密度、损耗等常规参数外,还要特别注意它的温度特性。一般应按实际的工作温度来选择磁通密度的大小,一般铁氧体磁心的Bm值易受温度影响,按开关电源工作环境温度为40℃考虑,磁心温度可达60~80℃,一般选择Bm=0.2~0.4T,即2000~4000GS。 (4)合理进行结构设计 从结构上看,有下列几个因素应当给予考虑: 漏磁要小,减小绕组的漏感; 便于绕制,引出线及变压器安装要方便,以利于生产和维护; 便于散热。 4磁心材料的选择 软磁铁氧体,由于具有价格低、适应性能和高频性能好等特点,而被广泛应用于开关电源中。 软磁铁氧体,常用的分为锰锌铁氧体和镍锌铁氧体两大系列,锰锌铁氧体的组成部分是Fe2O3,MnCO3,ZnO,它主要应用在1MHz以下的各类滤波器、电感器、变压器等,用途广泛。而镍锌铁氧体的组成部分是Fe2O3,NiO,ZnO 等,主要用于1MHz以上的各种调感绕组、抗干扰磁珠、共用天线匹配器等。 在开关电源中应用最为广泛的是锰锌铁氧体磁心,而且视其用途不同,材料选择也不相同。用于电源输入滤波器部分的磁心多为高导磁率磁心,其材料牌号多为R4K~R10K,即相对磁导率为4000~10000左右的铁氧体磁心,而用于主变压器、输出滤波器等多为高饱和磁通密度的磁性材料,其Bs为0.5T(即5000GS)左右。 开关电源用铁氧体磁性材应满足以下要求:

移相全桥大功率软开关电源的设计

移相全桥大功率软开关电源的设计 移相全桥大功率软开关电源的设计 1引言 在电镀行业里,一般要求工作电源的输出电压较低,而电流很大。电源的功率要求也比较高,一般都是几千瓦到几十千瓦。目前,如此大功率的电镀电源一般都采用晶闸管相控整流方式。其缺点是体积大、效率低、噪音高、功率因数低、输出纹波大、动态响应慢、稳定性差等。 本文介绍的电镀用开关电源,输出电压从0~12V、电流从0~5000A连续可调,满载输出功率为60kW.由于采用了ZVT软开关等技术,同时采用了较好 的散热结构,该电源的各项指标都满足了用户的要求,现已小批量投入生产。 2主电路的拓扑结构 鉴于如此大功率的输出,高频逆变部分采用以IGBT为功率开关器件的全桥拓扑结构,整个主电路,包括:工频三相交流电输入、二极管整流桥、EMI滤波器、滤波电感电容、高频全桥逆变器、高频变压器、输出整流环节、输出LC滤波器等。 隔直电容Cb是用来平衡变压器伏秒值,防止偏磁的。考虑到效率的问题,谐振电感LS只利用了变压器本身的漏感。因为如果该电感太大,将会导致过高 的关断电压尖峰,这对开关管极为不利,同时也会增大关断损耗。另一方面,还会造成严重的占空比丢失,引起开关器件的电流峰值增高,使得系统的性能降低。 图1主电路原理图 3零电压软开关 高频全桥逆变器的控制方式为移相FB2ZVS控制方式,控制芯片采用Unitrode公司生产的UC3875N。超前桥臂在全负载范围内实现了零电压软开关,滞后桥臂在75%以上负载范围内实现了零电压软开关。图2为滞后桥臂IGBT的驱动电压和集射极电压波形,可以看出实现了零电压开通。

