当前位置:文档之家› 微波与天线相关问题100问

微波与天线相关问题100问

微波与天线相关问题100问
微波与天线相关问题100问

此文是笔者多年来在科研、教学及各种交流过程中挑选出来的,具有一些定代表性的问题。对于日常的学习、科研有着补充作用。

一、微波的相关问题

1、微波的波长

微波是指频率为300MHz-300GHz的电磁波,是无线电波中一个有限频带的简称,即波长在1米(不含1米)到1毫米之间的电磁波,是分米波、厘米波、毫米波的统称。微波频率比一般的无线电波频率高,通常也称为―超高频电磁波‖。

2、微波的性质

微波的基本性质通常呈现为穿透、反射、吸收三个特性。对于玻璃、塑料和瓷器,微波几乎是穿越而不被吸收。对于水和食物等就会吸收微波而使自身发热。而对金属类东西,则会反射微波。

3、介质的穿透性

通过不同介质时,会发生折射、反射、绕射、散射及吸收等等。电磁波的传播有沿地面传播的地面波,还有从空中传播的空中波以及天波。波长越长其衰减也越少,电磁波的波长越长也越容易绕过障碍物继续传播。机械波与电磁波都能发生折射\反射\衍射\干涉,因为所有的波都具有波粒两象性.折射\反射属于粒子性;衍射\干涉为波动性。

4、天波与地波

天波是靠电磁波在地面和电离层之间来回反射而传播的。天波是短波的主要传播途径。短波信号由天线发出后,经电离层反射回地面,又由地面反射回电离层,可以多次反射,因而传播距离很远(可上万公里),而且不受地面障碍物阻挡。但天波传播的最大弱点是信号很不稳定的,处理不好会影响通信效果。

沿大地与空气的分界面传播的电波叫地表面波,简称地波,传播时无线电波可随地球表面的弯曲而改变传播方向。长波无线电之传递,以地波为主。其折射率在海面与平原之吸收率均较小。在传播途中的衰减大致与距离成正比,因受气候影响甚微,在有效距离内通信可靠。

5、卫星通信

卫星通信是地球上(包括陆地、水面和低层大气中)无线电通信站之间利用人造卫星作为中继站而进行的空间微波通信,卫星通信是地面微波接力通信的继承和发展。我们知道微波信号是直接传播的,因此,可以把卫星通信看作是微波中继通信的一种特例,它只是把中继站放置在空间轨道上。

6、卫星通信使用哪些频段?

由于卫星处于外层空间,即在电离层之外,地面上发射的电磁波必须能穿透电离层才能到达卫星;同样,从卫星到地面上的电磁波也必须穿透电离层,而在无线电频段中只有微波频段恰好具备这一条件,因此卫星通信使用微波频段。

目前大多数卫星通信系统选择在下列频段工作:(1) UHF波段(400 MHz/200 MHz);(2) L 波段(1.6 GHz/1.5 GHz);(3) C波段(6.0 GHz/4.0 GHz);(4) X波段(8.0 GHz/7.0 GHz);

(5) K波段(14.0 GHz/12.0 GHz;14.0 GHz/11.0 GHz;30 GHz/20 GHz)。由于C 波段的频段较宽,又便于利用成熟的微波中继通信技术,且天线尺寸也较小,因此,卫星通信最常

用的是C 波段。

7、微波检测

根据微波反射、透射、衍射干射、腔体微扰等物理特性的改变,以及被检材料介电常数和损耗正切角的相对变化,通过测量微波基本参数(如幅度衰减、相移量或频率等)变化,实现对缺陷进行检测的方法。

8、超短波和微波的传播视距

超短波特别是微波,频率很高,波长很短,它的地表面波衰减很快,因此不能依靠地表面波作较远距离的传播。超短波特别是微波,主要是由空间波来传播的。简单地说,空间波是在空间范围内沿直线方向传播的波。显然,由于地球的曲率使空间波传播存在一个极限直视距离Rmax 。在最远直视距离之内的区域,习惯上称为照明区;极限直视距离Rmax 以外的区域,则称为阴影区。不言而语,利用超短波、微波进行通信时,接收点应落在发射天线极限直视距离Rmax 内。受地球曲率半径的影响,极限直视距离Rmax 和发射天线与接收天线的高度HT 与HR 间的关系为:

Rmax =3.57{ √HT (m)+√HR (m)} (km)

考虑到大气层对电波的折射作用,极限直视距离应修正为

Rmax =4.12 { √HT

(m)+√HR (m)} (km)

由于电磁波的频率远低于光波的频率,电波传播的有效直视距离Re 约为极限直视距离Rmax的70% ,即

Re = 0.7 Rmax 。

例如,HT 与HR 分别为49 m 和1.7 m,则有效直视距离为Re = 24 km。

9、电波的绕射传播

在传播途径中遇到大障碍物时,电波会绕过障碍物向前传播,这种现象叫做电波的绕射。超短波、微波的频率较高,波长短,绕射能力弱,在高大建筑物后面信号强度小,形成所谓的―阴影区‖。

信号质量受到影响的程度,不仅和建筑物的高度有关,和接收天线与建筑物之间的距离有关,还和频率有关。例如有一个建筑物,其高度为10 米,在建筑物后面距离200 米处,接收的信号质量几乎不受影响,但在100 米处,接收信号场强比无建筑物时明显减弱。注意,诚如上面所说过的那样,减弱程度还与信号频率有关,对于216 ~223 兆赫的射频信号,接收信号场强比无建筑物时低16dB,对于670 兆赫的射频信号,接收信号场强比无建筑物

时低20dB 。如果建筑物高度增加到50 米时,则在距建筑物1000 米以内,接收信号的场强都将受到影响而减弱。也就是说,频率越高、建筑物越高、接收天线与建筑物越近,信号强度与通信质量受影响程度越大;相反,频率越低,建筑物越矮、接收天线与建筑物越远,影响越小。

因此,选择基站场地以及架设天线时,一定要考虑到绕射传播可能产生的各种不利影响,注意到对绕射传播起影响的各种因素。

10、电波的多径传播

在超短波、微波波段,电波在传播过程中还会遇到障碍物(例如楼房、高大建筑物或山丘等)对电波产生反射。因此,到达接收天线的还有多种反射波(广义地说,地面反射波也应包括在内),这种现象叫为多径传播。

由于多径传输,使得信号场强的空间分布变得相当复杂,波动很大,有的地方信号场强增强,有的地方信号场强减弱;也由于多径传输的影响,还会使电波的极化方向发生变化。另外,不同的障碍物对电波的反射能力也不同。例如:钢筋水泥建筑物对超短波、微波的反射能力比砖墙强。我们应尽量克服多径传输效应的负面影响,这也正是在通信质量要求较高的通信网中,人们常常采用空间分集技术或极化分集技术的缘由。

11、建筑物的贯穿损耗

建筑物的贯穿损耗是指电波通过建筑物的外层结构时所受到的衰减,它等于建筑物外与建筑物内的场强中值之差。

建筑物的贯穿损耗与建筑物的结构、门窗的种类和大小、楼层有很大关系。贯穿损耗随楼层高度的变化,一般为-2dB/层,因此,一般都考虑一层(底层)的贯穿损耗。

下面是一组针对900MHz频段,综合国外测试结果的数据:

--- 中等城市市区一般钢筋混凝土框架建筑物,贯穿损耗中值为10dB,标准偏差7.3dB;郊区同类建筑物,贯穿损耗中值为5.8dB,标准偏差8.7dB。

大城市市区一般钢筋混凝土框架建筑物,贯穿损耗中值为18dB,标准偏差7.7dB;郊区同类建筑物,贯穿损耗中值为13.1dB,标准偏差9.5dB。

大城市市区一金属壳体结构或特殊金属框架结构的建筑物,贯穿损耗中值为27dB。

由于我国的城市环境与国外有很大的不同,一般比国外同类名称要高8---10dB。

对于1800MHz,虽然其波长比900MHz短,贯穿能力更大,但绕射损耗更大。因此,实际上,1800MHz 的建筑物的贯穿损耗比900MHz的要大。GSM规范3.30中提到,城市环境中的建筑物的贯穿损耗一般为15dB,农村为10dB。一般取比同类地区900MHz的贯穿损耗大5---10dB。

12、电磁波经过人体的损耗

对于手持机,当位于使用者的腰部和肩部时,接收的信号场强比天线离开人体几个波长时将分别降低4---7dB和1---2dB。一般人体损耗设为3dB。

13、车内电磁损耗

金属结构的汽车带来的车内损耗不能忽视。尤其在经济发达的城市,人的一部分时间是在汽车中度过的。一般车内损耗为8---10dB。

14、微波天线辐射卫生标准

(1)辐射标准

由于各国的标准都不一样,我们选用的标准采用有关的《电磁辐射防护规定》要求:在一天24小时内,公众环境电磁辐射场的场量参数在任意连续6分钟内的平均值应满足下表的要求

(2)实际电路的计算办法

直接计算微波中继断面附近任意A点处的功密PA:一般在距离微波天线开口距离17.1D2/λ天线近区近空附近范围内,以A点至微波天线射线中心的距离为半径,计算出此横切面上的功率密度不大于:相应的平均功率密度f/7500(W/m2)和全身平均比吸收率=0.02(w/kg)即符合要求。

二、天线的设计、安装、使用的相关问题

15、关于传输线的50、75欧的由来

对于同轴线的的使用过程来看,它是最先应用到无线通信中的,直到现在,它的应用最为广

泛。

对于同轴线,我们主要关心功率的传输及在传输过程中的能量衰减这两个问题。为了能使同轴线传输的功率最大,就要使同轴线的内外导体有一个比值,对于空气为介质的同轴线来说,外半径/内半径= 常数E开方时,传输的功率为最大,此时的特性阻抗为30Ω。外半径/内半径=3.59时,这是的衰减为最小,此时的特性阻抗为77Ω。为了二者兼有,折中取值为50Ω,当然现在一些设备中75Ω的同轴线也在使用中,比如有线电视系统中。

16、关于空气阻抗

电磁波在空气(真空)中传播时,这也是最为广泛应用的电磁传播,由于电场与磁场的存在,它们的比值为一个定值为120π,也正是这个值的存在,形成了电磁波的衰减传播。

17、请问天线的馈线的长短会影响发射机与天线的匹配吗?

