当前位置:文档之家› 量子力学全套带重点ppt

量子力学全套带重点ppt

量子力学全套带重点ppt
量子力学全套带重点ppt

第一章 量子力学基础知识

《结构化学基础》 讲稿 第一章 孟祥军

第一章 量子力学基础知识 (第一讲) 1.1 微观粒子的运动特征 ☆ 经典物理学遇到了难题: 19世纪末,物理学理论(经典物理学)已相当完善: ? Newton 力学 ? Maxwell 电磁场理论 ? Gibbs 热力学 ? Boltzmann 统计物理学 上述理论可解释当时常见物理现象,但也发现了解释不了的新现象。 1.1.1 黑体辐射与能量量子化 黑体:能全部吸收外来电磁波的物体。黑色物体或开一小孔的空心金属球近似于黑体。 黑体辐射:加热时,黑体能辐射出各种波长电磁波的现象。 ★经典理论与实验事实间的矛盾: 经典电磁理论假定:黑体辐射是由黑体中带电粒子的振动发出的。 按经典热力学和统计力学理论,计算所得的黑体辐射能量随波长变化的分布曲线,与实验所得曲线明显不符。 按经典理论只能得出能量随波长单调变化的曲线: Rayleigh-Jeans 把分子物理学中能量按自由度均分原则用到电磁辐射上,按其公式计算所得结果在长波处比较接近实验曲线。 Wien 假定辐射波长的分布与Maxwell 分子速度分布类似,计算结果在短波处与实验较接近。 经典理论无论如何也得不出这种有极大值的曲线。 ? 1900年,Planck (普朗克)假定: 黑体中原子或分子辐射能量时作简谐振动,只能发射或吸收频率为ν, 能量为 ε=h ν 的整数倍的电磁能,即振动频率为 ν 的振子,发射的能量只能是 0h ν,1h ν,2h ν,……,nh ν(n 为整数)。 ? h 称为Planck 常数,h =6.626×10-34J ?S ? 按 Planck 假定,算出的辐射能 E ν 与实验观测到的黑体辐射能非常吻合: ●能量量子化:黑体只能辐射频率为 ν ,数值为 h ν 的整数倍的不连续的能量。 能量波长 黑体辐射能量分布曲线 () 1 /81 3 3 --= kt h c h e E ννπν

量子力学基础

量子力学基础 习题 一、单选题 1、在热平衡状态下,黑体的辐出度M(T)与()成正比。 A.T B.T2 C.T3D.T4 2、设有两个黑体,它们的热平衡温度分别为T1、T2(T1>T2),那么,对应于各自的最大单色辐出度的波长λ1、λ2之间的关系为()A.λ1=λ2B.λ1<λ2 C.λ1>λ2D.λ1=2λ2 3、一束紫外光照射到金属铯的表面产生光电效应,其光电流的强度决定于() A、临界频率 B、驰豫时间 C、入射光强度 D、遏止电位 4、一束紫外光照射到某种金属的表面产生光电效应,其光电子的动能决定于() A.入射光强度B.入射光频率 C.脱出功D.驰豫时间 5、设微观自由粒子的速度远小于光速,则根据德布罗意关系,该粒子的波函数可表示成() A.球面波B.单色球面波 C.平面波D.单色平面波 6、在电子衍射实验中,设加速电压为100V,则电子的德布罗意波长约为() A.10nm B.1.0nm C.0.10nm D.0.01nm 7、设光的频率为ν,则该光子的质量可表示为() h A.hνB.ν hν C.mc2D.2c 8、量子力学的测不准关系反映了() A、微观粒子的固有特性 B、测量仪器的精度 C、微观粒子的质量 D、测量方法 9、设电子和质子具有相同的动能,德布罗意波长分别为λe和λp,则有() A.λe>λp B.λe=λp

C.λe<λp D.无法判断 10、微观粒子在空间某处出现的概率与该处()成正比 A.波函数B.波函数的平方 C.波函数的绝对值D.波函数的绝对值的平方 11、波函数的标准化条件是() A.连续B.有限 C.归一化D.单值、有限、连续 12、处于无限深势阱中的粒子() A.能量连续,动量连续B.能量量子化,但动量连续 C.能量量子化,动量也量子化D.能量连续,但动量量子化 二、判断题 1、熔炉中的铁水发出的光是热幅射。() 2、人体也向外发出热幅射,其波长范围在紫外区,所以人的肉眼看不到。() 3、自然界中的一切物体都具有波粒二象性。() 4、一束光照射到金属表面能否产生光电效应,关键在于入射光的强度是否足够 大。() 5、电子衍射实验中,电子的德布罗意波长决定于加速电压。() 6、不确定关系是反映微观粒子运动的普遍规律。() 7、波函数必须满足归一化条件。() 8、薛定谔方程是描述微观粒子运动的基本方程。() 三、填空题 1、黑体是一个理想模型,它是指。 2、光电效应是光的的反映。 3、在光电效应中,电子吸收光子遵守规则。 4、红限频率是指。 5、非相对论性的一维自由粒子的波函数可以表达为。 6、质量为10.0g的子弹,速度为1000m/s,它的德布罗意波长为。 7、不确定关系可以用来区分粒子和粒子,划分力学和力学的界限。 8、德布罗意波既不是机械波又不是电磁波,而是一种。 9、无限深势阱中的粒子的能量必定是。 10、STM的理论基础是。 四、简答题 1、绝对黑体是不是不发射任何辐射?