开关频率选择20kHz,这样设计一方面可以减小IGBT的关断损耗,另一方面又可以兼顾高频化,使功率变压器及输出滤波环节的体积减小。 图2IGBT驱动电压和集射极电压波形图 4容性功率母排 在最初的实验样机中,滤波电容C5与IGBT模块之间的连接母排为普通的功率母排。在实验中发现IGBT上的电压及流过IGBT的电流均发生了高频震荡,图3为满功率时采集的变压器初级的电压、电流波形图。原因是并联在IGBT模块上的突波吸收电容与功率母排的寄生电感发生了高频谐振。满载运行一小时后,功率母排的温升为38℃,电容C5的温升为24℃。 图3使用普通功率母排时变压器初级电压、电流波形 为了消除谐振及减小功率母排、滤波电容的温升,我们最终采用了容性功率母排,图4为采用容性功率母排后满功率时采集的变压器初级的电压、电流波形图。从图中可以看出,谐振基本消除,满载运行一小时后,无感功率母排的温升为11℃,电容C5的温升为10℃。 图4使用容性功率母排后变压器初级电压和电流波形 5采用多个变压器串并联结构,使并联的输出整流二极管之间实现自动均流为了进一步减小损耗,输出整流二极管采用多只大电流(400A)、耐高电压(80V)的肖特基二极管并联使用。而且,每个变压器的次级输出采用了全波整流方式。这样,每一次导通期间只有一组二极管流过电流。同时,次级整流二极管配上了RC吸收网络,以抑止由变压器漏感和肖特基二极管本体电容引起 的寄生震荡。这些措施都最大限度地减小了电源的输出损耗,有利于效率的提高。 对于大电流输出来说,一般要把输出整流二极管并联使用。但由于肖特基二极管是负温度系数的器件,并联时一般要考虑它们之间的均流。二极管的并联方

小功率变压器设计

小功率电源变压器的设计与实例 《利用TL431作大功率可调稳压电源》一文中(以下简称《利》)所用变压器为例,一步一步带领大家完成这个变压器设计的全过程。在这篇文章中,我们不去推导相关的应用公式,只是希望读者从这个设计实例中达到举一反三的效果。 1.计算次级输出功率(P2)《利》文中最大输出电压为24V,假设额定输出电流1A,调整管K790管压降3V,倍压整流电路功耗忽略不计,则:P2=(24+3)x1=27W 2.计算初级功率(P1)假定变压器效率η=0.75,则P1=27W/0.75=36W 注:变压器的效率根据输出功率的大小不同而略有变化,通常对于容量在100W以下的变压器η在0.7-0.8之间,100W以下至1000W,在0.8-0.9之间,实际运用时,输出功率低者取小值。 3.计算初、次级线圈的线径(d)式中,I——绕组工作电流[J——电流密度(通常J取3-3.5A/mm2)初级绕组电流I1=36/220=0.164(A) 3.1初级绕组线径 3.2次级绕组线径: 次级绕组电流I2=1x1.17=1.17A 式中1.17是变压器次级交流电流的整流系数。 因漆包线规格中无0.67mm,故取0.7mm。 通常我们将次级线圈的电流密度取较小值,以获得小的电源内阻及降低温升。

4.计算铁芯截面积 我们用下式计算铁芯截面积(个人认为是较简单的一个经验公式) 式中S——铁芯截面积K——系数P2——次级功率 K的取值和变压器的输出功率有关,对于100W以下的K取1.25-1.1(功率大者取小值),100W-1000W可直接取1,本例取1.15,则: 从理论上来讲,在铁芯截面积不变的情况下,变压器铁芯的舌宽和叠厚可取任意比例,但实际设计中须要考虑线圈的制作工艺,外形的匀称度,漏电抗等因素考虑,一般取舌宽约为1.5~2倍叠厚,本例中选片宽66mm的EI片,叠厚2.7cm。 5.初、次级绕组匝数 5.1 计算每伏匝数(W0) 式中,f——交流电频率(Hz)B——磁通密度(T)S——铁芯截面积(CM2) B值视铁芯材料不同取值亦会不同,通用矽钢片材料及其取值勤见下表: 本例中,选用H23片,B取1.42,则 5.2初级匝数(W1)W1=220W0=1160(T) 5.2次级匝数(W2)

变压器功率计算方法

变压器功率计算方法 0.65和0.8的系数来自实用电工速算口诀 已知变压器容量,求其各电压等级侧额定电流 口诀a : 容量除以电压值,其商乘六除以十。 说明:适用于任何电压等级。 在日常工作中,有些电工只涉及一两种电压等级的变压器额定电流的计算。将以上口诀简化,则可推导出计算各电压等级侧额定电流的口诀: 容量系数相乘求。 已知变压器容量,速算其一、二次保护熔断体(俗称保险丝)的电流值。 口诀b : 配变高压熔断体,容量电压相比求。 配变低压熔断体,容量乘9除以5。 说明: 正确选用熔断体对变压器的安全运行关系极大。当仅用熔断器作变压器高、低压侧保护时,熔体的正确选用更为重要。这是电工经常碰到和要解决的问题。 已知三相电动机容量,求其额定电流 口诀(c):容量除以千伏数,商乘系数点七六。 说明:

(1)口诀适用于任何电压等级的三相电动机额定电流计算。由公式及口诀均可说明容量相同的电压等级不同的电动机的额定电流是不相同的,即电压千伏数不一样,去除以相同的容量,所得“商数”显然不相同,不相同的商数去乘相同的系数0.76,所得的电流值也不相同。若把以上口诀叫做通用口诀,则可推导出计算220、380、660、3.6kV 电压等级电动机的额定电流专用计算口诀,用专用计算口诀计算某台三相电动机额定电流时,容量千瓦与电流安培关系直接倍数化,省去了容量除以千伏数,商数再乘系数0.76。 三相二百二电机,千瓦三点五安培。 常用三百八电机,一个千瓦两安培。 低压六百六电机,千瓦一点二安培。 高压三千伏电机,四个千瓦一安培。 高压六千伏电机,八个千瓦一安培。 (2)口诀c 使用时,容量单位为kW,电压单位为kV,电流单位为A,此点一定要注意。 (3)口诀c 中系数0.76是考虑电动机功率因数和效率等计算而得的综合值。功率因数为0.85,效率不0.9,此两个数值比较适用于几十千瓦以上的电动机,对常用的10kW以下电动机则显得大些。这就得使用口诀c计算出的电动机额定电流与电动机铭牌上标注的数值有误差,此误差对10kW以下电动机按额定电流先开关、接触器、导线等影响很小。 (4)运用口诀计算技巧。用口诀计算常用380V电动机额定电流时,

变压器设计

应用领域: ?逆变焊机电源 ?通讯电源 ?高频感应加热电源 ? UPS电源 ?激光电源 ?电解电镀电源 性能特点: ?高饱和磁感应强度----有效缩小变压器体积 ?高导磁率、低矫顽力-提高变压器效率、减小激磁功率、降低铜损 ?低损耗-降低变压器的温升 ?优良的温度稳定性-可在-55~130℃长期工作 铁基纳米晶铁芯与铁氧体铁芯基本磁性能对比 纳米晶铁芯铁氧体铁芯 基本参数 饱和磁感强度Bs 1.25T 0.5 剩余磁感Br(20KHz) <0.20 0.2 铁损(20KHz/0.2T)(W/Kg) <3.4 7.5 铁损(20KHz/0.5T)(W/Kg) <30 — 铁损(50KHz/0.3T)(W/Kg) <40 — 磁导率(20KHz)(Gs/Oe) >20,000 2,000 矫顽力Hc(A/m) <1.60 6 饱和磁致伸缩系数(×10-6) <2 4 电阻率(μΩ.cm) 80 106 居里温度(℃) 560 <200 铁芯叠片系数 >0.70 — 纳米晶主变铁芯一代产品 安泰非晶生产的第一代逆变主变压器铁芯,带材厚度30μm,适合20KHz条件下工作。磁芯设计最大功率=重量最小值x10

