当前位置:文档之家› TI数字听诊器方案

TI数字听诊器方案

TI TMS320VC5505 数字听诊器解决方案

TI 公司的数字听诊器解决方案是采用TMS320VC5505 DSP医疗开发套件来实现的.主要的元件是捕捉心肺声音的传感器,以及听诊的数字化和数字处理,以降低噪音,滤波和放大.此外还包括了心率检测和心脏缺陷检测的算法.电源和电池管理是该手提诊断设备的关键,主要的设计都采用超低功耗和高效率驱动,以延长电池寿命.本文介绍了数字听诊器总体方框图, 数字听诊器前端方框图, 增益为31的前置放大器, 一阶低通滤波器,以及TLV320AIC3254方框图和TMS320VC5505 DSP 与TLV320AIC3254间接口方框图, 数字听诊器前端板电路图和材料清单(BOM).

Digital Stethoscope Implementation on the TMS320VC5505 DSP Medical Development Kit (MDK)

The main elements of a Digital Stethoscope are the sensor unit that captures the heart and lung sounds (also known as auscultations), digitization, and digital processing of the auscultations for noise reduction, filtering and amplification. Algorithms for heart rate detection and heart defect detection may also be included.

Power and Battery Management are key in this ultra-portable diagnostic tool, where key design considerations are ultra-low power consumption and high efficiency driven by the need for extended battery life, and high precision with a fast response time allowing quick determination of the patient’s health status. Additional requirements may drive the need for recording the auscultations, cabled or wireless interfaces for transmission of the auscultations. Also, to enable ease of use, features like touch screen control and display backlighting are key to usability of the device. Adding all these features without significantly increasing power consumption is a huge challenge. Texas Instruments portfolio of Processors, Instrumentation and Buffer Amplifiers, Power and Battery Management, Audio Codecs, and both wired and wireless interface devices provides the ideal tool box for Digital Stethoscope applications.

The common core subsystems of a Digital Stethoscope are:

Analog Front-End/Sensor Interface and Codec

Auscultations signal input is amplified and then digitized by the Audio Codec. Auscultations signal after being digitized and subjected to signal processing, is converted to analog and sent to the stethoscope earpiece.

Low Power Processor

Processors capable of executing all of the digital stethoscopes signal processing including key functions such as noise reduction, algorithms for heart rate detection, and heart defect detection while maintaining a very low constant current draw from the battery are good fit. The ability to control interfacing with memory and peripheral devices is also helpful. Given the nature of the device, processors that can manage the digital display and keyed functions allowing auscultation waveforms to be displayed and manipulated without additional components are ideal.

Data Storage and Transmission

The auscultations can be recorded on MMC/SD card, or on a USB device. It can also be transmitted via wireless capability such as Bluetooth.

Digital Stethoscope Medical Development Kit

TIs TMS320VC5505 evaluation module together with TIs digital stethoscope analog front-end module make up the new C5505 DS Medical Development Kit (MDK) provides developers access to a development tool set that offers a complete signal chain solution along with software to save months of development time and for portable patient monitoring applications that demand battery efficiency.

图1. 数字听诊器方框图

A number of emerging medical applications such as electrocardiography (ECG), digital stethoscope, and pulse oximeters, require DSP processing performance at very low power. The TMS320VC5505 digital signal processor (DSP) is ideally suited for such applications. The VC5505 is a member of TIs C5000?fixed-point DSP platform. To enable the development of a broad range of medical applications on the VC5505, Texas Instruments has developed an MDK based on the VC5505 DSP. A typical medical application includes:

An analog front end, including sensors to pick up signals of interest from the body

Signal processing algorithms for signal conditioning, performing measurements and running analytics on measurements to determine the health condition

User control and interaction, including graphical display of the signal processing results and connectivity to enable remote patient monitoring The M DK is designed to support complete medical applications development. It includes the following elements:

Analog front-end boards (FE boards) specific to the key target medical applications of the VC5505 (ECG, digital stethoscope, pulse oximeter), highlighting the use of the TI analog components for medical applications

VC5505 DSP evaluation module (EVM) main board

Medical applications software including example demonstrations

图2.VC5505 EVM评估板外形图

图3.数字听诊器前端板外形图

图4.数字听诊器前端方框图

The front-end board contains the following stages:

Pre-amplifier

Low pass filter

AC coupling block

Audio codec

Front-end connector

Digital stethoscope analog front-end module can be used with C5505 EVM to make up the C5505 DS MDK that offers a complete signal chain solution along with software

图5.增益31的前置放大器

图6.一阶低通滤波器

图7. TLV320AIC3254方框图

图8. VC5505 DSP 和TLV320AIC3254间接口方框图

图9. 数字听诊器前端板电路图(1)

图10. 数字听诊器前端板电路图(2)

图11. 数字听诊器前端板电路图(3) 数字听诊器前端板材料清单(BOM):

数字信号处理在语音信号分析中的应用

《数字信号处理》 课程设计报告 数字信号处理在语音信号分析中的应用 专业班级: 姓名: 学号:

目录 摘要 (3) 1、绪论 (3) 2、课程设计的具体容 (4) 2.1.1、读取语音信号的任务 (4) 2.1.2、任务分析和解决方案 (5) 2.1.4、运行结果和相应的分析 (5) 2.2、IIR滤波器设计和滤波处理 (6) 2.2.1、设计任务 (6) 2.2.2、任务分析和解决方案 (7) 2.2.3、编程得到的MATLAB代码 (7) 2.2.4、运行结果和相应的分析 (7) 2.3、FIR滤波器设计和滤波处理 (9) 2.3.1、设计任务 (9) 2.3.2、任务分析和解决方案 (9) 2.3.3、编程得到的MATLAB代码 (9) 2.3.4、运行结果和相应的分析 (11) 3、总结 (13) 4、存在的不足及建议 (13) 5、参考文献 (13)