量子力学基础概念试题库完整

一、概念题:(共20分,每小题4分) 1、何为束缚态? 2、当体系处于归一化波函数ψ(,)?r t 所描述的状态时,简述在ψ(,)? r t 状态中测量力学量F 的可能 值及其几率的方法。 3、设粒子在位置表象中处于态),(t r ? ψ,采用 Dirac 符号时,若将ψ(,)? r t 改写为ψ(,)? r t 有何不 妥?采用Dirac 符号时,位置表象中的波函数应如何表示? 4、简述定态微扰理论。 5、Stern —Gerlach 实验证实了什么? 一、20分,每小题4分,主要考察量子力学基本概念以及基本思想。 1. 束缚态: 无限远处为零的波函数所描述的状态。能量小于势垒高度,粒子被约束在有限的空间内运动。 2. 首先求解力学量F 对应算符的本征方程:λλλφφφλφ==F F n n n ??,然后将()t r ,? ?按F 的本征态展开: ()?∑+=λφφ?λλd c c t r n n n ,? ,则F 的可能值为λλλλ,,,,n 21???,n F λ=的几率为2 n c ,F 在λλλd +~范围内 的几率为λλd c 2 3. Dirac 符号是不涉及任何表象的抽象符号。位置表象中的波函数应表示为?r ? 。 4. 求解定态薛定谔方程ψψE H =∧ 时,若可以把不显含时间的∧ H 分为大、小两部分∧ ∧ ∧ '+=H H H ) (0,其中(1) ∧) (H 0的本征值)(n E 0和本征函数)(n 0ψ 是可以精确求解的,或已有确定的结果)(n )(n )(n ) (E H 0000ψ ψ =∧,(2)∧ 'H 很 小,称为加在∧) (H 0上的微扰,则可以利用) (n 0ψ和) (n E 0构造出ψ和E 。 5. Gerlack Stein -实验证明了电子自旋的存在。 一、概念题:(共20分,每小题4分) 1、一个物理体系存在束缚态的条件是什么? 2、两个对易的力学量是否一定同时确定?为什么? 3、测不准关系是否与表象有关? 4、在简并定态微扰论中,如?()H 0的某一能级)0(n E ,对应f 个正交归一本征函数i φ(i =1,2,…, f ),为什么一般地i φ不能直接作为()H H H '+=???0的零级近似波函数? 5、在自旋态χ12 ()s z 中,?S x 和?S y 的测不准关系(?)(?)??S S x y 22?是多少? 一、20分,每小题4分,主要考察量子力学基本概念以及基本思想。 1、条件:①能量比无穷远处的势小;②能级满足的方程至少有一个解。 2、不一定,只有在它们共同的本征态下才能同时确定。 3、无关。 4、因为作为零级近似的波函数必须保证()()()()()()()()011 1 00E H E H n n n n ??φφ--=-有解。 5、16 4 η。

量子力学基础

《大学物理》作业 No .8量子力学基础 班级 ________ 学号 ________ 姓名 _________ 成绩 _______ 一、选择题:(注意:题目中可能有一个或几个答案正确。) 1. 静止质量不为零的微观粒子作高速运动,这时粒子物质波的波长λ与速度v 有如下关系: [ C ] (A) v ∝λ (B) v 1 ∝λ (C) 2211c v -∝ λ (D) 22v c -∝λ 解:由德布罗意公式和相对论质 — 速公式 2 201 1c v m mv h p -= == λ 得2 20 1 1c v m h - =λ,即2211c v -∝λ 2. 不确定关系式 ≥???x p x 表示在x 方向上 [ D ] (A) 粒子位置不能确定 (B) 粒子动量不能确定 (C) 粒子位置和动量都不能确定 (D) 粒子位置和动量不能同时确定 3. 将波函数在空间各点的振幅同时增大D 倍,则粒子在空间的分布概率将 [ D ] (A) 增大2 D 倍。 (B) 增大2D 倍。 (C) 增大D 倍。 (D) 不变。 4. 已知粒子在一维矩形无限深势阱中运动,其波函数为: )(23cos 1)(a x a a x a x ≤≤-= πψ 那么粒子在6 5a x =处出现的概率密度为 [ A ] a 21(A ) a 1 (B) a 21(C) a 1(D) 解:概率密度 )23(cos 1)(22 a x a x πψ=

