当前位置:文档之家› 波形钢腹板组合梁应用与研究进展_邓勇

波形钢腹板组合梁应用与研究进展_邓勇

波形钢腹板组合梁应用与研究进展_邓勇
波形钢腹板组合梁应用与研究进展_邓勇

收稿日期:2009-09-18

作者简介:邓勇(1971—),男,高级工程师,主要从事桥隧方面的施工管理工作

波形钢腹板组合梁应用与研究进展

(中铁十八局集团隧道公司,天津300222)

摘 要:波形钢腹板组合梁具有施工速度快、节省支架和模板等优点,具有十分广阔的应用前景。在简要叙述波形钢腹板组合梁的组成及受力特点、国内外应用情况的基础上,重点介绍了波形钢腹板组合梁的抗剪性能、抗弯性能及抗扭转畸变性能在国内、外研究进展情况,指出了目前存在的问题与不足,并提出了建议,包括:如何考虑混凝土板及连接件对组合梁抗剪承载力的有利作用,不考虑波形钢腹板对梁整体抗弯的有利影响,进一步加强关于扭转畸变的研究等。

关键词:波形钢腹板组合梁;抗剪性能;抗弯性能;抗扭性能

中图分类号:U 448.216 文献标识码:A 文章编号:1672-3953(2009)06-0001-04

波形钢腹板组合梁是以波形钢板作为箱梁腹板的新型结构形式,与普通预制箱梁和预制组合箱梁相比,具有以下优点:①腹板对施加预应力和混凝土板的收缩、徐变产生的变形不起约束作用,大大减小了预应力在腹板中的损失;②省略了腹板的模板拼装和钢筋布置;③便于采用体外预应力,且体外预应力束便于更换,有利于桥梁的维修和加固;④波形钢腹板使桥梁具有较强的美感,适合在城市桥梁中使用。

波形钢腹板具有较好的抗剪性能,几毫米厚的波形钢腹板所能承受的剪力与数十厘米厚的混凝土腹板相当,用其作为混凝土箱梁的腹板,不但充分满足了腹板的力学性能要求,而且大幅度的减轻了主梁自重,缩减了包括基础在内的下部结构所承受的上部恒载,大幅减轻了桥梁上部结构的自重,减少了下部结构的工程量,降低了工程造价,提高了桥梁的跨越能力;同时避免了腹板的开裂问题,耐久性能好。

此外,在施工中波形钢腹板采用工厂化生产、现场拼装,加快了施工进度;更为重要的是,波形钢腹板有效地解决了传统预应力混凝土箱梁的腹板裂缝问题。由于减少了大量的支架、模板和混凝土浇筑工程,省去了施工时在腹板中布置钢筋、预埋管道、设置模板等繁杂工作,从而方便了施工,缩短了工期,因此该类型桥梁的应用前景十分广阔。

1国内外工程中的应用

第一座采用波形钢腹板PC 组合箱梁结构的桥

梁是法国Campenon Bernard (简称CB )公司于1986年修建的Cognac 高架桥。1988年美国钢结构协会AISC 将波形钢腹板预应力组合箱梁作为新型的桥梁结构形式进行了介绍。日本于20世纪80年代末从法国引进波形钢腹板PC 组合箱梁桥技术,并进行了一系列的研究,PS 株式会社于1993年修建了第一座波形钢腹板PC 简支梁桥———新开桥,随后又建造了银山御幸桥、本谷桥、日见桥以及矢作川桥等一系列桥梁,其中有连续梁桥、连续刚构桥、部分斜拉桥和斜拉桥,不仅拓宽了该类型桥的使用范围,还发展了其设计和施工技术,取得了较为丰硕的成果[1]。在国内一些科研单位的推动下,波形钢腹板桥在我国也有了较大的进展。2005年1月我国首座波形钢腹板PC 组合连续箱梁人行桥———长征桥完成,该桥位于江苏省淮安市长征小学西侧,跨越里运河,分别连接河南路和漕运西路的人行道。为了增强城市美感及适应周边环境,长征桥采用有较强立体感、外形美观的波形钢腹板PC 连续箱梁结构形式,并配以四个造型优美、寓意“天天向上”的螺旋式转梯。2005年7月建成的泼河大桥是我国首座波形钢腹板组合箱梁公路桥,该桥位于河南省道213线光山县境内,全长120m ,其结构为4孔30m 先简支后连续装配式体外预应力波形钢腹板组合箱梁结构[2]。国外典型的工程实例见表1[1,3]。从国内外已建成的波形钢腹板箱梁桥来看,无论是结构形式、预应力体系,还是施工工艺,都有独到之处,均具有体外预应力摩擦损失小、施工方便,抗剪强度高、自重轻等优点。此外,波形钢腹板组合箱梁恰恰具有轻型化、装配化、美观和施工方便,并综述

Sum min g -u p

DOI :10.13219/j .gjgyat .2009.06.010

表1波形钢腹板组合梁典型工程

桥名结构形式结构布置/m建成时间法国Cog nac桥3跨连续梁31.0+43.0+31.01986日本新开桥单跨简支梁30.01993法国Dole7跨连续梁48.0+5×80.0+48.01994日本银山御幸桥5跨连续梁27.4+3×45.5+44.91996日本本谷桥3跨连续刚构44.0+97.2+56.01998日本小犬丸川桥6跨连续刚构49.9+4×81.0+54.12001日本日见桥3跨部分斜拉桥91.8+180.0+91.82003日本矢作川桥4跨复合斜拉桥174.7+2×235.0+174.72004日本信乐六号桥2跨T型刚构71.8+77.82004

与西部的生态环境相协调的特点,所以波形钢腹板箱梁在我国将有广阔的应用前景[4]。

2 国内外研究进展

2.1波形钢腹板抗剪性能

从20世纪80年代波形钢腹板开始运用到实际工程中以来,各国学者均对其抗剪性能进行了一系列试验。20世纪90年代,Elgaaly和H amilto n对21根波形钢腹板梁开展了试验研究,试验参数包括波形钢板的厚度、构造尺寸和集中力作用点到支座处的距离与腹板高度的比值[5-7]。试验表明波形钢腹板梁的剪力完全由腹板承担,且其剪应力沿梁高基本呈等值分布。钢腹板的破坏是由于屈曲造成的,当波纹较密时,由整体屈曲强度控制;当波纹较疏时,由局部屈曲控制;而在屈曲过程中,又有可能伴随着合成屈曲。1996年Luo和Edlund考虑大变形、材料的弹塑性和荷载等因素提出了波形钢腹板工字梁的极限承载力计算公式[8]。1997年Jo hnso n 和Cafolla发现波形钢腹板的有效剪切模量比钢板自身的剪切模量降低约10%左右[9]。2002年,Ab-bas等在总结已有研究成果的基础上提出把波形钢腹板看成正交各向异性板,并对整体剪切屈曲应力进行了修正[10]。2004年,Drive r等对波形钢腹板梁的抗剪承载力提出了新的计算方法[10],认为传统方法依据平板屈曲理论过高估计了波形钢腹板梁承载力,并用有限元分析结果验证了这一结论。

重庆交通科研设计院开展了波形钢腹板受力稳定的试验研究[11],主要研究了波形数量不等的波形钢板在荷载作用下的稳定性能(局部屈曲和总体屈曲)和失稳时的承载力,探讨波形钢板的承载能力随波纹数增加而变化的规律,结果表明波形钢腹板箱梁具有较高的承载能力。2.2波形钢腹板抗弯性能

针对波形钢腹板的抗弯承载力,1993年Elgaa-ly等开展了试验[5]。试验结果表明,弯矩几乎完全由上、下翼缘承担,而波形钢腹板应力与上、下翼缘相比很小,在抵抗弯曲方面基本不起作用。其破坏形态为先于上翼缘的屈服,而后导致腹板的屈曲破坏,在进行波形钢腹箱梁设计时,可忽略波形钢腹板的贡献。1994年瑞典学者Luo等对腹板采用波形钢板的工字梁的极限承载力进行了研究,并根据有限元分析参考平钢腹板极限承载力的计算公式,建立了用于波形钢腹板梁极限承载力计算的更为精确的经验公式:

