当前位置:文档之家› 高光谱遥感图像分类方法研究

高光谱遥感图像分类方法研究

高光谱遥感图像分类方法研究
高光谱遥感图像分类方法研究

分类晋

工学硕士学位论文

(高校教师)镕‰:——编号:.

高光谱遥感图像分类方法研究

硕士研究生:杨希明

指导教师:赵春晖教授

学利专业:通信与信息系统

学位论文主审人:赵旦峰教授

哈尔滨I程大学

2007年9J1

分类处理来形成集群(即聚类),再由集群的统计参数来调整预置的参量,接着再聚类、再调整,如此不断迭代直至有关参量的变动在容忍的范围内为止。由于无监督分类没有使用任何关于数据的先验信息,所以分类效果通常较差,而且无法给出数据类别的含义。而在遥感数据分析中,研究者总是或多或少的掌握一些关于数据的先验信息,利用监督分类方法可以大幅度的提高分类的精度。

有监督分类是基于对遥感图像上样本区内地物的类属已有先验的知识,于是可以利用这些样本类别的特征作为依据来识别非样本数据的类别。那些先验的样本区便称为“训练区",其用途是“训练”判决函数以及进行分类精度评定。

在多光谱遥感图像分类中比较常用的监督分类方法是统计分类法,包括最大似然分类、最小距离法和平行六面体等。但是传统的统计模式方法常常建立在统计分析和大数定律基础上,只有当训练样本数目趋于无穷时,分类性能才能达到最优,而且样本数目随着波段数的增加而增加。高光谱遥感图像拥有较高的数据维,这样传统的统计分类方法就需要大量的样本,这是很不适用的。而且hughes曲线规律显示,随着参与分析的波段数目的增加,分类精度会出现“先增后降”的现象,这就需要研究新的分类算法,以解决高光谱的高数据维和多波段数所产生的大量训练样本和低精度问题。

20世纪80年代末,神经网络开始应用于遥感图像分类。神经网络具备了一些智能推理功能和并行运算的能力,它能自己组织和自己学习训练,可以有效的解决很多非线性问题。神经网络在处理高光谱数据是也存在一定的缺点:由于它完全依赖于经验地使用训练样本,其所需的迭代训练时间就会很长;另外它还会产生过学习问题,即对于有限的训练样本来说如果网络的学习能力过强,则无法保证它对新的样本也能够得到好的预测,即训练误差过小反而会导致推广能力下降的现象出现。在很多情况下,即使已知问题中的样本来自比较复杂的模型,但由于训练样本有限,用复杂的预测函数对样本进行学习的效果通常不如用相对简单的预测函数,当有噪声存在时更是如此111。

为了解决有限样本问题,Vapnik等人早在20世纪60年代就开始研究有限样本情况下的机器学习问题,直到90年代中,有限样本情况下的机器学习

高光谱图像分类

《机器学习》课程项目报告 高光谱图像分类 ——基于CNN和ELM 学院信息工程学院 专业电子与通信工程 学号 35 学生姓名曹发贤 同组学生陈惠明、陈涛 硕士导师杨志景 2016 年 11 月

一、项目意义与价值 高光谱遥感技术起源于 20 世纪 80年代初,是在多光谱遥感技术基础之上发展起来的[1]。高光谱遥感能够通过成像光谱仪在可见光、近红外、短波红外、中红外等电磁波谱范围获取近似连续的光谱曲线,将表征地物几何位置关系的空间信息与表征地物属性特征的光谱信息有机地融合在了一起,使得提取地物的细节信息成为可能。随着新型成像光谱仪的光谱分辨率的提高,人们对相关地物的光谱属性特征的了解也不断深入,许多隐藏在狭窄光谱范围内的地物特性逐渐被人们所发现,这些因素大大加速了遥感技术的发展,使高光谱遥感成为 21 世纪遥感技术领域重要的研究方向之一。 在将高光谱数据应用于各领域之前,必须进行必要的数据处理。常用的数据处理技术方法包括:数据降维、目标检测、变化检测等。其中,分类是遥感数据处理中比较重要的环节,分类结果不但直接提取了影像数据有效信息,可以直接运用于实际需求中,同时也是实现各种应用的前提,为后续应用提供有用的数据信息和技术支持,如为目标检测提供先验信息、为解混合提供端元信息等。 相对于多光谱遥感而言,由于高光谱遥感的波谱覆盖范围较宽,因此我们可以根据需要选择特定的波段来突显地物特征,从而能够精确地处理地物的光谱信[2]。目前,许多国家开展大量的科研项目对高光谱遥感进行研究,研制出许多不同类型的成像光谱仪。高光谱遥感正逐步从地面遥感发展到航空遥感和航天遥感,并在地图绘制、资源勘探、农作物监测、精细农业、海洋环境监测等领域发挥重要的作用。