数字信号处理设计任务书 摘要 语音信号滤波处理是研究用数字信号处理技术和语音学知识对语音信号进行处理的新兴的学科,是目前 发展最为迅速的信息科学研究领域的核心技术之一。通过语音传递信息是人类最重要、最有效、最常用和最方便的交换信息形式。 Matlab语言是一种数据分析和处理功能十分强大的计算机应用软件,它可以将声音文件变换为离散的数据文件,然后利用其强大的矩阵运算能力处理数据,如数字滤波、傅里叶变换、时域和频域分析、声音回放以及各种图的呈现等,它的信号处理与分析工具箱为语音信号分析提供了十分丰富的功能函数,利用这些功能函数可以快捷而又方便地完成语音信号的处理和分析以及信号的可视化,使人机交互更加便捷。信号处理是Matlab重要应用的领域之一。本设计通过录制一段语音,对其进行了时域分析,频谱分析,分析语音信号的特性。并应用matlab平台对语音信号进行加噪然后再除去噪声,进一步设计两种种滤波器即高通滤波器、带通滤波器,基于这两种滤波器设计原理,对含加噪的语音信号进行滤波处理。最后对比滤波前后的语音信号的时域和频域特性,回放含噪语音信号和去噪语音信号。论文从理论和实践上比较了不同数字滤波器的滤波效果。 1.绪论 通过语音传递倍息是人类最重要、最有效、最常用和最方便的交换信息的形式。语言是人类持有的功能,声音是人类常用的工具,是相互传递信息的最主要的手段。因此,语音信号是人们构成思想疏通和感情交流的最主要的途径。并且,由于语言和语音与人的智力活动密切相关,与社会文化和进步紧密相连,所以它具有最大的信息容量和最高的智能水平。现在,人类已开始进入了信息化时代,用现代手段研究语音信号,使人们能更加有效地产生、传输、存储、获取和应用语音信息,这对于促进社会的发展具有十分重要的意义。让计算机能听懂人类的语言,是人类自计算机诞生以来梦寐以求的想法。 随着计算机越来越向便携化方向发展,随着计算环境的日趋复杂化,人们越来越迫切要求摆脱键盘的束缚而代之以语音输人这样便于使用的、自然的、人性化的输人方式。作为高科鼓应用领域的研究热点,语音信号采集与分析从理论的研究到产品的开发已经走过了几十个春秋并且取得了长足的进步。它正在直接与办公、交通、金融、公安、商业、旅游等行业的语音咨询与管理.工业生产部门的语声控制,、电信系统的自动拨号、辅助控制与查询以及医疗卫生和福利事业的生活支援系统等各种实际应用领域相接轨,并且有望成为下一代操作系统和应用程序的用户界面。可见,语音信号采集与分析的研究将是一项极具市场价值和挑战性的工作。我们今天进行这一领域的研究与开拓就是要让语音信号处理技术走人人们的日常生活当中,并不断朝更高目标而努力。数字滤波器是数字信号处理的基础,用来对信号

电子听诊器完整版

河南工程学院 课程设计 电子听诊器的设计与制作 学生姓名:吴倩文(201310711250)学院:电气信息工程学院专业班级:电子科学与技术1342 专业课程:自动检测课程设计 指导教师:张秋慧 201 6 年 6 月 3 日

课程设计成绩评定标准及成绩 等级:(优秀、良好、中等、及格、不及格)评阅人:职称: 日期:年月日

目录 1 .引言 (4) 1.1 课题目的与意义 (4) 1.2电子听诊器基本原理 (4) 1.3本设计的主要工作 (4) 2 .设计方案 (5) 2.1 方案一: (5) 2.2方案二: (5) 3. 硬件设计 (5) 3.1前置放大电路 (5) 3.2滤波电路 (6) 3.3主要元器件的介绍 (7) 3.3.1 STC89C51的引脚图和功能 (7) 3.3.2 LM358N引脚图及特点 (8) 3.3.3 LM393P引脚及功能 (8) 3.3.4原器件清单: (9) 4. 软件设计 (9) 4.1单片机程序设计 (9) 5.调试运行及结果 (11) 5.1调试结果与分析: (11) 5.2仿真原理图: (11) 5.3信号调理电路 (11) 6.总结 (12) 6.1设计所做的工作 (12) 6.2不足与待改进之处 (12) 6.3设计心得体会 (12)

1 .引言 心音、呼吸音信号是重要的临床医学信号,是进行心脏疾病、呼吸系统疾病判别的重要依据,是医生进行病因、病灶分析的重要信息。现如今,在心脏疾病和呼吸系统疾病诊断中,听诊仍旧是医生进行检查的主要手段,并且,听诊具有体外检查无创伤、便捷、经济等优点,是广为应用且不可替代。传统的医用听诊器无放大作用,声音较微弱,受环境噪声的影响较大,电子听诊器采用多级低噪声放大器,其放大倍数适当,频响效果好,背景噪声小,有LED显示功能。 1.1 课题目的与意义 通过课程设计,了解听诊器的基本原理,熟练掌握传感器信号采集和电子电路的基本设计方法,将理论联系到实践中去,提高综合运用专业知识的能力。本次课程设计的电子听诊器包括放大电路、滤波电路、电压比较器电路,还包括输出端的音频放大器,此设备具有良好的分析波形能力,能够将设置好的频率段以外的声音频率滤除,故可以清晰的得到放大以后的心音信号,这样有助于医务人员提高初诊的准确度,也为进一步诊断做好了基础。 1.2电子听诊器基本原理 听诊器前端是一个面积较大的膜腔,体内声波鼓动膜腔后,听诊器内的密闭气体随之震动,而塞入耳朵的一端,由于腔道细窄,气体震动幅度就比前端大很多,由此放大了患者体内的声波震动。电子听诊器是利用电子技术放大身体的声音,克服了声学听诊器噪音高的bug。电子听诊器需要转换的声的声波的电信号,然后被放大和处理,以获得最佳聆听。与声学听诊器相比,它们都是基于相同的物理原理。电子听诊器也可与计算机辅助听诊计划的分析所记录的心的声音病理或无辜的心脏杂音。拾音器的主要作用就是采集听诊音,功能相当于“麦克风”;放大及滤波装置则是“音箱”,把听诊音放大;处理芯片则用于降低杂音的干扰,保证获得理想的声音数据;通过A/D转换将模拟信号转换成数字信号,经液晶显示屏显示。 1.3本设计的主要工作 该电子听诊器电路由拾音传感器、前置放大器、低通滤波放大器、控制电路和LED显示电路等组成,将微弱的心音信号通过拾音传感器之后,经放大电路将其放大,然后通过滤波电路将干扰信号滤除,相应的编程下载到单片机中,把调理电路的模拟输出信号用A/D转换器变成数字量后,再由单片机送到液晶显示屏显示,除此之外,可以通过按键进行有要求的切换想要的信号。

