当前位置:文档之家› 高中物理奥赛必看讲义——动量与能量

高中物理奥赛必看讲义——动量与能量

高中物理奥赛必看讲义——动量与能量
高中物理奥赛必看讲义——动量与能量

动量和能量

第一讲 基本知识介绍

一、冲量和动量

1、冲力(F —t 图象特征)→ 冲量。冲量定义、物理意义

冲量在F —t 图象中的意义→从定义角度求变力冲量(F 对t 的平均作用力)

2、动量的定义

动量矢量性与运算

二、动量定理

1、定理的基本形式与表达

2、分方向的表达式:ΣI x =ΔP x ,ΣI y =ΔP y …

3、定理推论:动量变化率等于物体所受的合外力。即

t

P ??=ΣF 外 三、动量守恒定律

1、定律、矢量性

2、条件

a 、原始条件与等效

b 、近似条件

c 、某个方向上满足a 或b ,可在此方向应用动量守恒定律

四、功和能

1、功的定义、标量性,功在F —S 图象中的意义

2、功率,定义求法和推论求法

3、能的概念、能的转化和守恒定律

4、功的求法

a 、恒力的功:W = FScos α= FS F = F S S

b 、变力的功:基本原则——过程分割与代数累积;利用F —S 图象(或先寻求F 对S 的平均作用力)

c 、解决功的“疑难杂症”时,把握“功是能量转化的量度”这一要点

五、动能、动能定理

1、动能(平动动能)

2、动能定理

a 、ΣW 的两种理解

b 、动能定理的广泛适用性

六、机械能守恒

1、势能

a 、保守力与耗散力(非保守力)→ 势能(定义:ΔE p = -W 保)

b 、力学领域的三种势能(重力势能、引力势能、弹性势能)及定量表达

2、机械能

3、机械能守恒定律

a 、定律内容

b 、条件与拓展条件(注意系统划分)

c 、功能原理:系统机械能的增量等于外力与耗散内力做功的代数和。

七、碰撞与恢复系数

1、碰撞的概念、分类(按碰撞方向分类、按碰撞过程机械能损失分类)

碰撞的基本特征:a 、动量守恒;b 、位置不超越;c 、动能不膨胀。

2、三种典型的碰撞

a 、弹性碰撞:碰撞全程完全没有机械能损失。满足——

m 1v 10 + m 2v 20 = m 1v 1 + m 2v 2

21 m 1210v + 21 m 2220v = 21 m 121v + 2

1 m 222v 解以上两式(注意技巧和“不合题意”解的舍弃)可得:

v 1 = 21201021m m v 2v )m m (++-, v 2 = 1

2102012m m v 2v )m m (++- 对于结果的讨论:

①当m 1 = m 2 时,v 1 = v 20 ,v 2 = v 10 ,称为“交换速度”;

②当m 1 << m 2 ,且v 20 = 0时,v 1 ≈ -v 10 ,v 2 ≈ 0 ,小物碰大物,原速率返回;

③当m 1 >> m 2 ,且v 20 = 0时,v 1 ≈ v 10 ,v 2 ≈ 2v 10 ,

b 、非(完全)弹性碰撞:机械能有损失(机械能损失的内部机制简介),只满足动量守恒定律

c 、完全非弹性碰撞:机械能的损失达到最大限度;外部特征:碰撞后两物体连为一

个整体,故有

v 1 = v 2 = 2

1202101m m v m v m ++ 3、恢复系数:碰后分离速度(v 2 - v 1)与碰前接近速度(v 10 - v 20)的比值,即: e = 20

1012v v v v -- 。根据“碰撞的基本特征”,0 ≤ e ≤ 1 。 当e = 0 ,碰撞为完全非弹性;

当0 < e < 1 ,碰撞为非弹性;

当e = 1 ,碰撞为弹性。

八、“广义碰撞”——物体的相互作用

1、当物体之间的相互作用时间不是很短,作用不是很强烈,但系统动量仍然守恒时,碰撞的部分规律仍然适用,但已不符合“碰撞的基本特征”(如:位置可能超越、机械能可能膨胀)。此时,碰撞中“不合题意”的解可能已经有意义,如弹性碰撞中v 1 = v 10 ,v 2 = v 20的解。

