当前位置:文档之家› 低温等离子体技术在炭材料改性方面的应用_邱介山

低温等离子体技术在炭材料改性方面的应用_邱介山

低温等离子体技术在炭材料改性方面的应用_邱介山
低温等离子体技术在炭材料改性方面的应用_邱介山

低温等离子体技术在表面改性中的应用

低温等离子体技术在表面改性中的应用低温等离子体中粒子的能量一般约为几个至几十电子伏特,大于聚合物材料的结合键能(几个至十几电子伏特),完全可以破裂有机大分子的化学键而形成新键;但远低于高能放射性射线,只涉及材料表面,不影响基体的性能。处于非热力学平衡状态下的低温等离子体中,电子具有较高的能量,可以断裂材料表面分子的化学键,提高粒子的化学反应活性(大于热等离子体),而中性粒子的温度接近室温,这些优点为热敏性高分子聚合物表面改性提供了适宜的条件。 1 形成装置及影响因素 选择适宜的放电方式可获得不同性质和应用特点的等离子体,通常,热等离子体是气体在大气压下电晕放电产生,冷等离子体由低压气体辉光放电形成。 热等离子体装置是利用带电体尖端(如刀状或针状尖端和狭缝式电极)造成不均匀电场,称电晕放电,使用电压和频率、电极间距、处理温度和时间对电晕处理效果都有影响。电压升高、电源频率增大,则处理强度大,处理效果好。但电源频率过高或电极间隙太宽,会引起电极间过多的离子碰撞,造成不必要的能量损耗;而电极间距太小,会有感应损失,也有能量损耗。处理温度较高时,表面特性的变化较快。处理时间延长,极性基团会增多;但时间过长,表面则可能产生分解物,形成新的弱界面层。 冷等离子体装置是在密封容器中设置两个电极形成电场,用真空泵实现一定的真空度,随着气体愈来愈稀薄,分子间距及分子或离子

的自由运动距离也愈来愈长,受电场作用,它们发生碰撞而形成等离子体,这时会发出辉光,故称为辉光放电处理。辉光放电时的气压大小对材料处理效果有很大影响,另外与放电功率,气体成分及流动速度、材料类型等因素有关。 不同的放电方式、工作物质状态及上述影响等离子体产生的因素,相互组合可形成各种低温等离子体处理设备。 2 在表面改性中的应用 低温等离子体技术具有工艺简单、操作方便、加工速度快、处理效果好、环境污染小、节能等优点,在表面改性中广泛的应用。 2.1 表面处理 通过低温等离子体表面处理,材料表面发生多种的物理、化学变化,或产生刻蚀而粗糙,或形成致密的交联层,或引入含氧极性基团,使亲水性、粘结性、可染色性、生物相容性及电性能分别得到改善。 用几种常用的等离子体对硅橡胶进行表面处理,结果表明N2、Ar、O2、CH4-O2及Ar-CH4-O2等离子体均能改善硅橡胶的亲水性,其中CH4-O2和Ar-CH4-O2的效果更佳,且不随时间发生退化[6]。英国派克制笔公司将等离子体技术用于控制墨水流量塑料元件的改性工艺中,提高了塑料的润湿率。 文献表明,用低温等离子体在适宜的工艺条件下处理PE、PP、PVF2、LDPE等材料,材料的表面形态发生的显著变化,引入了多种含氧基团,使表面由非极性、难粘性转为有一定极性、易粘性和亲水性,有利于粘结、涂覆和印刷。

外国等离子体技术公司

英国Tetronics公司 使用中间包加热装置的直接优点如下: (1).由于过热度低,通过回收冷包装料提高了收得率; (2).由于降低了钢水熔炼的过热度,节约了成本; (3).改善了大包和熔炼炉耐火材料的使用寿命,降低了出钢温度; (4).中间包的钢水温度控制精确,可生产洁净、质量稳定、细质等轴晶粒组织的优质钢。 英国TETRONICS公司是国际上一家知名的专营中间包加热装置的公司。过去的中间包加热装置是一种常用的单极火焰喷嘴,这种方式的装置,电极必须浸入在钢水中,以提供电弧电流的输出通道。这种系统需要整改中间包和中间包小车。现在,取而代之,TETRONICS 公司使用了一种双火焰喷嘴加热装置。 这种双火焰喷嘴加热装置,是一对正、负电极火焰喷嘴,它们位于中间包钢水熔池的上方,双火焰喷嘴提供电弧电流的输入和输出通道,不需要对中间包做任何大的整改。这种双火焰喷嘴加热装置的紧凑型设计还减少了热损失,加快了电能到热能的转换。该装置的投资成本收回周期为6个月。

美国Retech公司 https://www.doczj.com/doc/b911164272.html,.tw/1_file/moeaidb/012844/2004071308.pdf Retech公司開發之專利技術PACT處理系統係利用傳輸型電弧電漿火炬(Transferred Arc Plasma Torch)產生1,400到1,700℃之高溫,直接加熱一定量之金屬及其氧化物以形成slag bath 。 此一高溫slag bath則保留在轉速為10到50 rpm之離心式爐體內,作為熔融處理之liquid bath, 在爐內負壓之環境下,進一步處理其他有害事業廢棄物。 PACT處理系統爐體之設計運用採電漿火炬離心式運轉,而非固定爐床式。 其相關之週邊系統設備,如進料系統、能源回收系統、空氣污染防治系統均與一般焚化系統並無太大差異,其處理系統流程如圖所示。 PACT處理系統流程圖