使用多功能听诊器听胎音的方法

使用多功能听诊器听胎音的方法 多功能听诊器是听胎音最简单易用的工具,对宝宝没有任何影响。清晰的听到胎音有两个关键因素:1. 使用钟形听头。2. 正确的找到胎心位置。 第一部分 钟形听诊头的安装方法 第一步: 听诊器的组装 第二步: 拆小面听诊头

第三步: 换钟形听诊头 第二部分 正确寻找胎心位置的方法 1、最简单的方法就是在医院注意观察医生听胎心的位置,回家后自己重复听,以确定胎心的位置。 由于胎儿在腹中随时移动,胎心的位置也可能变化,通常有以下几种找胎心位置的方法: 1).妊娠24周以前,胎心位置常在脐下正中或稍偏。 2).妊娠24周以后,胎心多在胎背所在侧听得最清楚。 3).由于胎动通常是在胎儿手脚在动,所以右侧感觉胎动频繁时,胎心一般在左侧;反之,胎心一般在右侧. 4).头位和臀位也会影响胎心的位置,头位时胎心在脐下左侧或右侧,臀位时胎心在脐上左侧或右侧。 听胎心时的注意事项 1.胎心音要与子宫动脉及胎盘杂音相区别。子宫动脉杂音是血流通过扩张的子宫动脉时所产生的吹风样低音响,胎盘杂音是血流通过胎盘时所产生,二者的快慢与母体脉搏一致。胎盘杂音范围较子宫动脉杂音的范围大。 2.胎心是胎儿在子宫内心脏跳动的声音,音色清脆,节律整齐,很象钟表的滴嗒声,通过听胎心也可了解胎儿正常与否。一般在怀孕20周左右,就可以在腹部听到胎儿心跳的声音了。 3.胎心音在胎儿的背部听最清晰,它的位置一般处在你脐部周围,上、下、左、右旁开2寸的地方。 4.听胎心前,最好先排空小便,仰卧在床上,两腿伸直,将听诊器轻轻放在胎心最清楚的部位,仔细聆听,认真计数,每次计一分种,并把跳动的次数记录下来。

听诊器相关知识

听诊器还是老式的好,主要是耳件的角度和胶管的厚度,都比现在的好,现在的听诊器耳件没有角度胶管单薄,胸件还没有角度,听诊是外干扰音大。品牌都不重要,以下是怎样选择听诊器,找到合适的就行。 双用(膜型)听诊器 笼统来讲,听诊器越大越重,拾音效果越好;相反的,越小越轻,携带越方便,眼花缭乱的新型听诊器的设计就是为了解决这个矛盾。听诊头的大小听诊头与身体的接触面越大,拾取的音效越好。但是,人体表面有弧度,若胸件过大,听头不能完全与人体接触,音响不仅不能很好地拾取,还会从空隙泻漏出去,因此,听诊头的大小应基于临床需要。目前,听诊器胸件的直径几乎都统一在45-50毫米之间,特殊的如儿科胸件的直径一般为30毫米,新生儿为18毫米。听诊器的材质材质在音效上发挥着重要的作用,声音通过空气或物质传播,最终转化为热能消失。声波的传送,在重金属中几乎没有衰减,在较轻的金属或塑料中容易出现衰减,因而,高等级的听诊器须使用不锈钢甚至钛等重金属。听诊器的传导部分传音管路也很重要。管路的内径越大、长度越短、管壁越厚,听诊器的效果越好,国际标准长度为27英寸。现代听诊器的传音管路的材质一般为PVC,音效好,美观,但抗拉伸性差,经常弯曲、拉伸后容易折断。听诊器在使用后应该将她平展悬挂于颈项两侧,这在国外电视剧中可见到,是佩带优质听诊器的标准方法。杯式(钟型)听诊头与膜型头的区别 膜型听头 杯式(钟型)听头 听诊器由法国的芬莱克先生构想出来的。他的听诊器是杯式(钟型)的,可拾音范围为所有可闻音频率;而膜式听头有一层膜,将频率小于200Hz的低频声音滤除掉,使之对高频音响更敏感。使用时,须用力将它贴于人体上。膜式听头可以做得比杯式听头大,因而膜式听头的音量比杯式听头强。听头的临床应用在心脏听诊时,膜式听头可以良好听取高频声响,杯式听头适合听取低频声响或杂音。现代听诊器均为双面听诊器,听诊头上既有膜式也有杯式,二者转换仅需旋转180o即可,专家建议临床大夫应使用双面听诊器。另有一种专利技术,称为浮动膜技术,膜型听诊头在特殊的方式下可变为杯式听头以听取低频杂音。正常和非正常的肺部声音均属于高频声响,肺部听诊仅用膜式听头即可。听头上的防寒圈 上诊断学时,老师教导要将听诊器头在手中焐片刻后再给患者听诊,以免听诊器上寒冷的金属刺激患者。现代听诊器上防寒圈的使用比较人性化,减少寒冷的金属对患者的刺激。听诊器的耳塞耳塞能否与耳朵良好适配非常重要,若耳塞不合适,音响会漏出,同时外界杂音也能进入混淆听诊效果。专业听诊器一般选配密封性及舒适性均极佳的密闭式耳塞。听诊器的耳簧新式听诊器耳簧均用韧性好的钢材造就,可调到合适的松紧度,佩带较舒适,调整耳塞的朝向也很方便。由于耳道与侧面并非完全90°垂直,而是稍向后倾斜,因此佩带时耳塞朝向应稍向前倾斜。高品质听诊器的耳塞朝向可以按解剖学方向预先固定,称为解剖学正确位耳件。 以上技术结合具有高保真效果的密闭式耳塞,可以让使用者享受到使用优质听诊器带来的前所未有的澄静的听诊效果与舒适感受。