2、物体之间有相对滑动时,机械能损失的重要定势:-ΔE = ΔE 内 = f 滑·S 相 ,其中S 相指相对路程。

第二讲 重要模型与专题

一、动量定理还是动能定理

物理情形:太空飞船在宇宙飞行时,和其它天体的万有引力可以忽略,但是,飞船会定时遇到太空垃圾的碰撞而受到阻碍作用。设单位体积的太空均匀分布垃圾n 颗,每颗的平均质量为m ,垃圾的运行速度可以忽略。飞船维持恒定的速率v 飞行,垂直速度方向的横截面积为S ,与太空垃圾的碰撞后,将垃圾完全粘附住。试求飞船引擎所应提供的平均推力F 。

模型分析:太空垃圾的分布并不是连续的,对飞船的撞击也不连续,如何正确选取研究对象,是本题的前提。建议充分理解“平均”的含义,这样才能相对模糊地处理垃圾与飞船的作用过程、淡化“作用时间”和所考查的“物理过程时间”的差异。物理过程需要人为截取,对象是太空垃圾。

先用动量定理推论解题。

取一段时间Δt ,在这段时间内,飞船要穿过体积ΔV = S ·v Δt 的空间,遭遇n ΔV 颗太空垃圾,使它们获得动量ΔP ,其动量变化率即是飞船应给予那部分垃圾的推力,也即飞船引擎的推力。

F = t P ?? = t v M ??? = t v V n m ???? = t

v t nSv m ???? = nmSv 2 如果用动能定理,能不能解题呢?

同样针对上面的物理过程,由于飞船要前进x = v Δt 的位移,引擎推力F 须做功W = F x ,它对应飞船和被粘附的垃圾的动能增量,而飞船的ΔE k 为零,所以: W = 2

1ΔMv 2 即:F v Δt =

21(n m S ·v Δt )v 2 得到:F = 2

1nmSv 2 两个结果不一致,不可能都是正确的。分析动能定理的解题,我们不能发现,垃圾与飞船的碰撞是完全非弹性的,需要消耗大量的机械能,因此,认为“引擎做功就等于垃圾动能增加”的观点是错误的。但在动量定理的解题中,由

于I = F t ,由此推出的F = t

P ??必然是飞船对垃圾的平均推力,再对飞船用平衡条件,F 的大小就是引擎推力大

小了。这个解没有毛病可挑,是正确的。

(学生活动)思考:如图1所示,全长L 、总质量为

M 的柔软绳子,盘在一根光滑的直杆上,现用手握住绳子

的一端,以恒定的水平速度v 将绳子拉直。忽略地面阻力,

试求手的拉力F 。

解:解题思路和上面完全相同。 答:L

Mv 2

二、动量定理的分方向应用

物理情形:三个质点A 、B 和C ,质量分别为

m 1 、m 2和m 3 ,用拉直且不可伸长的绳子AB 和BC

相连,静止在水平面上,如图2所示,AB 和BC 之

间的夹角为(π-α)。现对质点C 施加以冲量I ,方向沿BC ,试求质点A 开始运动的速度。

模型分析:首先,注意“开始运动”的理解,它指绳子恰被拉直,有作用力和冲量产生,但是绳子的方位尚未发生变化。其二,对三个质点均可用动量定理,但是,B 质点受冲量不在一条直线上,故最为复杂,可采用分方向的形式表达。其三,由于两段绳子不可伸长,故三质点的瞬时速度可以寻求到两个约束关系。

下面具体看解题过程——

绳拉直瞬间,AB 绳对A 、B 两质点的冲量大小相等(方向相反),设为I 1 ,BC 绳对B 、C 两质点的冲量大小相等(方向相反),设为I 2 ;设A 获得速度v 1(由于A 受合冲量只有

I 1 ,方向沿AB ,故v 1的反向沿AB ),设B 获得速度v 2(由于B 受合冲量为1I +2I ,矢量

和既不沿AB ,也不沿BC 方向,可设v 2与AB 绳夹角为

〈π-β〉,如图3所示),设C 获得速度v 3(合冲量

I +2I 沿BC 方向,故v 3沿BC 方向)

。 对A 用动量定理,有:

I 1 = m 1 v 1 ①

B 的动量定理是一个矢量方程:1I +2I = m 22v ,可

化为两个分方向的标量式,即:

I 2cos α-I 1 = m 2 v 2cos β ②

I 2sin α= m 2 v 2sin β ③

质点C 的动量定理方程为:

I - I 2 = m 3 v 3 ④

AB 绳不可伸长,必有v 1 = v 2cos β ⑤

BC 绳不可伸长,必有v 2cos(β-α) = v 3 ⑥

六个方程解六个未知量(I 1 、I 2 、v 1 、v 2 、v 3 、β)是可能的,但繁复程度非同一般。解方程要注意条理性,否则易造成混乱。建议采取如下步骤——

1、先用⑤⑥式消掉v 2 、v 3 ,使六个一级式变成四个二级式:

I 1 = m 1 v 1 ⑴

I 2cos α-I 1 = m 2 v 1 ⑵

I 2sin α= m 2 v 1 tg β ⑶

I - I 2 = m 3 v 1(cos α+ sin αtg β) ⑷

2、解⑶⑷式消掉β,使四个二级式变成三个三级式:

I 1 = m 1 v 1 ㈠

I 2cos α-I 1 = m 2 v 1 ㈡

I = m 3 v 1 cos α+ I 22

232m sin m m α+ ㈢ 3、最后对㈠㈡㈢式消I 1 、I 2 ,解v 1就方便多了。结果为:

v 1 = α

+++α23132122sin m m )m m m (m cos Im (学生活动:训练解方程的条理和耐心)思考:v 2的方位角β等于多少?

解:解“二级式”的⑴⑵⑶即可。⑴代入⑵消I 1 ,得I 2的表达式,将I 2的表达式代入⑶就行了。

答:β= arc tg (α+tg m m m 2

21)。 三、动量守恒中的相对运动问题

物理情形:在光滑的水平地面上,有一辆车,车内有一个人和N 个铅球,系统原来处于静止状态。现车内的人以一定的水平速度将铅球一个一个地向车外抛出,车子和人将获得反冲速度。第一过程,保持每次相对地面抛球速率均为v ,直到将球抛完;第二过程,保持每次相对车子抛球速率均为v ,直到将球抛完。试问:哪一过程使车子获得的速度更大?

模型分析:动量守恒定律必须选取研究对象之外的第三方(或第四、第五方)为参照物,这意味着,本问题不能选车子为参照。一般选地面为参照系,这样对“第二过程”的铅球动量表达,就形成了难点,必须引进相对速度与绝对速度的关系。至于“第一过程”,比较简单:N 次抛球和将N 个球一次性抛出是完全等效的。

设车和人的质量为M ,每个铅球的质量为m 。由于矢量的方向落在一条直线上,可以假定一个正方向后,将矢量运算化为代数运算。设车速方向为正,且第一过程获得的速度大小为V 1 第二过程获得的速度大小为V 2 。

第一过程,由于铅球每次的动量都相同,可将多次抛球看成一次抛出。车子、人和N 个球动量守恒。

0 = Nm(-v) + MV 1

得:V 1 = M

Nm v ① 第二过程,必须逐次考查铅球与车子(人)的作用。

第一个球与(N –1)个球、人、车系统作用,完毕后,设“系统”速度为u 1 。值得注意的是,根据运动合成法则地车车球地球→→→+=v v v ,铅球对地的速度并不是(-v ),而是(-v + u 1)。它们动量守恒方程为:

0 = m(-v + u 1) +〔M +(N-1)m 〕u 1

得:u 1 =v Nm

M m + 第二个球与(N -2)个球、人、车系统作用,完毕后,设“系统”速度为u 2 。它们动量守恒方程为:

〔M+(N-1)m 〕u 1 = m(-v + u 2) +〔M+(N-2)m 〕u 2

得:u 2 = v Nm M m + + v m

)1N (M m -+ 第三个球与(N -2)个球、人、车系统作用,完毕后,设“系统”速度为u 3 。铅球对地的速度是(-v + u 3)。它们动量守恒方程为:

〔M+(N-2)m 〕u 2 = m(-v + u 3) +〔M+(N-3)m 〕u 3

得:u 3 =v Nm M m + + v m )1N (M m -+ + v m

)2N (M m -+ 以此类推(过程注意:先找u N 和u N-1关系,再看u N 和v 的关系,不要急于化简通分)……,u N 的通式已经可以找出:

V 2 = u N = v Nm M m + + v m )1N (M m -+ + v m

)2N (M m -+ + … + v m M m + 即:V 2 = ∑=+N

1i v im

M m ② 我们再将①式改写成:

V 1 = ∑=N

1i v M m ①′ 不难发现,①′式和②式都有N 项,每项的分子都相同,但①′式中每项的分母都比②式中的分母小,所以有:V 1 > V 2 。

结论:第一过程使车子获得的速度较大。

(学生活动)思考:质量为M 的车上,有n 个质量均为m 的人,它们静止在光滑的水平地面上。现在车上的人以相对车大小恒为v 、方向水平向后的初速往车下跳。第一过程,N 个人同时跳下;第二过程,N 个人依次跳下。试问:哪一次车子获得的速度较大?