天线的馈线的长短会影响发射机与天线的匹配,最主要的原因是天线的馈线是有损线而非无损线。天线与发射机的匹配有两点,一是阻抗匹配;二是功率的完全发射。有损馈线阻抗匹配的计算过程见下面的图片所示。功率的完全发射与馈线也有极大关系,这也是很多设备功率不能完全发射的原因,比如馈线损耗为0.3DB/米,那么当馈线长度为10米时,功率就要衰减一半的,如果是100米长的馈线呢?功率可能要衰减没有了。

18、基础天线

由于空气阻抗的存在,如何把高频电流变成电磁波传播出去,这中间就需要一个器件,当然,这个器件就是天线了。天线也就可以认为是波源与空间的连接器了。正如前面所述,为了能很好地把高频电流的能量传输出去,且要传输功率要高、衰减要小,天线的阻抗就要在77

Ω与30Ω二者之前选择。在这种情况下,对称振子的阻抗是75Ω左右,四分之一单极天线的阻抗为36Ω左右,在此,我们不得不承认大自然的力量之伟大。这种情况下,也决定了这两种天线是一种基本天线了。

19、天线的作用与地位

无线电发射机输出的射频信号功率,通过馈线(电缆)输送到天线,由天线以电磁波形式辐射出去。电磁波到达接收地点后,由天线接下来(仅仅接收很小很小一部分功率),并通过馈线送到无线电接收机。可见,天线是发射和接收电磁波的一个重要的无线电设备,没有天线也就没有无线电通信。

20、天线的大致分类

天线品种繁多,以供不同频率、不同用途、不同场合、不同要求等不同情况下使用。对于众多品种的天线,进行适当的分类是必要的:按用途分类,可分为通信天线、电视天线、雷达天线等;按工作频段分类,可分为短波天线、超短波天线、微波天线等;按方向性分类,可分为全向天线、定向天线等;按外形分类,可分为线状天线、面状天线等;等等分类。

21、天线小型化

一般来说,综合考虑天线性能,天线小型化有两种形式,一是天线的体积小了,就是物理模型小了;二就是一种天线在体积不变的情况下能在更低频点实现良好的效果

22、平行导线的电磁辐射

导线上有交变电流流动时,就可以发生电磁波的辐射,辐射的能力与导线的长度和形状有关。若两导线的距离很近,电场被束缚在两导线之间,因而辐射很微弱;将两导线张开,电场就散播在周围空间,因而辐射增强。必须指出,当导线的长度L 远小于波长λ 时,辐射很微弱;导线的长度L 增大到可与波长相比拟时,导线上的电流将大大增加,因而就能形成较强的辐射。

23、利用微带线匹配单极天线

提出了一种对于四分之一振子天线展宽带宽的便捷方法。通过仿真可以看出阻抗带宽展览宽了,增益也没有降低,方向图完好无损,说明此方法的正确性。这种方法也是巴伦的一种方法,对称振子可以加以利用了。

对于本文所述的方法,有人认为是因为微带匹配线的损耗对带宽的展宽的影响造成的,可是本人认为这只是次级原因,主要原因还是匹配造成的。这个方法简单、快捷,加工处理也很简单。

24、梯形馈线的设计与利用

根据以往的方法,我们可以在馈之外在加入匹配部分,这样作无疑中增加了天线的表面积。根据上面的方法可以看出,天线的匹配是在―内部‖进行的,使得天线的性能大为改观。我们不能否认还有很多种方法对上面的天线进行匹配,这只是其中之一的方法,

这种方法的好处主要有以下几点:

一、没有增加天线的表面积;

二、这种方法对于加工手段来说没有增加难度;

三、这种方法适用的场合很普通;

四、没有对天线的其它的电性能超成很大的影响。

25、球形地板单极振子天线

现在定性地分析一下为什么会出现这种情况:

1)、地板呈过渡形式;

2)、地板由平面改变为三维形式,符合超宽带的粗、胖原则。

3)、由于上述两个原因,使用天线―地‖无形间给扩大了。

对于地板呈现过渡形式,这样是为了让电流不会出现―跃变‖或―跳变‖,没有出现这种情况就会保证不会出现尖端电荷聚集了,进而扩展带宽。由平面改为三维这样会增加―像‖的数量,同时由于地板的扩展,使得天线性能有提高就是情理之中的事了。

26、单极天线实现定向功能

这个主要是地板一侧反射后有叠加,另一侧则没有,这样就超成定向了;振子在向地板中心移动时,由于振子的镜像加强,各种参数会发生变化的。

27、电小天线

天线尺寸远小于波长的天线。有电偶极子天线,磁偶极子天线,单极子天线以及其他形式的偶极子天线。对于电偶极子,一般定义其半长度小于λ/2π的对称振子天线为电小偶极子天线;对于磁偶极子,一般定义其周长远小于λ的环天线磁偶极子天线。电小天线的特点是,输入电阻非常小,输入电抗非常高;辐射效率非常低;方向性很弱。电小天线在工程中有非常广泛的应用,但是,其性能又是比较差的,改善电小天线的性能是一个长期任务。

28、谐振天线

能够在一个点频或者比较窄的频带范围内工作得很好的天线。例如,半波振子天线,微带贴片天线,八木天线等。其特点是有近似纯电阻的输入阻抗,较低的天线增益和较窄的带宽。

29、孔径天线

有喇叭天线,反射面天线等,其辐射源是一个二维场分布。这类天线的特点是可以得到很高的天线增益,一般情况下频率越高增益越高;其带宽主要取决于馈源。

30、宽带天线

这类天线有:频率无关天线(螺旋天线,对数周期天线),双锥天线,V-锥天线,TEM喇叭天线,波纹喇叭天线,旋转对称体等。天线参数(增益,输入阻抗和方向图)在很宽频带内差不多保持为常数。一般说来,宽带天线的增益较低,与频率无关,输入阻抗接近为实数。

31、阵列天线

用许多单元天线按一定布阵方法构成的天线阵列。其典型代表是相控阵天线,它的特点是可以实现天线波束的电扫描,也可以形成多个波束,天线阵元数越多天线增益越高。

32、左手材料天线

随着材料科学的进步,左手材料也加载到传统天线上。将左手材料加载到传

统天线上,可以优化天线的性能,主要表现在:

(1)提高天线的增益和方向性

就微带天线而言,最常见的提高提高增益的方法就是使用天线阵。但是这种方法的缺点:一是各个单元之间的互耦影响天线的性能;二是馈电网络的设计往往难度很大。

(2)提高天线的带宽和阻抗匹配特性

(3)提高天线的效率

(4)降低谐振频率,减小天线尺寸

33、增益G

方向性因子乘以天线效率。天线效率是天线辐射功率与输入功率之比。它考虑了天线损耗,包括导体损耗,介质损耗和加载电路中的损耗。如果计入馈线系统的损耗,这时的天线增益称为实际增益。

增益不是把天线能量提高了,好比凸透镜一样,只是能量集中了,但总能量还是没有变化的。

34、极化

一个发射天线辐射时,其最大辐射方向上,随着时间变化电场矢量(端点)在空间描出的轨迹。天线的极化形式分为线极化,圆极化和椭圆极化三种。线极化和圆极化是椭圆极化的特例。圆极化又分为正交的左旋和右旋圆极化。椭圆极化波可分解为两个旋向相反的圆极化波。两种正交极化的电磁场可以在相同频率上传输不同的信息(极化复用)。接收天线的极化与来波一致称为极化匹配。

35、输入阻抗

天线馈电端口电压和电流之比称为天线输入阻抗。设计天线的一个很重要的工作是使天线输入阻抗与标准馈线的特性阻抗匹配。天线输入阻抗取决于天线的工作原理,结构尺寸,周围介质,工作环境以及工作频率。一般情况下,输入阻抗包含了输入电阻和输入电抗。输入电阻又包含辐射电阻和损耗电阻。为了实现匹配,首先要消去天线的输入电抗。天线一般使用50欧和75欧。

36、带宽

在该频率范围内,一个选定的天线参数或者一组天线参数的变化是可以接受的。有方向图带宽﹑增益带宽﹑输入阻抗带宽等,用得较多的是天线输入阻抗带宽。

37、波束扫描

辐射方向图在空间中运动情况,或者机械扫描,或者电扫描,或者二者结合起来实现波束扫描。

38、超宽带定义标准

在现有文献中一广泛使用―超宽带‖这一术语,对于不同的作者,其含义可能大不相同,有的作者把BW2≥25%称为超宽带。很明显,这个规定有一定的随意性,它既不是以电波传播、电子系统、电路和器件中的物理现象为基础,也不是以上述带宽定义的特定值为标准。

表1 相对带宽之间的关系

39、天线的双极化

下图示出了另两种单极化的情况:+45°极化与-45°极化,它们仅仅在特殊场合下使用。这样,共有四种单极化了,见下图。把垂直极化和水平极化两种极化的天线组合在一起,或者,把+45°极化和-45°极化两种极化的天线组合在一起,就构成了一种新的天线---双极化天线。

40、极化损失

垂直极化波要用具有垂直极化特性的天线来接收,水平极化波要用具有水平极化特性的天线来接收。右旋圆极化波要用具有右旋圆极化特性的天线来接收,而左旋圆极化波要用具有左旋圆极化特性的天线来接收。

当来波的极化方向与接收天线的极化方向不一致时,接收到的信号都会变小,也就是说,发生极化损失。例如:当用+ 45° 极化天线接收垂直极化或水平极化波时,或者,当用垂直极化天线接收+45° 极化或-45°极化波时,等等情况下,都要产生极化损失。用圆极化天线接收任一线极化波,或者,用线极化天线接收任一圆极化波,等等情况下,也必然发生极化损失------只能接收到来波的一半能量。

当接收天线的极化方向与来波的极化方向完全正交时,例如用水平极化的接收天线接收垂直极化的来波,或用右旋圆极化的接收天线接收左旋圆极化的来波时,天线就完全接收不到来波的能量,这种情况下极化损失为最大,称极化完全隔离。