哈工大试验方法和数字信号分析处理作业一

题目: (1)给定数字信号: x(t)=sin(20*pi*t)+sin(100*pi*t)+sin(400*pi*t); 即该信号由10HZ,50HZ,200HZ。三个正弦信号合成。 要求: 绘出上述给定数字信号的曲线x(t)。 低通滤波练习: 分别用FIR、IIR滤波器滤去50Hz、200Hz信号,保留10Hz信号; 绘出滤波前和滤波后的信号曲线,并做对比; 滤波过程中的问题讨论。 带通滤波练习: 用FIR滤波器滤去10Hz、200Hz信号,保留50Hz信号; 绘出滤波前和滤波后的信号曲线,并做对比; 滤波过程中的问题讨论。 (2)给定数字信号: X(t)=sin(2*pi*10*t)+sin(2*pi*50*t)+sin(2*pi*200*t)+0.6*randn(1,N)即在原信号上叠加上一个白噪声信号。 要求: 绘出上述给定数字信号的曲线x(t)。 分别用低通滤波器和带通滤波器(FIR、IIR任选)滤波、绘曲线对比、讨论。 注: 本次作业要求使用我们课上(§3-3、§3-4)所推导的滤波器(公式)滤波; 不许使用MATLAB中的滤波函数。 1.数字信号为:x(t)=sin(20*pi*t)+sin(100*pi*t)+sin(400*pi*t);时 因为,最大频率为200HZ,故由采样定理dt<=1/2*f max,可得dt<=0.0025s,取 dt=0.0003s,满足采样定理。 (1)绘出x(t)图像: Matlab代码: clear all t=0:0.0005:0.6; t1=0.0005; F=15; N=1201; x=sin(2*pi*10*t)+sin(2*pi*50*t)+sin(2*pi*200*t); x1=sin(2*pi*10*t); plot(t,x,'b'); 图形如下:

听诊器使用方式

产品性能介绍: 本产品集五种用于不同特殊用途的听诊器功能于一身,完全可以取代其他所有产品. 为满足产品的所有功能,一副完整的多功能听诊器包括三种不同型号的碗和两片一大一小的原装膜片.因此,每张膜片或每个碗都能适用于每一特殊用途. 1.大膜片:通常这种膜片用于检查频率较低的心跳声,舒展声以及如同第一个第二心音的第三心音.同时,来自心脏的高音心区杂音也能被发现. 2.小膜片:这种膜片用于检查婴儿自然的高音心跳声. 3.成人型碗:这种碗对于检查低音和中音的心区杂音非常有效. 4.中型碗:放在诸如肋骨之间或其他狭小的区域,本产品能检查出低音或中音的心区杂音. 5.婴儿型碗:本产品最适用于婴幼儿的检查,对来自婴幼儿心脏的低音和中音的心区杂音具有极高的灵敏度. 所有产品组合,不仅设计精美,而且产品的高灵敏度将使你能够清晰地确认不同频率的心跳声,并轻易地听到最微弱的心区杂音. 同时,三种不同的耳塞可以让使用者选择一副最适合自己的听诊器使用.附带的三种类型的碗和两个备用的一大一小的透明塑料膜片都整齐的包装在一个小盒中. 使用说明: 多功能听诊器为双头设计,配有大小两种型号的膜片,均固定在可旋转的双头鼓状面上,其间的缝隙小于头发丝粗细. A首先,将耳环放入耳中. B用你的手指轻拍膜片,使声音传导到你的耳中,这样你就知道产品是否可以工作. C如果你不能听到手指轻拍的声音,旋转用来调节合适位置的听诊器的头180度,使其正好处于相反的方向. D然后,再次用手指轻拍膜片,当你能听到声音时,就意味着产品可以使用了. E现在,你可以使用听诊器诊断病人. F当你换用另一个听诊器时,按相同的程序再检查一次.

数字信号处理期末实验-语音信号分析与处理-(2)

数字信号处理期末实验-语音信号分析与处理-(2)

语音信号分析与处理 摘要 用MATLAB对语音信号进行分析与处理,采集语音信号后,在MATLAB软件平台进行频谱分析;并对所采集的语音信号加入干扰噪声,对加入噪声的信号进行频谱分析,设计合适的滤波器滤除噪声,恢复原信号。 数字滤波器是数字信号处理的基础,用来对信号进行过滤、检测和参数估计等处理。IIR数字滤波器最大的优点是给定一组指标时,它的阶数要比相同组的FIR滤波器的低的多。信号处理中和频谱分析最为密切的理论基础是傅立叶变换(FT)。离散傅立叶变换(DFT)和数字滤波是数字信号处理的最基本内容。 关键词:MATLAB;语音信号;加入噪声;滤波器;滤波 设计目的与要求 (1)待处理的语音信号是一个在20Hz~20kHz频段的低频信号。 (2)要求MATLAB对语音信号进行分析和处理,采集语音信号后,在MATLAB平台进行频谱分析;并对所采集的语音信号加入干扰噪声,对加入噪声的信号进行频谱分析,设计合适的滤波器进行滤除噪声,恢复原信号。