将65a x =代入上式,得 a a a a x 21)6523(cos 1)(22=?=πψ 5. 波长 λ = 5000 ?的光沿x 轴正方向传播,若光的波长的不确定量?λ=103-?,则利用不确定关系h p x x ≥???可得光子的x 坐标的不确定量至少为: [ C ] (A) 25cm (B )50cm (C) 250cm (D) 500cm 解:由公式p = λh 知: △322105000 -?-=?-=h h p λλ 利用不确定关系h p x x ≥???,可得光子的x 坐标满足 91025?=?≥ ?x p h x ?=250cm 二、填空题 1. 低速运动的质子和α粒子,若它们的德布罗意波长相同,则它们的动量之比=αP :p p 1:1 ;动能之比=αP :E E 4:1 。 解:由p = λ h 知,动量只与λ有关,所以1:1:αP =p p ; 由非相对论动能公式m p E 22 k =,且αp p p =,所以1:4:αP ==p m m E E α 2. 在B = 1.25×10 2 -T 的匀强磁场中沿半径为R =1.66cm 的圆轨道运动的α粒子的德布罗 意波长是 0.1 ? 。(普朗克常量h = 6.63×10-34J·s ,基本电荷e = 1.6×10-19 C) 解:由牛顿第二定律= evB 2R mv 2得eBR mv p 2==,又由λ h p =得 1.0(m)10998.010 66.11025.1106.121063.62112 21934 ≈?=???????===-----eBR h p h λ? 3. 若令c m h e c = λ (称为电子的康普顿波长,其中m e 为电子静止质量,c 为光速,h 为普

量子力学基础

量子力学基础 部门: xxx 时间: xxx 整理范文,仅供参考,可下载自行编辑

第一章量子力学基础 一、教案目的: 通过本章学习,掌握微观粒子运动的特征、量子力学的基本假设,并初步学习运用薛定谔方程去分析和计算势箱中粒子运动的有关问题:b5E2RGbCAP 二、教案内容: 1、微观粒子的运动特征 黑体辐射和能量量子化;光电效应和光子学说;实物粒子的波粒二相性;不确定关系; 2、量子力学基本假设 波函数和微观粒子的状态;物理量和算符;本征态、本征值和薛定谔方程;态叠加原理;泡利原理; 3、箱中粒子的薛定谔方程及其解 三、教案重点 微观粒子运动的特征、量子力学的基本假设 四、教案难点: 量子力学的基本假设 五、教案方法及手段 课堂教案 六、课时分配: 微观粒子的运动特征 2学时 量子力学基本假设 4学时

箱中粒子的薛定谔方程及其解 2学时 七、课外作业 课本p20~21 八、自学内容 1-1微观粒子的运动特征 1900年以前,物理学的发展处于经典物理学阶段<由Newton的经典力学,Maxwell的的电磁场理论,Gibbs的热力学和Boltzmann的统计物理学),这些理论构成一个相当完善的体系,对当时常见的物理现象都可以从中得到说明。p1EanqFDPw 在经典物理学取得上述成就的同时,通过实验又发现了一些新现象,它们是经典物理学无法解释的。如黑体辐射、光电效应、电子波性等实验现象,说明微观粒子具有其不同于宏观物体的运动特征。DXDiTa9E3d 电子、原子、分子和光子等微观粒子,它们表现的行为在一些场合显示粒性,在另一些场合又显示波性,即具有波粒二象性的运动特征。人们对这种波粒二象性的认识是和本世纪物理学的发展密切联系的,是二十世纪初期二十多年自然科学发展的集中体现。RTCrpUDGiT 1.1.1黑体辐射和能量量子化——普朗克< planck)的量子假 说:量子说的起源 黑体是一种能全部吸收照射到它上面的各种波长的光,同时也能在同样条件下发射最大量各种波长光的物体。 带有一个微孔的空心金属球,非常接近于黑体,进入金属球小孔的辐射,经过多次吸收、反射,使射入的辐射全部被吸收。当空腔受热时,空腔壁会发出辐射,极小部分通过小孔逸出。5PCzVD7HxA

量子力学基础考试习题思考题

习题22 22-1.计算下列物体具有MeV 10动能时的物质波波长,(1)电子;(2)质子。 解:(1)具有MeV 10动能的电子,可以试算一下它的速度: 2 12k mv E = ?v c ==>光速,所以要考虑相对论效应。 设电子的静能量为20m c ,总能量可写为:20k E E m c =+,用相对论公式: 22224 0E c p m c =+ ,可得:p = = h p λ= = 348 -= 131.210m -=?; (2)对于具有MeV 10动能的质子,可以试算一下它的速度: 74.410/v m s = ==?,所以不需要考虑相对论效应。 利用德布罗意波的计算公式即可得出: 34 159.110h m p λ--====?。 22-2.计算在彩色电视显像管的加速电压作用下电子的物质波波长,已知加速电压为kV 0.25,(1)用非相对论公式;(2)用相对论公式。 解:(1)用非相对论公式: 34127.7610h m p λ--====?; (2)用相对论公式:设电子的静能为20m c ,动能为:k E eU =, 由2 0222240E eU m c E c p m c =+=+????? ,有:127.6710m λ-==?。 22-3.求出实物粒子德布罗意波长与粒子动能E K 和静止质量m 0的关系,并得出: E K << m 0c 2时, K E m h 02/≈λ; E K >> m 0c 2时, K E hc /≈λ. 解:由 202c m mc E K -=2 0220])/(1/[c m c c m --=v 解出: 2 2 0/)(c c m E m K += )/(220202 c m E c m E E c K K K ++=v , 根据德布罗意波: )/(/v m h p h ==λ 把上面m ,v 代入得: 2 02 2c m E E hc K K += λ,