41、极化隔离

理想的极化完全隔离是没有的。馈送到一种极化的天线中去的信号多少总会有那么一点点在另外一种极化的天线中出现。例如下图所示的双极化天线中,设输入垂直极化天线的功率为10W,结果在水平极化天线的输出端测得的输出功率为10mW。

42、传输线的种类

超短波段的传输线一般有两种:平行双线传输线和同轴电缆传输线;微波波段的传输线有同轴电缆传输线、波导和微带。平行双线传输线由两根平行的导线组成它是对称式或平衡式的传输线,这种馈线损耗大,不能用于UHF 频段。同轴电缆传输线的两根导线分别为芯线和屏蔽铜网,因铜网接地,两根导体对地不对称,因此叫做不对称式或不平衡式传输线。同轴电缆工作频率范围宽,损耗小,对静电耦合有一定的屏蔽作用,但对磁场的干扰却无能为力。使用时切忌与有强电流的线路并行走向,也不能靠近低频信号线路。

43、馈线的衰减系数

信号在馈线里传输,除有导体的电阻性损耗外,还有绝缘材料的介质损耗。这两种损耗随馈线长度的增加和工作频率的提高而增加。因此,应合理布局尽量缩短馈线长度。

单位长度产生的损耗的大小用衰减系数β 表示,其单位为dB / m(分贝/米),电缆技术说明书上的单位大都用dB / 100 m(分贝/百米)。

设输入到馈线的功率为P1 ,从长度为L(m )的馈线输出的功率为P2 ,传输损耗TL 可表示为:

TL =10 × Lg (P1 /P2 )(dB )

衰减系数为

β =TL/ L (dB / m )

例如,NOKIA 7 / 8 英寸低耗电缆,900MHz 时衰减系数为β=4.1 dB / 100 m ,也可写成β=3 dB / 73 m ,也就是说,频率为900MHz 的信号功率,每经过73 m 长的这种电缆时,功率要少一半。

而普通的非低耗电缆,例如,SYV-9-50-1,900MHz 时衰减系数为β =20.1 dB / 100 m,也可写成β=3 dB / 15 m ,也就是说,频率为900MHz 的信号功率,每经过15 m 长的这种电缆时,功率就要少一半!

44、匹配概念

什么叫匹配?简单地说,馈线终端所接负载阻抗ZL 等于馈线特性阻抗Z0 时,称为馈线终端是匹配连接的。匹配时,馈线上只存在传向终端负载的入射波,而没有由终端负载产生的反射波,因此,当天线作为终端负载时,匹配能保证天线取得全部信号功率。如下图所示,当天线阻抗为50欧时,与50 欧的电缆是匹配的,而当天线阻抗为80 欧时,与50 欧的电缆是不匹配的。

如果天线振子直径较粗,天线输入阻抗随频率的变化较小,容易和馈线保持匹配,这时天线的工作频率范围就较宽。反之,则较窄。

在实际工作中,天线的输入阻抗还会受到周围物体的影响。为了使馈线与天线良好匹配,在架设天线时还需要通过测量,适当地调整天线的局部结构,或加装匹配装置。

45、平衡装置

信号源或负载或传输线,根据它们对地的关系,都可以分成平衡和不平衡两类。

若信号源两端与地之间的电压大小相等、极性相反,就称为平衡信号源,否则称为不平衡信号源;若负载两端与地之间的电压大小相等、极性相反,就称为平衡负载,否则称为不平衡负载;若传输线两导体与地之间阻抗相同,则称为平衡传输线,否则为不平衡传输线。

在不平衡信号源与不平衡负载之间应当用同轴电缆连接,在平衡信号源与平衡负载之间应当用平行双线传输线连接,这样才能有效地传输信号功率,否则它们的平衡性或不平衡性将遭到破坏而不能正常工作。如果要用不平衡传输线与平衡负载相连接,通常的办法是在粮者之间加装―平衡-不平衡‖的转换装置,一般称为平衡变换器。

46、二分之一波长平衡变换器

又称―U‖形管平衡变换器,它用于不平衡馈线同轴电缆与平衡负载半波对称振子之间的连接。―U‖形管平衡变换器还有1:4 的阻抗变换作用。移动通信系统采用的同轴电缆特性阻抗通常为50欧,所以在YAGI 天线中,采用了折合半波振子,使其阻抗调整到200 欧左右,实现最终与主馈线50 欧同轴电缆的阻抗匹配。

47、四分之一波长平衡-不平衡器

利用四分之一波长短路传输线终端为高频开路的性质实现天线平衡输入端口与同轴馈线不平衡输出端口之间的平衡-不平衡变换。

48、波瓣宽度

方向图通常都有两个或多个瓣,其中辐射强度最大的瓣称为主瓣,其余的瓣称为副瓣或旁瓣。在主瓣最大辐射方向两侧,辐射强度降低3 dB(功率密度降低一半)的两点间的夹角定义为波瓣宽度(又称波束宽度或主瓣宽度或半功率角)。波瓣宽度越窄,方向性越好,作用距离越远,抗干扰能力越强。

还有一种波瓣宽度,即10dB 波瓣宽度,顾名思义它是方向图中辐射强度降低10dB (功率

密度降至十分之一)的两个点间的夹角。

49、前后比

方向图中,前后瓣最大值之比称为前后比,记为F / B 。前后比越大,天线的后向辐射(或接收)越小。前后比F / B 的计算十分简单------

F / B = 10 Lg {(前向功率密度)/(后向功率密度)}

对天线的前后比F / B 有要求时,其典型值为(18 ~30)dB,特殊情况下则要求达(35 ~ 40)dB。

50、天线增益的若干近似计算式

1)天线主瓣宽度越窄,增益越高。对于一般天线,可用下式估算其增益:

G(dBi)= 10 Lg { 32000 / (203dB,E ×203dB,H )}

式中,203dB,E 与203dB,H 分别为天线在两个主平面上的波瓣宽度;

32000 是统计出来的经验数据。

2)对于抛物面天线,可用下式近似计算其增益:

G(dB i)=10 Lg { 4.5 ×(D / λ0 )2}

式中,D 为抛物面直径;

λ0 为中心工作波长;

4.5 是统计出来的经验数据。

3)对于直立全向天线,有近似计算式

G(dBi )= 10 Lg { 2 L / λ0 }

式中,L 为天线长度;

λ0 为中心工作波长;

(本文内容为东北人原创,不经允许,谢绝任何形式的转载)

51、天线隔离度

指一个天线发射信号,通过另一个天线接收的信号与该发射天线信号的比值。天线的隔离度取决于天线辐射方向图、天线的空间距离、天线增益等。

52、dBd 和dBi的区别

一个天线与对称振子相比较的增益

用―dBd‖表示

一个天线与各向同性辐射器相比较的增益用―dBi‖表示

例如: 3dBd = 5.17dBi

53、板状天线增益与水平波瓣宽度

54、天线增益与方向图半功率波瓣宽度的关系

55、关于传输线的几个基本概念

连接天线和发射(或接收)机输出(或输入)端的导线称为传输线或馈线。传输线的主要任务是有效地传输信号能量。

因此它应能将天线接收的信号以最小的损耗传送到接收机输入端,或将发射机发出的信号以最小的损耗传送到发射天线的输入端,同时它本身不应拾取或产生杂散干扰信号。这样,就要求传输线必须屏蔽或平衡。

当传输线的几何长度等于或大于所传送信号的波长时就叫做长传输线,简称长线。

56、通信距离方程

设发射功率为PT,发射天线增益为GT,工作波长为λ。接收灵敏度为PR,接收天线增益为GR,如果收、发天线间距离为R,电波在无环境干扰时,有以下关系:

式中,L0 是传播途中的电波损耗。

举例:设PT =10mW=-20dBW ;PR=-50dBm=-80dBW GR=GT=7dBi ;λ=0.157m (f0 =1910MHz) L0=0时,R=?

20logR= PT - PR - 20log1/λ+ GR + GT

=-20+80-21.98-16.08+14=35.94dB

1.9GHz电波在穿透一层墙时,大约损失10~15dB。

57、关于三阶互调指标

互调是指非线性射频线路中,两个或多个频率混合后所产生的噪音信号。互调产生的本来并不存在―错误‖信号,此信号会被系统误认为是真实的信号。互调可由有源元件(无线电设备、二极管)或无源元件(电缆、接头、天线、滤波器)引起。

具有两个载波信号的互调失真频率实例

频率A及B上的载波,产生如下互调信号:

1阶: A,B

2阶:(A+B),(A-B)

3阶:(2A±B),(2B ±A)

4阶:(3A±B),(3B ±A),(2A±2B)

5阶:(4A±B),(4B ±A),(3A±2B),(3B ±2A)

58、互调失真如何影响系统的性能?

较高功率的发射信号通常会混合产生互调信号,最后进入接收波段。而基站天线接收的信号通常功率较低。如果互调信号与实际的接收信号具有相近或较高的功率,系统会误把互调信号视为真实信号。

59、互调是如何产生的?

构件材料

因为磁滞的关系,铁质材料是属非线性的

材料不纯

电镀问题

接触区域/电流密度

触点压力

60、对称振子的粗细对电性能的影响

根据仿真结果表明:一、振子半径的变化对于在某一个固定频点上的阻抗值变化还是非常大的。二、如果我们假设天线是纯阻性的,那么阻抗值可以变化到2倍左右,具体到底能变化到多少,现在未知。三、一般情况下是不能为纯阻性的。从图二可以看出,天线的效率也是可以提高的。四、振子的半径变化对谐振点的变化也起作用。中心频点相差将近100MHz。

61、片状振子单极天线性能

随着振子面积的缩小,天线的中心频点也在降低,同时天线的带宽比越来越小,至于长宽比为0.75时效果最好,这是因为我们用的是有限地板,而非无限地板。中心频点的漂移在到300M以上。那么,天线振子的长度又决定什么了呢?长度决定的是低频点(因为上述模型的径向长度相同),这也对单极天线的设计提出了新的思路。

62、关于天线负增益问题

首先,我们回顾一下天线增益的定义:指在输入功率相同的情况下,实际天线与理想辐射单元在空间某一点处得功率密度之比。有定义可知,天线增益是一个比值,一个相对而言的概

念。它的单位通常有两种:dBd(相对于对称阵子天线),dBi(相对于点源天线,在各方向上是均匀的),它们的关系是:bBi = dBb + 2.15。

天线即是一个对空间信号收发的转换装置。接收时,以一定的分布特性聚集空间电磁波信号并转化为电信号(收集空间能量);发射时,以一定的分布特性将电信号以电磁波的方式向空间发射(辐射能量)。那么,天线增益即是反应了这种接收与发送能量的程度。一般,我们引入天线增益也就是为了说明天线朝一个特定方向收发能量的能力。天线增益和天线方向图有密切关系,主瓣越窄,副瓣越小,增益越高(在这个方向上的收发信号能力越强)!