产品规格 铁芯尺寸保护盒尺寸 有效截面 积 磁路长 度 重量最小 值 建议适用焊机 电流 od(mm) id (mm) ht(mm) OD (mm) ID (mm) HT (mm) (cm2) (cm) (g)(A) ONL-503220 50 32 20 53 28 23 1.35 12.8 125 120, 140, 160 ONL-644020 64 40 20 66 37 23 1.68 16.3 200 160, 180 ONL-704020 70 40 20 73 38 24 2.16 17.3 270 180, 200 ONL-704025 70 40 25 72 37 28 2.63 17.3 330 180, 200 ONL-755025 * 75 50 25 77 47 28 2.19 19.6 310 180, 200 ONL-805020 80 50 20 82 46 23 2.1 20.4 300 160, 180, 200 ONL-805 025 80 50 25 85 44 30 2.63 20.4 390 200, 250, 300 ONL-1006020 100 60 20 105 56 23 2.8 25.1 510 315, 350, 400 ONL-1056030 105 60 30 110 56 35 5.06 25.9 945 315, 350, 400 ONL-1206030 120 60 30 125 57 35 6.3 28.3 1280 400, 500, 630 ONL-1206040 * 120 60 40 125 57 45 8.4 28.3 1710 500, 630 ONL-1207020 120 70 20 125 67 25 3.5 29.8 750 350, 400, 500 ONL-1207025 120 70 25 125 67 30 4.38 29.8 940 315, 350, 400 ONL-1207030 120 70 30 125 67 35 5.25 29.8 1130 500, 630, 800 ONL-1207040 * 120 70 40 125 67 45 7 29.8 1500 500, 630, 800, ONL-1308040 130 80 40 136 76 45 7 33 1660 500, 630, 800 ONL-17011050 * 170 110 5 0 176 104 56 10.5 43.96 3320 1000, 1250, 1600 注:可以根据用户要求提供其它规格的铁芯。 纳米晶主变铁芯二代产品 相比一代逆变主变压器铁芯,二代铁芯减小了发热量,在同等工作条件可以选择更加小型化的铁芯,满足焊机行业轻量化、小型化的发展要求。

电力变压器手册.doc

变压器是一种通过改变电压而传输交流电能的静止感应电器。它有一个共同的铁心和与其交链的几个绕组,且它们之间的空间位置不变。当某一个绕组从电源接受交流电能时,通过电感生磁、磁感生电的电磁感应原理改变电压(电流),在其余绕组上以同一频率、不同电压传输出交流电能。因此,变压器的主要结构就是铁心和绕组。 铁心和绕组组装了绝缘和引线之后组成了变压器的器身。器身一般装在油箱或外壳之中,再配置调压、冷却、保护、测温和出线装置,就成为变压器的结构整体。 变压器分为电力变压器和特种变压器。电力变压器又分为油浸式和干式两种。目前,油浸式变压器用作升压变压器、降压变压器、联络变压器和配电变压器,干式变压器只在部分配电变压器中采用。 电力变压器可以按绕组耦合方式、相数、冷却方式、绕组数、绕组导线材质和调压方式分类。如称为单相变压器、双绕组变压器等。但是这样的分类包含不了变压器的全部特征,所以在变压器型号中往往要把所有的特征表达出来,并标记以额定容量和高压绕组额定电压等级。 图示是电力变压器产品型号的表示方法。 □□□□□□□□-□/□□-防护代号(一般不标,TH-湿热,TA-干热) 高压绕组额定电压等级(KV) 额定容量(KV A) 设计序号(1、2、3…;半铜半铝加b) 调压方式(无励磁调压不标,Z-载调压) 导线材质(铜线不标,L-铝线) 绕组数(双绕组不标,S-绕组,F-分裂绕组) 循环方式(自然循环不标,P-强迫循环) 冷却方式(J-油浸自冷,亦可不标;G-干式空气 自冷,C-干式浇注绝缘,F-油浸风冷, S-油浸水冷) 相数(D-单相,S-三相) 绕组耦合方式(一般不标,O-自耦)(1)相数和额定频率 变压器分单相和三相两种。一般均制成三相变压器以直接满足输配电的要求,小型变压器有制成单相的,特大型变压器做成单相后组成三相变压器组,以满足运输的要求。 (2)额定电压、额定电压组合和额定电压比 a.、额定电压变压器的一个作用就是改变电压,因此额定电压是重要数据之一。 变压器的额定应与所连接的输变电线路电压相符合,我国输变电线路电压等级(KV)为0.38、3、6、10、15(20)、35、63、110、220、330、500 输变电线路电压等级就是线路终端的电压值,因此连接线路终端变压器一侧的额定电压与上列数值相同。线路始端(电源端)电压考虑了线路的压降将比等级电压为高。 35KV以下电压等级的始端电压比电压等级要高5%,而35KV.及以上的要高10%,因此变压器的额定电压也相应提高。线路始端电压值(KV)为 0.4、3.15、6.3、10.5、15.75、38.5、69、121、242、363、550 由此可知,高压额定电压等于线路始端电压的变压器为升压变压器,等于线路终端电压(电压等级)的变压器为降压变压器。 变压器产品系列是以高压的电压等级而分的,现在电力变压器的系列分为 10KV及以下系列、35KV系列、63KV系列、110KV系列和220KV系列等。