P u=γt f t wσw y

式中,P u为极限荷载,γ为与钢腹板的波纹形状有关的系数,t f和t w分别为翼缘板和腹板的厚度,σw y 为钢腹板的屈服应力[4]。

东南大学万水教授等人对波形钢腹板PC组合箱梁模型梁的抗弯性能进行了理论分析与试验研究[12]。通过理论分析,推导了梁轴向变形公式并提出了一种计算模型,并根据能量原理探讨了波形钢腹板的褶皱效应及波形钢腹板组合箱梁的弯曲应变计算模式;认为波形钢腹板对箱梁的抗弯贡献可忽略不计。长安大学通过分析波形钢腹板组合箱梁有效分布宽度、偏载效应的已有研究成果,参考国外对波形钢腹板桥中体外预应力筋的有效高度和极限应力取值,根据弯曲理论推导出波形钢腹板预制组合箱梁桥抗弯承载能力计算公式[13]。其计算的假设条件有:①钢腹板与上下混凝土翼缘板完全共同工作,不会发生相对滑移或剪切连接破坏;②不考虑腹板对抗弯承载力的有利影响;③截面的应变分布符合平截面假定;④不考虑混凝土的抗拉强度;⑤混凝土的本构关系取抛物线加水平直线型,且εu=0.003。

吴文清等人[14-16]通过试验研究及基于能量变分法的理论分析,认为波形钢腹板箱梁截面应变不符合平截面假定并提出了一种“拟平截面假定”的方法来计算此类梁的抗弯承载力。李立峰等人的研究表明波形钢腹板组合梁在弹性阶段和塑性阶段的弯曲正应变分布满足拟平截面假定,在进行抗弯承载力计算时可不考虑剪切变形的影响,设置跨中横隔板能有效提高梁的抗弯承载力[17]。

2.3波形钢腹板的扭转性能

由于波形钢腹板的弯曲刚度与上、下混凝土板相比小很多,因此断面的扭转变形不可忽略。东南大学李宏江等通过试验研究与理论分析[18]提出的箱梁结构约束扭转计算方法和畸变计算模式,即约束扭转翘曲应力采用乌曼斯基理论,畸变采用弹性地基梁法;在波形钢腹板箱梁中,约束扭转效应不可忽略。

针对波形钢腹板箱梁在偏心荷载作用下畸变效应有所增强、在跨内设置横隔板可以减小畸变翘曲正应力这一情况,交通部公路科学研究所和东南大学开展了有限元分析[19],并回归出了相应的经验公式:

S max

L =0.98432-21.01853(H

L

)+

204.892(H

L

)2-705.20171(H

L

)3

式中,S max为不同高跨比条件下横隔板间距的临界值;H为箱梁高度;L为跨度。针对不同的腹板倾角α。

3结论与展望

(1)对波形钢腹板抗剪性能的研究主要集中在板的屈曲稳定方面,认为板的屈曲包括三种模式,即局部屈曲、整体屈曲和合成屈曲;波形钢腹板承受全部的剪力,忽略混凝土板的作用及连接件对承载力的影响,如何考虑混凝土板及连接件对组合梁抗剪承载力的有利作用尚需进一步研究。

(2)由于波形钢腹板沿梁轴向刚度较小,建议不考虑波形钢腹板对梁整体抗弯的有利影响。

(3)波形钢腹板箱梁在偏心荷载下不但会产生弯曲变形,而且还会产生刚性扭转和截面畸变。由于波形钢腹板的抗弯刚度比上、下混凝土翼缘小很多,因此断面扭转变形会显著增大,这将导致混凝土板内产生较大的扭转翘曲应力。目前关于扭转畸变的研究较为薄弱,尚须进一步的研究。

(4)波形钢腹板与上下翼缘的连接部分受力非常复杂,且影响因素很多,相关研究需进一步深入。

(5)波形钢腹板箱梁动力特性的研究亟待开展。

参考文献

[1]陈宝春,黄卿维.波形钢腹板PC箱梁桥应用综述[J].

公路,2005(7):45-53

[2]陈朦朦,万 水.波形钢腹板PC组合箱梁在我国桥梁工

程中的应用[J].湖南交通科技,2006(4):124-126,146 [3]王福敏,张长青,周长晓.波形钢腹板箱梁研究成果综述

[J].公路交通技术,2001(1):28-31

[4]陈建兵,万 水,孟文杰,等.波形钢腹板PC组合箱梁

的应用与研究进展[J].黑龙江工程学院学报,2006(3): 18-22

[5]Elg aaly,M.,Hamilton,R.W.,Seshadri,A..Shear streng th

o f beams with co rrugated webs[J].Journal of Structural En-gineering,1996,122(4):390-398

[6]Elg aa ly M,Seshadri A.Girders with co rrug ated w ebs un-

der partial compressive edge lo ading[J].Journal of Str uc-ture Enginee ring,1997,123(6):783-791

[7]Elgaaly M,Seshadri A,H amilto n R W.Bending st reng th

o f steel beams w ith co r rug ated w ebs[J].Jour nal o f Str uc-ture Engineering,1997,123(6):772-782

[8]Luo R,Edlund B.U ltimate str eng th of girder s with tr ape-

zoidally co r rug ated w ebs unde r patch lo ading[J].T hin-Walled S tructur es,1996,24:135-156

[9]Jo hnson R P,Cafolla J..Co rr ug ated w ebs in plate girde rs

f or brid

g es[J].Pr oceeding s o f Institute of Civil Eng ineer-

ing Structures and Bridges:Str uctures and Building s, 1997,122(2):157-164

[10]Ro ber t,G.D.,A bba s,H.H.,Sause,R..Shea r behav-

io r of cor rugated w eb bridge girde rs[J].Jour nal o f

Structural Enginee ring,2006,132(2):195-203

[11]周长晓,王福敏,宋琼瑶.波形钢腹板稳定的理论分析及

试验研究[J].公路交通技术,2005,2(1):54-57

[12]陈建兵,万 水,喻文兵,等.波形钢腹板PC组合箱梁

弯曲性能理论分析与试验研究[J].武汉理工大学学

报,2004(1):14-17

[13]徐 岳,朱万勇,杨 岳.波形钢腹板P C组合箱梁桥抗

弯承载力计算[J].长安大学学报:自然科学版,2005

(2):60-64

[14]吴文清.波形钢腹板组合箱梁剪力滞效应问题研究

[D].南京:东南大学,2002

[15]吴文清.波形钢腹板组合箱梁在对称加载作用下剪力滞

效应的试验研究[J].中国公路学报,2003,16(2):48-51 [16]吴文清,叶见曙,万 水.波形钢腹板-混凝土组合箱梁

截面变形的拟平截面假定及其应用研究[J].工程力学, 2005,22(5):177-180

[17]李立峰,刘志才,王 芳.波形钢腹板PC组合梁抗弯承

载力的理论与试验研究[J].工程力学,2009,26(7):89-95[18]李宏江,叶见曙,万 水,等.波形钢腹板箱梁的扭转与

畸变分析及试验研究[J].桥梁建设,2003(6):1-4 [19]李宏江,叶见曙,万 水,等.波形钢腹板箱梁横隔板间

距的研究[J].公路交通科技,2004(10):51-61

Progress in Application and Study of Corrugated Steel

Webs-combined Composite Box Girders

Deng Yong

(T unnel Company of the18th Bur eau G roup of the Railw ay Building Cor po ration of China,T ia njin300222,China)

A bstract:Com po site bo x girders with corrugated steel webs have the adv antages of improving construction efficiency,and saving shoring and fo rmw o rk,and thus enjoy wide applications.Upo n the basis of briefly introducing the composition of the com po site box girde rs w ith corrugated steel w ebs,their fo rce character-istics and their applicatio ns both at ho me and abroad,stress is placed,in the paper,on the introductio n to the prog ress in the study o f the behavio r o f and the desig n me thods fo r co mpo site box girder s with co rrug a-ted steel w ebs,i.e.shear behavior,flexural behavio r,and to rsion behavior,with their existing pro blems and sho rtcoming s pointed out.Also put forw ard are so me useful propo sals including how to take into ac-count the g ood effects o f the concre te slabs,connecting parts o n the anti-torsio n bearing capability of com-posite bo x girders w ith co rrugated steel webs,and without co nsidering the g ood effects of corrugated steel webs on the integ ral anti-bending perform ance o f the beam,the study of the to rsion-caused deform ation should be streng thened.