高光谱遥感期末考复习材料

1、地面光谱测量的作用: ①地面光谱辐射计在成像光谱仪过顶时,常用于地面野外或实验室同步观测,获取下 行太阳辐射,以用于遥感器定标。 ②在一些反射率转换模型中,需要引入地面光谱辐射计测取得地面点光谱来完成 DN 值图像到反射率图像的转换。 ③地面光谱辐射计可以为图像识别获取目标光谱和建立特征项。但是,这时地面光谱 测量要在空间尺度上与图像像元尺度相对应,且要具有代表性;另外,地面光谱测 量要与高光谱图像获取条件相一致。 ④通过地面光谱辐射计测量数据和地面模拟,可以帮助人们了解某一地物被高光谱遥 感探测的可能性,理解其辐射特性,确定需要采用的探测波长、光谱分辨率、探测 空间分辨率、信噪比、最佳遥感探测时间等重要参数。 ⑤地面光谱辐射计还可以勇于地面地质填图。它可以用于矿物的光谱吸收特征,识别 地面矿物或矿物的集合,从而直接完成野外矿物填图。 ⑥可以用来建立地物的表面方向性光谱反射特性。 ⑦建立目标地面光谱数据与目标特性间的定量关系。 2、高光谱成像特点: ①高光谱分辨率。高光谱成像光谱仪能获得整个可见光、近红外、短波红外、热红外 波段的多而窄的连续光谱,波段多至几十甚至数百个,其分辨率可以达到纳米级, 由于分辨率高,数十、数百个光谱图像可以获得影像中每个像元的精细光谱。 ②图谱合一。高光谱遥感获取的地表图像包含了地物丰富的空间、辐射和光谱三重信 息,这些信息表现了地物空间分布的影像特征,同时也可能以其中某一像元或像元 组为目标获得他们的辐射强度以及光谱特征。 ③光谱波段多,在某一光谱段范围内连续成像。成像光谱仪连续测量相邻地物的光谱 信号,可以转化城光谱反射曲线,真实地记录了入射光被物体所反射回来的能量百 分比随波长的变化规律。不同物质间这种千差万别的光谱特征和形态也正是利用高 光谱遥感技术实现地物精细探测的应用基础。 3、高光谱遥感图像数据表达: ①图像立方体——成像光谱信息集。 ②二维光谱信息表达——光谱曲线。 ③三维光谱信息表达——光谱曲线图。(书本44页) 4、成像光谱仪的空间成像方式: (1)摆扫型成像光谱仪。摆扫型成像光谱仪由光机左右摆扫和飞行平台向前运动完成二维空间成像,其线列探测器完成每个瞬时视场像元的光谱维获取。扫描镜对地左右平行扫描成像,即扫描的运动方向与遥感平台运动方向垂直。其优点:可以得到很大的总视场,像元配准好,不同波段任何时候都凝视同一像元;在每个光谱波段只有一个探测元件需要定标,增强了数据的稳定性;由于是进入物镜后再分光,一台仪器的光谱波段范围可以做的很宽,比如可见光一直到热红外波段。其不足之处是:由于采用光机扫描,每个像元的凝视时间相对就很短,要进一步提高光谱和空间分辨率以及信噪比比较困难。 (2)推扫型成像光谱仪。是采用一个垂直于运动方向的面阵探测器,在飞行平台向前运动中完成二维空间扫描,它的空间扫描方向是遥感平台运动方向。其优点是:像元的凝视

高光谱遥感图像研究意义及现状

高光谱遥感图像研究意义及现状 1研究高光谱遥感图像的意义 (1) 2高光谱遥感图像分类以及其基本现状 (2) 2.1图像预处理 (3) 2.2定义感兴趣地物类别并标记训练样本 (3) 2.3特征提取与特征选择 (4) 2.4分类判决 (4) 1研究高光谱遥感图像的意义 遥感图像是按一定比例尺,客观真实地记录和反映地表物体的电磁辐射的强弱信息,是遥感探测所获得的遥感信息资料的一种表现形式,因此遥感技术应用的核心问题是根据地物辐射电磁辐射强弱在遥感图像上表现的特征,判读识别地面物体的类属及其分布特征。遥感图像特征取决于遥感探测通道、地物光谱特征、大气传播特征及传感器的响应特征等因素。只要了解这些因素对遥感图像特征的影响,则可按图像特征判读地面物体的属性及其分布范围,实现遥感图像的分类识别。 高光谱遥感图像是一种高维图像,可反映地物的空间信息和光谱信息,其数据量庞大。随着传感器的不断更新,人们已经可以在不同的航空、航天遥感平台上获取不同时空间分辨率和光谱分辨率的遥感影像。高光谱遥感与以往遥感技术相比,具有图谱合一的特征和从可见光到红外甚至热红外的一系列波段,是一种综合性的遥感技术手段。特别是在地面的信息比较微弱的情况下,高光谱遥感具有识别微弱信息和定量探测的优势。 发展高光谱遥感技术,满足军事和民用对该技术的需求,开展该领域的研究是非常必要而有实际意义的。发展以地物精确分类、地物识别、地物特征信息提取为目标的超光谱遥感信息处理模型,提高超光谱数据处理的自动化和智能化水平。 高光谱遥感技术将确定物质或地物性质的光谱与揭示其空间和几何关系的图像结合在一起,而许多物质的特征往往表现在一些狭窄的光谱范围内,高光谱遥感实现了获取地物的光谱特征同时又不失其整体形态及其与周围地物的关系。 高光谱技术产生的一组图像所提供的丰富信息可以显著地提高数据分析的质量、细节性、可靠性以及可信度,可有效地用于地物类型的像素级甚至亚像素级识别,己广泛应用于地质勘探与地球资源调查、城市遥感与规划管理、环境与