就计算而言,天线增益= 天线效率* 天线方向性。天线方向性是恒大于1的,而天线效率可能小于1,取对数后就为负值,如果天线效率过于低就会使得天线增益为负值。从实际效果看就是相当于一个衰减器(这只是一种比方,其本质并非衰减器)。那么系统电路的增益是放大器增益与天线增益之和(dB形式)。对于像我一样的初学者可能不能理解为什么天线增益要是负值,这样不是会使得信号衰减吗?其实实际中很多地方的天线其增益都是负值(手机天线增益就是负值),这有些是天线尺寸过小导致,也有些是实际中需要用到负增益。

63、电压驻波比、反射功率、传输功率

电压驻波比1.0 1.1 1.2 1.5 2.0 3.0

反射功率% 0 0.2 0.8 4.0 11.1 25.0

传输功率% 100 99.8 99.2 96 88.9 75.0

64、不对称天线

我们知道偶极天线每臂电气长度应为1/4波长。那么如果两臂长度不同,它的谐振波长如何计算?是否会出现两个谐振点?

如果想清了上述琴弦的例子,答案就清楚了。系统总长度不足3/4波长的偶极天线(或者以地球、地网为镜象的单臂天线)只有一个谐振频率,取决于两臂的总长度。两臂对称,相当于在阻抗最低点加以驱动,得到的是最低的阻抗。两臂长度不等,相当于把弓子偏近琴马拉弦,费的力不同,驱动点的阻抗比较高一些,但是谐振频率仍旧是一个,由两臂的总长度决定。如果偏到极端,一臂加长到1/2波长而另一臂缩短到0,驱动点阻抗增大到几乎无穷大,则成为端馈天线,称为无线电发展早期用在汽艇上的齐柏林天线和现代的1/2波长R7000垂直天线,当然这时必须增加必要的匹配电路才能连接到50欧姆的低阻抗发射机上。

偶极天线两臂不对称,或者两臂周围导电物体的影响不对称,会使谐振时的阻抗变高。但只要总电气长度保持1/2波长,不对称不是十分严重,那么虽然特性阻抗会变高,一定程度上影响VSWR,但是实际发射效果还不至于有十分明显的恶化。

65、射频中的回波损耗,反射系数,电压驻波比以及S参数的含义和关系

回波损耗,反射系数,电压驻波比, S11这几个参数在射频微波应用中经常会碰到, 他们各自的含义如下:

回波损耗(Return Loss): 入射功率/反射功率, 为dB数值

反射系数(Г):反射电压/入射电压, 为标量

电压驻波比(Voltage Standing Wave Ration): 波腹电压/波节电压

S参数: S12为反向传输系数,也就是隔离。S21为正向传输系数,也就是增益。S11为输入反射系数,也就是输入回波损耗,S22为输出反射系数,也就是输出回波损耗。

四者的关系:

VSWR=(1+Г)/(1-Г) (1)

S11=20lg(Г)(2)

RL=-S11 (3)

以上各参数的定义与测量都有一个前提,就是其它各端口都要匹配。这些参数的共同点:他

们都是描述阻抗匹配好坏程度的参数。其中,S11实际上就是反射系数Г,只不过它特指一个网络1号端口的反射系数。反射系数描述的是入射电压和反射电压之间的比值,而回波损耗是从功率的角度来看待问题。而电压驻波的原始定义与传输线有关,将两个网络连接在一起,虽然我们能计算出连接之后的电压驻波比的值,但实际上如果这里没有传输线,根本不会存在驻波。我们实际上可以认为电压驻波比实际上是反射系数的另一种表达方式,至于用哪一个参数来进行描述,取决于怎样方便,以及习惯如何。

66、环形天线馈电方式

67、天线输入阻抗和辐射效率

天线输入阻抗是天线输入端口电压和电流的比值,它不仅仅由天线自身的形状和尺寸决定,而且与天线使用环境有关,例如,天线附近是否由其他天线和引起反射的障碍物等等。在阵列天线中相邻天线之间存在互耦作用,障碍物的反射要改变天线驻波比。天线测量中总是假定天线是在理想环境中,既没有相邻天线,也没有引起反射的障碍物。天线输入阻抗一般有两部分:输入电阻和输入电抗

输入电阻表示能量损耗,它由两部分组成,其一是辐射到自由空间去的能量;其二是欧姆损耗,包括金属损耗,介质损耗和加载电路损耗,这部分损耗转变为热能。对于电小天线来说,欧姆损耗有可能远大于辐射能量,这使得天线辐射效率很低。

68、对称振子

对称振子是一种经典的、迄今为止使用最广泛的天线,单个半波对称振子可简单地单独立地使用或用作为抛物面天线的馈源,也可采用多个半波对称振子组成天线阵。两臂长度相等的振子叫做对称振子。每臂长度为四分之一波长、全长为二分之一波长的振子,称半波对称振子。另外,还有一种异型半波对称振子,可看成是将全波对称振子折合成一个窄长的矩形框,并把全波对称振子的两个端点相叠,这个窄长的矩形框称为折合振子,注意,折合振子的长度也是为二分之一波长,故称为半波折合振子。

69、天线方向性增强

若干个对称振子组阵,能够控制辐射,产生―扁平的面包圈‖,把信号进一步集中到在水平面方向上。也可以利用反射板可把辐射能控制到单侧方向,平面反射板放在阵列的一边构成扇形区覆盖天线。下面的水平面方向图说明了反射面的作用------反射面把功率反射到单侧方向,提高了增益。抛物反射面的使用,更能使天线的辐射,像光学中的探照灯那样,把能量集中到一个小立体角内,从而获得很高的增益。不言而喻,抛物面天线的构成包括两个基本要素:抛物反射面和放置在抛物面焦点上的辐射源。

70、上旁瓣抑制

对于基站天线,人们常常要求它的垂直面(即俯仰面)方向图中,主瓣上方第一旁瓣尽可能弱一些。这就是所谓的上旁瓣抑制。基站的服务对象是地面上的移动电话用户,指向天空的辐射是毫无意义的。

71、天线的工作频率范围(频带宽度)

无论是发射天线还是接收天线,它们总是在一定的频率范围(频带宽度)内工作的,天线的频带宽度有两种不同的定义------

一种是指:在驻波比SWR ≤1.5条件下,天线的工作频带宽度;

一种是指:天线增益下降3 分贝范围内的频带宽度。

在移动通信系统中,通常是按前一种定义的,具体的说,天线的频带宽度就是天线的驻波比SWR不超过1.5 时,天线的工作频率范围。

一般说来,在工作频带宽度内的各个频率点上,天线性能是有差异的,但这种差异造成的性能下降是可以接受的。

72、有损耗传输线与天线匹配

有耗线中,能量有衰减。

沿线的反射系数、驻波比均不一样。

73、Chu极限定理

Chu极限定理认为,电小尺寸天线的Q值取值范围由以下公式表达:

式中k为波数,r为天线最大方向上的尺寸。

根据Chu极限定理,我们可以得到如下重要概念:由于Q值与带宽成反比,与天线最大尺寸的三次方也成反比,而天线尺寸的三次方又反映天线占用的空间大小。因此电小天线所能达到的最大带宽与天线占用的空间成正比。因此,对电小天线设计而言,要获得大的带宽,必须保证为电小天线预留足够的空间。

74、降低天线和匹配电路的损耗电阻

当天线的电尺寸较大时,天线的热耗相对天线的辐射而言不大,因为其效率高,但当天线尺寸减小时,其辐射较弱,天线本身的损耗也就相应突出。当然,可以设法使用低耗元件(如电容)来降低其损耗。

手机设计时降低匹配电路损耗电阻的措施有:尽量不使用匹配元件或使用低耗匹配元件;尽量使RF模块靠近天线馈点,缩短馈线的长度;尽量使用PCB阻抗线而不要使用同轴电缆等。

75、电小天线常用的分析方法

1.集总参数分析法

这种分析方法的基本思想是,将天线看作终端开路的传输线,并用集总电感或电容等效传输线的分布参数。这种分析方法不很严格,并且对复杂形状的天线往往较难于分析,但是较为

直观,可以帮助我们作出定性的判断。当天线的尺寸小于弧度长时,天线就相当于一个电容或电感,忽略热损耗,则等效阻抗中的实部就表示天线的辐射。匹配带宽正比于谐振

带宽。

2.模式分析法

即将天线辐射看作TM传输模,求解麦克斯韦方程。这种分析方法较复杂,需要求解较为烦

杂的积分方程。

3.电流分布分析法

即将天线上的电流划分为若干条细小的线电流,分别求解每条线产生的阻抗然后求解积分方程,这也是一种近似方法,计算也比较复杂。

76、圆图的那个最外边的单位圆是等电阻圆,最左边的那个点是短路点,最右边的那个点是开路点,那岂不是说开路点和短路点在同一个等电阻圆上面?