设计步骤 (1)选择一个语音信号或者自己录制一段语音文件作为分析对象; (2)对语音信号进行采样,并对语音信号进行FFT频谱分析,画出信号的时域波形图和频谱图; (3)利用MATLAB自带的随机函数产生噪声加入到语音信号中,对语音信号进行回放,对其进行FFT频谱分析; (4)设计合适滤波器,对带有噪声的语音信号进行滤波,画出滤波前后的时域波形图和频谱图,比较加噪前后的语音信号,分析发生的变化; (5)对语音信号进行回放,感觉声音变化。 设计原理及内容 理论依据 (1)采样频率:采样频率(也称采样速度或者采样率)定义了每秒从连续信号中提取并组成离散信号的采样个数,它用赫兹(Hz)来表示。采样频率只能用于周期性采样的采样器,对于非周期采样的采样器没有规则限制。通俗的讲,采样频率是指计算机每秒钟采集多少个声音样本,是描述声音文件的音质、音调,衡量声卡、声音文件的质量标准。采样频率越高,即采样的间隔时间越短,则在单位之间内计算机得到的声音样本数据就越多,对声音波形的表示也越精确。(2)采样位数:即采样值或取样值,用来衡量声音波动变化的参数。 (3)采样定理:在进行模拟/数字信号的的转换过程中,当采样频率f s.max大于信号中,最高频率f max的2倍时,即:f s.max>=2f max,则采样之后的数字信号完整的保留了原始信号中的信息,一般实际应用中保证采样频率为信号最高频率的5~10倍;采样频率又称乃奎斯特定理。 (4)时域信号的FFT分析:信号的频谱分析就是计算信号的傅立叶变换。连续信号与系统的傅立叶分析显然不便于直接用计算机进行计算,使其应用受到限制。而FFT是一种时域和频域均离散化的变换,适合数值计算,成为用计算机分

《数字信号处理》课程设计,基于MATLAB的音乐信号处理和分析

《数字信号处理》课程设计设计题目:基于MATLAB的音乐信号处理和分析 院系:物理工程学院 专业:电子信息科学与技术 学号: 姓名:

一、课程设计的目的 本课程设计通过对音乐信号的采样、抽取、调制解调、滤波、去噪等多种处理过程的理论分析和MATLAB实现,使学生进一步巩固数字信号处理的基本概念、理论以及频谱分析方法和数字滤波器设计方法;使学生掌握的基本理论和分析方法只是得到进一步扩展;使学生能有效地将理论和实际紧密结合;增强学生软件编程实现能力和解决实际问题的能力。 二、课程设计的基本要求 1 学会MATLAB的使用,掌握MATLAB的基本编程语句。 2 掌握在Windows环境下音乐信号采集的方法。 3 掌握数字信号处理的基本概念、基本理论和基本方法。 4 掌握MATLAB设计FIR和IIR数字滤波器的方法。 5 掌握使用MATLAB处理数字信号、进行频谱分析、涉及数字滤波器的编程方法。 三、课程设计内容 实验1音乐信号的音谱和频谱观察 使用windows下的录音机录制一段音乐信号或采用其它软件截取一段音乐信号(要求:时间不超过5s、文件格式为wav文件) ①使用wavread语句读取音乐信号,获取抽样率;(注意:读取的信号时双声道信号,即为双列向量,需要分列处理); ②输出音乐信号的波形和频谱,观察现象; 使用sound语句播放音乐信号,注意不同抽样率下的音调变化,解释现象。 程序如下: [Y,FS,NBITS]=WAVREAD('怒放的生命 - 汪峰5s'); %读取音乐信号 plot(Y); %显示音乐信号的波形和频谱 sound(Y,FS); %听音乐(按照原来的抽样率) Y1=Y(:,1); %由双声道信号变为单声道信号 size(Y1) figure subplot(2,1,1);

一种多人用听诊器的制作与应用

总之,此新型病号服穿脱方便,无菌清洁,适用于多种病症,减少操作过程反复穿脱给病人带来的不适感,保护病人隐私,维护病人自尊,提高医护双方满意度,更好地满足人文护理发展的要求[12]三 参考文献: [1]黄晋辉,段旭娟,范青.实用新型病号服在血管外科中的应用[J]. 当代护士(下旬刊),2018,25(2):188-191. [2]饶竟,张进,姚权珍.I C U患者人性化病员服的设计与临床应用 [J].养生保健指南2017(39):17. [3] H A OL M,WA N GZ,Q I JC,e t a l.P r e p a r a t i o no f i mm o b i l i z e de- p o l y l y s i n eP E Tn o n w o v e n f a b r i c s a n d a n t i b a c t e r i a l a c t i v i t y e v a l u a-t i o n[J].J o u r n a lo f W u h a n U n i v e r s i t y o fT e c h n o l o g y-M a t e rS c i E d,2011,26(4):675-680. [4]王永进,赵平,郜文,等.医疗机构患者服装的需求调查[J].上海纺 织科技,2014,42(8):9-12. [5]尹菊兰,杨永忠.多功能病号服在外科患者中的应用[J].临床医药 实践,2016,25(11):852-853. [6]张敬敏.泌尿外科临床护理中患者隐私保护情况的调查及对策 [J].天津护理,2017,25(6):542-543. [7]肖宏,黄建萍,胡慧军.特制 V 领后开襟上衣在气管切开患者中 的应用[J].中国误诊学杂志,2011(35):8585. [8]黄素素,刘彦慧.新型胸腹术后卧床患者病号服的设计与应用[J]. 护士进修杂志,2013,28(14):1342-1344. [9]兰颖,卢文彬,许丽媛.P I C C置管维护病号服的改良设计与应用 [J].医学理论与实践,2017,30(3):440-442. [10]宋彦杰,王永进.病号服的功能性及开口设计[J].纺织学报, 2015,36(3):92-98. [11]叶凤仙,段旭娟,黄晋辉,等.一种改良拉链式病号服的设计与应 用[J].当代护士(上旬刊),2017(5):188-189. [12]尚星辰,金晓欢,林征,等.医院人文护理实践现状的全国多中心 调查[J].中国医院管理,2018(5):61-63.(收稿日期: 2018-11-03) (本文编辑卫竹翠) 一种多人用听诊器的制作与应用张燕,豆欣蔓 关键词:多人用听诊器;普通用听诊器;专利 中图分类号:R472.9文献标识码:C d o i:10.12104/j.i s s n.1674-4748.2019.17.053听诊器是医生诊疗时最常用的诊断用具之一,在 临床会诊时第一个医生使用听诊器听诊后,第二个医 生再听,第三个医生再听,每个人听得都不一样,病人 让多名医生听多次,非常痛苦,延误诊治时间,同时也 浪费医生时间三在临床教学过程中老师听诊后指导学 生听,但是由于老师和学生听的并不同步,学生往往分 辨不出异常情况,教学效果并不理想三为了改善这种 会诊时多人反复听诊给病人带来的痛苦和临床教学时 老师与学生听诊不同步的现象,笔者利用目前常用的 普通听诊器进行设计改良出了一种多人用听诊器,已 取得国家实用新型专利三现介绍如下三 1制作与图示 多人用听诊器包括听诊头二秒表二听筒二传音管二录音装置二存储芯片二红外线温度感应装置三见图1三2使用方法 多人用听诊器包括至少2个听筒,可供2名或多名医师同时使用,便于会诊和教学三医生听诊心率时可用秒表查看时间,以便测算心率三听诊头内设录音装置及存储芯片,用于录制听诊头所感应的内容,遇到 基金项目兰州大学第二医院萃英科技创新计划项目,编号:C Y2018-H L12三 专利项目国家实用新型专利,专利号:Z L201621254852.4三 作者简介张燕,主管护师,本科,单位:730000,兰州大学第二医院;豆欣蔓单位:730000,兰州大学第二医院三 引用信息张燕,豆欣蔓.一种多人用听诊器的制作与应用[J].全科护理,2019,17(17):2176.1 听诊头(内置录音装置二存储芯片二红外线温度感应装置); 2 第一听筒;21 耳塞;22 听诊管;2 3 导音管; 3 第二听筒; 4 传音管; 5 传音管; 6 秒表 图1多人用听诊器示意图 难以 捕捉 的异常杂音时,便于对听诊结果进行回放分析三可以在对病人进行听诊的同时检测其体温,不需另配体温检测装置三 3优点 使用多人用听诊器,各医生同步听诊得到相同的结果,便于对病例进行探讨,同时减少了病人的配合次数,节省会诊时间三在临床教学过程中老师指导学生同步听诊,根据情况随时对学员进行讲解,更有助于理解教学内容三录音装置及存储芯片便于对听诊结果进行回放三红外线温度感应装置,可以在对病人进行听诊的同时检测其体温,不需另配体温检测装置,使用更方便三 (收稿日期:2018-08-06) (本文编辑卫竹翠) 四6712四C H I N E S EG E N E R A LP R A C T I C E N U R S I N G J u n e2019V o l.17N o.17