解:第二过程结论和上面的模型完全相同,第一过程结论为V 1 =

∑=+n 1i v nm M m 。 答:第二过程获得速度大。

四、反冲运动中的一个重要定式

物理情形:如图4所示,长度为L 、质量为M 的船停止在静水中(但未抛锚),船头上有一个质量为m 的人,也是静止

的。现在令人在船上开始向船尾

走动,忽略水的阻力,试问:当

人走到船尾时,船将会移动多

远?

(学生活动)思考:人可不

可能匀速(或匀加速)走动?当

人中途停下休息,船有速度吗?人的全程位移大小是L 吗?本系统选船为参照,动量守恒吗?

模型分析:动量守恒展示了已知质量情况下的速度关系,要过渡到位移关系,需要引进运动学的相关规律。根据实际情况(人必须停在船尾),人的运动不可能是匀速的,也不可能是匀加速的,运动学的规律应选择S = v t 。为寻求时间t ,则要抓人和船的位移约束关系。

对人、船系统,针对“开始走动→中间任意时刻”过程,应用动量守恒(设末态人的速率为v ,船的速率为V ),令指向船头方向为正向,则矢量关系可以化为代数运算,有:

0 = MV + m(-v)

即:mv = MV

由于过程的末态是任意选取的,此式展示了人和船在任一时刻的瞬时速度大小关系。而且不难推知,对中间的任一过程,两者的平均速度也有这种关系。即: m

v = M V

设全程的时间为t ,乘入①式两边,得:m v t = M V t

设s 和S 分别为人和船的全程位移大小,根据平均速度公式,得:m s = M S ② 受船长L 的约束,s 和S 具有关系:s + S = L ③ 解②、③可得:船的移动距离 S =m

M m +L (应用动量守恒解题时,也可以全部都用矢量关系,但这时“位移关系”表达起来难度大一些——必须用到运动合成与分解的定式。时间允许的话,可以做一个对比介绍。)

另解:质心运动定律

人、船系统水平方向没有外力,故系统质心无加速度→系统质心无位移。先求出初态系统质心(用它到船的质心的水平距离x 表达。根据力矩平衡知识,得:x = )M m (2mL +),又根据,末态的质量分布与初态比较,相对整体质心是左右对称的。弄清了这一点后,求解船的质心位移易如反掌。

(学生活动)思考:如图5所示,在无风的天空,人抓住气球下面的

绳索,和气球恰能静止平衡,人和气球地质量分别为m 和M ,此时人离地

面高h 。现在人欲沿悬索下降到地面,试问:要人充分安全地着地,绳索

至少要多长?

解:和模型几乎完全相同,此处的绳长对应模型中的“船的长度”(“充

分安全着地”的含义是不允许人脱离绳索跳跃着地)。 答:M

M m +h 。 (学生

活动)思

考:如图6

所示,两个

倾角相同的斜面,互相倒

扣着放在光滑的水平地面

上,小斜面在大斜面的顶

端。将它们无初速释放后,小斜面下滑,大斜面后退。已知大、小斜面的质量分别为M 和m ,底边长分别为a 和b ,试求:小斜面滑到底端

时,大斜面后退的距离。

解:水平方向动量守恒。解题过程从略。

答:m

M m +(a -b )。 进阶应用:如图7所示,一个质量为M ,半径为R 的光滑均质半球,静置于光滑水平桌面上,在球顶有一个质量为m 的质点,由静止开始沿球面下滑。试求:质点离开球面以前的轨迹。

解说:质点下滑,半球后退,这个物理情形和上面的双斜面问题十分相似,仔细分析,由于同样满足水平方向动量守恒,故我们介绍的“定式”是适用的。定式解决了水平位移(位置)的问题,竖直坐标则需要从数学的角度想