这个是因为坐标变换的原因,要是直角坐标里面就不存在这个问题,只是直角坐标变换到圆图的极坐标里面才出现的。

77、驻波比测试

测驻波比要注意几个实际问题。

1).天线是有辐射的天线应置于空旷场所(有条件的话,最好在暗室或暗箱内测试),仪器应置于无强辐射处。当手摸电缆或仪器时,读数会变即属不正常。注意电缆外导体必须与连接器外壳接触良好,必要时还要考虑仪器是否要加屏蔽。

2).注意防止电缆出问题

?实际测量中要防止电缆出问题,不是实在必要,不宜通过电缆来进行测试,否则电缆的不完善将影响测试精度,

作为测试电缆必须经过检验,其回损优于30dB为宜,随便找一根电缆可能只有十几个dB 那是不行的。

?电缆不好能否进行三项校正来提高精度呢?原则上是可以的,用双阴加阳负载只适于1000MHz以下,而且PNA还要求电缆回损优于24dB才能校零,否则出错。

?即使作为连接电缆,也常因接触不良与开短路现象造成仪器不能正常工作,通常以为是仪器故障,其实多半是电缆出了问题。

3).带有长馈线的天馈系统

在机房内测馈线端口驻波即天馈系统驻波,此时一般馈线较长,少则几米多则上百米,这其中有三种反射,一是天线入口的反射,常称远端反射;另一种是馈线到仪器的转接头的反射,称近端反射;还有就是最不好控制的馈线本身的反射。

?为了便于观测,现在多用驻波电桥来测试,它是一种差模器件,对共模50Hz有强的抑制,但是却带来了三种反射一起看的后果,造成反射的频响曲线起伏很大,当然最高点若也合格那是没有矛盾的。但经常有多点超出,此时用扫频仪在0.01扫速档是看不出来的(由于检波滤波电路起了平滑作用,若用1秒扫速就看见了),所以人们宁愿用扫频仪或标网而不愿用PNA。

一般说来天线输入口的反射都是合格的,但由于另两项的参与就出了问题,对于近端转接一般在米波问题不大,更高频段时就得注意,尽量要减少近端反射以减少它带来的超差。?关于主馈管的反射问题,好的主馈管会帮你忙,因为它本身反射小,所以不怎么增加反射,而又引入了损耗,每1dB插损可增加2dB回损。但差的馈管就会造成某些频点叠加而超限,这只有靠取平滑值(即只看曲线的中心线,但有的用户是不会同意的,只好仍用扫频仪)。馈线差的那怕接上最好的负载(1.01)也会出现某个频率突跳的谐振现象,说明此馈管不宜

最新《微波技术与天线》傅文斌-习题答案-第2章

第2章 微波传输线 2.1什么是长线?如何区分长线和短线?举例说明。 答 长线是指几何长度大于或接近于相波长的传输线。工程上常将1.0>l 的传输线视为长线,将 1.0

微波技术与天线课后题答案

1-1 解: f=9375MHz, / 3.2,/ 3.1251c f cm l λλ===> 此传输线为长线 1-2解: f=150kHz, 4/2000,/0.5101c f m l λλ-===?<< 此传输线为短线 1-3答: 当频率很高,传输线的长度与所传电磁波的波长相当时,低频时忽略 的各种现象与效应,通过沿导体线分布在每一点的损耗电阻,电感,电容和漏电导表现出来,影响传输线上每一点的电磁波传播,故称其 为分布参数。用1111,,,R L C G 表示,分别称其为传输线单位长度的分布电阻,分布电感,分布电容和分布电导。 1-4 解: 特性阻抗 050Z ====Ω f=50Hz X 1=ωL 1=2π×50×16.65×10-9Ω/cm=5.23×10-6Ω/cm B 1=ω C 1=2π×50×0.666×10×10-12=2.09×10-9S/cm 1-5 解: ∵ ()22j z j z i r U z U e U e ββ''-'=+ ()()220 1 j z j z i r I z U e U e Z ββ''-'= - 将 22233 20,2,42 i r U V U V z πβλπλ'===?= 代入 3 32 2 3 4 20220218j j z U e e j j j V ππλ-'==+=-+=- ()34 1 2020.11200 z I j j j A λ'== --=- ()()()34 ,18cos 2j t e z u z t R U z e t V ωλπω'=??''??==- ????? ()()()34,0.11cos 2j t e z i z t R I z e t A ωλπω'=??''??==- ????? 1-6 解: ∵Z L =Z 0 ∴()()220j z i r U z U e U β''== ()()()2123 2 1 100j j z z U z e U z e πβ' ' -''== ()() ()() 6 1 1100,100cos 6j U z e V u z t t V ππω'=? ?=+ ?? ?

微波技术与天线考试复习重点(含答案)

微波技术与天线复习提纲(2011级) 一、思考题 1. 什么是微波?微波有什么特点? 答:微波是电磁波谱中介于超短波与红外线之间的波段,频率范围从300MHZ 到3000GHZ , 波长从0.1mm 到1m ;微波的特点:似光性、穿透性、宽频带特性、热效应特性、散射特性、抗低频干扰特性、视距传播性、分布参数的不确定性、电磁兼容和电磁环境污染。 2. 试解释一下长线的物理概念,说明以长线为基础的传输线理论的主要物理现象有 哪些?一般是采用哪些物理量来描述? 答:长线是指传输线的几何长度与工作波长相比拟的的传输线; 以长线为基础的物理现象:传输线的反射和衰落; 主要描述的物理量有:输入阻抗、反射系数、传输系数和驻波系数。 3. 均匀传输线如何建立等效电路,等效电路中各个等效元件如何定义? 4. 均匀传输线方程通解的含义 5. 如何求得传输线方程的解? 6. 试解释传输线的工作特性参数(特性阻抗、传播常数、相速和波长) 答:传输线的工作特性参数主要有特征阻抗Z 0,传输常数错误!未找到引用源。,相速及波长。 1)特征阻抗即传输线上入射波电压与入射波电流的比值或反射波电压与反射波电流比值的负值, 其表达式为0Z =它仅由自身的分布参数决定而与负载及信号源无关;2)传输常数j γαβ=+是描述传输线上导行波的衰减和相移的参数,其中,α和β分别称为 衰减常数和相移常数,其一般的表达式为γ=传输线上电压、电 流入射波(或反射波)的等相位面沿传播方向传播的速度称为相速,即 p v ωβ= ;4)传输线上电磁波的波长λ与自由空间波长0λ 的关系2π λβ==。

7. 传输线状态参量输入阻抗、反射系数、驻波比是如何定义的,有何特点,并分析 三者之间的关系 答:输入阻抗:传输线上任一点的阻抗Z in 定义为该点的电压和电流之比,与导波系统的状态特性无关,10001tan ()tan in Z jZ z Z z Z Z jZ z ββ+=+ 反射系数:传输线上任意一点反射波电压与入射波电压的比值称为传输线在该点的反射系数,对于无耗传输线,它的表达式为2(2)10110 ()||j z j z Z Z z e Z Z βφβ---Γ==Γ+ 驻波比:传输线上波腹点电压振幅与波节点电压振幅的比值为电压驻波比,也称为驻波系数。 反射系数与输入阻抗的关系:当传输线的特性阻抗一定时,输入阻抗与反射系数一一对应,因此,输入阻抗可通过反射系数的测量来确定;当10Z Z =时,1Γ=0,此时传输线上任一点的反射系数都等于0,称之为负载匹配。 驻波比与反射系数的关系:111||1|| ρ+Γ=-Γ,驻波比的取值范围是1ρ≤<∞;当传输线上无反射时,驻波比为1,当传输线全反射时,驻波比趋于无穷大。显然,驻波比反映了传输线上驻波的程度,即驻波比越大,传输线的驻波就越严重。 8. 均匀传输线输入阻抗的特性,与哪些参数有关? 9. 均匀传输线反射系数的特性 10. 简述传输线的行波状态,驻波状态和行驻波状态。 11. 什么是行波状态,行波状态的特点 12. 什么是驻波状态,驻波状态的特性 13. 分析无耗传输线呈纯驻波状态时终端可接哪几种负载,各自对应的电压电流分 布 14. 介绍传输功率、回波损耗、插入损耗 15. 阻抗匹配的意义,阻抗匹配有哪三者类型,并说明这三种匹配如何实现?

实用文档之微波技术与天线课后题答案

1-1 实用文档之"解: f=9375MHz, / 3.2,/ 3.1251c f cm l λλ===> " 此传输线为长线 1-2解: f=150kHz, 4/2000,/0.5101c f m l λλ-===?<< 此传输线为短线 1-3答: 当频率很高,传输线的长度与所传电磁波的波长相当时,低 频时忽略的各种现象与效应,通过沿导体线分布在每一点的损耗电阻,电感,电容和漏电导表现出来,影响传输线 上每一点的电磁波传播,故称其为分布参数。用1111,,,R L C G 表示,分别称其为传输线单位长度的分布电阻,分布电感,分布电容和分布电导。 1-4 解: 特性阻抗 050Z ====Ω f=50Hz X 1=ωL 1=2π×50×16.65×10-9Ω/cm=5.23×10-6Ω/cm B 1=ω C 1=2π×50×0.666×10×10-12=2.09×10-9S/cm 1-5 解: ∵ ()22j z j z i r U z U e U e ββ''-'=+ ()()220 1 j z j z i r I z U e U e Z ββ''-'= - 将 22233 20,2,42 i r U V U V z πβλπλ'===?= 代入 3 32 2 3 4 20220218j j z U e e j j j V ππλ-'==+=-+=- ()34 1 2020.11200 z I j j j A λ'== --=- ()()()34 ,18cos 2j t e z u z t R U z e t V ωλπω'=??''??==- ????? ()()()34,0.11cos 2j t e z i z t R I z e t A ωλπω'=??''??==- ????? 1-6 解: ∵Z L =Z 0 ∴()()220j z i r U z U e U β''==

微波技术与天线复习知识要点

《微波技术与天线》复习知识要点 绪论 微波的定义: 微波是电磁波谱介于超短波与红外线之间的波段,它属于无线电波中波长最短的波段。 微波的频率范围:300MHz~3000GHz ,其对应波长范围是1m~ 0.1mm 微波的特点(要结合实际应用): 似光性,频率高(频带宽),穿透性(卫星通信),量子特性(微波波谱的分析) 第一章均匀传输线理论 均匀无耗传输线的输入阻抗(2个特性) 定义: 传输线上任意一点z处的输入电压和输入电流之比称为传输线的输入阻抗注: 均匀无耗传输线上任意一点的输入阻抗与观察点的位置、传输线的特性阻抗、终端负载阻抗、工作频率有关。 两个特性: 1、λ/2重复性: 无耗传输线上任意相距λ/2处的阻抗相同Z in(z)=Z in(z+λ/2)