高光谱遥感技术及发展

遥感技术与系统概论 结课作业 高光谱遥感技术及发展

高光谱遥感技术及发展 摘要:经过几十年的发展,无论在遥感平台、遥感传感器、还是遥感信息处理、遥感应用等方面,都获得了飞速的 发展,目前遥感正进入一个以高光谱遥感技术、微波遥感技 术为主的时代。本文系统地阐述了高光谱遥感技术在分析技 术及应用方面的发展概况,并简要介绍了高光谱遥感技术主 要航空/卫星数据的参数及特点。 关键词:高光谱,遥感,现状,进展,应用 一、高光谱遥感的概念及特点 遥感是20 世纪60 年代发展起来的对地观测综合性技术,是指应用探测仪器,不与探测目标相接触,从远处把目标的电磁波特性记录下来,通过分析,揭示出物体的特征性质及其变化的综合性探测技术[1]。所谓高光谱遥感,即高光谱分辨率遥感,指利用很多很窄的电磁波波段(通常<10nm)从感兴趣的物体获取有关数据;与之相对的则是传统的宽光谱遥感,通 常>100nm,且波段并不连续。高光谱图像是由成像光谱仪获取的,成像光谱仪为每个像元提供数十至数百个窄波段光谱信息,产生一条完整而连续的光谱曲线。它使本来在宽波段遥感中不可

探测的物质,在高光谱中能被探测。 同其它传统遥感相比,高光谱遥感具有以下特点: ⑴波段多。成像光谱仪在可见光和近红外光谱区内有数十甚至数百个波段。 ⑵光谱分辨率高。成像谱仪采样的间隔小,一般为10nm 左右。精细的光谱分辨率反映了地物光谱的细微特征。 ⑶数据量大。随着波段数的增加,数据量呈指数增加[2]。 ⑷信息冗余增加。由于相邻波段的相关性高,信息冗余度增加。 ⑸可提供空间域信息和光谱域信息,即“图谱合一”,并且由成像光谱仪得到的光谱曲线可以与地面实测的同类地物光谱曲线相类比。近二十年来,高光谱遥感技术迅速发展,它集探测器技术、精密光学机械、微弱信号检测、计算机技术、信息处理技术于一体,已成为当前遥感领域的前沿技术。 二、发展过程 自80 年代以来,美国已经研制了三代高光谱成像光谱仪。1983 年,第一幅由航空成像光谱仪

高光谱图像分类讲解学习

高光谱图像分类

《机器学习》课程项目报告 高光谱图像分类 ——基于CNN和ELM 学院信息工程学院 专业电子与通信工程 学号 2111603035 学生姓名曹发贤 同组学生陈惠明、陈涛 硕士导师杨志景 2016 年 11 月

一、项目意义与价值 高光谱遥感技术起源于 20 世纪 80年代初,是在多光谱遥感技术基础之上发展起来的[1]。高光谱遥感能够通过成像光谱仪在可见光、近红外、短波红外、中红外等电磁波谱范围获取近似连续的光谱曲线,将表征地物几何位置关系的空间信息与表征地物属性特征的光谱信息有机地融合在了一起,使得提取地物的细节信息成为可能。随着新型成像光谱仪的光谱分辨率的提高,人们对相关地物的光谱属性特征的了解也不断深入,许多隐藏在狭窄光谱范围内的地物特性逐渐被人们所发现,这些因素大大加速了遥感技术的发展,使高光谱遥感成为21 世纪遥感技术领域重要的研究方向之一。 在将高光谱数据应用于各领域之前,必须进行必要的数据处理。常用的数据处理技术方法包括:数据降维、目标检测、变化检测等。其中,分类是遥感数据处理中比较重要的环节,分类结果不但直接提取了影像数据有效信息,可以直接运用于实际需求中,同时也是实现各种应用的前提,为后续应用提供有用的数据信息和技术支持,如为目标检测提供先验信息、为解混合提供端元信息等。 相对于多光谱遥感而言,由于高光谱遥感的波谱覆盖范围较宽,因此我们可以根据需要选择特定的波段来突显地物特征,从而能够精确地处理地物的光谱信[2]。目前,许多国家开展大量的科研项目对高光谱遥感进行研究,研制出许多不同类型的成像光谱仪。高光谱遥感正逐步从地面遥感发展到航空遥感和航天遥感,并在地图绘制、资源勘探、农作物监测、精细农业、海洋环境监测等领域发挥重要的作用。高光谱遥感技术虽然是遥感领域的新技术,但是高光谱图像的分类一直制约着高光谱遥感的应用[3,4],因此对其进行研究显得尤为重要。 高光谱遥感图像较高的光谱分辨率给传统的图像分类识别算法提出严峻的挑战。波段维数的增加不仅加重了数据的存储与传输的负担,同时也加剧了数据处理过程的复杂性,并且由于波段与波段间存在着大量的冗余信息,从而使得传统图像分类算法并不适用于高光谱遥感图像的分类。传统

高光谱遥感影像的光谱匹配算法研究概要

https://www.doczj.com/doc/b210794449.html, 中国科技论文在线高光谱遥感影像的光谱匹配算法研究 蔡燕1,梅玲2作者简介:蔡燕,(1984-),女,硕士研究生,主要研究方向:高光谱遥感 通信联系人:梅玲,(1984-),女,助理工程师,主要研究方向:水文地质. E-mail: meilingcumt@https://www.doczj.com/doc/b210794449.html, (1. 中国矿业大学环境与测绘学院,江苏徐州 221008; 2. 江苏煤炭地质勘探四队,南京 210046) 摘要:在高光谱遥感影像处理中,光谱匹配技术是高光谱地物识别的关键技术之一。本文主要围绕光谱匹配算法的研究展开,分析讨论了常用的几种光谱匹配技术的特点,根据先验知识建立了多种地物标准光谱库,并将其读入程序存储,基于Visual C++平台实现了最小距离匹配,光谱角度匹配,四值编码匹配法,最后基于混淆矩阵对分类图像进行精度比较分析并对三种编码匹配法进行比较。 关键词:高光谱;光谱匹配;最小距离匹配;光谱角度匹配;四值编码 中图分类号:TP751 The Study on the Spectral Matching Technique of hyperspectral romote sensing Cai Yan1, Mei Ling2 (1. School Of Environment Science and Spatial Informatics China University of Mining and Technology, JiangSu XuZhou 221008;