一些办法。

为寻求轨迹方程,我们需要建立一个坐标:以

半球球心O 为原点,沿质点滑下一侧的水平轴为x

坐标、竖直轴为y 坐标。

由于质点相对半球总是做圆周运动的(离开球

面前),有必要引入相对运动中半球球心O ′的方

位角θ来表达质点的瞬时位置,如图8所示。

由“定式”,易得: x = m

M M +Rsin θ ① 而由图知:y = Rcos θ ②

不难看出,①、②两式实际上已经是一个轨迹的参数方程。为了明确轨迹的性质,我们可以将参数θ消掉,使它们成为:

2

2)R m

M M (x + + 22

R y = 1 这样,特征就明显了:质点的轨迹是一个长、短半轴分别为R 和

m

M M +R 的椭圆。 五、功的定义式中S 怎么取值

在求解功的问题时,有时遇到力的作用点位移与受力

物体的(质心)位移不等,S 是取力的作用点的位移,还

是取物体(质心)的位移呢?我们先看下面一些事例。

1、如图9所示,人用双手压在台面上推讲台,结果双

手前进了一段位移而讲台未移动。试问:人是否做了功?

2、在本“部分”第3页图1的模型中,求拉力做功时,S是否可以取绳子质心的位移?

3、人登静止的楼梯,从一楼到二楼。楼梯是否做功?

4、如图10所示,双手用等大反向的力F压固定汽缸两边的活塞,活塞移动相同距离S,汽缸中封闭气体被压缩。施力者(人)是否做功?

在以上四个事例中,S若取作用点位移,只有第1、2、4例

是做功的(注意第3例,楼梯支持力的作用点并未移动,而只

是在不停地交换作用点),S若取物体(受力者)质心位移,只

有第2、3例是做功的,而且,尽管第2例都做了功,数字并不

相同。所以,用不同的判据得出的结论出现了本质的分歧。

面对这些似是而非的“疑难杂症”,我们先回到“做功是物体能量转化的量度”这一根本点。

第1例,手和讲台面摩擦生了热,内能的生成必然是由人的生物能转化而来,人肯定做了功。S宜取作用点的位移;

第2例,求拉力的功,在前面已经阐述,S取作用点位移为佳;

第3例,楼梯不需要输出任何能量,不做功,S取作用点位移;

第4例,气体内能的增加必然是由人输出的,压力做功,S取作用点位移。

但是,如果分别以上四例中的受力者用动能定理,第1例,人对讲台不做功,S取物体质心位移;第2例,动能增量对应S取L/2时的值——物体质心位移;第4例,气体宏观动能无增量,S取质心位移。(第3例的分析暂时延后。)

以上分析在援引理论知识方面都没有错,如何使它们统一?原来,功的概念有广义和狭义之分。在力学中,功的狭义概念仅指机械能转换的量度;而在物理学中功的广义概念指除热传递外的一切能量转换的量度。所以功也可定义为能量转换的量度。一个系统总能量的变化,常以系统对外做功的多少来量度。能量可以是机械能、电能、热能、化学能等各种形式,也可以多种形式的能量同时发生转化。由此可见,上面分析中,第一个理论对应的广义的功,第二个理论对应的则是狭义的功,它们都没有错误,只是在现阶段的教材中还没有将它们及时地区分开来而已。

而且,我们不难归纳:求广义的功,S取作用点的位移;求狭义的功,S取物体(质心)位移。

那么我们在解题中如何处理呢?这里给大家几点建议:1、抽象地讲“某某力做的功”一般指广义的功;2、讲“力对某物体做的功”常常指狭义的功;3、动能定理中的功肯

定是指狭义的功。

当然,求解功地问题时,还要注意具体问题具体分析。如上面的第3例,就相对复杂一些。如果认为所求为狭义的功,S取质心位移,是做了功,但结论仍然是难以令人接受的。下面我们来这样一个处理:将复杂的形变物体(人)看成这样一个相对理想的组合:刚性物体下面连接一压缩的弹簧(如图11所示),人每一次蹬梯,腿伸直将躯体重心上举,等效为弹簧将刚性物体举起。这样,我们就不难发现,做功的是人的双

腿而非地面,人既是输出能量(生物能)的机构,也是得到能量(机械能)