低温等离子原理与应用

低温等离子体技术在环境工程中的应用 低温等离子体技术在废气处理中的应用随着工业经济的发展,石油、制药、油漆、印刷和涂料等行业产生的挥发性有机废气也日渐增多,这些废气不仅会在大气中停留较长的时间,还会扩散和漂移到较远的地方,给环境带来严重的污染,这些废气吸入*** ,直接对***的健康产生极大的危害;另外工业烟气的无控制排放使全球性的大气环境日益恶化,酸雨(主要来源于工业排放的硫氧化物和氮氧化物)的危害引起了各国的重视。由于大气受污染而酸化,导致了生态环境的破坏,重大灾难频繁发生,给人类造成了巨大损失。因此选择一种经济、可行性强的处理方法势在必行。 降解挥发性有机污染物(VOCs)传统的处理方法如吸收、吸附、冷凝和燃烧等,对于低浓度的VOCs很难实现,而光催化降解VOCs又存在催化剂容易失活的问题,利用低温等离子体处理VOCs可以不受上述条件的限制,具有潜在的优势。但由于等离子体是一门包含放电物理学、放电化学、化学反应工程学及真空技术等基础学科之上的交叉学科。因此,目前能成熟的掌握该技术的单位非常的少。大部分宣传采用低温等离子技术处理废气的宣传都不是真正意义上的低温等离子废气处理技术。 是否是低温等离子体处理技术的简单判断方法: 现在,各传媒上宣传低温等离子废气处理的产品和技术很多,可这些产品的宣传大部分都是在炒低温等离子体概念。如何判断是否是真正意义上的低温等离子体技术?可以用下面两个简单的规则来判断,即使你不懂低温等离子体技术也能判断出是真是假。 (1)在废气处理的通道上必须充满了低温等离子体。这条规则判断很简单,只要用眼睛观察一下处理通道是否充满紫蓝色的放电就可以直观的了解是否是低温等离子体了(需要注意的是不要将各种颜色的灯光当作电离子体放电)。如果在废气处理的通道上只零星的分布若干的放电点或线,则处理的效果是非常有限的,因为,大部分的(VOCs)气体没有进过低温等离子体处理区域。 (2)低温等离子体处理系统必须要有一定的放电处理功率。通常需要在2?5瓦时/米3。即1000米3/时的风量需要处理的电功率为2KW?5KW。如果号称1000 米3/时的风量只需要几十或几百瓦的电功率,则最多也就是静电(除尘)处理或局部处理而已。要想分解VOCs 没有一定的能量是不可能的。 等离子体技术目前采用的有四类技术,介质阻挡放电(双介质、单介质)、尖端放电(金属、纤维)、板式放电、微波放电,实际应用也有采用组合模式。

等离子体技术的应用

等离子体技术的应用 -------废气处理及航天推进器 等离子体是一种电离气体,由电子、离子、中性粒子等组成,属于物质的高能凝聚态。等离子体中含有大量的带电粒子,使得它与普通气体有着本质的区别,具有很多普通气体没有的特性。对等离子体的研究己发展成为一门独立的物理学分支——等离子体物理学,等离子体物理学在工程技术中的应用形成了大有发展前景的专门技术,即等离子体技术。近年来,等离子体技术的实际应用获得了快速的发展,应用领域越来越广泛。目前,世界各国正加紧研究把等离子体技术用于武器系统隐身、通信和探测、火炮发射、飞行器拦截、环境污染、航天推进等方面,等离子体技术的应用对未来具有深远的意义 一、环境污染 近几年来,等离子体技术在能源、信息、材料、化工、物理医学、军工、航天等领域中大量应用,同时,国外许多研究机构不断将等离子体技术应用在环境工程中。目前,等离子体技术处理废水、废气及固体废弃物的研究已经取得了一定进展。在环境监测中电感耦合等离子体原子发射光谱法和质谱法已广泛应用于生态环境监测体系中(包括大气、水、土壤等)微量元素的测定。在大气污染治理中主要应用于烟气净化、脱硫、脱硝等方面。在水污染治理中主要应用于高浓度有机废液、垃圾渗滤液等废水的治理。在固体废物处理方面,等离子体技术逐渐取代传统的焚烧法应用于城市固体废弃物及生物武器、化学武器、化学毒品等特种固体废物的处理。1997年,美国开始采用等离子体废物处理系统处理军方废弃武器,1999年初,美国、欧盟、日本等逐渐关闭焚化炉后开始转向等离子废物处理系统,目前,瑞典、美国、德国、日本等国已建立了一定规模的城市固体废物的等离子体处理厂。 随着工业现代化的不断进步和发展,排放到大气中的硫氧化物、氮氧化物及有机废气等不断增加,大气污染造成的大气质量的恶化、酸雨现象、温室效应及臭氧层破坏足以威胁人类在地球上的生存和居住,其后果十分严峻,废气排放造成的环境污染问题逐渐引起人们的广泛重视。大气压等离子体技术是一门新兴的环境污染处理手段,其在废气处理应用中具有成本低,效果好、操作简单,无需高价格的真空系统等特点,具有广泛的应用前景。大气压等离子体技术的实质也就是气体放电原理,气体在电场作用下被击穿而导电,由此产生的电离气体叫做气体放电等离子体。大气压等离子体分解气态污染物的机理为:等离子体中的高能电子在大气压等离子体分解气体污染物中起决定性的作用,数万度的高能电子与气体分子(原子)发生非弹性碰撞,巨大的能量转换成基态分子(原子)的内能,发生激发、离解以及电离等一系列物理和化学变化使气体处于活化状态。电子能量小于10ev时产生活性自由基,活化后的污染物分子经过等离子体定向链化学反应后被脱除。而当电子平均能量超过污染物分子化学键结合能时,污染物气体分子键断裂,污染物分解,在大气压等离子体中可能发生各种类型的化学反应,反应程度取决于电子的平均能量、电子密度、气体温度、污染物气体分子浓度及共存的气体成分。大气压等离子体在废气处理中应用的机理是在等离子体中的高能电子、离子、自由基、激发态分子和原子等的作用下,将NOx与SO2被氧化成更易参与反应和更易吸收的NO2和SO3,从而实现对废气的净化处理。大气压等离子体降解污染物是一个十分复杂的过程,而且影响这一过程的因素很多,虽然目前已有大量有关低温等离子体降解污染物机理的研究,但还未形成能指导实践的理论体系,使其工业应用缺乏理论保障。其