物理奥赛辅导第十七章量子力学基础知识

第十七章量子力学基础知识 量子力学是研究微观粒子(如电子,原子和分子等)运动规律的学科 量子力学的建立经历了由经典物理学到旧量子论,再由旧量子论到量子力学两个历史发展阶段。 微观粒子运动的特征 1 、几个代表性的实验 经典物理学发展到19世纪末,在理论上已相当完善,对当时发现的各种物理现象都能加以理论上的说明。它们主要由牛顿的经典力学,麦克斯韦的电、磁和光的电磁波理论,玻耳兹曼和吉布斯等建立的统计物理学组成。19世纪末,人们通过实验发现了一些新的现象,它们无法用经典物理学解释,这些具有代表性的实验有以下3个。 (1)黑体辐射 黑体是指能全部吸收各种波长辐射的物体,它是一种理想的吸收体,同时在加热它时,又能最大程度地辐射出各种波长的电磁波。 绝热的开有一个小孔的金属空腔就是一种良好的黑体模型。进入小孔的辐射,经多次吸收和反射,可使射入的辐射实际上全部被吸收,当空腔受热时,空腔会发出辐射,称为黑体辐射。 实验发现,黑体辐射能量与波长的关系主要与温度有关,而与空腔的形状和制作空腔的材料无关。在不同温度下,黑体辐射的能量(亦称辐射强度)与波长的关系如图所示。 许多物理学家试图用经典热力学和统计力学方法解释黑体辐射现象。瑞利(Rayleigh J W)和金斯(Jeans J H)把分子物理学中能量按自由度均分的原理用于电磁辐射理论,得到的辐射能量公式在长波处接近实验结果,在短波处和实验明显不符。特别是瑞利-金斯的理论预示在短波区域包括紫外以至x射线、γ射线将有越来越高的辐射强度,完全与事实不符,这就是物理学上所谓的“紫外灾难”。维恩(Wien W)假设辐射按波长分布类似于麦克斯韦的分子速度分布,得到的公式在短波处和实验结果接近,在长波处相差很大。 1900年普朗克(Planck M)在深入研究了实验数据,并在经典力学计算的基础上首先提出了“能量量子化”的假设,他认为黑体中原子或分子辐射能量时做简

量子力学基础简答题(经典)

量子力学基础简答题 1、简述波函数的统计解释; 2、对“轨道”和“电子云”的概念,量子力学的解释是什么? 3、力学量G ?在自身表象中的矩阵表示有何特点? 4、简述能量的测不准关系; 5、电子在位置和自旋z S ?表象下,波函数??? ? ??=ψ),,(),,(21z y x z y x ψψ如何归一化?解释各项的几率意义。 6、何为束缚态? 7、当体系处于归一化波函数ψ(,)?r t 所描述的状态时,简述在ψ(,)? r t 状态中测量力学量F 的可能值及其几率的方法。 8、设粒子在位置表象中处于态),(t r ? ψ,采用Dirac 符号时,若将ψ(,)? r t 改写为ψ(,) ? r t 有何 不妥?采用Dirac 符号时,位置表象中的波函数应如何表示? 9、简述定态微扰理论。 10、Stern —Gerlach 实验证实了什么? 11、一个物理体系存在束缚态的条件是什么? 12、两个对易的力学量是否一定同时确定?为什么? 13、测不准关系是否与表象有关? 14、在简并定态微扰论中,如?() H 0的某一能级) 0(n E ,对应f 个正交归一本征函数i φ(i =1,2,…, f ),为什么一般地i φ不能直接作为()H H H '+=???0的零级近似波函数? 15、在自旋态χ 1 2 ()s z 中,?S x 和?S y 的测不准关系(?)(?)??S S x y 22?是多少? 16、在定态问题中,不同能量所对应的态的迭加是否为定态Schrodinger &&方程的解?同一能量对应的各简并态的迭加是否仍为定态Schrodinger &&方程的解? 17、两个不对易的算符所表示的力学量是否一定不能同时确定?举例说明。 18说明厄米矩阵的对角元素是实的,关于对角线对称的元素互相共轭。 19何谓选择定则。 20、能否由Schrodinger &&方程直接导出自旋? 21、叙述量子力学的态迭加原理。 22、厄米算符是如何定义的? 23、据[a ?,+ a ?]=1,a a N ???+=,n n n N =?,证明:1?-=n n n a 。 24、非简并定态微扰论的计算公式是什么?写出其适用条件。