的机构——这里的物理情形更象是一种生物情形。本题所求的功应理解为广

义功为宜。

以上四例有一些共同的特点:要么,受力物体情形比较复杂(形变,不

能简单地看成一个质点。如第2、第3、第4例),要么,施力者和受力者之

间的能量转化不是封闭的(涉及到第三方,或机械能以外的形式。如第1例)。以后,当遇到这样的问题时,需要我们慎重对待。

(学生活动)思考:足够长的水平传送带维持匀速v运转。将一袋货物无初速地放上去,在货物达到速度v之前,与传送带的摩擦力大小为f ,对地的位移为S 。试问:求摩擦力的功时,是否可以用W = fS ?

解:按一般的理解,这里应指广义的功(对应传送带引擎输出的能量),所以“位移”取作用点的位移。注意,在此处有一个隐含的“交换作用点”的问题,仔细分析,不难发现,每一个(相对皮带不动的)作用点的位移为2S 。(另解:求货物动能的增加和与皮带摩擦生热的总和。)

答:否。

(学生活动)思考:如图

12所示,人站在船上,通过

拉一根固定在铁桩的缆绳使

船靠岸。试问:缆绳是否对船

和人的系统做功?

解:分析同上面的“第3

例”。

答:否。

六、机械能守恒与运动合成(分解)的综合

物理情形:如图13所示,直角形的刚性杆被固定,水平和竖直部分均足够长。质量分别为m 1和m 2的A 、B 两个有孔小球,串在杆上,且被长为L 的轻绳相连。忽略两球的大小,初态时,认为它们的位置在同一高度,且绳处于拉直状态。现无初速地将系统释放,忽略一切摩擦,试求B 球运动L/2时的速度v 2 。

模型分析:A 、B 系统机械能守恒。A 、B 两球的

瞬时速度不等,其关系可据“第三部分”知识介绍

的定式(滑轮小船)去寻求。

(学生活动)A 球的机械能是否守恒?B 球的机

械能是否守恒?系统机械能守恒的理由是什么(两

法分析:a 、“微元法”判断两个W T 的代数和为零;b 、

无非弹性碰撞,无摩擦,没有其它形式能的生成)?

由“拓展条件”可以判断,A 、B 系统机械能守

恒,(设末态A 球的瞬时速率为v 1 )过程的方程为:

m 2g 2

L = 211v m 21 + 222v m 21 ① 在末态,绳与水平杆的瞬时夹角为30°,设绳子的瞬时迁移速率为v ,根据“第三部分”知识介绍的定式,有:

v 1 = v/cos30°, v 2 = v/sin30°

两式合并成:v 1 = v 2 tg30°= v 2/3 ②

解①、②两式,得:v 2 =

2

12m m gL m 3 七、动量和能量的综合(一)

物理情形:如图14所示,两根长度均为L 的刚性轻杆,一端通过质量为m 的球形铰链连接,另一端分别与质量为m 和2m 的小球相连。将此装置的两杆合拢,铰链在上、竖

直地放在水平桌面上,然后轻敲一下,使两小球向两边滑

动,但两杆始终保持在竖直平面内。忽略一切摩擦,试求:

两杆夹角为90°时,质量为2m 的小球的速度v 2 。

模型分析:三球系统机械能守恒、水平方向动量守恒,

并注意约束关系——两杆不可伸长。

(学生活动)初步判断:左边小球和球形铰链的速度方

向会怎样?

设末态(杆夹角90°)左边小球的速度为v 1(方向:水平向左),球形铰链的速度为v (方向:和竖直方向夹θ角斜向左),

对题设过程,三球系统机械能守恒,有: mg( L-2

2L) = 21m 21v + 21mv 2 + 212m 2

2v ①

三球系统水平方向动量守恒,有:

mv 1 + mvsin θ= 2mv 2 ②

左边杆子不形变,有:

v 1cos45°= vcos(45°-θ) ③

右边杆子不形变,有:

vcos(45°+θ) = v 2cos45° ④

四个方程,解四个未知量(v 1 、v 2 、v 和

θ),是可行的。推荐解方程的步骤如下——

1、③、④两式用v 2替代v 1和v ,代入②式,解θ值,得:tg θ= 1/4

2、在回到③、④两式,得:

v 1 = 35v 2 , v = 3

17v 2 3、将v 1 、v 的替代式代入①式解v 2即可。结果:v 2 = 20

)22(gL 3 (学生活动)思考:球形铰链触地前一瞬,左球、铰链和右球的速度分别是多少? 解:由两杆不可形变,知三球的水平速度均为零,θ为零。一个能量方程足以解题。 答:0 、gL 2 、0 。

(学生活动)思考:当两杆夹角为90°时,右边小球的位移是多少?