Key words:composite box girder w ith co rrugated steel w ebs;shear behavior;flexural behavior;to rsion be-havio r

封面照片说明

根据铁道部2009年科技计划项目,由石家庄铁道学院与中国人

民解放军第六四一一工厂联合研制的WZ330型隧道挖装机,经过一

年多的攻关,2009年9月第一台样机成功下线。该机具有高效的装

载能力,高工作稳定性、高抗磨性能、低污染、高性价比,是各类隧道快

速施工的理想装渣设备。该机整体性能达到同类产品国际先进水平,

完全可以替代进口,价格仅为进口设备的一半,能大幅降低施工单位

经济负担,提高隧道施工机械化水平。

波形钢腹板桥的优点

波形钢腹板桥的优点 波形钢腹板桥可以说完全解决了腹板开裂的问题,因为腹板是钢材抗拉、抗剪强度较高,跨中下挠不敢说完全解决至少会减少,因为体外索可以补张,相当于现在的很多桥的加固,大多是增加体外索。 顾名思义波形钢腹板预应力混凝土箱形梁就是用波形钢板取代预应力混凝土箱梁的混凝土腹板作腹板的箱形梁。其显著特点是用10mm左右厚的钢板取代厚30~80cm厚的混凝土腹板。鉴于顶底板预应力束放置空间有限,导致体外索的应用则是波形钢腹板预应力混凝土箱梁的第二个特点。这两个构造特点使波形钢腹板预应力混凝土组合箱梁与预应力混凝土箱梁桥相比有如下优点:经济效益显著,节省建筑材料:采用波形钢腹板代替厚重的砼腹板,减轻了上部结构的自重20~30%, 从而使使上、下部结构的工程量获得减少,降低了工程总造价。

1、提高预应力效率,改善结构性能:波形钢腹板的纵向刚度较小, 几乎不抵抗轴向力, 因而在导入预应力时不受抵抗, 纵向预应力束可以集中加载于顶、底板, 从而有效地提高预应力效率。 2、提高了材料的使用效率:在波形钢腹板PC 箱梁桥中, 砼用来抗弯, 而波形钢腹板用来抗剪,弯矩与剪力分别由顶、底板和波形钢腹板承担,其腹板内的应力分布近似为均布图形, 而非传统意义上的三角形, 有利于材料发挥作用。 3、提高了断面结构效率:波形钢腹板PC 箱梁桥中的砼均集中在顶、底板处, 回转半径几乎增加到最大值, 大大地提高了截面的结构效率。 4、自重降低, 抗震性能好:波形钢腹板预应力混凝土箱形梁桥的腹板采用较轻的波形钢板, 其桥梁自重与一般的预应力砼箱梁桥相比大约减轻20%, 致使地震激励作用效果显著降低, 抗震性能获得一定的提高。 5、可减少现场作业, 加快施工进程:波形钢腹板PC 箱梁桥在施工过程中, 可减少大量的模板、支架和砼浇注工程, 免除在砼腹板内预埋管道的烦杂工艺, 而且波形钢腹板可以工厂化生产, 现场拼装施工, 从而加快了施工进程。施工时可利用波形钢腹板作临时设施,节省设施费用、加快施工速度:悬臂浇注时钢腹板可用作挂篮的组成部分、顶推施工时可以用腹板作导梁、现浇时可省略腹板模板。

箱梁波形钢腹板加工工艺讲解

箱梁波形钢腹板加工工艺 一、主要材料 1.钢材 Q345C 1: 波形钢腹板的第二节到第十四节4900mm,加工26件。 2:波形钢腹板的第一节和第十五节的长度为2750mm。高度分别为1733mm和1615mm各加工2件。共计4件。 3:波形钢腹板的第一节到第八节的高度分别为1733mm,1723mm,1705mm,1686mm,1668mm,1649mm,1631mm,1615mm,丛八节到十五节高度都是1615mm.1到8节拼接会出现错台.而图纸上测量都是1615mm。 焊接材料:通过焊接工艺评定试验采用与母材相匹配的焊丝、焊剂和手工焊条,且应符合相应的国标要求,CO2气体纯度不小于99.5%。 2.波形钢腹板施工 <1>钢结构的制作与安装应符合《钢结构工程施工及验收规范》(GB50205-2001)及《公路桥涵施工技术规范》(JTJ041-2000)中有关的规定。 <2>波形钢腹板采用冷加工制作前,应进行工艺试验,要求圆角外边缘不得有裂纹;冷弯加工,温度高于-5度,冷弯后冲击功不低于母材,严格控制氮含量。 我厂准备用1000T压力机.采用冷弯模压法。4道弯一次成型. 成型见(1000吨油压机示意图)

焊接: 我们主要以埋弧焊为主。焊剂HJ431 焊丝JW——1直径 4.0mm CO2气体保护焊为辅 现场焊接主要以CO2气体保护焊为主。手工焊电为辅.焊条用506高碳钢焊条。焊接电流。焊接电压要经过现场试验。 波形钢腹板之间采用贴角焊,根据接头形式做好焊接工艺评定试验,焊接尺寸高度16mm、焊接工艺和焊接参数,控制焊接变形和降低焊接残余应力。 <4>各构件焊接完毕后焊缝必须进行探伤. 各构件焊接完毕后焊缝必须进行探伤,探伤比例100%、探伤数量(全部探伤)和检验标准按照波形钢腹板制造工艺方案中有关要求执行,焊缝的一次探伤合格率须控制在95%以上。以减少焊缝的返修量和返修率,从而保证焊缝质量和结构的可靠性3.波形钢腹板防腐 波形钢腹板各部位的防护采用重防腐涂装,使用寿命为25年,设计文件提供涂装体系供业主选择,面漆的颜色按照全桥景观要求由业主进行选择。

波形钢腹板桥梁课程设计

钢—混凝土组合结构桥梁课程设计学院:土木工程学院 专业班级:桥梁1301 姓名:唐瑞龙 学号: 201301010128 指导老师:刘志文 2017年1月2日

摘要:钢—混凝土组合结构桥梁是目前桥梁工程中应用十分广泛的一种结构,与混凝土桥梁、钢桥并列齐名!在欧美、日本等国家,钢—混凝土组合桥梁的应用十分广泛,国内最近几年开始逐渐关注并建设。由于传统PC箱梁桥有跨中下挠、梁体开裂等缺点,经过大量的研究,波形钢腹板桥梁得到了极大的发展,本次课设就是运用Midas软件对波形钢腹板简支梁桥进行建模、分析,让我们熟悉波形钢腹板桥的变形及力学性能。 关键词:波形钢腹板;内力分析;迈达斯 目录 一:技术参数及设计内容 (2) 二:材料及截面..........................................3-5 三:简支梁建模过程.......................................5-8 四:运行结果.............................................9-11