2、λ/4变换性:Zin(z)-Z in(z+λ/4)=Z 02 证明题: (作业题) 均匀无耗传输线的三种传输状态(要会判断)参数 |Γ|ρZ 1行波01 匹配驻波1∞ 短路、开路、纯 电抗行驻波 0<|Γ|<1 1<ρ<∞ 任意负载 能量电磁能量全部 被负载吸收电磁能量在原 地震荡 1.行波状态: 无反射的传输状态 匹配负载:

负载阻抗等于传输线的特性阻抗 沿线电压和电流振幅不变 电压和电流在任意点上同相 2.纯驻波状态: 全反射状态 负载阻抗分为短路、开路、纯电抗状态 3.行驻波状态: 传输线上任意点输入阻抗为复数 传输线的三类匹配状态(知道概念) 负载阻抗匹配: 是负载阻抗等于传输线的特性阻抗的情形,此时只有从信源到负载的入射波,而无反射波。源阻抗匹配: 电源的内阻等于传输线的特性阻抗时,电源和传输线是匹配的,这种电源称之为匹配电源。此时,信号源端无反射。 共轭阻抗匹配: 对于不匹配电源,当负载阻抗折合到电源参考面上的输入阻抗为电源内阻抗的共轭值时,即当Z in=Z g﹡时,负载能得到最大功率值。 共轭匹配的目的就是使负载得到最大功率。 传输线的阻抗匹配(λ/4阻抗变换)(P15和P17) 阻抗圆图的应用(*与实验结合)

微波技术与天线傅文斌-习题答案-第4章

第4章 无源微波器件 4.1微波网络参量有哪几种?线性网络、对称网络、互易网络的概念在其中有何应用? 答 微波网络参量主要有转移参量、散射参量、阻抗参量和导纳参量。线性网络的概念使网络参量可用线性关系定义;对二口网络,对称网络的概念使转移参量的d a =,散射参量的2211S S =,阻抗参量的2211Z Z =,导纳参量的2211Y Y =。互易网络的概念使转移参量的1=-bc ad ,散射参量的2112S S =,阻抗参量的2112Z Z =,导纳参量的2112Y Y =。 4.2推导Z 参量与A 参量的关系式(4-1-13)。 解 定义A 参量的线性关系为 定义Z 参量的线性关系为 4.3从I S S =* T 出发,写出对称互易无耗三口网络的4个独立方程。 解 由对称性,332211S S S ==;由互易性,2112S S =,3113S S =,3223S S =。三口网络的散射矩阵简化为 由无耗性,I S S =* T ,即 得 4.4二口网络的级联如图所示。写出参考面T 1、T 2之间的组合网络的A 参量。(参考面T 1处即组合网络的端口1,参考面T 2处即组合网络的端口2) 解 []? ? ? ? ??=1j 011B A ???? ? ?????-???? ?? +-+-=θθθθθθθθsin cos cos sin sin 11j sin j sin cos 00000BZ BZ B Z B Z BZ (l βθ=) 4.5微波电路如图所示。已知四口网络的S 矩阵是 其端口2、3直接接终端反射系数为2Γ、3Γ的负载,求以端口1、4为端口的二口网络 题4.4图 题4.5图

《微波技术与天线》实验指导书

微波技术与天线实验指导书 南京工业大学信息科学与工程学院 通信工程系

目录 实验一微波测量系统的熟悉和调整.................. - 2 -实验二电压驻波比的测量......................... - 9 -实验三微波阻抗的测量与匹配 .................... - 12 -实验四二端口微波网络阻抗参数的测量 ............. - 17 -

实验一 微波测量系统的熟悉和调整 一、实验目的 1. 熟悉波导测量线的使用方法; 2. 掌握校准晶体检波特性的方法; 3. 观测矩形波导终端的三种状态(短路、接任意负载、匹配)时,TE 10波的电场分量沿轴向方向上的分布。 二、实验原理 1. 传输线的三种状态 对于波导系统,电场基本解为ift rm ift r e E e a b r V E --== ) /ln(0 (1) 当终端接短路负载时,导行波在终端全部被反射――纯驻波状态。 ift y ift y y e x a E e x a E E )sin( )sin( 00π π -=- 在x=a/2处 z E e e E E y ift ift y y βsin 2)(00-=+=+- 其模值为:z E E y y βsin 20= 最大值和最小值为: 2min 0max ==r r r E E E (2) 终端接任意负载时,导行波在终端部分被反射――行驻波状态。 ift y ift y y e x a E e x a E E )sin( )sin( ' 00π π +=- 在x=a/2处 z E e E E e E e E e E e E e E e E E y ift y y fit y fit y fit y ift y fit y fit y y βcos 2)()()('0 ' 0'0 '0'00'00+-=++-=+=----- 由此可见,行驻波由一行波与一驻波合成而得。其模值为:

《微波技术与天线》傅文斌-习题标准答案-第章

《微波技术与天线》傅文斌-习题答案-第章

————————————————————————————————作者:————————————————————————————————日期: 2

17 第2章 微波传输线 2.1什么是长线?如何区分长线和短线?举例说明。 答 长线是指几何长度大于或接近于相波长的传输线。工程上常将1.0>l 的传输线视为长线,将1.0

微波技术与天线复习题

微波技术与天线复习题 一、填空题 1微波与电磁波谱中介于(超短波)与(红外线)之间的波段,它属于无线电波中波长(最短)的波段,其频率范围从(300MHz)至(3000GHz),通常以将微波波段划分为(分米波)、(厘米波)、(毫米波)和(亚毫米波)四个分波段。 2对传输线场分析方法是从(麦克斯韦方程)出发,求满足(边界条件)的波动解,得出传输线上(电场)和(磁场)的表达式,进而分析(传输特性)。 3无耗传输线的状态有(行波状态)、(驻波状态)、(行、驻波状态)。 4在波导中产生各种形式的导行模称为波导的(激励),从波导中提取微波信息称为波导的(耦合),波导的激励与耦合的本质是电磁波的(辐射)和(接收),由于辐射和接收是(互易)的,因此激励与耦合具有相同的(场)结构。 5微波集成电路是(微波技术)、(半导体器件)、(集成电路)的结合。 6光纤损耗有(吸收损耗)、(散射损耗)、(其它损耗),光纤色散主要有(材料色散)、(波导色散)、(模间色散)。 7在微波网络中用(“路”)的分析方法只能得到元件的外部特性,但它可以给出系统的一般(传输特性),如功率传递、阻抗匹配等,而且这些结果可以通过(实际测量)的方法来验证。另外还可以根据

微波元件的工作特性(综合)出要求的微波网络,从而用一定的(微波结构)实现它,这就是微波网络的综合。 8微波非线性元器件能引起(频率)的改变,从而实现(放大)、(调制)、(变频)等功能。 9电波传播的方式有(视路传播)、(天波传播)、(地面波传播)、(不均匀媒质传播)四种方式。 10面天线所载的电流是(沿天线体的金属表面分布),且面天线的口径尺寸远大于(工作波长),面天线常用在(微波波段)。 11对传输线场分析方法是从(麦克斯韦方程)出发,求满足(边界条件)的波动解,得出传输线上(电场)和(磁场)的表达式,进而分析(传输特性)。 12微波具有的主要特点是(似光性)、(穿透性)、(宽频带特性)、(热效应特性)、(散射特性)、(抗低频干扰特性)。 13对传输线等效电路分析方法是从(传输线方程)出发,求满足(边界条件)的电压、电流波动解,得出沿线(等效电压、电流)的表达式,进而分析(传输特性),这种方法实质上在一定条件下是(“化场为路”)的方法。 14传输线的三种匹配状态是(负载阻抗匹配)、(源阻抗匹配)、(共轭阻抗匹配)。 15波导的激励有(电激励)、(磁激励)、(电流激励)三种形式。

微波技术与天线试卷A

1 2007 /2008学年第 2 学期 课程名称:微波技术与天线 共 6 页 试卷: A 、 考试形式: 闭 卷 一、 填空题(每空1分,共10分) 1、微波是电磁波谱中介于 与 之间的波段。 2、对于无耗传输线来说,任意点反射系数大小___________。沿线相位按周期变化,其周期为 。 3、矩形波导中传输的主模是__________。 4、圆波导中损耗最小的的模式是_______________。 5、微带线的高次模有两种模式: 和 。 6、电基本振子的远区场是一个沿着径向向外传输的 电磁波。 7、天线的有效长度越长,表明天线的辐射能力___________。 二、选择题(每题2分,共20分) 1、若传输线上无反射时,驻波比等于 。 A :0 B :1 C :2 D :∞ 2、矩形金属波导中只能存在 。 A :TE 波 B :TM 波 C :TEM 波 D :TE 和TM 波 3、匹配双T 的四个端口 。 A :完全匹配 B :只有两个端口匹配 C :只有三个端口匹配 D :完全不匹配 4、当单极天线的高度h<<λ时,其有效高度约为实际高度的 。 A :1/2 B :1/3 C :2/3 D :1/4 5、对于无耗传输线的行波状态,电压和电流在任意点上的相位

2 A :相同 B :相反 C :相差π/2 D :π/4 6、无耗传输线,终端断短路时在电压波节点处,相当于 。 A :并联谐振 B :串联谐振 C :纯电感 D :纯电容 7、单模光纤所传输的模式是 。 A :TE 10模 B :TM 11模 C :TEM 模 D :H E 11模 8、可以导引电磁波的装置称为导波装置,传播不受频率限制的导波装置是 ( ) A.方波导 B.圆波导 C.同轴线 D.以上都可以 9.天线是发射和接收电磁波的装置,其关心的主要参数为( ) A.增益 B.方向图 C.驻波比 D.以上都是 10.传输线的工作状态与负载有关,当负载短路时,传输线工作在何种状态?( ) A.行波 B.驻波 C.混合波 D.都不是 三、简答题(每题6分,共24分) 1、有一三端口元件,测得其[S]矩阵为:00.9950.1[]0.995000.100s →---????=?????---? --- 问:此元件有那些性质?它是一个什么样的元件?