低温等离子体表面处理技术

低温等离子体表面处 理技术

Plasma and first wall Introduction Today I will talk about something about my study on the first wall in the tokamak. Firstly, I will show you that what the plasma is in our life thought the following pictures such as: Fig.1 Lighning Fig.2 Aurora Fig.3 Astrospace Just as the pictures mentioned above , they are all consist of plasma. But, what does have in the plasma, now our scientist had given a definition that the plasma state is often referred to as the fourth state of matter and contains enough free charged particles(negative ions 、positive ions)and electronics. Like the photo below. Fig.4 Plasma production Plasma production In our research, we produce the plasma through an ICP (inductively coupled plasma)

低温等离子体在材料表面改性中的应用_肖梅

第31卷第1期2001年1月  东南大学学报(自然科学版)JOUR NAL OF SOUTHEA ST UNIVER SITY (Natural Science Edition ) Vol .31No .1Jan .2001 低温等离子体在材料表面改性中的应用 肖 梅 凌一鸣 (东南大学电子工程系南京,210096) 摘要:概要介绍了目前低温等离子体在材料表面改性方面的研究进展.材料的许多特性,如金 属的表面硬度、耐腐蚀、耐摩擦,聚合物的表面浸润性、亲水性、粘附性以及生物功能材料的生 物相容性等,决定了材料的应用.低温等离子体并不改变材料的块材特性而仅影响材料的表面 特性.对金属如不锈钢等用氮气等离子源离子注入,可以在表面形成Fe 2N ,Fe 3N 和Fe 4N 的铁的氮化物,提高表面的硬度和耐腐蚀性能;氧气、氮气等离子体会在聚合物材料表面形成微针 孔结构,改善其浸润性、粘附性;用等离子聚合法在生物材料表面聚合高分子材料,如氯化对二 甲苯可以降低血小板的吸附.因此,低温等离子体在材料的表面改性方面有很好的应用前景. 关键词:低温等离子体;表面改性;功能材料 中图分类号:O461 文献标识码:A 文章编号:1001-0505(2001)01-0114-05  收稿日期:2000-10-26. 作者简介:肖 梅,女,1972年生,讲师. 等离子体作为物质的第4态,是指部分或完全电离的气体,且自由电子和离子所带正、负电荷总和完全抵消.而低温等离子体是指在直流电弧放电、辉光放电、微波放电、电晕放电、射频放电等条件下所产生的部分电离气体,其中由于电子的质量远小于离子的质量,故电子温度可以在几万度到几十万度之间,远高于离子温度(离子温度甚至可与室温相当).在低温等离子体中包含有多种粒子,除了电离所产生的电子和离子(108~1017cm -3 )以外,还有大量的中性粒子如原子、分子和自由基等.故粒子间的相互作用非常复杂,有电子电子、电子中性粒子、电子离子、离子离子、离子中性分子、中性分子中性分子等.在这样一个复杂的物理体系中,由于电子、离子、激发原子、自由基的存在且相互作用,因此常可以完成在普通情况下难以完成的事.20世纪七八十年代起,等离子体表面改性开始蓬勃发展,目前已形成一个独立的研究方向,主要针对金属、聚合物,生物功能材料等方面.1 低温等离子体在金属材料表面改性中的应用 近十几年来,低温等离子体广泛用于改变金属材料的表面力学特性,即材料的磨损、硬度、摩擦、疲劳、耐腐蚀等性能. 1.1 提高金属表面抗腐蚀能力 已经有一些研究小组通过对铁和钢合金进行离子束渗氮来提高其摩擦和耐腐蚀特性[1~5].这是因为 在铁中形成了如εFe 3N 和ζFe 2N 的铁的氮化合物而在不锈钢表层形成“扩展的奥氏体”.目前采用等离子源离子注入方法[1],它区别于单能量的氮离子注入法,样品浸没在等离子体中并加上高负电压脉冲.在电场中,这些离子被加速而注入到样品中.在注入过程中,与常规束线离子注入相似,用高能离子在材料表面近距离区域注入.与其不同的是,离子从四面八方同时注入到样品上而没有视线限制,因此可以处理形状较复杂的样品,且注入粒子的能量范围宽.W .Wang 小组对轴承钢采用氮等离子源离子注入 [1],注入剂量分别为5×1016,1×1017,5×1017cm -2,所加电压为-20kV .在Na 2SO 4溶液的腐蚀实验中,没有处理的样品的腐蚀电流为170μA ·cm -2,在经过5×1016,1×1017,5×1017cm -2剂量注入后,腐蚀电流分别为66,40,50 μA ·cm -2.结果表明在轴承钢表面形成了诸如Fe 2N ,Fe 3N 和Fe 4N 的铁的氮化物,提高了表面的耐腐蚀的特性.注入其他的粒子,如碳或同时注入氧、氮、碳粒子也可提高金属的耐腐蚀特性 [6,7].