一:技术参数 1. 荷载及公路等级:公路-II 级,两车道,二级公路; 2. 设计车速:80km/h 。 2. 结构形式:简支梁; 3. 计算跨径:L=40.0m ;桥宽:B=12.0m 4. 防撞护栏采用新泽西护栏(宽度50cm ,高100cm ,具体重量请根据自己拟定的图纸计算); 5. 桥面铺装采用:1cm 厚的沥青改性防水层,9cm 厚的沥青混凝土; 6. 材料: 混凝土:主梁顶、底板采用C50混凝土; 钢 材:波形钢腹板采用Q345C (屈服应力:345MPa ;设计荷载作用下 允许剪应力为120MPa ); 预应力钢束:2.15φ高强度低松弛钢绞线(抗拉强度标准值为MPa f pk 1860=,抗拉强度设计值MPa f tk 1260=,正常允许拉应力MPa f tk 1209=。) 7. 施工方法:满堂支架施工。 设计及计算内容 1. 根据所给技术参数拟定波形钢腹板PC 预应力混凝土简支梁桥相关参数(主梁、 波形钢腹板以及顶、底板预应力钢束、体外束等); 2. 计算结构在自重(一期恒载+二期恒载)作用下支座反力和截面内力(弯矩、 剪力); 3. 计算结构在公路-II 级荷载作用下的内力包络图(弯矩、剪力); 4. 对正常使用极限状态下跨中截面混凝土顶、底板外缘应力进行验算; 提示:根据《公路钢筋混凝土及预应力混凝土桥涵设计规范》第7.1.5条,使用阶段预应力混凝土受弯构件正截面混凝土最大压应力应符合下式规定: ck pt kc f 5.0≤+σσ 其中: kc σ为荷载标准组合下截面边缘混凝土的压应力;pt σ为由预加力产生的 混凝土拉应力。 5. 对正常使用极限状态下支点截面波形钢腹板的剪应力进行验算。

波形钢腹板组合梁桥的特性及应用

龙源期刊网 https://www.doczj.com/doc/b910918784.html, 波形钢腹板组合梁桥的特性及应用 作者:武林 来源:《中国科技纵横》2017年第22期 摘要:相对于传统混凝土类腹板,形钢腹板是一种新材料,能够很好地替代传统混凝土 腹板。波形钢腹板与混凝土顶及底板而构成的结构形式的桥梁称为波形钢腹板组合式桥梁。本文阐述了此桥梁的预应力力、结构设计及抗剪性、抗震性等功能特点,对其应用情况进行了分析,以期为其更好的应用提供参考。 关键词:波型刚腹板;组合桥梁;应用;特性 中图分类号:U448.216 文献标识码:A 文章编号:1671-2064(2017)22-0069-01 波型刚腹板组合桥梁以混凝土腹板的替代型腹板重新组合成的桥梁。该桥梁同传统的混凝土腹板桥梁的结构相比,取消了工字梁腹板的混凝土材料,代之的是钢腹板,钢腹板较混凝土材料更加轻巧,能够有效降低桥梁的重量[1]。同时,波形钢腹板的形状呈纵向刚度的较低波 纹形,克服了传统混凝土钢腹板中纵向桥变的限制所导致的截面预应力下降的问题。本文从波形钢腹板桥梁预应力、结构设计、抗震及抗剪性等方面来分析其特性,以探讨其在我国交通桥梁设计建设中的应用。 1 波形钢腹板组合桥梁的特征 1.1 材料性能的充分发挥 波形钢腹板的桥梁是利用其顶、钢腹板及底等混凝土翼缘板构成,且在箱梁的顶底板中施加其预应力[2]。波形钢腹板因其自身特征的抗剪性能高即轴向刚度低等特征,其比较适应于 截面剪力的成端,但其底及顶混凝土的抗剪性能不高及轴向强度强等特征,使其比较适用于截面轴向压力的承受。因此,其性能构建中的功能各异,其能够共同工作和各自发挥性能,并能在最大程度上提升钢材料及混凝土的效率。通过分析其结构发现,常规桥梁的内力分布较为均匀,分布特点同平截面假定的应力三角形分布不同,这表示钢腹板的梁材料具有较高的利用率。例如波形干板为1600型时可选择40-150米的跨径机芯组合,其板厚应为8-40毫米,波形钢腹板桥梁常用1000型、1200型、1600型等。此外,对于一个截面来说,其效率的衡量指标主要是其惯性半径的多少。因波形钢腹板-混凝土式桥梁的混凝土材料集中在截面上下缘,且能够自由增加截面惯性的半径,直至其极限值。因而,波形钢腹板能够明显提高截面和结构的效率。波形钢腹板桥梁的的尺寸应按照桥梁跨径的不同类型来选择。 1.2 箱梁自重的减轻 波形钢腹板的应用能够降低箱梁结构的恒载自重,进而对建设费用及材料使用量进行优化,可以有效降低项目造价。同时,主梁自重结构减轻后可以使地震响应显著降低,进而提高

波 形 钢 腹 板 简 介

波形钢腹板简介 波形钢腹板PC组合箱梁是一种经济、高效、施工简便的新型钢-混凝土组合结构形式,这种结构彻底地解决了传统预应力混凝土箱梁腹板的裂缝问题,对于实现桥梁轻型化,美化桥梁景观,实现桥梁建设节能降耗和可持续发展具有重要的现实意义(1)结构重量比PC 桥梁减轻约30% (2)采用体外预应力体系(3)钢腹板受力优于混凝土(4)收缩、徐变影响较大(5)钢板受压、加劲板较多波形钢腹板桥可以说完全解决了腹板开裂的问题,因为腹板是钢材抗拉、抗剪强度较高,跨中下挠不敢说完全解决至少会减少,因为体外索可以补张,相当于现在的很多桥的加固,大多是增加体外索。下面是波形钢腹板桥的优点:顾名思义波形钢腹板预应力混凝土箱形梁就是用波形钢板取代预应力混凝土箱梁的混凝土腹板作腹板的箱形梁。其显著特点是用10mm左右厚的钢板取代厚30~80cm厚的混凝土腹板。鉴于顶底板预应力束放置空间有限,导致体外索的应用则是波形钢腹板预应力混凝土箱梁的第二个特点。 这两个构造特点使波形钢腹板预应力混凝土组合箱梁与预应力混凝土箱梁桥相比有如下优点:经济效益显著,节省建筑材料:采用波形钢腹板代替厚重的砼腹板,减轻了上部结构的自重20~30%, 从而使使上、下部结构的工程量获得减少,降低了工程总造价。 1、提高预应力效率,改善结构性能:波形钢腹板的纵向刚度较小, 几乎不抵抗轴向力, 因而在导入预应力时不受抵抗, 纵向预应力束可以集中加载于顶、底板, 从而有效地提高预应力效率。 2、提高了材料的使用效率:在波形钢腹板PC 箱梁桥中, 砼用来抗弯, 而波形钢腹板用来抗剪,弯矩与剪力分别由顶、底板和波形钢腹板承担,其腹板内的应力分布近似为均布图形, 而非传统意义上的三角形, 有利于材料发挥作用。 3、提高了断面结构效率:波形钢腹板PC 箱梁桥中的砼均集中在顶、底板处, 回转半径几乎增加到最大值, 大大地提高了截面的结构效率。 4、自重降低, 抗震性能好:波形钢腹板预应力混凝土箱形梁桥的腹板采用较轻的波形钢板, 其桥梁自重与一般的预应力砼箱梁桥相比大约减轻20%, 致使地震激励作用效果显著降低, 抗震性能获得一定的提高。 5、可减少现场作业, 加快施工进程:波形钢腹板PC 箱梁桥在施工过程中, 可减少大量的模板、支架和砼浇注工程, 免除在砼腹板内预埋管道的烦杂工艺, 而且波形钢腹板可以工厂化生产, 现场拼装施工, 从而加快了施工进程。施工时可利用波形钢腹板作临时

某波形钢腹板Pc箱梁桥计算报告

南水北调波形钢腹板PC组合梁桥 计算报告 计算: 复核: 东南大学交通学院 二○一一年三月二十九日

1计算模型介绍 1.1 工程概况 本桥位于邢台至衡水高速公路邢台段上,桥梁中心桩号为K24+353.185,起点桩号为K24+218.935,终点桩号为K24+487.435,全长268.5米,跨径组合为70+120+70米,桥梁跨越南水北调渠,桥轴线与南水北调渠呈90°。本桥为(70+120+70)米的波形钢腹板预应力混凝土变截面连续箱桥。最大梁高为7.5m,最小梁高为3.5m,梁高按二次抛物线变化。桥梁平面位于直线上,纵断面位于R=20000米竖曲线上,纵坡分别为0.220%、-3.522%,桥梁总体布置图如图1-1所示。 0#1#2#3# 图1-1 南水北调大桥立面图 1.2 计算模型及参数 1.2.1 计算模型概况及计算假定 上部结构计算采用Midas/Civil-2010进行计算,单幅主梁采用空间梁单元进行模拟,全桥共88个单元和93个节点。阶段按结构特点及悬臂施工流程进行划分,共47个施工阶段。由于桥梁位于曲线半径较大,故按直桥进行计算,有限元模型如图1-2所示: 图1-2 南水北调大桥有限元模型 支承条件按图纸说明进行约束,对0#、1#、3#支座约束横向及竖向位移,对于2#