2. JiangSu Geological Prospecting Team Four, NanJing 210046 Abstract: In the hyperspectral image processing, the spectral match technique is one of key techniques to identify and classify materials in the image. This paper addresses some issues of spectral matching methods. Several algorithms are analyzed and compared, such as minimum distance matching, spectral angle mapping and quad-encoding. According to the prior knowledge, standard spectral library including typical land-cover types is built, which is stored and used for spectral matching. All of work is done in the programming environment of Visual C++. Finally, the experimental results are tested and compared when classification accuracies are computed based on confusion matrixes. Keywords:hyperspectral; spectral match; minimum distance matching; spectral angle mapping; quad-encoding 0 引言 高光谱遥感技术的发展和广泛应用是20世纪最具有标志性的科学技术成就之一,与传统的多光谱遥感技术相比,高光谱分辨率遥感的核心特点是图谱合一,即能获取目标的连续窄波段的图像数据[1]。高光谱遥感信息的分析处理集中于光谱 维上进行图像信息的展开和定量分析。 高光谱影像分类与地物识别是建立在传统的遥感图像分类算法基础之上,结合高光谱数据特点,对高光谱图像数据进行目标识别,是对遥感图像基本分类方法的扩展与延伸。高光谱遥感影像有着很高的光谱分辨率,且光谱通道连续,因此对于影像中的任一像元均能获取一条平滑而完整的光谱曲线,将其与地物波谱库中的光谱曲线进行匹配运算,实现地物识别与定量反演[2-4]。光谱匹配技术是成像光谱地物识别的关键技术之一,主要通过对地物光谱与参考光谱的匹配或地物光谱与数据库的比较,求算他们之间的相似性或差异性,突出特征谱段,有小提取光谱维信息,以便对地物特征进行详细分析[5]。本文紧紧围绕光谱匹配的算法分析了最小 距离法,光谱角度匹配法,以及四值编码法,进行精度分析与方法比较。

高光谱图像分类实验报告

实验报告 姓名专业:学号日期:2015 年12 月22 日 课程名称:高光谱遥感指导教师(学生填写): 成绩:教师签名: 一、实验项目:高光谱遥感图像的分类 二、实验类型(√选):0演示实验;1验证实验;2综合实验;3设计性实验;4创新实验 三、实验目的:利用ENVI软件实现高光谱遥感图像的分类 四、实验准备:电脑一台,ENVI Classic软件,HSI数据 五、实验简要操作步骤及结果: 1、EFFORT Folishing处理。 本次实验所用HIS数据是进行了大气校正等处理后的数据,由于数据光谱曲线呈明显的锯齿状。所以先利用EFFORT Folishing工具进行处理。 1)选择Spectral->EFFORT Folishing 2)出现“Select EFFORT Input File”对话框,选择数据,点击OK。 3)出现“EFFORT Input Parameters”窗口,进行目标的选择以及参数的设置。

处理完成后生成数据Memory1 4)将处理前后同一像元的光谱曲线进行比较

处理前光谱曲线处理后光谱曲线 可以明显看出,经过EFFORT Folishing处理后的数据,其波谱曲线比较平缓,明显的锯齿状消失。 2、Spectral Angle Mapper 光谱角填图 光谱角填图是一种监督分类技术。该算法是将图像波谱直接同参考波谱匹配的一种交互式分类方法,是一种比较图像波谱与地物波谱或波谱库中地物波谱的自动分类方法。 定义示意图

计算公式 1)选择Spectral->Mapping Methods->Spectral Angle Mapper. 2)选择Memory1数据进行处理。出现Endmember Collection:Sam窗口。 3)在#3窗口选择Overlay->Region of Interest.用Zoom视野在图像上选择感兴趣区域(明显的地物类型区域)