等离子体的应用

等离子体技术与应用 学号 队别 专业 姓名

摘要 等离子体作为物质存在的一种基本形态,自18世纪中期被发现以来,对它的认识和利用不断深化。我们知道,普通化学反应和化工设备中所产生的温度只有二千多度。而在各种形式的气体放电所形成的低温等离子体中电子温度可达一万度以上,足以造成各种化学键的断裂,或使气体分子激发电离,产生许多在通常条件下不能发生的化学反应,获得通常条件下不能得到的化合物或化工产品,并且获得的化合物与化工产品不会产生热分解。目前,等离子体技术已被广泛的用于国防、工业、农业、环境、通信等一系列国民经济发展领域,极大地推动了信息产业的发展,促进了工业科技进步。 关键词等离子体微波放电隐身技术材料的表面改性微波等离子灯 引言 等离子体是由带电的正粒子、负粒子(其中包括正离子、负离子、电子、自由基和各种活性基团等)组成的集合体,其中正电荷和负电荷电量相等故称等离子体。他们在宏观上呈电中性的电离态气体(也有你液态、固态)。当温度足够高时,构成分子的原子也获得足够大的的动能,开始彼此分离,这一过程称为离解。在此基础上进一步提高温度,就会出现一种全新的现象,原子的外层电子将摆脱原子核的束缚而成为自由电子,失去电子的原子变成带正电的离子,这个过程叫电离。等离子体指的就是这种电离气体,它通常由光子、电子、基态原子(或分子)、激发态原子(或分子)以及正离子和负离子六种基本粒子构成的集合体。因此,等离子体也被称为物质的第四态。 内容 一、等离子的性质 物质的第四态等离子体有着许多独特的物理、化学性质。只要表现如下: 1) 温度高、粒子动能大。 2) 作为带电粒子的集合体,具有类似金属的导电性能。等离子体从整体上看是一种导体电流体。 3) 化学性质活泼,容易发生化学反应。 4) 发光特性,可以作光源。 二、等离子技术的应用 2.1微波放电等离子体技术与应用 通常,低气压、低温等离子体是在1~100pa的气体中进行直流或射频放电产生的。直流辉光发电首先被研究和应用,但该等离子体是有极放电,而且密度低、电离度低、运行气压高,这就限制了其应用的广泛性。随后,射频放电技术逐步被发展起来,这是一种无极放电,且等离子体工作与控制参数比辉光放电有所提高,因而获得了较广泛的应用。但是其密度和电离度仍较低,应用范围依然受到限制。 微波放电初始阶段的物理过程如下。微波引入反应腔中建立起电磁场,反应气体中的电子在微波场作用下获得能量,与气体分子碰撞使其电离,从而得到更多的

低温等离子废气处理工艺

低温等离子体是继固态、液态、气态之后的物质第四态,当达到气体的放电电压时,气体被击穿,放电过程中整个体系呈现低温状态,所以称为低温等离子体,目前这种技术主要应用于废气处理工业中,有些小伙伴对于整个处理工艺和流程比感兴趣,下面就来一起学习一下。 低温等离子体的工艺技术原理: 异味气体从气体收集系统收集后首先进入除水器中进行水气分离,然后再排入等离子体反应器单元,在该区域由于高能电子的作用,使异味分子受激发,带电粒子或分子间的化学键被打断,产生自由基等活性粒子,这些活性粒子和O2反应达到消除异味目的。同时空气中的水和氧气在高能电子轰击下也会产生OH 自由基、活性氧等强氧化性物质,这些强氧化性物质也会与异味分子反应,使其分解,从而促进异味消除。净化后的气体经排气筒高空排放。 低温等离子处理工艺主要是利用放电来产生很多的高能粒子,然后对分子进行降解、氧化、裂解以及电离。近年来,低温等离子处理工艺成为国内外重视的

一个重点问题。将低温等离子处理工艺应用到低浓度、大风量有机废气处理中,具有处理量大、低能耗等优点。但是,这种处理工艺在应用的过程中会产生很多副产物,不能够完全将有机废气降解为水和二氧化碳。 低温等离子废气处理工艺,低温等离子废气处理技术采用双介质阻挡放电形式产生等离子体,所产生等离子体的密度是其他技术产生等离子体密度的1500倍,初用于氟利昂类、哈隆类物质的分解处理,后延伸恶臭、异味、有毒有害气体处理。该技术节能、环保,应用范围广,所有化工生产环节产生的恶臭异味几乎都可以处理,并对二恶英有良好的分解效果。 低温等离子体降解污染物是利用这些高能电子、自由基等活性粒子和废气中的污染物作用,使污染物分子在极短的时间内发生分解,并发生后续的各种反应以达到降解污染物的目的。

低温等离子体介绍

低温等离子体介绍 基本概念 等离子体是物质存在的第四种状态。它由电离的导电气体组成,其中包括六种典型的粒子,即电子、正离子、负离子、激发态的原子或分子、基态的原子或分子以及光子。 事实上等离子体就是由上述大量正负带电粒子和中性粒子组成的,并表现出集体行为的一种准中性气体,也就是高度电离的气体。无论是部分电离还是完全电离,其中的负电荷总数等于正电荷总数,所以叫等离子体。 等离子体的分类 1、按等离子体焰温度分: (1)高温等离子体:温度相当于108~109 K完全电离的等离子体,如太阳、受控热核聚变等离子体。 (2)低温等离子体: 热等离子体:稠密高压(1大气压以上),温度103~105K,如电弧、高频和燃烧等离子体。 冷等离子体:电子温度高(103~104K)、气体温度低,如稀薄低压辉光放电等离子体、电晕放电等离子体、DBD介质阻挡放电等离子体、索梯放电等离子体等。 2、按等离子体所处的状态: (1)平衡等离子体:气体压力较高,电子温度与气体温度大致相等的等离子体。如常压下的电弧放电等离子体和高频感应等离子体。 (2)非平衡等离子体:低气压下或常压下,电子温度远远大于气体温度的等离子体。如低气压下DC辉光放电和高频感应辉光放电,大气压下DBD介质阻挡放电等产生的冷等离子体。 什么是低温(冷)等离子体? 冰升温至0℃会变成水,如继续使温度升至100℃,那么水就会沸腾成为水蒸气。随着温度的上升,物质的存在状态一般会呈现出固态→液态→气态三种物态的转化过程,我们把这三种基本形态称为物质的三态。那么对于气态物质,温度升至几千度时,将会有什么新变化呢? 由于物质分子热运动加剧,相互间的碰撞就会使气体分子产生电离,这样物质就变成由自由运动并相互作用的正离子和电子组