支座约束3个方向位移。 墩顶截面采用混凝土截面,波形钢腹板截面采用midas自带波形钢腹板截面,对于内衬混凝土的波形钢腹板段,等效为混凝土截面进行计算。墩顶及跨中截面如图1-3所示: (a)墩顶截面(b)跨中截面 图1-3 南水北调大桥截面示意图 混凝土采用C55,弹性模量为3.45E4MPa,混凝土线膨胀系数(以摄氏温度计)为1.0E-5。C55混凝土轴心抗压强度标准值为35.5 MPa,轴心抗拉强度标准值为2.74 MPa,轴心抗压强度设计值为24.4 MPa,轴心抗拉强度设计值为1.89 MPa。 波形钢腹板采用Q345钢材,钢板材质符合现行标准国标GB1591-94要求,弹性模量为2.06E5 MPa,热膨胀系数(以摄氏度计)为1.2E-5,计算容重为78.5kN/m3。容许轴向应力] [σ为200 MPa,容许剪应力] [τ为120 MPa。 mm,预应力钢筋采用低松弛1860钢绞线,单根钢绞线直径为15.2mm,面积为1392 弹性模量为1.95E5 MPa,标准强度为1860 MPa,热膨胀系数(以摄氏温度计)为1.2E-5。 计算中认为箱梁符合平截面假定,腹板与顶底板能共同工作且不发生相对滑移。忽略波形钢腹板对结构抗弯的贡献,由混凝土顶、底板承受全部弯矩;波形钢腹板承担所有剪力,其应力状态一般视为纯剪且沿腹板高度方向等值分布;波形钢腹板箱梁弯矩和剪力不发生相互作用。 1.2.2 荷载及荷载组合 计算中主要考虑一下几种荷载: (1)结构自重:混凝土容重为26 kN/m3,钢材为78.5 kN/m3。

波折钢腹板组合桥梁

波折钢腹板组合桥梁 1.国内外发展现状 国外将波形钢腹板运用的桥梁结构的建设可追溯至1986年,法国建成了世界上第一座波形钢腹板梁桥——Cognac,之后又接连修建了maupre桥、asterix桥及dole桥。日本从法国引进了波形腹板箱梁技术,并陆续修建了几十座波形钢腹板箱梁桥,对波形钢腹板梁技术进行了全方面的研究,将它用在连续刚构桥和部分斜拉桥中,拓展了波形形钢腹板的应用范围。 国内波形钢腹板混凝土组合结构的研究起步较晚,最近几年才开始发展,国内类似结构桥梁不多。国内先后建成的有2005年建成的江苏淮安的长征桥和河南的泼河大桥,2007年建成的青海三道河桥、南京滁河大桥等,相比国外的建设,我国技术还不够成熟,尚处于研究当中。通过采用折形钢腹板取代混凝土腹板,形成组合截面体系,减轻结构的自重,提高预应力施加效率,同时又可以解除箱梁腹板与底板的相互约束、减少温差、干燥收缩、徐变的不利影响,提高了结构的稳定性,强度及材料的使用效率,在公路桥和铁路桥具有很好的发展前景。 2.波形腹板桥的技术特点 波形腹板桥梁是采用波形腹板代替预应力混凝土箱梁中的混凝土腹板的一种组合结构,如图1所示。在传统的预应力混凝土箱梁桥中,混凝土腹板占了主梁自重的30%-40%,因此波形钢腹板桥梁可以大大减轻上部结构的自重。同时,波形钢腹板由于其折叠效应,不承受轴向力和弯矩,具有很高的抗剪屈曲性能。从这些特性上来看,波形钢腹板用于预应力混凝土桥梁极为合理,能提高混凝土顶板和底板的预应力效率,能承受足够的剪力。施工方面,由于不需要腹板的模板等施工,大大减轻了施工现场的工作量。 3.结构布置特点

预应力折腹式组合箱梁是由混凝土顶底板、折形钢腹板、横隔梁、体内外预应力钢束等组成。通过采用波折形状的钢腹板,构成钢板与混凝土组合箱梁截面体系,能够更加有 效的施加预应力。图2是该型桥梁的各种结构体系与最大跨径的关系以及结构形式和数量。图3是墩顶截面高度与主跨跨径关系,图4 是跨中截面高度与主跨跨径关系。 图2 结构体系和最大跨径的关系和结构形式和数量关系 图3 墩顶截面高度与主跨跨径关系 图4 跨中截面高度与主跨跨径关系 4.箱梁截面的连接

波形钢腹板的设计与施工

添加到百度搜藏 摘要:体外预应力技术的日趋成熟和新型建筑材料的发展,许多的工程师都在对大跨径桥梁的主梁轻型化问题。 结构桥梁在日本和欧美了应用,其特点在于它了混凝土和钢的材料特组合箱梁是新型的钢它钢与混凝土的优点,了结构的稳定性、强度及材料的使用,并且结构外形美观,抗震 梁桥的设计和施工了宝贵的经验。 在上世纪八十年代,法国设计并建造了以波形钢腹板代替箱梁的混凝土腹板的新 形钢腹板的组合结构桥梁,该箱梁的典型结构如图 本也对该类的桥梁了,在参考法国同类桥梁的基础上,修建了新开桥、本谷桥、松木七号桥等一系列桥梁,有连续梁桥,也有连续刚构桥,了其使用范

波形钢板即折叠的钢板,较高的剪切屈曲强度,用它混凝土箱梁的腹板, 不但了腹板的力学性能要求,而且大幅度减轻了主梁自重,缩减了包括基础在内的下部结构所承受的上部恒载,还省去了施工时在腹板中钢筋、设置模板等繁杂的工作。此外,波形钢板纵向伸缩自由的特点使得其几乎不抵抗轴向力,能更地对混凝土桥面板施加预应力,了预应力。组合结构能工程量、缩短工期、降低 成本,在施工性能和经济性能都的吸引力。 1 设计方法 当桥梁上部采用波形钢腹板预应力混凝土组合箱梁的结构时,和普通的钢筋混凝 土箱梁桥一样,其设计需要施工和使用阶段的不同要求。施工阶段的计算要 的施工,比如,连续梁桥可以采用悬臂施工、顶推法施工或的方法,主要的计算荷载有自重、预应力、混凝土不同龄期的收缩徐变、施工荷载等。使用阶段则要考虑汽车荷载、风荷载、温度荷载等。箱梁内通常设置体内和体外预应力,由混凝土顶板和底板内的体内预应力抵抗施工荷载和恒载,箱内的体外预应力用来抵抗活载。考虑的原因 ,是更换体外预应力钢束时结构的受力要求。 1.1 纵向抗弯计算 波形钢腹板在轴向力的作用下,轴向变形,的等效弹性模量很小。波形钢板在纵向的等效弹性模量和板厚、波纹形状,可由下式计算 Ex=αE(t/h)2 式中,Ex为等效轴向弹性模量; E为钢材的弹性模量; t为钢板厚度; α为波纹的形状系数。 此式,日本新开桥Ex=E/617。已的模型实验和有限元计算的结果,

波形钢腹板组合梁桥课程设计

波形钢腹板组合梁桥课程设计 : 班级: 学号: 指导老师:

摘要 波形钢腹板组合梁桥由于具有比较优越的结构性能,近几年来在国国外的运用越来越多,主要特点体现在:(1)自重小(相比与传统PC梁桥),有利于减轻结构自重,抗震性能好(2)波形钢腹板主要承担剪力,不能承担纵向轴力,纵向弯曲可不计入波形腹板的影响(3)波形钢腹板PC箱梁抗弯刚度、抗扭刚度与横向刚度均比混凝土PC箱梁小,设计中应注意按适当间距设计横隔板以增大其抗扭能力。除此之外,波形钢腹板组合箱梁特别适合于大、中跨径的多跨连续梁桥及连续刚构桥,当跨径超过50米时,经济效果很明显。MIDAS/Civil是针对土木结构,特别是分析象预应力箱型桥梁、悬索桥、斜拉桥等特殊的桥梁结构形式,同时可以做非线性边界分析、水化热分析、材料非线性分析、静力弹塑性分析、动力弹塑性分析,通过建模分析运算可以可以大大减轻工程计算量,提高分析设计效率,给土木工程结构分析带来很大的方便。 关键词:波形钢腹板桥梁;迈达斯;有限元分析 Abstract Corrugated steel web composite girder bridge due to structure with superior performance, more and more used in recent years at home and abroad, the main characteristics embodied in: (1) the small weight, good seismic performance of corrugated steel web plate (2) the main bear shear (3) the corrugated steel web PC box girder bending stiffness and torsional stiffness and lateral stiffness are smaller than the PC box girder concrete.In addition, corrugated steel web composite box girder is particularly suitable for large, medium span of multi-span continuous beam bridge and continuous rigid frame bridge, when the span of more than 50 m, the economic effect is obvious.MIDAS/Civil is for Civil structure, at the same time, can do a nonlinear boundary, hydration heat, the material nonlinear analysis, static elastoplastic analysis and dynamic elastoplastic analysis, through the analysis of the modeling algorithm can greatly reduce the engineering calculation, improve the efficiency of analysis and design, to make a lot of convenient for Civil engineering structure analysis.

浅谈波形钢腹板箱梁施工方法

浅谈波形钢腹板箱梁施工方法 发表时间:2017-07-24T15:06:38.250Z 来源:《基层建设》2017年第10期作者:谢文恒林栋栋[导读] 摘要:我国在2005年建成国内第一座波形钢腹板箱梁桥泼河大桥,经过10余年的研究,已逐步向大跨径组合结构发展 河南建达工程咨询有限公司河南郑州 450000 摘要:我国在2005年建成国内第一座波形钢腹板箱梁桥泼河大桥,经过10余年的研究,已逐步向大跨径组合结构发展。但在波形钢腹板组合结构体系的理论研究、试验论证和创新优化等方面仍有待研究,还需通过大量工程实践不断丰富和完善这种新型结构理论体系,从而推动钢-砼组合结构实现跨越式发展,为化解国内钢铁产能过剩、环保形势严峻等重大问题探索新的出路,基于此,本文将着重分析探 讨波形钢腹板施工工艺与控制,以期能为以后的实际工作起到一定的借鉴作用。 关键词:波形钢腹板;施工 1、波形钢腹板设计构造 由于波形钢腹板是从工厂按阶段预制,运输到施工现场进行吊装、拼装。目前波形钢腹板纵桥向连接连接主要有三种: 焊接,高强螺栓连接,焊接与高强螺栓连接相组合。波形钢腹板一般由卷材或板材弯折形成,其厚度一般不小于10mm,考虑到加工工艺一般不大于40mm。波形钢腹板形状尺寸主要三种标准型号( 1600 型,1200 型,1000 型) 。对于小跨径组合桥梁采用 1000 型或者 1200 型,对于大跨径桥梁大都采用1600 型。波形钢腹板高度及厚度主要由结构整体计算决定,假定波形钢腹板承担全部竖向剪力作用,计算主要内容有强度验算和屈曲验算。波形钢腹板与地板混凝土连接形式有两种: 内插式和外包式。内插式构造简单,受力明确是现在波形钢腹板 PC 组合箱梁桥主要应用形式;外包式钢腹板最近从国外引进,具有施工便捷快速,底板耐久性好的优点。 2、波形钢腹板的制作 波形钢腹板应选择有加工、运输能力,保证质量与工期要求,具有一定规模的工厂制造,波形钢腹板制造所使用的材料必须有材质证明并应对其进行复验,在工厂制作波形钢板时,应按《钢结构工程施工及验收规范》(GB50205-2001)和有关要求进行。波形钢腹板制造过程中,在保证焊缝质量的前提下,应尽量采用焊接收缩变形小的焊接方法及措施,所有类型的焊接在施焊前,应做焊接工艺评定实验以确定正式施焊工艺。所有的焊缝的屈服强度、抗拉强度、低温冲韧性等不应低于母材规定值,并符合现行国家标准。 波形钢腹板刚度小,在制作运输过程中应注意边角保护。在钢板表面涂装未完全干透时不得进行搬运,在运输过程中应对防腐涂装采取保护措施,避免损伤。波形钢腹板运输、储存时波形钢腹板可以多层叠放,层数不超过5层,每底层钢板应支撑在与其外形相同的木或混凝土存放垫上。 3、波形钢腹板施工 3.1、满堂支架施工法 某人行桥,于2005 年1 月竣工。它是我国建成的第一座波形钢腹板 PC 组合箱梁桥,其跨径布置为( 18.5 +30 +18.5) m,体外预应力配筋,支架法现浇施工。上部结构采用单箱单室等截面斜腹板三跨连续箱梁。长征桥采用支架上现浇的施工方法。上部结构是在支架上现浇施工,步骤为搭设施工支架→支架堆载预压→底板钢筋和转向器制作安装→波形钢腹板定位→梁底板、预应力转向块混凝土浇筑→顶板、翼板混凝土浇筑→施加预应力。为保证通航,采用支架施工,整个底模都是在贝雷架上完成的,在中跨设两个临时墩,保证施工期间的通航。 3.2、先简支后现浇连续施工法 某公路桥是我国建成的第一座波形钢腹板 PC 组合箱梁公路桥,由河南省交通规划勘察设计院设计,于2005 年 7 月竣工。泼河桥全长120 m,是一座装配式波形钢腹板 PC 连续箱梁桥,横向由4 片小箱梁组成,纵向为4 ×30 m 先简支后连续的连续梁桥。泼河大桥的施工分5 个阶段,阶段 1: 预制单跨 30 m 的简支梁,然后张拉预应力,阶段2: 安装简支梁结构的临时支座,利用架桥机吊装各片小箱梁组成简支梁,阶段 3: 现浇连续段,待其强度达到90%,张拉墩顶负弯矩钢筋,阶段4: 拆除临时支座,完成简支变连续的体系转换,阶段5: 完成桥面铺装和附属结构。 3.3、悬臂现浇法 某公路大桥位于德州至商丘高速公路上一座70 m + 11 × 120 m + 70 m 的波形钢腹板变截面连续箱梁桥,如图 1所示。该桥采用悬臂浇筑法施工,首先搭支架浇筑 0 号块,强度达到设计值的80%后再对称浇筑后续号块。 图1 3.4、顶推施工法