开关变压器设计

开关电源变压器设计 (草稿) 开关变压器是将DC 电压﹐通过自激励震荡或者IC 它激励间歇震荡形成高频方波﹐通过变 压器耦合到次级,整流后达到各种所需DC 电压﹒ 变压器在电路中电磁感应的耦合作用﹐达到初﹒次级绝缘隔离﹐输出实现各种高频电压﹒ 目的﹕减小变压器体积﹐降低成本﹐使设备小形化﹐节约能源﹐提高稳压精度﹒ N 工频变压器与高频变压器的比较﹕ 工频 高频 E =4.4f N Ae Bm f=50HZ E =4.0f N Ae Bm f=50KHZ N Ae Bm 效率﹕ η=60-80 % (P2/P2+Pm+ P C ) η>90% ((P2/P2+Pm ) 功率因素﹕ Cosψ=0.6-0.7 (系统100W 供电142W) Cosψ>0.90 (系统100W 供电111W) 稳压精度﹕ ΔU%=1% (U20-U2/U20*100) ΔU<0.2% 适配.控制性能﹕ 差 好 体积.重量 大 小

开关变压器主要工作方式 一.隔离方式: 有隔离; 非隔离 (TV&TVM11) 二.激励方式: 自激励; 它激励 (F + & IC) 三.回馈方式: 自回馈; 它回馈 (F- & IC) 四.控制方式: PWM: PFM (T & T ON ) 五.常用电路形式: FLYBACK & FORWARD 一.隔离方式: 二.

开关变压器主要设计参数 静态测试参数: R DC. L. L K. L DC. TR. IR. HI-POT. IV O-P.Cp. Z. Q.……… 动态测试参数: Vi. Io. V o. Ta. U. F D max…………. 材料选择参数 CORE: P. Pc. u i. A L. Ae. Bs……. WIRE: Φ℃. ΦI max. HI-POT…….. BOBBIN: UL94 V--O.( PBT. PHENOLIC. NYLON)………. TAPE: ℃. δh. HI-POT…….. 制程设置要求 P N…(SOL.SPC).PN//PN.PN-PN. S N(SOL.SPC).Φn. M tape:δ&w TAPE:δ&w. V℃……..

变压器计算公式

变压器计算公式 已知变压器容量,求其各电压等级侧额定电流 口诀a : 容量除以电压值,其商乘六除以十。 说明:适用于任何电压等级。 在日常工作中,有些电工只涉及一两种电压等级的变压器额定电流的计算。将以上口诀简化,则可推导出计算各电压等级侧额定电流的口诀: 容量系数相乘求。 已知变压器容量,速算其一、二次保护熔断体(俗称保险丝)的电流值。 口诀b : 配变高压熔断体,容量电压相比求。 配变低压熔断体,容量乘9除以5。 说明: 正确选用熔断体对变压器的安全运行关系极大。当仅用熔断器作变压器高、低压侧保护时,熔体的正确选用更为重要。 这是电工经常碰到和要解决的问题。 已知三相电动机容量,求其额定电流 口诀(c):容量除以千伏数,商乘系数点七六。 说明: (1)口诀适用于任何电压等级的三相电动机额定电流计算。由公式及口诀均可说明容量相同的电压等级不同的电动机的额定电流是不相同的,即电压千伏数不一样,去除以相同的容量,所得“商数”显然不相同,不相同的商数去乘相同的系数0.76,所得的电流值也不相同。若把以上口诀叫做通用口诀,则可推导出计算220、380、660、3.6kV电压等级电动机的额定电流专用计算口诀,用专用计算口诀计算某台三相电动机额定电流时,容量千瓦与电流安培关系直接倍数化, 省去了容量除以千伏数,商数再乘系数0.76。 三相二百二电机,千瓦三点五安培。 常用三百八电机,一个千瓦两安培。 低压六百六电机,千瓦一点二安培。