低温等离子体技术在有机净化废气中的应用与进展

低温等离子体技术在有机净化废气 中的应用与进展 姓名:xxx 专业:环境工程 班级:xxx 指导老师:xxx 2015年12月xx日

低温等离子体技术在净化有机废气中的应用与进展 摘要 随着现代工业的快速发展,工业三废的排放量与日俱增,尤其是挥发性有机废气(VOCs)的排放,挥发性有机废气种类繁多、毒性强、扩散面广,是继颗粒物、二氧化硫、氮氧化合物之后又一类不容忽视的大气污染物。传统的有机废气处理方法存在流程复杂、运行成本高、处理效率低下、易产生二次污染等问题。低温等离子体技术利用自由基、高能电子等活性粒子与有机废气分子发生一系列理化反应,使有害气体在短时间内迅速催化降解为CO2和H2O以及其他小分子化合物。低温等离子体技术工艺流程简单、开停方便、运行费用低、去除效率高,在治理上具有明显优势,是国内外目前的研究热点之一。本文综述了低温等离子体在催化剂处理挥发性有机废气方面的技术研究进展,并展望了等离子体技术在废气处理领域的发展方向。 关键词:低温等离子体;有机挥发性废气(VOCs);催化降解

1 引言 工农业生产过程不可避免地要排放挥发性有机废气(VOCs),这是污染环境、危害人类健康的重要来源[1-2]。挥发性有机废气排放到大气中会引起光化学烟雾、臭氧层破坏等环境问题;大部分的VOCs 还具有毒性、刺激性、甚至致癌作用,对人体健康造成严重的危害[3]。为了应对(VOCs)对环境的破坏以及对人体健康的威胁,挥发性有机废气处理技术迅速成为国内外的研究热点之一。 2 常用有机废气处理技术 目前国内外有多种技术用于处理挥发性有机废气,其中较为常见的方法有:燃烧法、冷凝法、吸收法、吸附法、生物法、低温等离子体法等。 2.1 燃烧法 通过燃烧将VOCs转化为无害物质的过程称为燃烧法[4]。燃烧法的原理是燃烧氧化作用及在高温下的热分解。因此,燃烧法只适用于处理可燃的或在高温下易分解的VOCs。 2.2 冷凝法 冷凝法处理VOCs是利用废气中的各组分饱和蒸汽压不同这一特点,采用降温、升压等方法,将气态的VOCs液化分离[5],但冷凝法不适用于低浓度废气的处理。 2.3 吸收法 吸收法的原理是吸收质(VOCs)与吸收剂(水、酸溶液、碱溶液等)发生化学反应从而达到吸收去除效果。当VOCs成分复杂需多段净化时,该方法便不再适用,并且该法设备易腐蚀,易形成二次污染[6]。 2.4 吸附法 吸附法是用多孔性固体活性炭、分子筛、交换树脂、硅胶、飞灰等吸附去除废气。吸附法对大部分VOCs均适用,一般作为其他方法的后续处理[7]。但是吸附法也有它的缺点投资高、吸附剂用量大、再生困难、能耗大、占地面积大等缺点。

低温等离子体废气处理

有机、无机废气和恶臭处理技术 市场拓展人员培训教程 (宋文国,男,1968年出生,高级工程师,从事于节能环保项目多年。邮箱:,手机:) 一、行业废气概况 煤化工废气 煤制焦过程废气 焦化废气主要来源于装煤、炼焦、化产回收等过程。装煤初期,煤料在高温条件下与空气接触,形成大量黑烟及烟尘、荒煤气及对人体健康有害的多环芳烃。炼焦时,废气一方面来自化学转化过程中未完全炭化的细煤粉及其析出的挥发组分、焦油、飞灰和泄漏的粗煤气,另一方面来自出焦时灼热的焦炭与空气接触生成的CO、CO2、NOx等,主要污染物包括苯系物(如苯并芘)、酚、氰、硫氧化物以及碳氢化合物等。 煤制气过程废气 煤制气废气的来源主要是气化炉开车过程中由于炉内结渣、火层倾斜等非正常停车而产生的逸散,另外,还有炉内的排空气形成部分废气、固定床气化炉的卸压废气、粗煤气净化工序中的部分尾气、硫和酚类物质回收装置的尾气及酸性气体、氨回收吸