基于深度学习的高光谱图像分类方法

Artificial Intelligence and Robotics Research 人工智能与机器人研究, 2017, 6(1), 31-39 Published Online February 2017 in Hans. https://www.doczj.com/doc/b210794449.html,/journal/airr https://https://www.doczj.com/doc/b210794449.html,/10.12677/airr.2017.61005 文章引用: 袁林, 胡少兴, 张爱武, 柴沙陀, 王兴. 基于深度学习的高光谱图像分类方法[J]. 人工智能与机器人研究, A Classification Method for Hyperspectral Imagery Based on Deep Learning Lin Yuan 1, Shaoxing Hu 1, Aiwu Zhang 2, Shatuo Chai 3, Xing Wang 3 1School of Mechanical Engineering and Automation, Beihang University, Beijing 2 Colledge of Resource Environment and Tourism, Capital Normal University, Beijing 3 Animal husbandry and Veterinary Hospital of Qinghai University, Xining Qinghai Received: Feb. 3rd , 2017; accepted: Feb. 18th , 2017; published: Feb. 24th , 2017 Abstract Remote sensing hyperspectral imaging can obtain abundant spectral information, which provides the possibility for the analysis of high precision terrain. The hyperspectral image has the charac-teristics of “map in one”, and the full use of spectral information and spatial information in hy- perspectral image is the premise of obtaining accurate classification results. Deep learning stack machine model in automatic encoding (Stack Auto-Encoder SAE) can effectively extract data in nonlinear information, and convolutional neural network (Convolutional Neural Network, CNN) can automatically extract features from the image. Based on this, this paper presents a classifica-tion method of hyperspectral images based on deep learning. Firstly, the spectral dimension of the hyperspectral data is reduced using automatic encoding machine, then convolutional neural net-work is used as the classifier, and the pixel and its neighborhood pixels are classified together as the input of the classifier, so as to realize the hyperspectral image classification with spectral space. Keywords Hyperspectral, Image Classification, Depth Learning, Automatic Coding Machine, Convolutional Neural Network 基于深度学习的高光谱图像分类方法 袁 林1,胡少兴1,张爱武2,柴沙陀3,王 兴3 1北京航空航天大学机械工程及自动化学院,北京 2 首都师范大学资源环境与旅游学院,北京 3 青海大学畜牧兽医院,青海 西宁 收稿日期:2017年2月3日;录用日期:2017年2月18日;发布日期:2017年2月24日

高光谱遥感影像分类算法 - SVM

高光谱遥感影像分类算法——SVM 1高光谱遥感简介 20 世纪 80 年代以来,遥感技术的最大成就之一就是高光谱遥感技术的兴起[1]。高光谱遥感技术又称成像光谱遥感技术,始于成像光谱仪的研究[2]。所谓高光谱遥感(Hyperspectral Remote Sensing)通俗地说就是指利用很多很窄的电磁波波段从感兴趣的物体中获取有关数据的方法。高光谱遥感的最大特点是,在获得目标地物二维空间影像信息的同时,还可以获得高分辨率的可表征其地物物理属性的光谱信息,即人们常说的具有“图谱合一”的特性。可见,与全色、彩色和多光谱等图像数据相比,高光谱影像革命性地把地物的光谱反射信息、空间信息和地物间的几何关系结合在了一起[3]。因此,可以很客观地说,高光谱遥感是代表遥感最新成就的新型技术之一,同时也是目前国内外学者,特别是遥感领域的学者的研究热点之一[4-5]。 2高光谱遥感研究背景 在以美国为代表的成像光谱仪研制成功,并获得高光谱影像数据后,高光谱遥感影像由于其蕴含了丰富的信息(包括地物的空间位置、结构以及光谱特性等信息)使得人们对地物的识别有了显著的提高,并且在许多方面和领域(比如,农业、林业、地质勘探与调查和军事等)都体现出了潜在的巨大应用价值[6]。虽然高光谱影像数据的确为我们的提供了丰富的对地观测信息,但也正是因为高光谱庞大的数据量和高维数的问题使得我们目前对高光谱数据的处理能力显得较为低效,而这也在一定程度上制约了高光谱数据在现实生产和生活的广泛应用与推广[7-8]。因此,为了响应人们对高光谱影像数据处理方法所提出的新的迫切要求,也为了充分利用高光谱数据所包含的丰富信息以最大程度地发挥高光谱的应用价值,我们必须针对高光谱数据的独有特点,在以往遥感图像数据处理技术的基础上,进一步改善和发展高光谱遥感影像处理分析的方法与技术。 3高光谱遥感分类研究 3.1分类的意义 分类是人类了解和认识世界的不可或缺的基本手段。人类的日常生活和生产实践都离不开,也不可能离开分类活动。面对海量数据,人类需要借助计算机来对自身感兴趣的数据进行自动、高效和准确地分类。这一迫切需求已体现在各个