量子力学基础习题

《量子力学》基础习题 1.在0K 附近,钠的价电子能量约为3电子伏,求其德布洛意波长。 2.氦原子的动能是 kT E 23 = (k 为玻耳兹曼常数),求K T 1=时,氦原 子的德布洛意波长。 3.设质量为m 的粒子在谐振子势 2221 )(x m x V ω= 中运动,用量子化条件 求粒子能量E 的可能取值。 4.两个光子在一定条件下可发转化为正负电子对。如果两光子的能量相等,问要实现这种转化,光子的波长最大是多少? 5.证明在定态中,几率密度和几率流密度与时间无关。 6.由下列两定态波函数计算几率流密度; (1) ikr e r 1 1=ψ, (2) ikr e r -=12ψ 7.求粒子在一维无限深势阱 ?? ?≥≤∞<<=a x x a x x V 或0,0,0)(中运动的能 级和波函数。 8.证明(2.6-14)式中的归一化常数是 a A 1 = '。 9.求一维线性谐振子处于第一激发态时几率最大的位置。 10.一维运动的粒子处于如下状态: ?? ?=-0)(x Axe x λψ 00<≥x x 其中0>λ,

(1) (1) 将此波函数归一化, (2) (2) 问在何处找到粒子的几率最大? 11.设在球坐标系中,粒子的波函数为),,(?θψr , 求 (1)在球壳)(dr r r +→中找到粒子的几率, (2)在),(?θ方向,立体角元Ωd 中找到粒子的几率。 12. 求三维各向同性谐掁子 )(21 2222z y x U ++= μω的能级和波函数。 13.设1ψ和2ψ都是一维定态薛定谔方程的解,而且它们属于同一能级E ,试证明: =-1221 ψψψψdx d dx d constant. 14.上题中,若1ψ和2ψ描述的都是束缚态,试证明1ψ和2ψ只相差一个常数因子。(提示:所谓束缚态,即当∞→x 时有0=ψ) 15.一维线性谐振子处于基态 t i x e ωαπ αψ2 21 02 2--= ,求 (1)势能的平均值 >=< 2221 x U μω (2)动能的平均值 > =<μ22 p T (3)动量的几率分布函数。 16.氢原子处于基态 1 ),,(a r e a r - =π?θψ,求: (1)r 的平均值; (2)势能r e 2- 的平均值; (3)最可几半径; (4)动能的平均值; (5)动量的几率分布函数。

量子力学基础

第22章量子力学基础 一、德布罗意物质波 德布罗意认为不仅光具有波粒二象性,实物粒子也具有波粒二象性。描述实物粒子波函数中的、与实物粒子的能量E和动量p的德布罗意关系: 戴维孙-革末电子衍射实验,约恩孙电子双缝干涉实验都证实了电子具有的波动性。 二、海森伯不确定关系 由于微观粒子具有波粒二象性,我们就无法同时精确地测定微观粒子坐标与动量,海森伯提出了如下的不确定关系: 1、动量-坐标不确定关系 2、时间-能量不确定关系 三、波函数 微观粒子具有波粒二象性,它不同于经典的波也不同于经典的粒子,要描述微观粒子群体随时间的变化,引入波函数。波函数确定后,微观粒子的波粒二象性就能得到准确的描述。波函数是微观粒子的态函数。 1、波函数的物理意义: 某一时刻在空间某一位置粒子出现的几率正比于该时刻该位置波函数的平方,或 ,即 几率密度

2、波函数的归一化条件 3、波函数的标准条件,单值有限连续。 四、薛定谔方程 薛定谔方程是量子力学的基础方程,由它可解出粒子的波函数 1、自由粒子: ,, 2、势场中粒子: *非定态: 式中,为哈密顿算符。 定态: 五、薛定谔方程应用实例 1、一维势箱:金属中电子、原子核中质子势能分布的理想化模型。它的势函数 阱内一维定态薛定谔方程

解得满足边界条件(标准条件)归一化条件的解的波函数 能量 当n=1时为基态能量,也叫零点能。 相应各量子数n的波函数,几率密度和能级分布如图: 2、一维势垒: 半导体中p-n结处电子和空穴势能分布的简化模型。 3、隧道效应:

粒子越过或穿透高于其总能量的势垒。 4、原子、分子运动的量子化特征: 原子振动能量: 分子转动能力: 5、电子角动量: 轨道角动量:, 自旋角动量:, 6、氢原子的定态: 氢原子中电子的定态薛定谔方程 解出来的波函数满足有限单值连续的标准条件可得下表中的四个量子数。 四个量子数表征氢原子中电子状态的特征,如表所列: 名称可取数值主要作用 确定电子能量的主要部分 主量子数n 正整数 1,2,3…… 确定电子的角动量 角量子数在n给定以后,可取n个值, 即0,1,2……(n-1) 相应常用s、p、d、f表示