收塔的排放气。这些废气的主要成分包括碳氧化物、硫氧化物、氨气、苯并芘、CO、CH4等,有些还夹杂了煤中的砷、镉、汞、铅等有害物质,对环境及人体健康有较大的危害。 煤制油过程废气 煤的液化可分为直接液化和间接液化。煤直接液化时,经过加氢反应,所有异质原子基本被脱除,也无颗粒物,回收的硫可以获得元素硫,氮大多转化为氨。煤间接液化时,催化合成过程中的排放物不多,未反应的尾气(主要是CO)可以在燃烧器中燃烧,排放的废气中CO2和硫很少,也没有颗粒物的生成。煤液化过程对环境造成的影响较小,主要的污染物是液化残渣,这是一种高碳、高灰和高硫物质,在某些工艺中占到液化原料煤总量的40%左右,需进一步处理。 煤燃烧过程废气 煤燃烧过程主要污染物有粉尘与烟雾、SO2为主的硫化物、N2O、NO、NO2、N2O3、 N2O4等氮氧化物、Hg、Cd、Pb、Cr、As、Se、F等有害微量元素、产生温室效应的CO2等。煤直接燃烧的能量利用率低,环境污染严重。 石油化工厂废气 化工厂在生产过程中会产生大量的废气,比如:氨、三甲胺、硫化氢、二氧化硫、甲硫氢、甲硫醇、甲硫醚、二甲二硫、二硫化碳和硫化氢等无机废气;还有VOC类:苯、甲苯、二甲苯、丙

低温等离子体的产生方法

辉光放电电晕放电介质阻挡放电射频放电滑动电弧放电射流放电大气压辉光放电次大气压辉光放电 辉光放电(Glow Discharge) 辉光放电属于低气压放电(low pressure discharge),工作压力一般都低于 10mbar,其构造是在封闭的容器內放置两个平行的电极板,利用电子将中性原子和分子激发,当粒子由激发态(excited state)降回至基态(ground state)时会以光的形式释放出能量。电源可以为直流电源也可以是交流电源。每种气体都有其典型的辉光放电颜色(如下表所示),荧光灯的发光即为辉光放电。因此,实验时若发现等离子的颜色有误,通常代表气体的纯度有问题,一般为漏气所至。辉光放电是化学等离子体实验的重要工具,但因其受低气压的限制,工业应用难于连续化生产且应用成本高昂,而无法广泛应用于工业制造中。目前的应用范围仅局限于实验室、灯光照明产品和半导体工业等。 部分气体辉光放电的颜色 Gas He Ne(neon) Ar Kr Xe H2N2O2 Air Cathode Layer red yellow pink --

red-brown pink red pink Negative Glow pink orange dark-blue green orange-green thin-blue blue yellow-white blue Positive Column Red-pink red-brown dark-red blue-purple white-green pink red-yellow red-yellow red-yellow 次大气压下辉光放电(HAPGD)产生低温等离子体 由于大气压辉光放电技术目前虽有报道但技术还不成熟,没有见到可用于工业生产的设备。而次大气压辉光放电技术则已经成熟并被应用于工业化的生产中。次大气压辉光放电可以处理各种材料,成本低、处理的时间短、加入各种气体的气氛含量高、功率密度大、处理效率高。可应用于表面聚合、表面接枝、金属渗氮、冶金、表面催化、化学合成及各种粉、粒、片材料的表面改性和纺织品的表面处理。次大气压下辉光放电的视觉特征呈现均匀的雾状放电;放电时电极两端的电压低而功率密度大;处理纺织品和碳纤维等材料时不会出

低温等离子体技术介绍

技术介绍 --低温等离子体 低温等离子体是继固态、液态、气态之后的物质的第四态,当外加电压达到气体的着火电压时,气体被击穿,产生包括电子、各种离子、原子和自由基在内的混合体。放电过程中虽然电子温度很高,但重粒子温度很低,整个体系呈现低温状态,所以称为低温等离子体。低温等离子体降解污染物是利用这些高能电子、自由基等活性粒子和废气中的污染物作用,使污染物分子在极短的时间内发生分解,并发生后续的各种反应以达到分解污染物的目的。 “QHDD-Ⅱ”低温等离子体工业废气处理成套设备和技术作为一种新型的气态污染物的治理技术是一个集物理学、化学、生物学和环境科学于一体的交叉综合性电子化学技术,由于能很容易使污染物分子高效分解且处理能耗低等特点,是目前国内外大气污染治理中最富有前景、最行之有效的技术方法之一,其使用和推广前景广阔,为工业领域VOC类有机废气及恶臭气体的治理开辟了一条新的思路。 低温等离子体废气处理技术与其他废气治理方法优缺点对比 表1-2 几种废气处理工艺的适用范围及优缺点 工艺名称原理适用范围优点缺点 掩蔽法采用更强烈的芳香气味与臭气掺和,以掩蔽臭气,使之能被人接收适用于需立即、暂时地消除低浓度恶臭气体影响地场合,恶臭强度左右,无组织排放源可尽快消除恶臭影响,灵活性大,费用低恶臭成分并没有被去除,麻痹了对原有污染物的感知 热力燃烧法在高温下恶臭物质与燃料气充分混和,实现完全燃烧适用于处理高浓度、小气量的可燃性气体净化效率高,恶臭物质被彻底氧化分解设备易腐蚀,消耗燃料,处理成本高,易形成二次污染,催化剂中毒 催化燃烧法