《微波技术与天线》习题答案

《微波技术与天线》习题答案 章节 微波传输线理路 1.1 设一特性阻抗为Ω50的均匀传输线终端接负载Ω=1001R ,求负载反射系数 1Γ,在离负载λ2.0,λ25.0及λ5.0处的输入阻抗及反射系数分别为多少? 解:31)()(01011=+-=ΓZ Z Z Z πβλ8.0213 1 )2.0(j z j e e --=Γ=Γ 31 )5.0(=Γλ (二分之一波长重复性) 31 )25.0(-=Γλ Ω-∠=++= 79.2343.29tan tan )2.0(10010 l jZ Z l jZ Z Z Z in ββλ Ω==25100/50)25.0(2λin Z (四分之一波长阻抗变换性) Ω=100)5.0(λin Z (二分之一波长重复性) 1.2 求内外导体直径分别为0.25cm 和0.75cm 的空气同轴线的特性阻抗;若在两导体间填充介电常数25.2=r ε的介质,求其特性阻抗及MHz f 300=时的波长。 解:同轴线的特性阻抗a b Z r ln 60 0ε= 则空气同轴线Ω==9.65ln 600a b Z 当25.2=r ε时,Ω== 9.43ln 60 0a b Z r ε 当MHz f 300=时的波长: m f c r p 67.0== ελ 1.3题 设特性阻抗为0Z 的无耗传输线的驻波比ρ,第一个电压波节点离负载的距离为1m in l ,

试证明此时的终端负载应为1 min 1 min 01tan tan 1l j l j Z Z βρβρ--? = 证明: 1 min 1min 010)(1 min 101min 010in tan l tan j 1/tan tan 1min 1min l j Z Z Z Z l j Z Z l j Z Z Z Z l in l βρβρρ ββ--? =∴=++?=由两式相等推导出:对于无耗传输线而言:)( 1.4 传输线上的波长为: m f r 2c g == ελ 因而,传输线的实际长度为: m l g 5.04 ==λ 终端反射系数为: 961.051 49 01011≈-=+-= ΓZ R Z R 输入反射系数为: 961.051 49 21== Γ=Γ-l j in e β 根据传输线的4 λ 的阻抗变换性,输入端的阻抗为: Ω==25001 2 0R Z Z in 1.5 试证明无耗传输线上任意相距λ/4的两点处的阻抗的乘积等于传输线特性阻抗的平方。 证明:令传输线上任意一点看进去的输入阻抗为in Z ,与其相距 4 λ 处看进去的输入阻抗为' in Z ,则有: z jZ Z z jZ Z Z ββtan tan Z 10010 in ++=

微波技术与天线实验4利用HFSS仿真分析矩形波导

实验3:利用 HFSS 仿真分析矩形波导 一、 实验原理 矩形波导的结构(如图1),尺寸a×b, a>b ,在矩形波导内传播的电磁波可分为TE 模和TM 模。 图1 矩形波导 1) TE 模,0=z E 。 cos cos z z mn m x n y H H e a b γππ-= 2 cos sin x mn c z n m x n y E H b a b j k e γπππωμ-= 2 sin cos z y mn c j m m x n y E H e k a a b γωμπππ-=- 2sin cos z x mn c m m x n y H H e k a a b γλπ ππ-= 2cos sin z y mn c n m x n y H H e k b a b γλπ ππ-= 其中,c k =2 2 m n a b ππ???? ? ????? +而mn H 是与激励源有关的待定常数。 2) TM 模 Z H =0,由Z E 的边界条件同样可得无穷多个TM 模。注意:对于mn TM 和mn TE 模, m, n 不能同时为零,否则全部的场分量为零。 mn TM 和mn TE 模具有相同的截止波数计算公式,即

c k (mn TM )=c k (mn TE ) = 所以,它们的截止波长c λ和截止频率c f 的计算公式也是一样的,即 c λ(mn TM )=c λ(mn TE )= 2 2 2?? ? ??+??? ??b n a m c f (mn TM )=c f (mn TE ) 对于给定的工作频率或波长,只有满足传播条件(f >c f 或λ

微波技术与天线考试试卷(A)

一、填空(102?) 1、充有25.2r =ε介质的无耗同轴传输线,其内、外导体直径分别为 mm b mm a 72,22==,传输线上的特性阻抗Ω=__________0Z 。(同轴线的单位分布电容和单位分布电感分别()() 70120104,F 1085.8,ln 2ln 2--?==?===πμμεπμπεm a b L a b C 和m H ) 2、 匹配负载中的吸收片平行地放置在波导中电场最_ __________处,在电场作用下吸收片强烈吸收微波能量,使其反射变小。 3、 平行z 轴放置的电基本振子远场区只有________和________ 两 个分量,它们在空间上___________(选填:平行,垂直),在 时间上_______________(选填:同相,反相)。 4、 已知某天线在E 平面上的方向函数为()?? ? ??-=4sin 4sin πθπθF ,其半功率波瓣宽度_________25.0=θ。 5、 旋转抛物面天线由两部分组成, ___________ 把高频导波能量转变成电磁波能量并投向抛物反射面,而抛物反射面将其投过来 的球面波沿抛物面的___________向反射出去,从而获得很强 ___________。 二、判断(101?) 1、传输线可分为长线和短线,传输线长度为3cm ,当信号频率为20GHz 时, 该传输线为短线。( ) 2、无耗传输线只有终端开路和终端短路两种情况下才能形成纯驻波状态。( )

3、由于沿smith 圆图转一圈对应2λ,4λ变换等效于在图上旋转180°, 它也等效于通过圆图的中心求给定阻抗(或导纳)点的镜像,从而得出对 应的导纳(或阻抗)。( ) 4、当终端负载阻抗与所接传输线特性阻抗匹配时,则负载能得到信源的最大 功率。( ) 5、微带线在任何频率下都传输准TEM 波。( ) 6、导行波截止波数的平方即一定大于或等于零。( ) 7、互易的微波网络必具有网络对称性。( ) 8、谐振频率、品质因数和等效电导是微波谐振器的三个基本参量。( 对) 9、天线的辐射功率越大,其辐射能力越强。( ) 10、二端口转移参量都是有单位的参量,都可以表示明确的物理意义。( ) 三、简答题(共19分) 1、提高单级天线效率的方法?(4分) 2、在波导激励中常用哪三种激励方式?(6分) 3、从接受角度来讲,对天线的方向性有哪些要求?(9分) 四、计算题(41分) 1、矩形波导BJ-26的横截面尺寸为22.434.86a mm b ?=?,工作频率为3GHz ,在终端接负载时测得行波系数为0.333,第一个电场波腹点距负载6cm ,今用螺钉匹配。回答以下问题。 (1)波导中分别能传输哪些模式?(6分) (2)计算这些模式相对应的p νλ,p 及。(9分)

微波技术与天线实验3利用ADS设计集总参数匹配电路

一、实验目的 学会用ADS进行集总参数匹配电路设计。 二、实验步骤 1、打开“ADS(Advanced Design System)”软件:点击图标。 2、点击“Close”键,关闭Getting start with ADS窗口(如图1)。 图1 3、在“Advanced Design System 2009(Main)”窗口中点击“File>New Project”(如图2), 图2 在“New project”窗口中的“C:\users\default\”后输入“matching”,点击“OK”(如图3)。

图3 4、默认窗口中的选项(如图4(a)),关闭窗口“Schematic Wizard:1”,进入 “[matching-prj]untitled1(Schematic):1”窗口(如图4(b))。 图4(a) 图4(b) 5、找到“Smith Chart Matching”,并点击(如图5)。

图5 点击“Palette”下的“Smith chart”图标,弹出“Place SmartComponent:1”窗口,点击“OK”按钮(如图6(a))。在操作窗口中点击出一个smith chart,然后点击鼠 标右键选择“End Command”(如图6(b))。 图6 (a)

图6(b) 6、点击“Tools>Smith Chart”(如图7(a)),出现“Smith Chart Utility”以及 “SmartComponent Sync”窗口,点击“Smartcomponent Sync”窗口中的“OK”(如 图7(b))。 图7 (a)

《微波技术与天线实验》2

《微波技术与天线实验》课程实验报告 实验二: 学院通信工程 班级13083414 学号13041403 姓名李倩 指导教师魏一振 2015年11 月12 日

实验名称:集总参数滤波器设计 1.实验目的 (1)通过此次实验,我们需要熟悉集总参数滤波器软件仿真过程,且通过亲自实验来进一步熟悉MWO2003 的各种基本操作。 (2)本次实验我们需要用到MWO2003 的优化和Tune 等工具,要求熟练掌握MWO 提供的这些工具的使用方法和技巧。 2.实验内容 设计一个九级集总参数低通滤波器,要求如下: 通带频率范围:0MHz~400MHz 增益参数S 21:通带内0MHz~400MHz S 21 >--0.5dB 阻带内600MHZ以上S 21 <-50dB 反射系数S 11:通带内0MHz~400MHz S 11 <-10dB 3.实验结果 实验电路原理结构图:

运行结果: 4.思考题 (1)如果要你设计的是高通滤波器,与前面相比,需要变化那几个步骤? 带宽和截止频率参数的设计、结构图的设计需要改变,所以原理图属性设置、画结构图、元件参数设置、参数优化步骤需要改变。 首先需要改变电路图的结构,如下图

将原来的电容接地改成电感接地。 之后在优化参数进行重新设置。也就是将原来0~400MHZ的优化条件改成400MHZ~MAX的频率范围。原来的600~MAX的改为0~600MHZ的频率范围。如下图

之后重复上述仿真可以得到如下结果 可见这样设计并不是十分的完美,在0~300MHZ内基本满足条件,在之后增益略微有偏差。反射系数在某个区域内比较符合。 (2)你在优化设计过程中,那些参量调解对优化结果影响最大?(最敏感)在优化过程中,电容c1和c0的参量调节对优化结果影响最大。