高光谱图像简介

高光谱遥感是指利用很多很窄的电磁波波段从感兴趣的物体中获取有关数据,高光谱遥感技术作为20世纪80年代兴起的对地观测技术,始于成像光谱仪的研究计划。 目前,我国研制的224波段的推扫高光谱成像仪(PHI)与128波段的实用型模块化机载成像光谱仪(OMIS)已经进行了多次成功的航空遥感实验。另外,中国科学院上海技术物理研究所研制的中分辨率成像光谱仪于2002年随“神州”三号飞船发射升空,这是继美国1999年发射的EOS平台之后第二次将中分辨率成像光谱仪发送上太空,从而使中国成为世界上第二个拥有航天成像光谱仪的国家。 高光谱遥感图像和常见的二维图像不同之处在于,它在二维图像信息的基础上添加光谱维,进而形成三维的坐标空间。如果把成像光谱图像的每个波段数据都看成是一个层面,将成像光谱数据整体表达到该坐标空间,就会形成一个拥有多个层面、按波段顺序叠合构成的三维数据立方体。 高光谱遥感具有不同于传统遥感的新特点: (1)波段多——可以为每个像元提供几十、数百甚至上千个波段 (2)光谱范围窄——波段范围一般小于10nm (3)波段连续——有些传感器可以再350~2500nm的太阳光谱范围内提供几乎连续的地物光谱 (4)数据量大——随着波段数的增加,数据量呈指数增加 (5)相邻谱带间相关——由于相邻谱带间高度相关,冗余信息也相对增加,这一特点也为其降维处理(包括波段选择、特征提取等)和谱间压缩提供可能 (6)随着维数的增加,超立方体的体积集中于角端,超球体和椭球体的体积集中在外壳,该特点进一步为高光谱图像的降维和压缩处理提供了理论依据。 根据高光谱图像的特点及其相关技术处理的需要,高光谱数据与其所携带的信息一般采用如下的三种空间表达方式:图像空间、光谱空间和特征空间。 1、图像空间(有空间几何位置关系) 2、光谱空间,光谱信息 3、特征空间(在光谱空间进行取样,将得到的n个数据用一个n维向量来表示,它是表示光谱响应的另一种方式。N维向量包含了对应像素的全部光谱信息。在三种表示方法中,特征空间表示法适合于模式识别中的应用。) 高光谱遥感技术将确定物质或地物性质的光谱与揭示其空间和几何关系的图像结合在一起。 支持向量机是1992~1995年由Vapnik等人在统计学习理论的基础上提出来的一种新的模式识别方法。SVM在解决小样本、非线性及高维模式识别问题中表现出许多特有的优势。目前SVM已经被广泛应用于解决高维数据的监督分类中。支持向量机的核心思想是以构造风险最小化思想为归纳原则,通过非线性映射把样本投影到高维特征空间,在高维空间中构造VC维尽可能低的最优分类面,使分类风险上界最小化,从而使分类器对未知样本具有最优的推广能力。 我国尚未解决的SVM问题:目前支持向量机应用中,判别阈值都是以理论值0作为阈值,这在线性支持向量机情况下不会产生偏差,但是在非线性情况下,由于核函数的引进,SVM 的分类判别阈值会发生偏移而不再保持为0.这样仍然采用0作为阈值,势必会影响分类效

高光谱遥感基本概念

高光谱遥感基本概念 高光谱遥感用很窄而连续的光谱通道对地物持续遥感成像的技术。在可见光到短波红外线波段其光谱分辨率高达纳米数量级,通常具有波段多特点,光谱通道数多达数十甚至上百以上,而且各光谱通道间往往是连续的,因此又称成像光谱遥感。 地物光谱特征:自然界中任何地物都具有其自身的电磁辐射规律,如具有反射、吸收,外来的紫外线、可见光、红外线和微波的某些波段的特性,他们有都具有发射某些红外线、微波的特性;少数地物还具有透射电磁波的特性。 混合像元的分解:从一个像元的实际光谱数据(一般为地物光谱混合的数据)中提取各种地物成分所占的比例的法。 成像光谱:就是在特定光谱域以高光谱分辨率同事获得连续的地物光谱图像,这使得遥感应用可以在光谱维上进行空间展开,定量分析地球表层生物理化过程与参数。 高光谱:它是一种图谱合一的成像方式,常用于遥感或同时获取图像和光谱信息的应用。 地物光谱:地物的反射率随入射波长而变化的规律。数据融合⑴概念:遥感数据融合包括不同传感器、不同空间分辨率、不同时相图像的融合,以及遥感数据与其他辅助数据如地形数据、物化探数据的融合。 ⑵三个层次:像素级,特征级,决策级。 植被指数:当光照射在植物上时,近红外波段的光大部分被植物反射回来,可见光波段的红光则大部分被植物吸收,通过对近红外和红波段反

射率的线性或非线性组合,可以消除土地光谱的影响,得到的特征指数称为。 表观光学量AOP:指随入射光场变化而变化的水体光学参数。 固有光学量IOP:指不随入射光场变化而变化,仅与水体成分有关的光学量。水色遥感:就是利用光学量来反演出水体成分的浓度。 几何校正:消除几何畸变,即定量的确定图像上的像元坐标(图像坐标)与目标物的地理坐标(地图坐标)的对应关系。 为什么要进行几何校正?遥感影像的总体变形(相对于地面真实形态而言)是平移、缩放、旋转、偏扭、弯曲及其他变形综合作用的结果。产生畸变的图像给定量分析及位置配准造成困难,因此遥感数据接收后,首先由接收部门进行校正,这种校正往往根据遥感平台、地球、传感器的各种参数进行处理。而用户拿到这种产品后,由于使用目的不同或投影及比例尺的不同,仍旧需要作进一步的几何校正。 几何校正的两个步骤:1、像元坐标转换的两种方法 ①直接纠正法:从原始图象阵列出发,依次对其中每一个像元分别计算其在输出(纠正)图像的坐标。②间接纠正法:从原始图象阵列出发,依次计算每个像元P(X, Y)在原始图象中的位置P(x, y),然后将该点的灰度值计算后返送给P(X, Y)。2、像元灰度值重新计算计算每一点的亮度值。由于计算后的(x,y)多数不在原图的像元中心处,因此必须重新计算新位置的亮度值。一般来说,新点的亮度值介于邻点亮度值之间,所以常用内插法计算。通常有三种方法:最近邻法双向线性内插法三次卷积内插法。