波形钢腹板桥在中国公路的应用

B RIDGE&TUNNEL 桥梁隧道 国内外现状分析 国外发展状况(1986~2009)二十世纪80年代末期法国建造了世界上第一座波形钢腹板PC组合箱梁桥——Cognac桥。随着这种结构的成功运用,各国都相继建造了不同数量的此类型桥梁。如法国的Asterix桥,德国的Altwipfergrund桥,挪威的Tronko桥和委内瑞拉的Caracas桥等。 日本在引进这种结构后,于1993年建造了日本国内第一座波形钢腹板组合简支箱梁桥—新开桥。目前日本是世界上此类结构应用最广的国家,箱形截面形式由最初的单箱单室,发展到多箱多室;桥型也从简支梁、连续梁、连续刚构,到目前的部分斜拉桥。波形钢腹板组合箱梁桥被广泛的运用到各个场合,跨径也逐步加大。日本通过总结新开桥、松木7号桥和本谷桥的设计与施工经验,编写了波形钢腹板PC组合箱梁桥的设计指南,而后相继建成了3跨部分斜拉桥—日见梦大桥、4跨预应力斜拉桥——矢作川斜拉桥、23跨预应力连续梁桥——宫家岛高架桥、7跨连续刚构桥——朝比奈川桥等。 桥梁的截面形式也变得多样化,如韩国的14 跨连续梁桥——Iisun桥和日本的栗东桥均采用了一箱三室的截面形式,矢作川桥采用了一箱五室的截面形式。目前,日本建成和在建的波形钢腹板PC组合箱梁桥已近200座。 国内发展近况(2001~2009)我国也开展了波形钢腹板PC组合箱梁力学特性研究和桥梁的设计与建造工作。东南大学、同济大学、哈尔滨工业大学等高校及和西安市市政设计研究院、河南省交通规划勘察设计院、重庆 交通科研设计院等设计单位以及河南海 威公司、中铁大桥局集团、邢台路桥建 设总公司等施工单位都参与过类似项 目。 国内发展近况——已建成的桥梁 江苏淮安长征人行桥(国内 第一座波形钢腹板组合箱梁人行 桥,2005.1);河南光山泼河大桥(国 内第一座装配式波形钢腹板组合箱梁 公路桥, 2005.7);重庆永川大堰河桥 (国内首座波形钢腹板箱梁简支公路梁 桥,2006);山东东营银座桥B桥、C 桥(国内第一座变截面波形钢腹板组 合箱梁桥,2007);青海三道河桥(国 内第一座一箱二室波形钢腹板组合箱 梁桥,2008);河北邢台百泉大道的 郭守敬桥和钢铁路桥等4座桥(国内 第一座一箱七室波形钢腹板组合箱梁 桥,2009);山东鄄城黄河大桥(国内 跨径最大,世界总长度最长的波形钢腹 板组合多跨连续箱梁桥,2011.6)。 国内在建的波形钢腹板PC箱梁桥 河南大广高速卫河特大桥(国内 第一座应用于高等级公路的波形钢腹板 组合结构);邢台市七里河紫金大桥 (世界在建单跨最大的波形钢腹板组合 桥);邢台至衡水高速跨南水北调大 桥;南京长江四桥引桥等。 国内的发展前景 从已建和在建的桥梁中看出,波 形钢腹板箱梁桥在跨越天然河流、峡 谷、人工干渠及城市立交中有着广泛的 应用(见图1)。 波形钢腹板组合箱梁桥的特点 可提高预应力效率和材料的使用 效率,改善结构性能。纵向体外预应力 束集中荷载与顶、底板,从而有效地提 高预应力效率;并且可以充分发挥波形 钢腹板抗剪能力强和混凝土抗压强度高 的优点。 自重降低,跨径增大,减少下部 工程量。波形钢腹板预应力混凝土箱梁 波形钢腹板桥在中国公路的应用 文/崔院生 TRANSPOWORLD 2012No.23(Dec) 226

波形钢腹板组合箱梁的性能研究

波形钢腹板组合箱梁的性能研究 摘要:波形钢腹板组合梁是一种新型的钢—混凝土组合结构,由于它充分利用了混凝土和钢的材料特点,具有良好的受力性能,并且减轻了结构的自重,因而得到了越来越广泛的应用。本文阐述了波形钢腹板箱梁的结构特点、受力性能、结构计算、结构验算的研究成果,为同类型桥梁的设计提供了设计依据。 关键词:波形钢腹板;组合箱梁 在中大跨径桥梁中,预应力混凝土箱形截面由于其抗弯和抗扭刚度大,结构稳定,因而得到了广泛的应用。但随着跨径的增大,梁的自重占整个荷载的比重也越来越高,施加的预应力大部分都是为抵抗自重所产生的内力,因此,减轻梁的自重也显得越来越有实际意义。箱形截面的顶板、底板是根据抗弯要求设计的,优化其厚度的余地很小。对混凝土腹板来说,腹板中要布置纵向预应力钢束、普通钢筋,再考虑到施工方面的影响,其厚度所占的重量可达整个截面重量的30%~40%,且减少的幅度已经很少。对箱梁来说,可能优化的部分就是腹板。 随着体外预应力技术的日趋成熟,法国提出了用平面钢板代替混凝土腹板,通过箱形截面内的体外预应力索对梁施加预应力。其中法国的Fert’e-Saint-Aubin 桥是这种结构形式的典型代表(如图1)。但是因为钢板与混凝土的弹模差别很多,混凝土收缩和徐变产生的变形收到钢板的约束,钢腹板与混凝土翼板之间会发生应力重分布现象,从而造成混凝土顶板和底板的预应力严重损失。同时,由于钢腹板承受的较大的预应力,这就要求在钢腹板上增设加劲板或增大钢板厚度或缩小加劲板的间距以防止失稳,这将会增加结构的造价,也就显示不出结构的优越性。 图1平钢腹板典型截面 后来,法国桥梁工程界用波形钢腹板代替混凝土腹板,见图2。由于几毫米厚的钢板就能承担数十厘米厚混凝土所能抵抗的剪力,而钢板重量亦仅为混凝土板的1/20左右,这样就能有效地减轻结构的重量,从而实现了桥梁的轻量化,使其具有更大的跨越能力。 图2波形钢腹板PC组合梁结构示意图 1、波形钢腹板箱梁的优缺点

我国已有波形钢腹板桥梁详细介绍

目前我国部分已建和在建波形钢腹板梁桥情况统计 近几年来,波形钢腹板梁桥在国内得到了应用和发展,表1统计了目前国内部分已建成和在建的24座采用波形钢腹板的桥梁,表后对其中16座桥梁作出了相对详细的介绍。 表1

1、江苏淮安长征人行桥 长征桥属波形钢腹板PC箱梁人行桥,该桥位于江苏省淮安市长征小学西侧,跨越里运河,分别连接河南路和漕运西路的人行道,主要解决长征小学学生和行人的通行。为了增强城市美感及适应周边环境,长征桥采用有较强立体感、外形美观的波形钢腹板PC组合连续箱梁结构形式,并配以4个造型优美螺旋式转梯。桥梁跨径布置为18.5m+30m+18.5m的三跨形式,边跨与中跨之比为0.62。其主横断面采用单箱单室截面形式。箱梁顶板宽7m,翼缘悬臂长1.63m,底板宽2.5m,箱高1.6m,底板厚15cm,顶板厚20cm,钢腹板倾斜角度与竖向成30o,体外预应力筋采用直径为15.2mm的钢绞线束,在箱梁中横隔板处设置转向块,在端横隔板处设置为锚固区。长征桥采用了在波形钢腹板的上下端部焊接钢质翼缘板,翼缘板上焊接剪力钉构成剪力键。该桥是我国第一座波形钢腹板PC组合梁人行桥,于2005年1月建成竣工。 2、河南光山泼河桥 2005年建成的泼河大桥是一座装配式波形钢腹板PC连续箱梁桥,全长120m,其结构为4孔30m先简支后连续装配式波形钢腹板PC组合箱梁。箱梁的上下缘采用混凝土板,腹板采用斜放的波纹腹板,斜交角20o,箱梁高1.6m,底板宽1.5m,底板厚15cm,顶板厚15cm,在与翼板连接处局部加厚。腹板与翼缘板的连接采用穿透式的抗剪连接件形式。泼河大桥预应力采用钢绞线体外预应力束体系,在箱梁横隔板处设置转向块。该桥是我国第一座装配式波形钢腹板PC连续箱梁公路桥。 3、重庆永川大堰河桥 大堰河桥位于重庆市永津二级公路永川段,跨越一小河,桥位地势平坦。设计为跨径25m的简支梁桥,为国内首座波形刚腹板箱梁简支公路梁桥。本桥的标准跨径为25m,计算跨径为23.7m,梁高为1.6m,波形钢腹板的倾角为25o,底板宽4.21m,顶板宽9m,在沿桥长方向设置了2道中横隔梁和2道端横隔梁。腹板与顶板和底板的连接为埋入式剪力连接件。虽然本桥的跨径较小,还是采用了6束体内预应力束和4束体外预应力束两种形式,其体内预应力束抵抗恒载弯矩,体外预应力束抵抗活载弯矩,这样可以方便以后进行体外束的重新张拉或更换,利用两道中横隔梁作为体外预应力束的转向块。 4、青海三道河桥 三道河中桥上部结构采用单箱双室波纹钢腹板预应力简支组合梁结构,跨径50m,主梁为C50混凝土,梁体采用体内外索结合张拉的方式,在横隔板及端横隔梁位置设置转向钢板及转向钢管作为体外索的转向装置。腹板采用12mm厚的波形钢腹板结构,每片钢腹板各分5段加工,每段9.6m,采用高强螺栓并配合贴角焊缝的连接方式。 5、宁波百丈跨甬新河桥 宁波市百丈路跨甬新河桥位于宁波市城市主干道百丈路,跨越甬新河。甬新河是新开挖的景观、排洪河道,标准河宽60m,是正在建设中的东部新城与老城的界河,地理位置特殊。要求跨河桥除满足美观要求外,还要体现技术创新,经过多方案比选,最后选定采用PC连续梁桥,跨径布置为24m+40m+24m,中墩两侧各10m腹板采用波形钢腹板,为国内第一座部分波形钢腹板预应力混凝土连续箱梁桥。桥梁宽50.7m,横向布置为5片单箱单室箱梁,各箱梁之间通过翼板后浇带横向刚接。主梁采用C50混凝土现浇,中跨跨中及边跨支点处