水吸收法利用臭气中某些物质易溶于水的特性,使臭气成分直接与水接触,从而溶解于水达到脱臭目的水溶性、有组织排放源的恶臭气体工艺简单,管理方便,设备运转费用低产生二次污染,需对洗涤液进行处理;净化效率低,应与其他技术联合使用,对水溶性差的物质等处理效果差 药液吸收法利用臭气中某些物质和药液产生化学反应的特性,去除某些臭气成分适用于处理大气量、高中浓度的臭气能够有针对性处理某些臭气成分,工艺较成熟净化效率不高,消耗吸收剂,易形成而二次污染 吸附法利用吸附剂的吸附功能使恶臭物质由气相转移至固相适用于处理低浓度,高净化要求的恶臭气体净化效率很高,可以处理多组分恶臭气体吸附剂费用昂贵,再生较困难,要求待处理的恶臭气体有较低的温度和含尘量 生物滤池恶臭气体经过除尘增湿或降温等预处理工艺后,从滤床底部由下向上穿过由滤料组成的滤床,恶臭气体由气相转移至水—微生物混和相,通过固着于滤料上的微生物代谢作用而被分解掉目前研究最多,工艺最成熟,在实际中也最常用的生物脱臭方法,又可细分为土壤脱臭法、堆肥脱臭法、泥炭脱臭法等。净化效率高,处理费用低占地面积大,易堵塞,填料需定期更换,脱臭过程很难控制,受温度和湿度的影响大,生物菌培训需要较长时间,遭到破坏后恢复时间较长。 生物滴滤池原理同生物滤池式类似,不过使用的滤料是诸如聚丙烯小球、陶瓷、木炭、塑料等不能提供营养物的惰性材料。只有针对某些恶臭物质而降解的微生物附着在填料上,而不会出现生物滤池中混和微生物群同时消耗滤料有机质的情况池内微生物数量大,能承受比生物滤池大的污染负荷,惰性滤料可以不用更换,造成压力损失小,而且操作条件极易控制占地面积大,需不断投加营养物质,而且操作复杂,受温度和湿度的影响大,生物菌培训需要较长时间,遭到破坏后恢复时间较长。 洗涤式活性污泥脱臭法将恶臭物质和含悬浮物泥浆的混和液充分接触,使之在吸收器中从臭气中去除掉,洗涤液再送到反应器中,通过悬浮生长的微生物代谢活动降解溶解的恶臭物质有较大的适用范围可以处理大气量的臭气,同时操作条件易于控制,占地面积小设备费用大,操作复杂而且需要投加营养物质 曝气式活性污泥脱臭法将恶臭物质以曝气形式分散到含活性污泥的混和液中,通过悬浮生长的微生物降解恶臭物质适用范围广,目前日本已用于粪便处理场、污水处理厂的臭气处理活性污泥经过驯化后,对不超过极限负荷量的恶臭成分,去除率可达%以上。受到曝气强度的限制,该法的应用还有一定局限

低温等离子体技术及其在环保领域的应用

Advances in Environmental Protection 环境保护前沿, 2014, 4, 136-145 Published Online August 2014 in Hans. https://www.doczj.com/doc/b911164272.html,/journal/aep https://www.doczj.com/doc/b911164272.html,/10.12677/aep.2014.44019 Non-Thermal Plasma Technique and Its Application in the Field of Environmental Protection Zhiwei Ding, Yunlong Xie*, Kai Yan, Hongjuan Xu, Yijun Zhong Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua Email: *xieyunlong@https://www.doczj.com/doc/b911164272.html, Received: May 24th, 2014; revised: Jun. 20th, 2014; accepted: Jun. 29th, 2014 Copyright ? 2014 by authors and Hans Publishers Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). https://www.doczj.com/doc/b911164272.html,/licenses/by/4.0/ Abstract In the last thirty years, non-thermal plasma (NTP) technology has been developed for the envi-ronmental protection, which has been more and more widely used in air pollutants, especially in volatile organic compounds (VOCs), NO x, SO2, etc. This work systematically introduces the me-chanism of producing NTP and eliminating pollutants, and highlights its application to the treat-ment of air pollutants. Furthermore, the influencing factor of treatment efficiency of the NTP and the current research situation of the NTP combined with other technologies are further summa-rized and analyzed. At last, this paper puts forward a promising viewpoint to better use the Non-thermal Plasma technology. Keywords Non-Thermal Plasma (NTP), Air Pollution Treatment, Environmental Protection, Synergistic Effect 低温等离子体技术及其在环保领域的应用 丁志威,谢云龙*,颜凯,许红娟,钟依均 浙江师范大学先进催化材料教育部重点实验室,金华 Email: *xieyunlong@https://www.doczj.com/doc/b911164272.html, *通讯作者。

等离子体技术在大气污染防治中的应用

等离子体技术在大气污染防治中的应用 等离子体技术在大气污染防治中的应用 发布时间:2010-09-19 08:51:48 1 等离子体概况 1.1 等离子体及等离子体技术的基本概念等离子体是由大量正负带电粒子和中性粒子组成的,并表现出集体行为的一种准中性非凝聚系统,整个体系呈电中性,具有与一般气体不同的性质, 容易受磁场、电场的影响它为化学反应提供必须的能量粒子和活性物种,在化学工业、 材料工业、电子工业、机械工业、国防工业、生物医学和环境保护等方面有着广泛的应用。它是物质存在的基本形态之一,与固态、液态、气态并列,成为物质第四态。 1.2 等离子体产生的机理及方法当气体分子以一定的方式在外部激励 源的电场被加速 获能时, 能量高于气体原子的电离电势时, 电子与原子间的 非弹性碰撞将导致电离而产生离子电子,当气体的电离率足够大