数字信号

实验一:离散信号的时域分析 1.单位阶跃序列u(n) 代码:N=5;n=0:N-1;x=[zeros(1,0) ones(1,N)];stem(n,x) 仿真截图: 2.单位阶跃序列的差u(n-3) 代码:N=3;M=20;n=N:M-1;x=[zeros(1,N) ones(1,M-N)];stem(x) 仿真截图: 3.U(n)-u(n-3) 代码: N=3;M=20;n=0:M-1;x=[zeros(1,N) ones(1,M-N)];m=0:M-1;y=[zeros(1,0) ones(1,M)];z=y-x;stem(z) 仿真截图:

4.正弦序列x=cos(2*pi*n) 代码:N=10;n=0:N-1;x=1*cos(2*pi*n);stem(n,x) 仿真截图: 5.正弦序列x=cos(2*pi*n/3) 代码:N=10;n=0:N-1;x=1*cos(2*pi*n/3);stem(n,x) 仿真截图:

6.正弦序列x=sin(2 *n) 代码:N=9;n=0:N-1;x=1*sin(2*n);stem(n,x) 仿真截图: 7.计算卷积y=x(n)*h(n) 代码: N=3;M=20;n=N:M-1;x=[zeros(1,N) ones(1,M-N)];J=N+4;m=J:M-1;y=[zeros(1,J) ones(1,M-J)];K=5;k=0:K-1;h=[zeros(1,0) ones(1,K)];z=x-y;l=conv(z,h);stem(l) 仿真截图:

8.求系统的零状态响应 代码: N=4;M=20;n=N:M-1;x=[zeros(1,N) ones(1,M-N)];m=0:M-1;y=[zeros(1,0) ones(1,M)];i=0:3;h=(0.5.^i);z=y-x;l=conv(h,z);stem(l) 仿真截图:

数字信号处理实验五谱分析

用FFT 对信号作频谱分析 1.实验目的 学习用FFT 对连续信号和时域离散信号进行谱分析的方法,了解可能出现的分析 误差及其原因,以便正确应用FFT 。 2. 实验原理 用FFT 对信号作频谱分析是学习数字信号处理的重要内容。经常需要进行谱分析的信号是模拟信号和时域离散信号。对信号进行谱分析的重要问题是频谱分辨率D 和分析误差。频谱分辨率直接和FFT 的变换区间N 有关,因为FFT 能够实现的频率分辨率是N /2π,因此要求D N ≤/2π。可以根据此式选择FFT 的变换区间N 。误差主要来自于用FFT 作频谱分析时,得到的是离散谱,而信号(周期信号除外)是连续谱,只有当N 较大时离散谱的包络才能逼近于连续谱,因此N 要适当选择大一些。 周期信号的频谱是离散谱,只有用整数倍周期的长度作FFT ,得到的离散谱才能代表周期信号的频谱。如果不知道信号周期,可以尽量选择信号的观察时间长一些。 对模拟信号进行谱分析时,首先要按照采样定理将其变成时域离散信号。如果是模拟周期信号,也应该选取整数倍周期的长度,经过采样后形成周期序列,按照周期序列的谱分析进行。 3.实验步骤及内容 (1)对以下序列进行谱分析。 ?????≤≤-≤≤-=?? ???≤≤-≤≤+==其它n n n n n n x 其它n n n n n n x n R n x ,074, 330,4)(,074, 830,1)() ()(3241 选择FFT 的变换区间N 为8和16 两种情况进行频谱分析。分别打印其幅频特性曲线。 并进行对比、分析和讨论。 (2)对以下周期序列进行谱分析。 4()cos 4x n n π= 5()cos(/4)cos(/8)x n n n ππ=+ 选择FFT 的变换区间N 为8和16 两种情况分别对以上序列进行频谱分析。分别打印其幅频特性曲线。并进行对比、分析和讨论。 (3)对模拟周期信号进行谱分析 6()cos8cos16cos20x t t t t πππ=++ 选择 采样频率Hz F s 64=,变换区间N=16,32,64 三种情况进行谱分析。分别打印其幅频特性,并进行分析和讨论。