高压三千伏电机,四个千瓦一安培。 高压六千伏电机,八个千瓦一安培。 (2)口诀c 使用时,容量单位为kW,电压单位为kV,电流单位为A,此点一定要注意。 (3)口诀c 中系数0.76是考虑电动机功率因数和效率等计算而得的综合值。功率因数为0.85,效率不0.9,此两个数值比较适用于几十千瓦以上的电动机,对常用的10kW以下电动机则显得大些。这就得使用口诀c计算出的电动机额定电流与电动机铭牌上标注的数值有误差,此误差对10kW以下电动机按额定电流先开关、接触器、导线等影响很小。 (4)运用口诀计算技巧。用口诀计算常用380V电动机额定电流时,先用电动机配接电源电压0.38kV数去除0.76、商数2去乘容量(kW)数。若遇容量较大的6kV 电动机,容量kW数又恰是6kV数的倍数,则容量除以千伏数,商数乘以0.76系数。(5)误差。由口诀c 中系数0.76是取电动机功率因数为0.85、效率为0.9而算得,这样计算不同功率因数、效率的电动机额定电流就存在误差。由口诀c 推导出的5个专用口诀,容量(kW)与电流(A)的倍数,则是各电压等级(kV)数除去0.76系数的商。专用口诀简便易心算,但应注意其误差会增大。一般千瓦数较大的,算得的电流比铭牌上的略大些;而千瓦数较小的,算得的电流则比铭牌上的略小些。对此,在计算电流时,当电流达十多安或几十安时,则不必算到小数点以后。可以四舍而五不入,只取整数,这样既简单又不影响实用。对于较小的电流也只要算到一位小数即可。 *测知电流求容量 测知无铭牌电动机的空载电流,估算其额定容量 口诀: 无牌电机的容量,测得空载电流值, 乘十除以八求算,近靠等级千瓦数。 说明:口诀是对无铭牌的三相异步电动机,不知其容量千瓦数是多少,可按通过测量电动机空载电流值,估算电动机容量千瓦数的方法。 测知电力变压器二次侧电流,求算其所载负荷容量 口诀: 已知配变二次压,测得电流求千瓦。

电磁装置设计原理变压器设计-华中科技大学原

倉9舉屮脅技必專 _ -一丿茹Urtivr 愉厨m Science & Tlechnologv 电磁装置设计原理 变压器设计 专业:— 班级:_______________ 设计者:_____________________ 学号:___________ 华中科技大学电气与电子工程学院

一、变压器设计综述及其基本原理 变压器是一种静止电机,由绕在共同铁芯上的两个或者两个以上的绕组通过交变的磁场而联系着。用以把某一种等级的电压与电流转换成另外一种等级的电压与电流。其用途是多方面的,十分广泛的应用在国民经济的各个领域。在电力系统中,通常要将大功率的电能输送到很远的地方去,利用低电压大电流的传输是有困难的,一方面,电流大引起的输电线损耗很大;另一方面,电压的下降也会使电能无法传送出去。因此需要用升压变压器将发电机端电压升高,而经过高压传输线到达用户端所在城市后,再利用降压变压器将电压降低,方便用户使用。 二、设计步骤 1、根据设计仟务书确定各原始技术数据; 2、计算铁心柱直径、铁芯柱和铁轭截面; 3、绕组尺寸计算; 4、绕组的确定及相关计算; 5、绕组的绝缘设计; 6、绝缘半径计算; 7、铁芯重量计算;

8性能计算; 9、 温升计算; 10、 主要部件价格计算 二、设计内容 已知参数有: 额定容量S n 500kVA ; 额定电压10kV/0.4kV (高压绕组 5%分接头); 额定频率f = 50Hz Dy11连接模式; 高压侧:S N 5 N 10kV ; (1)技术条件 名称:变压器 绝缘材料耐热等级:H 级(145 C ) 容量:500kVA 电压比:10± 5%/0.4kV 1 1N 500 10 、3 28.8675A (线电流); 1 1N 3 16.6667(相电流) 低压侧:U 2N 0.4kV (线电压) 1 2N U 2N 230.94V (相电压) 500 3 0.4 721.6878 A

相关主题
文本预览
相关文档 最新文档