高光谱遥感技术综述_袁迎辉

第07卷 第08期 中 国 水 运 Vol.7 No.08 2007年 08月 China Water Transport August 2007 收稿日期:2007-5-4 作者简介:袁迎辉 女(1983—) 东华理工大学矿产普查与勘探专业在读硕士研究生 (344000) 高光谱遥感技术综述 袁迎辉 林子瑜 摘 要:高光谱分辨率遥感是20世纪80年代兴起的新型对地观测技术,与传统遥感相比,高光谱遥感具有更为广泛的应用前景。文中概述了高光谱遥感的特点、发展过程、发展程度及目前几种典型的成像光谱仪数据特点。 关键词:高光谱遥感 数据处理技术 成像光谱仪 中图分类号:TP72 文献标识码:A 文章编号:1006-7973(2007)08-0155-03 遥感是20世纪60年代发展起来的对地观测综合性技术,是指应用探测仪器,不与探测目标相接触,从远处把目标的电磁波特性记录下来,通过分析,揭示出物体的特征性质及其变化的综合性探测技术[1]。经过几十年的发展,无论在遥感平台、遥感传感器、还是遥感信息处理、遥感应用等方面,都获得了飞速的发展,目前遥感正进入一个以高光谱遥感技术、微波遥感技术为主的时代。本文系统地阐述了高光谱遥感技术在分析技术及应用方面的发展概况,并简要介绍了高光谱遥感技术主要航空/卫星数据的参数及特点。 一、高光谱遥感的概念及特点 所谓高光谱遥感,即高光谱分辨率遥感,指利用很多很窄的电磁波波段(通常<10nm)从感兴趣的物体获取有关数据[3];与之相对的则是传统的宽光谱遥感,通常>100nm,且波段并不连续。高光谱图像是由成像光谱仪获取的,成像光谱仪为每个像元提供数十至数百个窄波段光谱信息,产生一条完整而连续的光谱曲线。它使本来在宽波段遥感中不可探测的物质,在高光谱中能被探测。 同其它传统遥感相比,高光谱遥感具有以下特点: ⑴ 波段多。成像光谱仪在可见光和近红外光谱区内有数十甚至数百个波段。⑵ 光谱分辨率高。成像光谱仪采样的间隔小,一般为10nm 左右。精细的光谱分辨率反映了地物光谱的细微特征。⑶ 数据量大。随着波段数的增加,数据量呈指数增加[2]。⑷ 信息冗余增加。由于相邻波段的相关性高,信息冗余度增加。⑸ 可提供空间域信息和光谱域信息,即“图谱合一”,并且由成像光谱仪得到的光谱曲线可以与地面实测的同类地物光谱曲线相类比。 近二十年来,高光谱遥感技术迅速发展,它集探测器技术、精密光学机械、微弱信号检测、计算机技术、信息处理技术于一体,已成为当前遥感领域的前沿技术。 二、发展过程 自80年代以来,美国已经研制了三代高光谱成像光谱仪。1983年,第一幅由航空成像光谱仪(AIS-1)获取的高光谱分辨率图像的正式出现标志着第一代高光谱分辨率传感 器面世。第一代成像光谱仪(AIS),由美国国家航空和航天管理局(NASA)所属的喷气推进实验室设计,共有两种,AIS-1(1982年~1985年,128波段)和AIS-2(1985年~1987年,128波段),其光谱覆盖范围为1.2~2.4μm。 1987年,由NASA 喷气推进实验室研制成功的航空可见光/红外光成像光谱仪(AVIRIS)成为第二代高光谱成像仪的代表。与此同时,加拿大、澳大利亚、日本等国家竞相投入力量研究成像光谱仪。在AVIRIS 之后,美国地球物理环境研究公司(GER)又研制了1台64通道的高光谱分辨率扫描仪(GERIS),主要用于环境监测和地质研究。其中63个通道为高光谱分辨率扫描仪,第64通道是用来存储航空陀螺信息。 第三代高光谱成像光谱仪为克里斯特里尔傅立叶变换高光谱成像仪(FTHSI),其重量仅为35kg,采用256通道,光谱范围为400~1050nm,光谱分辨率为2~10nm,视场角为150°。而于1999年和2000年发射升空的中分辨率成像光谱仪(MODIS 和Hyperion)都已经成为主要的应用数据来源。 在国内,成像光谱仪的研制工作紧跟国际前沿技术,目前已跻身国际先进行列。先后研制成功了专题应用扫描仪、红光细分光谱扫描仪FIMS、热红外多光谱扫描仪TIMS、19波段多光谱扫描仪AMSS、71波段的模块化航空成像光谱仪MAIS、128波段的OMIS 以及244波段的推扫式成像仪PHI 等。此外,中国科学院上海技术物理研究所研制的中分辨率成像光谱仪于2002年随“神州”三号飞船发射升空,这是继美国1999年发射EOS 平台之后第二次将中分辨率成像光谱仪送上太空,从而使中国成为世界上第二个拥有航天载成像光谱仪的国家。 经过20世纪80年代的起步与90年代的发展,至90年代后期,高光谱遥感应用由实验室研究阶段逐步转向实际应用阶段。迄今为止,国际上已有许多套航空成像光谱仪与少数几个卫星成像光谱仪处于运行状态,在实验、研究以及信息的商业化方面发挥着重要作用。

高光谱遥感与多光谱遥感

何为高光谱、何为多光谱? 【知其源】 光学遥感的发展——光谱分辨率的不断提高 全色彩色多光谱高光谱 ps:看到多光谱、高光谱图像时,我的肉眼实在是无从区分它二者的区别,只能查资料啦!全色遥感影像:传感器仅获取单个波段(0。5μm-0.75μm)的黑白影像 【个人简历】 多光谱遥感 将地物辐射电磁波分隔成若干个较窄的光谱段,以摄影或扫描的方式在同一时间获得同一目标不同波段信息的遥感技术。 ?原理 不同地物具有不同的光谱特性,同一地物则具有相同的光谱特性。同一 地物在不同波段的辐射能量有差别,取得的不同波段图像上有差别。 ?优点 多光谱遥感不仅可以根据影像的形态和结构差异来判别地物,还可以根 据光谱特性的差异来判别地物,扩大了遥感的信息量。 航空摄影用的多光谱摄影,与陆地卫星所用的多光谱扫描均能得到不同 谱段的遥感资料,分谱段的图像或数据可以通过摄影彩色合成或计算机 图像处理,获得比常规方法更为丰富的图像,也为地物影像计算机识别 与分类提供了可能。