波形钢腹板组合桥梁分析计算

波形钢腹板组合桥梁 结构分析 交通运输部公路科学研究院 2010年12月

目录 1 波形钢腹板组合梁桥的特点 2 波形钢腹板组合桥计算方法研究 现状 3 基于GQJS的波形钢腹板桥结构分 析方法研究 4 GQJS软件在鄄城黄河公路大桥施 工过程计算中的应用

1 波形钢腹板组合梁桥的特点 1.1波形钢腹板混凝土箱梁的弯曲特性 ?由于波形钢腹板纵向刚度较小,设计上可以认为腹板不承担轴向力,轴向力仅由上、下混凝土板承担。?该类桥主梁的弯曲特性可以用通常的梁理论中的平截面假定来近似描述。

1 波形钢腹板组合梁桥的特点 1.2波形钢腹板混凝土箱梁的扭转特性 ?由于波形钢腹扳的纵向刚度非常小(轴向有效弹性模量是原弹性模量的几百分之一),波形钢腹板预应力结合梁桥的扭转与传统箱梁有很大不同。 ?作用在箱梁上的外扭矩,会在顶、底板中产生方向相反的水平横向力。这样就使顶、底板内产生弯矩,腹板中产生附加扭转剪应力。 ?为控制截面的扭转变形,要适当地布置横隔板,借此来降低波形钢腹板的剪应力与翼板的翘曲应力。

1 波形钢腹板组合梁桥的特点 1.3波形钢腹板混凝土箱梁的剪切屈曲稳定性 波形钢板屈曲的3种模式: ①局部屈曲模式 局部屈曲模式是指波形钢腹板的某一个波段部分出现的屈曲破坏现象。

1 波形钢腹板组合梁桥的特点 ②整体屈曲模式 整体屈曲模式是指波形钢腹板整体出现屈曲破坏现象。其特征为常规的波长较长的变形在无局部屈曲的情况下逐渐发展,与在正交异性板中的情况相似。 ③合成屈曲模式 合成屈曲模式是指波形钢腹板同时出现局部屈曲破坏和整体屈曲破坏的现象。其特征为钢板沿折叠线产生突发的、不可逆转的塑性变形。

波形钢腹板组合梁桥课程设计分析

波形钢腹板组合梁桥课程设计 姓名: 班级: 学号: 指导老师:

摘要 波形钢腹板组合梁桥由于具有比较优越的结构性能,近几年来在国内国外的运用越来越多,主要特点体现在:(1)自重小(相比与传统PC梁桥),有利于减轻结构自重,抗震性能好(2)波形钢腹板主要承担剪力,不能承担纵向轴力,纵向弯曲可不计入波形腹板的影响(3)波形钢腹板PC箱梁抗弯刚度、抗扭刚度与横向刚度均比混凝土PC箱梁小,设计中应注意按适当间距设计横隔板以增大其抗扭能力。除此之外,波形钢腹板组合箱梁特别适合于大、中跨径的多跨连续梁桥及连续刚构桥,当跨径超过50米时,经济效果很明显。MIDAS/Civil是针对土木结构,特别是分析象预应力箱型桥梁、悬索桥、斜拉桥等特殊的桥梁结构形式,同时可以做非线性边界分析、水化热分析、材料非线性分析、静力弹塑性分析、动力弹塑性分析,通过建模分析运算可以可以大大减轻工程计算量,提高分析设计效率,给土木工程结构分析带来很大的方便。 关键词:波形钢腹板桥梁;迈达斯;有限元分析 Abstract Corrugated steel web composite girder bridge due to structure with superior performance, more and more used in recent years at home and abroad, the main characteristics embodied in: (1) the small weight, good seismic performance of corrugated steel web plate (2) the main bear shear (3) the corrugated steel web PC box girder bending stiffness and torsional stiffness and lateral stiffness are smaller than the PC box girder concrete.In addition, corrugated steel web composite box girder is particularly suitable for large, medium span of multi-span continuous beam bridge and continuous rigid frame bridge, when the span of more than 50 m, the economic effect is obvious.MIDAS/Civil is for Civil structure, at the same time, can do a nonlinear boundary, hydration heat, the material nonlinear analysis, static elastoplastic analysis and dynamic elastoplastic analysis, through the analysis of the modeling algorithm can greatly reduce the engineering calculation, improve the efficiency of analysis and design, to make a lot of convenient for Civil engineering structure analysis. Keywords:Corrugated steel web plate Bridges;Midas;The finite element analysis

波形钢腹板悬臂施工工法

5.施工工艺 5.1 悬臂施工桁车设计与施工 5.1.1 悬臂桁车设计 水中墩采用悬臂施工异形桁车(加高的三角桁架式悬臂施工桁车),陆地墩采用菱形桁架式悬臂施工桁车。悬臂施工桁车由主构架、行走及锚固装置、底篮、上顶板内外模板、前吊装置、后吊装置、前上横梁、钢腹板起吊系统等组成。 图5.1-1 水中悬臂施工桁车结构图 图5.1-2 陆地悬臂施工桁车结构图

5.1.2 悬臂桁车加工 悬臂桁车在专业加工厂制作,保证质量。 5.1.3 加载试验 为了检验悬臂施工桁车的计算变形值并消除首次安装后的非弹性变形,在工厂加工时需进行悬臂施工桁车的地面加载试验。同时在悬臂施工桁车安装之后,选取一对悬臂施工桁车进行现场压重试验。 图5.1-3 悬臂桁车加载试验 5.1.4 桁车现场拼装采用25t汽车吊(陆上)、63塔吊(水中)拼装。 5.1.5 桁车行走前移 在张拉压浆结束、待水泥浆终凝后即可前移。悬臂施工桁车首次前移之前,应将连体悬臂施工桁车解体。 5.2 钢筋及预应力管道制作、安装 箱梁底模板和外侧模板就位后进行钢筋及管道的安装。 5.3 波形钢腹板运输及安装 5.3.1陆地墩波形钢腹板运输至悬臂施工桁车吊点正下方,电动葫芦起吊纵向移动至设计位置定位安装。 5.3.2水中墩波形钢腹板起吊至梁段顶面,利用主动运输平车运至桁车后端,通过增加弧形的滑梁满足波形钢腹板从后端喂入。

图5.3-1 水中墩波形钢腹板安装 5.3.3波形钢腹板精确定位 利用板节段连接预留的螺栓孔,在加厚壁钢管内穿螺杆,采用内拉外撑方式在端部定位。 图5.3-2 波形钢腹板定位 5.3.4波形钢腹板与顶底板的连接通过穿过波形钢腹板孔洞的贯穿钢筋以及焊接于波形板上、下缘的纵向连接钢筋来实现。

相关主题
相关文档 最新文档