量子力学期末考试知识点+计算题证明题

1. 你认为Bohr 的量子理论有哪些成功之处?有哪些不成功的地方?试举一例说明。 (简述波尔的原子理论,为什么说玻尔的原子理论是半经典半量子的?) 答:Bohr 理论中核心的思想有两条:一是原子具有能量不连续的定态的概念;二是两个定态之间的量子跃迁的概念及频率条件。首先,Bohr 的量子理论虽然能成功的说明氢原子光谱的规律性,但对于复杂原子光谱,甚至对于氦原子光谱,Bohr 理论就遇到了极大的困难(这里有些困难是人们尚未认识到电子的自旋问题),对于光谱学中的谱线的相对强度这个问题,在Bohr 理论中虽然借助于对应原理得到了一些有价值的结果,但不能提供系统解决它的办法;其次,Bohr 理论只能处理简单的周期运动,而不能处理非束缚态问题,例如:散射;再其次,从理论体系上来看,Bohr 理论提出的原子能量不连续概念和角动量量子化条件等,与经典力学不相容的,多少带有人为的性质,并未从根本上解决不连续性的本质。 2. 什么是光电效应?光电效应有什么规律?爱因斯坦是如何解释光电效应的? 答:当一定频率的光照射到金属上时,有大量电子从金属表面逸出的现象称为光电效应;光电效应的规律:a.对于一定的金属材料做成的电极,有一个确定的临界频率0υ,当照射光频率 0υυ<时,无论光的强度有多大,不会观测到光电子从电极上逸出;b.每个光电子的能量只与 照射光的频率有关,而与光强无关;c.当入射光频率0υυ>时,不管光多微弱,只要光一照,几乎立刻9 10s -≈观测到光电子。爱因斯坦认为:(1)电磁波能量被集中在光子身上,而不是象波那样散布在空间中,所以电子可以集中地、一次性地吸收光子能量,所以对应弛豫时间应很短,是瞬间完 成的。(2)所有同频率光子具有相同能量,光强则对应于光子的数目,光强越大,光子数目越多,所以遏止电压与光强无关,饱和电流与光强成正比。(3)光子能量与其频率成正比,频率越高,对应光子能量越大,所以光电效应也容易发生,光子能量小于逸出功时,则无法激发光电子。 3.简述量子力学中的态叠加原理,它反映了什么? 答:对于一般情况,如果1ψ和2ψ是体系的可能状态,那么它们的线性叠加:1122c c ψψψ=+(12c c ,是复数)也是这个体系的一个可能状态。这就是量子力学中的态叠加原理。态叠加原理的含义表示当粒子处于态1ψ和2ψ的线性叠加态ψ时,粒子是既处于态1ψ,又处于态2ψ。它反映了微观粒子的波粒二象性矛盾的统一。量子力学中这种态的叠加导致在叠加态下观测结果的不确定性。 4. 什么是定态?定态有什么性质? 答:体系处于某个波函数()()[]exp r t r iEt ψ ψ=-,所描写的状态时,能量具有确定值。这 种状态称为定态。定态的性质:(1)粒子在空间中的概率密度及概率流密度不随时间变化;(2)任何力学量(不显含时间)的平均值不随时间变化;(3)任何力学量(不显含时间)取各种可能测量值的概率分布也不随时间变化。 5. 简述力学量与力学量算符的关系? 答:算符是指作用在一个波函数上得出另一个函数的运算符号。量子力学中采用算符来表示微观粒子的力学量。如果量子力学中的力学量F 在经典力学中有相应的力学量,则表示这个力学

第一章 量子力学基础课后习题

第一章量子力学基础 第八组: 070601337刘婷婷 070601339黄丽英 070601340李丽芳 070601341林丽云 070601350陈辉辉 070601351唐枋北 【1.1】经典物理学在研究黑体辐射、光电效应与氢光谱时遇到了哪些困难?什么叫旧量子论?如何评价旧量子论? [解]:困难:(1)黑体辐射问题。黑体就是理论上不反射任何电磁波的物体,黑体辐射是指这类物体的电磁波辐射,由于这类物体不反射,所以由它释放出来的电磁波都来自辐射,实验中在不同的能量区间对黑体辐射规律给出了不同的函数,然而这两个函数无法兼容,是完全不同的,而事实上黑体辐射本该遵循某个唯一的规律。况且经典理论还无法说明这两个函数中的任意一个.这个问题研究的是辐射与周围物体处于平衡状态时的能量按波长(或频率)的分布。实验得出的结论是:热平衡时辐射能量密度按波长分布的曲线,其形状和位置只与黑体的绝对温度有关,而与空腔的形状及组成的物质无关。这一结果用经典理论无法解释。(2)光电效应。光照射到金属上时,有电子从金属中逸出。实验得出的光电效应的有关规律同样用经典理论无法解释。(3)按照经典电动力学,由于核外电子作加速运动,原子必然坍缩。经典物理学不能解释原子的稳定性问题。原子光谱是线状结构的,而按照经典电动力学,作加速运动的电子所辐射的电磁波的频率是连续分布的,这与原子光谱的线状分布不符。 定义:从1900年普朗克提出振子能量量子化开始,人们力图以某些物理量必须量子化的假定来修正经典力学,用于解释某些宏观现象,并且给出其微观机制。这种在量子力学建立以前形成的量子理论称为旧量子论。 评价:旧量子论冲破了经典物理学能量连续变化的框框。对于黑体辐射、光电效应与氢光谱等现象的解释取得了成功。但是,旧量子论是一个以连续为特征的经典力学加上以分立为特征的量子化条件的自相矛盾的体系,本质上还是属于经典