高光谱遥感 高光谱遥感起源于20世纪70年代初的多光谱遥感。它将成像技术与光谱技术结合在一起,在对目标的空间特征成像的同时,对每个空间像元经过色散形成几十乃至几百个窄波段以进行连续的光谱覆盖,这样形成的遥感数据可以用“图像立方体”来形象的描述。与传统遥感技术相比,其所获取的图像包含了丰富的空间、辐射和光谱三重信息。 高光谱遥感技术已成为当前遥感领域的前沿技术。 ?高光谱所包含的信息十分丰富,乃至海量,来看它的相关应用: 可以用于检测机器是否有裂纹、缺陷等; 检测农产品的品质,包括外部品质(大小、颜色、形状等)和内部品质(糖度、酸度等); 也可以检测产品的污染、病虫害以及一些疾病应用等 ?不同于传统遥感的新特点 1)波段多:可以为每个像元提供几十、数百甚至上千个波段 2)光谱范围窄:波段范围小于10nm 3)波段连续:有些传感器可以在350-2500nm的太阳光谱范围内提供几乎连续的地物光谱 4)数据量大:随着波段数的增加,数据量成指数增加 5)信息冗余增加:由于相邻波段高度相关,冗余信息也相对增加 ?优点 1)有利于利用光谱特征分析来研究地物 2)有利于采用各种光谱匹配模型

高光谱遥感

1、地面光谱测量的作用:;①地面光谱辐射计在成像光谱仪过顶时,常用于地面野;②在一些反射率转换模型中,需要引入地面光谱辐射计;③地面光谱辐射计可以为图像识别获取目标光谱和建立;④通过地面光谱辐射计测量数据和地面模拟,可以帮助;⑤地面光谱辐射计还可以勇于地面地质填图;⑥可以用来建立地物的表面方向性光谱反射特性;⑦建立目标地面光谱数据与目标特性间的定量关系; 2、 1、地面光谱测量的作用: ①地面光谱辐射计在成像光谱仪过顶时,常用于地面野外或实验室同步观测,获取下行太阳辐射,以用于遥感器定标。 ②在一些反射率转换模型中,需要引入地面光谱辐射计测取得地面点光谱来完成DN值图像到反射率图像的转换。 ③地面光谱辐射计可以为图像识别获取目标光谱和建立特征项。但是,这时地面光谱测量要在空间尺度上与图像像元尺度相对应,且要具有代表性;另外,地面光谱测量要与高光谱图像获取条件相一致。 ④通过地面光谱辐射计测量数据和地面模拟,可以帮助人们了解某一地物被高光谱遥感探测的可能性,理解其辐射特性,确定需要采用的探测波长、光谱分辨率、探测空间分辨率、信噪比、最佳遥感探测时间等重要参数。 ⑤地面光谱辐射计还可以勇于地面地质填图。它可以用于矿物的光谱吸收特征,识别地面矿物或矿物的集合,从而直接完成野外矿物填图。 ⑥可以用来建立地物的表面方向性光谱反射特性。 ⑦建立目标地面光谱数据与目标特性间的定量关系。 2、高光谱成像特点: ①高光谱分辨率。高光谱成像光谱仪能获得整个可见光、近红外、短波红外、热红外波段的多而窄的连续光谱,波段多至几十甚至数百个,其分辨率可以达到纳米级,由于分辨率高,数十、数百个光谱图像可以获得影像中每个像元的精细光谱。②图谱合一。高光谱遥感获取的地表图像包含了地物丰富的空间、辐射和光谱三重信息,这些信息表现了地物空间分布的影像特征,同时也可能以其中某一像元或像元组为目标获得他们的辐射强度以及光谱特征。 ③光谱波段多,在某一光谱段范围内连续成像。成像光谱仪连续测量相邻地物的光谱信号,可以转化城光谱反射曲线,真实地记录了入射光被物体所反射回来的能量百分比随波长的变化规律。不同物质间这种千差万别的光谱特征和形态也正是利用高光谱遥感技术实现地物精细探测的应用基础。 3、高光谱遥感图像数据表达: ①图像立方体——成像光谱信息集。 ②二维光谱信息表达——光谱曲线。 ③三维光谱信息表达——光谱曲线图。(书本44页) 4、成像光谱仪的空间成像方式: (1)摆扫型成像光谱仪。摆扫型成像光谱仪由光机左右摆扫和飞行平台向前运动完成二维空间成像,其线列探测器完成每个瞬时视场像元的光谱维获取。扫描镜对地左右平行扫描成像,即扫描的运动方向与遥感平台运动方向垂直。其优点:可以得到很大的总视场,像元配准好,不同波段任何时候都凝视同一像元;在每个光谱波段只有一个探测元件需要定标,增强了数据的稳定性;由于是进入物镜后再分光,一台仪器的光谱波

相关主题
相关文档 最新文档