时,中性粒子的物理性质开始退居次要地位。整个系统受带电粒子的支配,此时电离的气体即为等离子体。等离子体发生器有以下两大类共计八种产生方法。 等离子包括放电等离子和化学等离子,放电等离子可分 为有电极和无电极两类。有电极有电弧放电、辉光放电、电晕放电 和无声放电。无电极有高频感应、微波放电和激波 放电。其中电弧放电、辉光放电和高频放电分直流和交流两种。电弧 直流放电有内极和外极之分。 1.3 等离子体的分类及特点应用按热力学状态不同和中性气体温度的 高低,等离子体可分为高温等离子体和低温等离子体,按温度可将等 离子体划分为热力学平衡态等离子体和非热力学平衡态等离子体。当 电子温度(Te)与离子温度(Ti)、中性粒子温度(Tg)相等时,等离子体处于热力学平衡状态,称之为平衡态等离子体(Equilibrium Plasma) 。因为温度一般在5000K 以上,故而又称其为高温等离子体(Thermal Plasma) 。当Te>>Ti 时,称之为非平衡态等离子体(Non—thermal Equilibrium Plasma) 。其电子温度高达10 的四次方K 以上,而其离子和中性粒子的温度却低至300~500 K ,因此,整个体系的表观温度还是很低的,故又称之为低温等离子体(Cold Plasma), 而低温等离子体可分为热等离子体、冷等离子体和燃烧等离子体。热等 离子体为局域热力学平衡态等离子体,是由高强度直流电弧放电与高频感应耦合放电产生的,其特点是重粒子(原子、分子、离子)温度接近于电子温度;冷等离子体是非平衡等离子体,是由辉光放电、微波放电、电晕放电或无声放电产生的,其特点是电子温度远远高于重粒子温度;燃烧等离子体通过燃烧形成,其特点是电离度极

等离子体表面处理技术

等离子体表面处理技术的原理及应用 前言:随着高科技产业的讯速发展,各种工艺对使用产品的技术要求越来越高。 等离子表面处理技术的出现,不仅改进了产品性能、提高了生产效率,更随着高科技产业的迅猛发展,各种工艺对使用产品的技术要求也越来越高。这种材料表面处理技术是目前材料科学的前沿领域,利用它在一些表面性能差和价格便宜的基材表面形成合金层,取代昂贵的整体合金,节约贵金属和战略材料,从而大幅度降低成本。正是这种广泛的应用领域和巨大的发展空间使等离子表面处理技术迅速在国外发达国家发展起来。 一、等离子体表面改性的原理 等离子,即物质的第四态,是由部分电子被剥夺后的原子以及原子被电离后产生的正负电子组成的离子化气状物质。它的能量范围比气态、液态、固态物质都高,存在具有一定能量分布的电子、离子和中性粒子,在与材料表面的撞击时会将自己的能量传递给材料表面的分子和原子,产生一系列物理和化学过程。其作用在物体表面可以实现物体的超洁净清洗、物体表面活化、蚀刻、精整以及等离子表面涂覆。 二、等离子体表面处理技术的应用 1、在工艺产业方面的应用 1)、在测量被处理材料的表面张力 表面张力测定是用来评估材料表面是否能够获得良好的油墨附着力或者粘接附着品质的重要手段。为了能够评估等离子处理是否有效的改善了表面状态,或者为了寻求最佳的等离子表面处理工艺参数,通常通过测量表面能的方式来测定表面,比如使用Plasmatreat 测试墨水。最主要的表面测定方式包括测试墨水,接触角测量以及动态测量 评价表面状态 低表面能, 低于28 mN/m良好的表面附着能力,高表面能 2)预处理–Openair? 等离子技术,对表面进行清洗、活化和涂层处理的高技术表面处理工艺 常压等离子处理是最有效的对表面进行清洗、活化和涂层的处理工艺之一,可以用于处理各种材料,包括塑料、金属或者玻璃等等。 使用Openair?等离子技术进行表面清洗,可以清除表面上的脱模剂和添加剂等,而其活化过程,则可以确保后续的粘接工艺和涂装工艺等的品质,对于涂层处理而言,则可以进一步改善复合物的表面特性。使用这种等离子技术,可以根据特定的工艺需求,高效地对材料进行表面预处理。

低温等离子体技术在环保方面的应用研究进展

低温等离子体技术在环保方面的应用研究进展 ** 摘要:本文介绍了等离子体相关概念及产生原理,对低温等离子体技术在环境治理方面的应用研究进展做了概述,内容涉及低温等离子体技术对废水和废气的净化处理。关键字:低温等离子体;环保;技术 1、引言 等离子体(Plasma)一种由自由电子和带电离子为主要成分的物质形态,广泛存在于宇宙中,也是宇宙中丰度最高的物质形态[1][2],常被视为是物质的第四态(另一种第四态是液晶体),被称为等离子态,或者“超气态”,也称“电浆体”。 等离子体具有很高的电导率,与电磁场存在极强的耦合作用。等离子体是由克鲁克斯在1879年发现的,1928年美国科学家欧文·朗缪尔和汤克斯(Tonks)首次将Plasma 一词引入物理学,用来描述气体放电管里的物质形态[3],Plasma是源自希腊文,意为可形塑的物体,此字有随着容器形状改变自身形状之意,如灯管中的等离子体会随着灯管的形状改变自身的形状。严格来说,等离子体是具有高位能高动能的气体团,等离子体的总带电量仍是中性,借由电场或磁场的高动能将外层的电子击出,结果电子已不再被原子核束缚,而成为高位能高动能的自由电子。 1.1、等离子体的形成原理 等离子体通常被视为物质除固态、液态、气态之外存在的第四种形态。如果对气体持续加热,使分子分解为原子并发生电离,就形成了由离子、电子和中性粒子组成的气体,这种状态称为等离子体。除了加热之外,还可以利用如加上强电磁场等方法使其解离。当外加电压达到气体的着火电压时,气体被击穿,产生包括电子、各种离子、原子核自由基在内的混合体。放电过程中虽然电子温度很高,但重粒子温度很低,整个体系

相关主题
文本预览
相关文档 最新文档