量子力学基础知识

第四章量子力学基础知识 量子力学是研究微观粒子(如电子,原子和分子等)运动规律的学科 量子力学的建立经历了由经典物理学到旧量子论,再由旧量子论到量子力学两个历史发展阶段。 4.1 微观粒子运动的特征 4.1.1 几个代表性的实验 经典物理学发展到19世纪末,在理论上已相当完善,对当时发现的各种物理现象都能加以理论上的说明。它们主要由牛顿的经典力学,麦克斯韦的电、磁和光的电磁波理论,玻耳兹曼和吉布斯等建立的统计物理学组成。19世纪末,人们通过实验发现了一些新的现象,它们无法用经典物理学解释,这些具有代表性的实验有以下3个。 (1)黑体辐射 黑体是指能全部吸收各种波长辐射的物体,它是一种理想的吸收体,同时在加热它时,又能最大程度地辐射出各种波长的电磁波。 绝热的开有一个小孔的金属空腔就是一种良好的黑体模型。进入小孔的辐射,经多次吸收和反射,可使射入的辐射实际上全部被吸收,当空腔受热时,空腔会发出辐射,称为黑体辐射。 实验发现,黑体辐射能量与波长的关系主要与温度有关,而与空腔的形状和制作空腔的材料无关。在不同温度下,黑体辐射的能量(亦称辐射强度)与波长的关系如图所示。许多物理学家试图用经典热力学和统计力学方法解释黑体辐射现象。瑞利(Rayleigh J W)和金斯(Jeans J H)把分子物理学中能量按自由度均分的原理用于电磁辐射理论,得到的辐射能量公式在长波处接近实验结果,在短波处和实验明显不符。特别是瑞利-金斯的理论预示在短波区域包括紫外以至x射线、γ射线将有越来越高的辐射强度,完全与事实不符,这就是物理学上所谓的“紫外灾难”。维恩(Wien W)假设辐射按波长分布类似于麦克斯韦的分子速度分布,得到的公式在短波处和实验结果接近,在长波处相差很大。 1900年普朗克(Planck M)在深入研究了实验数据,并在经典力学计算的基础上首先提出了“能量量子化”的假设,他认为黑体中原子或分子辐射能量时做简谐振动,这种振 子的能量只能采取某一最小能量单位ε 0的整数倍数值。ε=nε , n=1,2,3,... n称量子数。并且ε =hν

量子力学基础知识

01.量子力学基础知识 【1.1】将锂在火焰上燃烧,放出红光,波长λ=670.8nm ,这是Li 原子由电子组态 (1s)2(2p)1→(1s)2(2s)1跃迁时产生的,试计算该红光的频率、波数以及以k J ·mol -1 为单位的能量。 解:81 141 2.99810m s 4.46910s 670.8m c νλ--??===? 41 7 11 1.49110cm 670.810cm νλ--===?? 34141 23-1 -16.62610J s 4.46910 6.602310mol 178.4kJ mol A E h N s ν--==??????=? 【1.2】 实验测定金属钠的光电效应数据如下: 波长λ/nm 312.5 365.0 404.7 546.1 光电子最大动能E k /10-19J 3.41 2.56 1.95 0.75 作“动能-频率”,从图的斜率和截距计算出Plank 常数(h)值、钠的脱出功(W)和临阈频率(ν0)。 解:将各照射光波长换算成频率v ,并将各频率与对应的光电子的最大动能E k 列于下表: λ/nm 312.5 365.0 404.7 546.1 v /1014s -1 9.59 8.21 7.41 5.49 E k /10- 19J 3.41 2.56 1.95 0.75 由表中数据作图,示于图1.2中 E k /10-19 J ν/1014g -1 图1.2 金属的 k E ν -图 由式 0k hv hv E =+ 推知 0k k E E h v v v ?= =-? 即Planck 常数等于k E v -图的斜率。选取两合适点,将k E 和v 值带入上式,即可求出h 。 例如: ()()1934 141 2.70 1.0510 6.60108.5060010J h J s s ---?==?-?