数字信号分析仪

毕业论文数字信号传输性能分析仪 专业:电气工程及其自动化班级:08电气班 学生姓名:马建林 指导教师:彭世林 完成时间:2012年3月15日

基于FPGA的数字信号传输性能分析仪的设计 马建林,彭世林 (陇东学院电气工程学院,甘肃庆阳 745000) 摘要:在参阅和理解相关文献的基础上,运用FPGA的有关知识,设计了数字信号传输性能分析仪。该简易数字信号传输性能分析仪的设计实现以Altera公司Cyclone II系列EP2C8Q208C8为核心控制器件、Quartus II 9.0开发软件为设计工具。由数字信号发生器、低通滤波器、伪随机信号发生器和数字信号分析电路等模块组成。运用VHDL语言,通过数值计算和仿真技术对数字信号传输性能进行分析与测试。数字信号发生器产生数字信号V1和相应的时钟信号V1-clock;低通滤波器对V1进行滤波,输出V2信号;伪随机信号发生器产生伪随机信号V3,V3经电容C后与V2信号叠加得到作为数字信号分析电路的输入信号V2a;数字信号分析电路得到输出信号V4和提取的同步信号V4-syn。所得结果将为数字信号传输性能的分析与测试提供辅助手段。 关键词:数字信号;低通滤波器;伪随机信号;同步信号 Digital Signal Transmission Performance Analyzer Jianlin-Ma,Shilin-Peng (Electrical Engineering College,Longdong University,Qingyang 745000,Gansu,China) Abstract: with reference the understanding and on the basis of related literatures,the use of the knowledge about the FPGA,design the digital signal transmission performance analyzer.This simple digital signal transmission performance analyzer to realize the design of Altera company Cyclone II EP2C8Q208C8 series for the core control device,Quartus II 9.0 development software for the design tools.By digital signal generator,low pass filter,pseudo random signal generator and digital signal analysis circuit https://www.doczj.com/doc/b410555386.html,e VHDL language,through the numerical calculation and simulation technology of digital signal transmission performance analysis and test.Digital signal generator to create a digital signal V1 and corresponding clock signal V1-clock;Low pass filter to filtering V1 and V2 signal output;Pseudo random signal generator produces pseudo random signal V3,after the capacitance C and V3 signals that get V2 as a digital signal analysis circuit of the input signal V2a ; Digital signal analysis circuit get output signal and the synchronized signal extracted V4 and V4-syn . The results for the performance will be the analysis and tests provide assistant method. Key word:Digital signal;Low pass filter;Pseudo random signal;Synchronous signal

数字信号与处理

数字信号与处理信号的分析与处理综合实验 学生姓名 学号

实验二 一、实验目的 目的:综合运用数字信号处理的理论知识进行信号的采样,重构,频谱分析和滤波器的设计,通过理论推导得出相应结论,再利用Matlab作为编程工具进行计算机实现,从而加深对所学知识的理解,建立概念。 二、基本要求 1.掌握数字信号处理的基本概念、基本理论和基本方法; 2.学会MATLAB的使用,掌握MATLAB的程序设计方法; 3.掌握用MATLAB设计简单实验验证采样定理的方法; 4.掌握在Windows环境下语音信号采集的方法; 5.学会用MATLAB对信号进行频谱分析; 6.掌握MATLAB设计FIR和IIR数字滤波器的方法; 三、实验内容 1.利用简单正弦信号设计实验验证采样定理: (1)Matlab产生离散信号的方法,作图的方法,以及基本运算操作 (2)对连续正弦信号以不同的采样频率作采样 (3)对采样前后信号进行傅立叶变换,并画频谱图 (4)分析采样前后频谱的有变化,验证采样定理。 掌握画频谱图的方法,深刻理解采样频率,信号频率,采样点数,频率分辨率等概念2.真实语音信号的采样重构:录制一段自己的语音信号,并对录制的信号进行采样;画出采样前后语音信号的时域波形和频谱图;对降采样后的信号进行插值重构,滤波,恢复原信号。 (1)语音信号的采集 (2)降采样的实现(改变了信号的采样率) (3)以不同采样率采样后,语音信号的频谱分析 (4)采样前后声音的变化 (5)对降采样后的信号进行插值重构,滤波,恢复原信号 3.带噪声语音信号的频谱分析 (1)设计一频率已知的噪声信号,与实验2中原始语音信号相加,构造带噪声信号

数字信号的 FFT 分析

DSP 实验报告 实验名称: 实验二 数字信号的 FFT 分析 1.实验要求 数字信号处理的一个重要分支就是信号分析,而信号分析的基本工具是离散傅立叶变换。利用傅立叶变换和级数所形成的频谱分析技术作为处理连续信号的重要工具已经应用得很久了,1956年库力(Cooley )和图基(Tukey )所发展的近似频谱的快速算法为频谱分析的数字信号的谱分析铺平了道路。因此,DFT (FFT )得到广泛应用。本次实验设计了两个内容: (1) 已知信号 0n N-1 ()0 n 0, n N n Q x n ?≤≤=?<≥? 这里,N=25,Q= 0.9+j0.3。可以推导出 , 11,011)()()(k k 1 nk 1 0-=--===∑∑-=-=N k QW Q QW W n x k X N N n N N n N N n Λ, 首先根据这个式子计算X(k) 的理论值,然后计算输入序列x(n) 的32个值,再利用基 2时间抽选的FFT 算法,计算x(n) 的DFT X(k),与X(k) 的理论值比较(要求计算结果最少6位有效数字)。 (2) 假设信号 x(n) 由下述信号组成: ()0.001*cos(0.45)sin(0.3)cos(0.302)4 x n n n n π πππ=+-- 这个信号有两根主谱线 0.3pi 和 0.302pi 靠的非常近,而另一根谱线 0.45pi 的幅度很小,请选择合适的长度 N 和窗函数,用 DFT 分析其频谱,得到清楚的三根谱线。 通过本次实验,应该掌握: (a) 用傅立叶变换进行信号分析时基本参数的选择。 (b) 经过离散时间傅立叶变换(DTFT )和有限长度离散傅立叶变换(DFT ) 后信号频谱上的区别,前者 DTFT 时间域是离散信号,频率域还是连续的,而 DFT 在两个域中都是离散的。 (c) 离散傅立叶变换的基本原理、特性,以及经典的快速算法(基2时间抽选法),体会快速算法的效率。 (d) 获得一个高密度频谱和高分辨率频谱的概念和方法,建立频率分辨率和时间分辨率的概念,为将来进一步进行时频分析(例如小波)的学习和研究打下基础。 (e) 建立 DFT 从整体上可看成是由窄带相邻滤波器组成的滤波器组的概念,此概念的一个典型应用是数字音频压缩中的分析滤波器,例如 DVD AC3 和MPEG Audio 。