最新微波技术与天线总复习题讲解资料

微波技术与天线基础总复习题 一、填空题 1、微波是一般指频率从 至 范围内的电磁波,其相应的波长从 至 。并 划为 四个波段;从电子学和物理学的观点看,微波有 、 、 、 、 等 重要特点。 2、无耗传输线上的三种工作状态分别为: 、 、 。 3、传输线几个重要的参数: (1) 波阻抗: ;介质的固有波阻抗为 。 (2) 特性阻抗: ,或 ,Z 0=++ I U 其表达式为Z 0= ,是一个复数; 其倒数为传输线的 . (3) 输入阻抗(分布参数阻抗): ,即Z in (d)= 。传输线输入阻抗的 特点是: a) b) c) d) (4) 传播常数: (5) 反射系数: (6) 驻波系数: (7) 无耗线在行波状态的条件是: ;工作在驻波状态的条件是: ; 工作在行驻波状态的条件是: 。 (8) 无耗传输线的特性阻抗0Z = , 输入阻抗具有 周期性,传输 线上电压与电流反射系数关系 ,驻波比和放射系数关系 。 4、负载获得最大输出功率时,负载Z 0与源阻抗Z g 间关系: 。 5、负载获得最大输出功率时,负载与源阻抗间关系: 。 6、史密斯圆图是求街均匀传输线有关 和 问题的一类曲线坐标 图,图上有两组坐标线,即归一化阻抗或导纳的 的等值线簇与反 射系数的 等值线簇,所有这些等值线都是圆或圆弧,故也称阻 抗圆图或导纳圆图。阻抗圆图上的等值线分别标有 , 而 和 ,并没有在圆图上表示出来。导纳圆图可 以通过对 旋转180°得到。阻抗圆图的实轴左半部和右半

部的刻度分别表示或和或。圆图上的电刻度表示,图上0~180°是表示。 7、Smith圆图与实轴右边的交点为点。Smith圆图实轴上的点代表点,左半轴上的点为电压波点,右半轴上的点为电压波点。在传输线上电源向负载方向移动时,对应在圆图上应旋转。 8、阻抗匹配是使微波电路或系统无反射运载行波或尽量接近行波的技术措施,阻抗匹配主要包括三个方面的问题,它们是:(1);(2);(3)。 9、负载获得最大输出功率时,负载与源阻抗间关系: 10、矩形波导的的主模是模,导模传输条件是,其中截止频率为,TE10模矩形波导的等效阻抗为,矩形波导保证只传输主模的条件是。 11、矩形波导的管壁电流的特点是:(1)、(2)、(3)。 12、模式简并现象是指, 主模也称基模,其定义是。单模波导是指;多模传输是。 13、圆波导中的主模为,轴对称模为,低损耗模为。 微带线的特性阻抗随着w/h的增大而。相同尺寸的条件下,εr越大, 特性阻抗越 14、微波元器件按其变换性质可分为、、三大类。 15、将由不均匀性引起的传输特性的变化归结为等效。 16、任意具有两个端口的微波元件均可看做为。 17、[Z]矩阵中的各个阻抗参数必须使用法测量; [Y]矩阵中的各参数必须用法测量; 18、同一双端口网络的阻抗矩阵[Z]和导纳矩阵[Y]关系是。 19、多口网络[S]矩阵的性质:网络互易有,网络无耗有,网络对称时有 .

微波技术与天线(重点)

微波:是电磁波中介于超短波与红外线之间的波段,它属于无线电波中波长最短(频率最高)的波段,其频率范围从300Mhz(波长1m)至3000GHz(波长0.1m). 微波的特性:1.似光性2.穿透性3.宽频带特性4.热效应特性5.散射特性6.抗低频干扰特性. 与低频区别:趋肤效应,辐射效应,长线效应,分布参数。 微波传输线的三种类型:1.双导体传输线,2.金属波导管3.介质传输线。 集总参数:在一般的电路分析中,电路的所有参数,如阻抗、容抗、感抗都集中于空间的各个点上,各个元件上,各点之间的信号是瞬间传递的,这种理想化的电路模型称为集总电路。 这类电路所涉及电路元件的电磁过程都集中在元件内部进行。用集总电路近似实际电路是有条件的,这个条件是实际电路的尺寸要远小于电路工作时的电磁波长。对于集总参数电路,由基尔霍夫定律唯一地确定了电压电流。 分布参数: 电路是指电路中同一瞬间相邻两点的电位和电流都不相同。这说明分布参数电路中的电压和电流除了是时间的函数外,还是空间坐标的函数。 分布参数电路的实际尺寸能和电路的工作波长相比拟。 对于分布参数电路由传输线理论对其进行分析。 均匀传输线方程(电报方程): t t z i L t z Ri z t z u ? ? + = ? ?) , ( ) , ( ) , (, t t z u C t z Gi z t z i ? ? + = ? ?) , ( ) , ( ) , ( 传输线瞬时电压电流: ) cos( ) cos( ) , ( 2 1 z t e A z t e A t z u z zβ ω β ωα α- + + =- + )] cos( ) cos( [ 1 ) , ( 2 1 z t e A z t e A Z t z i z zβ ω β ωα α- + + =- + 特性阻抗: C j G L j R Z ω ω + + = (无耗传输线R=G=0.) 平行双导线(直径为d,间距为 D): d D Z r 2 ln 120 ε = 同轴线(内外导体半径a,b): a b Z r ln 60 ε = 相移常数: λ π ω β 2 = =LC 输入阻抗: ) tan( ) tan( 1 1 0z Z Z z Z Z Z Z inβ β + + = 反射系数:z j z j e e Z Z Z Z zβ β- -Γ = + - = Γ 1 1 1 ) ( 终端反射系数:1 | | 1 1 1 1 φj e Z Z Z Z Γ = + - = Γ

微波技术与天线考试试卷与答案

微波技术与天线考试试卷(A ) 一、填空(210?分=20分) 1、 天线是将电磁波能量转换为高频电流能量的装置。 2、 天线的方向系数和增益之间的关系为G D η=。 3、 对称振子越粗,其输入阻抗随频率的变化越_缓慢_,频带越宽。 4、 分析电磁波沿传输线传播特性的方法有场和路两种。 5、 半波对称振子的最大辐射方向是与其轴线垂直;旋转抛物面天线的最大辐射方向是其轴线。 6、 /4λ终端短路传输线可等效为电感的负载。 7、 传输线上任一点的输入阻抗in Z 、特性阻抗0Z 以及负载阻抗L Z 满足。 000tan tan L in L Z jZ z Z Z Z jZ z ββ+=+ 8、 微波传输线按其传输的电磁波波型,大致可划分为TEM 传输线,TE 传输线和TM 传输线。 9、 传输线终端接一纯感性电抗,则终端电抗离最近的电压波腹点的距离为14λφπ 。 10、 等反射系数圆图中,幅角改变π时,对应的电长度为0.25;圆上任意一 点到坐标原点的距离为/4λ。 二、判断(10?2分=20分) 1. 同轴线在任何频率下都传输TEM 波。√ 2. 无耗传输线只有终端开路和终端短路两种情况下才能形成纯驻波状态。〤 3. 若传输线长度为3厘米,当信号频率为20GHz 时,该传输线为短线。╳ 4. 二端口转移参量都是有单位的参量,都可以表示明确的物理意义。√ 5. 史密斯圆图的正实半轴为行波系数K 的轨迹。╳ 6. 当终端负载与传输线特性阻抗匹配时,负载能得到信源的最大功率。√ 7. 垂直极化天线指的是天线放置的位置与地面垂直。√ 8. 波导内,导行波的截止波长一定大于工作波长。√

南昌大学微波技术与天线实验报告

实验报告 实验课程:微波技术与天线 学生姓名: 学号: 专业班级: 2011年 6月3日

目录 实验一微波测量系统的认识及功率测量 实验二微波波导波长、频率的测量、分析和计算 实验三微波驻波比、反射系数及阻抗特性测量、分析和计算 实验四微波网络参数的测量、分析和计算

实验一微波测量系统的认识及功率测量 一、实验目的: (1)熟悉基本微波测量仪器; (2)了解各种常用微波元器件; (3)学会功率的测量。 二、实验内容: 1、基本微波测量仪器 微波测量技术是通信系统测试的重要分支,也是射频工程中必备的测试技术。它主要包括 微波信号特性测量和微波网络参数测量。 微波信号特性参量主要包括:微波信号的频率与波长、电平与功率、波形与频谱等。微波网络参数包括反射参量(如反射系数、驻波比)和传输参量(如[S]参数)。 测量的方法有:点频测量、扫频测量和时域测量三大类。所谓点频测量是信号只能工作在单一频点逐一进行测量;扫频测量是在较宽的频带内测得被测量的频响特性,如加上自动网络 分析仪,则可实现微波参数的自动测量与分析;时域测量是利用超高速脉冲发生器、采样示波器、时域自动网络分析仪等在时域进行测量,从而得到瞬态电磁特性。 图1-1 是典型的微波测量系统。它由微波信号源、调配器/ 衰减器/隔离器、波长/频率计、测量线、终端负载、选频放大器及小功率计等组成。

图1-1 微波测量系统 2、常用微波元器件简介 微波元器件的种类很多,下面主要介绍实验室里常见的几种元器件:(1)检波器(2)E-T 接头(3)H-T 接头(4)双T 接头 (5)波导弯曲(6)波导开关(7)可变短路器(8)匹配负载 (9)吸收式衰减器(10)定向耦合器(11)隔离器 3、功率测量 按图1-1 所示连接微波测量系统,在终端处接上微波小功率计探头,接通电源开关,调整衰减器,观察微波功率计指示并作相应记录。 三、实验数据及处理 1、实验数据如下表: 0 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 衰减器位置 (mm) 11.5 11.3 10.8 9.4 7.5 6.0 4.1 2.6 1.8 1.0 功率计读数 (μw)

相关主题
文本预览
相关文档 最新文档