量子力学知识点总结

量子力学期末复习完美总结 一、 填空题 1.玻尔-索末菲的量子化条件为: pdq nh =? ,(n=1,2,3,....), 2.德布罗意关系为:h E h p k γωλ === =; 。 3.用来解释光电效应的爱因斯坦公式为: 21 2 mV h A υ=-, 4.波函数的统计解释:()2 r t ψ,代表t 时刻,粒子在空间r 处单位体积中出现的概率,又称为概率密度。这是量子力学的基本原理之一。波函数在某一时刻在空间的强度,即其振幅绝对值的平方与在这一点找到粒子的几率成正比,和粒子联系的波是概率波。 5. 波函数的标准条件为:连续性,有限性,单值性 。 6. , 为单位矩阵,则算符 的本征值为: 1± 。 7.力学量算符应满足的两个性质是 实数性和正交完备性 。 8.厄密算符的本征函数具有: 正交性,它们可以组成正交归一性。即 ()m n mn d d λλφφτδ φφτδλλ** '' ==- ??或 。 9.设 为归一化的动量表象下的波函数,则 的物理意义为:表示在()r t ψ, 所描写 的态中测量粒子动量所得结果在p p dp → +范围内的几率。 10. i ; ?x i L ; 0。 11.如两力学量算符 有共同本征函数完全系,则 _0__。 12.坐标和动量的测不准关系是: () () 2 2 2 4 x x p ??≥ 。 自由粒子体系,_动量_守恒;中心力场中运动的粒子__角动量__守恒 13.量子力学中的守恒量A 是指:?A 不显含时间而且与?H 对易,守恒量在一切状态中的平均值和概率分布都不随时间改变。 14.隧道效应是指:量子力学中粒子在能量E 小于势垒高度时仍能贯穿势垒的现象称为隧道效应。 15. 为氢原子的波函数, 的取值范围分别为:n=1,2,3,… ;l=0,1,…,n -1;m=-l,-l+1,…,0,1,…l 。 16.对氢原子,不考虑电子的自旋,能级的简并为: 2 n ,考虑自旋但不考虑自旋与轨道角动量的 耦合时,能级的简并度为 2 2n ,如再考虑自旋与轨道角动量的耦合,能级的简并度为 12+ j 。 17.设体系的状态波函数为 ,如在该状态下测量 力学量 有确定的值 ,则力学量算符 与态矢量 的关系为: ?F ψ λψ = 。 18.力学量算符 在态 下的平均值可写 为 的条件为:力学量算符的本征 值组成分立谱,并且()r ψ是归一化波函数。 19. 希尔伯特空间:量子力学中Q 的本质函数有无限多 个,所以态矢量所在的空间是无限维的函数空间。 20.设粒子处于态 , 为 归一化波函数, 为球谐函数,则系数c 的取值为: , 的可能值为: 13 , 本征值为 出现 的几率为: 1 2 。 21.原子跃迁的选择定则为:101l m ?=±?=±;, 。

作业10量子力学基础 作业及参考答案

() 一. 选择题 [ C ]1.(基础训练2)下面四个图中,哪一个正确反映黑体单色辐出度 M B λ(T )随λ 和T 的变化关系,已知T 2 > T 1. 解题要点: 斯特藩-玻耳兹曼定律:黑体的辐 射出射度M 0(T )与黑体温度T 的四次方成正比,即 . M 0 (T )随温度的增高而迅速增加 维恩位移律:随着黑体温度的升高,其单色辐出度最大值所对应的波长m λ向短波方向移动。 [ D ]2.(基础训练4)用频率为ν 的单色光照射某种金属时,逸出光电子的最大动能为E K ;若改用频率为2ν 的单色光照射此种金属时,则逸出光电子的最大动能为: (A) 2 E K . (B) 2h ν - E K . (C) h ν - E K . (D) h ν + E K . 解题要点: 根据爱因斯坦光电效应方程:2 012 m h mv A ν= +, 式中h ν为入射光光子能量,0A 为金属逸出功,2 12 m mv 为逸出光电子的最大初动能,即 E K 。所以有:0k h E A ν=+及' 02K h E A ν=+,两式相减即可得出答案。 [ C ]3.(基础训练5)要使处于基态的氢原子受激发后能发射赖曼系(由激发态跃迁到基态发射的各谱线组成的谱线系)的最长波长的谱线,至少应向基态氢原子提供的能量是 (A) 1.5 eV . (B) 3.4 eV . (C) 10.2 eV . (D) 13.6 eV . 解题要点: 根据氢原子光谱的实验规律,莱曼系:2 1 1 (1)R n νλ = =- 式中,711.09677610R m -=?,称为里德堡常数,2,3, n = 最长波长的谱线,相应于2n =,至少应向基态氢原子提供的能量12E E h -=ν, 又因为26.13n eV E n -=,所以l h E E h -=ν=???? ??---2216.1326.13eV eV =10.2 eV [ A ]4.(基础训练8)设粒子运动的波函数图线分别如图19-4(A)、(B)、(C)、(D)所示,那么其中确定粒子动量的精确度最高的波函数是哪个图? 解题要点: 根据动量的不确定关系: 2 x x p ???≥ x (A) x (B) x (C) x (D)

相关主题
文本预览
相关文档 最新文档