数字信号处理实验内容 音频信号分析与处理

数字信号处理实验内容—— 音频信号采集、分析及处理 一、实验目的 1.以音频信号为例,熟悉模拟信号数字处理过程,进一步理解数字信 号处理概念。 2.掌握运用Matlab实现对音频信号的时频分析方法; 3.初步掌握数字音频信号合成的方法。 4.掌握运用Matlab设计IIR和FIR滤波系统的方法; 5.掌握运用Matlab实现对加噪的音频信号进行去噪滤波的方法。锻 炼学生运用所学知识独立分析问题解决问题的能力,培养学生创新能力。 二、实验性质 综合分析、设计性实验 三、实验任务 实验内容一:windows系统中的“ding”音频信号的采集、分析、合成

1.音频信号的采集 编写Matlab程序,采集windows系统中的“ding”声,得到*.wav音频文件,而后实现音频信号回放。 2.音频信号的频谱分析 运用Matlab软件实现对音频信号的时域分析和频域分析,并打印相应的图形,完成在实验报告中。 注意:此音频信号的频谱包含两条主要谱线,在进行频谱分析时,注意频谱的完整性,利用MATLAB实现对两条主要谱线的定位并计算谱线所对应的模拟频率。 3.音频信号的分解和合成 运用Matlab软件实现音频信号的分解与合成,将音频信号的频谱中两部分频谱成分进行分解,分别绘制出分解后的两个信号的频谱图;然后将分解后的两个信号再合成为一个新的信号,将合成后的新信号的时域、频域图与原来的信号时域、频域图相比较,绘制出对比效果图。 4.音频信号的回放 运用Matlab软件实现音频信号的回放,将合成后的新信号和原音频信号分别进行回放,对比两个信号的声音效果。

5.音频信号分段傅里叶分析(选作) 分析对一般音频.wav信号进行一次性傅里叶分析时存在的主要问题,利用分段傅里叶变换对该音频信号重新分析并合成。对比一次傅里叶分析结果并进行总结。 实验内容二:任意音频信号的时域和频域分析及数字滤波器设计 1.音频信号的采集 音频信号的采集可以通过Windows自带的录音机也可以用专用的录制软件录制一段音频信号(尽量保证无噪音、干扰小),也可以直接复制一段音频信号(时间为1s),但必须保证音频信号保存为.wav的文件。 2.音频信号的时域、频域分析 运用Matlab软件实现对音频信号的打开操作以及时域分析和频域分析,并画出相应的图形,打印在实验报告中。 3.引入干扰信号 在原有的音频信号上,叠加一个频率为100KHz的正弦波干扰信号(幅度自定,可根据音频信号幅度情况而定)。 4.数字滤波器设计

数字信号处理综合报告--数字音频信号的分析与处理

数字信号处理实验 题目数字音频信号的分析与处理 班级 姓名 学号 日期 2013.06.10-2013.06.24

一、实验目的 1.复习巩固数字信号处理的基本理论; 2.利用所学知识研究并设计工程应用方案。 二、实验原理 数字信号处理技术在音频信号处理中的应用日益增多,其灵活方便的优点得到体现。分频器即为其中一种音频工程中常用的设备。 人耳能听到的声音频率范围为20Hz~20000Hz,但由于技术所限,扬声器难以做到在此频率范围内都有很好的特性,因此一般采用两个以上的扬声器来组成一个系统,不同的扬声器播放不同频带的声音,将声音分成不同频带的设备就是分频器。下图是一个二分频的示例。 图8.1 二分频示意图 高通滤波器和低通滤波器可以是FIR或IIR类型,其中FIR易做到线性相位,但阶数太高, 不仅需要耗费较多资源,且会带来较长的延时;IIR阶数低,但易出现相位失真及稳定性问题。 对分频器的特性,考虑最多的还是两个滤波器合成的幅度特性,希望其是平坦的,如图8.2所示: 图8.2 分频器幅度特性 分频器 低频放大器 高频放大器 声音 输入 High-pass Low-pass

由于IIR 的延时短,因此目前工程中大量应用的还是Butterworth 、Bessel 、Linkwitz-Riley 三种IIR 滤波器。其幅频特性如图8.3所示: 图8.3 三种常用IIR 分频器的幅度特性 巴特沃斯、切比雪夫、椭圆等类型的数字滤波器系数可通过调用MATLAB 函数很方便的计算得到,但Bessel 、Linkwitz-Riley 数字滤波器均无现成的Matlab 函数。 并联系统的系统函数为 级联系统的系统函数为 宁可瑞滤波器(Linkwitz-Riley ),由两个巴特沃斯滤波器级联而成。 N 阶巴特沃夫滤波器等效宁可瑞滤波器的设计 l h h l l h ()() ()()()()() ()()()()()()()()B=conv(B ,A )+conv(B ,A )A=conv(A ,A )l h l h l h l h h l l h B z B z H z H z H z A z A z B z A z B z A z B z A z A z A z =+= ++==????1212 12l 212()()()()()()()()()B=conv(B ,B )A=conv(A ,A )B z B z B z H z H z H z A z A z A z ===? ????

相关主题
文本预览
相关文档 最新文档