解:水平方向用“反冲位移定式”,或水平方向用质心运动定律。

答:L 8

23 。 进阶应用:在本讲模型“四、反冲……”的“进阶应用”

(见图8)中,当质点m 滑到方位角θ时(未脱离半球),质

点的速度v 的大小、方向怎样?

解说:此例综合应用运动合成、动量守恒、机械能守恒知识,数学运算比较繁复,是一道考查学生各种能力和素质的难题。

据运动的合成,有:

半球点→v = 地点→v + 半球地→v = 地点→v - 地半球→v

其中地半球→v 必然是沿地面向左的,为了书写方便,我们设其大小为v 2 ;半球点→v 必然是沿半球瞬时位置切线方向(垂直瞬时半径)的,设大小为v 相 。根据矢量减法的三角形法则,可以得到地点→v (设大小为v 1)的示意图,如图16所示。同时,我们将v 1的x 、y 分量v 1x 和v 1y 也描绘在图中。

由图可得:v 1y =(v 2 + v 1x )tg θ ①

质点和半球系统水平方向动量守恒,有:Mv 2 = mv 1x ②

对题设过程,质点和半球系统机械能守恒,有:mgR(1-cos θ) =

21M 22v + 21m 21v ,即:

mgR(1-cos θ) = 21M 22v + 2

1m (2x 1v + 2y 1v ) ③ 三个方程,解三个未知量(v 2 、v 1x 、v 1y )是可行的,但数学运算繁复,推荐步骤如下——

1、由①、②式得:v 1x = m

M v 2 , v 1y = (m M m +tg θ) v 2 2、代入③式解v 2 ,得:v 2 =θ

+++θ-2222tg )m M (Mm M )cos 1(gR m 2 3、由21v = 2x 1v + 2y 1v 解v 1 ,得:v 1 =θ

+++θ+θ+θ-222222sin )m M (m Mm M )sin m sin Mm 2M )(cos 1(gR 2 v 1的方向:和水平方向成α角,α= arctg

x 1y 1v v = arctg (θ+tg M m M ) 这就是最后的解。

〔一个附属结果:质点相对半球的瞬时角速度 ω = R v 相 =

)

sin m M (R )cos 1)(M m (g 22θ+θ-+ 。〕

八、动量和能量的综合(二)

物理情形:如图17所示,在光滑的水平面上,质量为M = 1 kg 的平板车左端放有质量为m = 2 kg 的铁块,铁块与车之间的摩擦因素μ= 0.5 。开始时,车和铁块以共同速度v = 6 m/s 向右运动,车与右边的墙壁发生正碰,且碰撞是弹性的。车身足够长,使铁块不能和墙相碰。重力加速度g = 10 m/s 2 ,试求:1、铁块相对车运动的总路程;2、平板车第一次碰墙后所走的总路程。

模型分析:本模

型介绍有两对相互作

用时的处理常规。能

量关系介绍摩擦生热

定式的应用。由于过

程比较复杂,动量分

析还要辅助以动力学分析,综合程度较高。

由于车与墙壁的作用时短促而激烈的,而铁块和车的作用是舒缓而柔和的,当两对作用同时发生时,通常处理成“让短时作用完毕后,长时作用才开始”(这样可以使问题简化)。在此处,车与墙壁碰撞时,可以认为铁块与车的作用尚未发生,而是在车与墙作用完了之后,才开始与铁块作用。

规定向右为正向,将矢量运算化为代数运算。

车第一次碰墙后,车速变为-v ,然后与速度仍为v 的铁块作用,动量守恒,作用完毕后,共同速度v 1 = M m )v (M mv +-+ = 3

v ,因方向为正,必朝墙运动。 (学生活动)车会不会达共同速度之前碰墙?动力学分析:车离墙的最大位移S = a

2v 2

,反向加速的位移S ′= 1

21a 2v ,其中a = a 1 = M mg μ,故S ′< S ,所以,车碰墙之前,必然已和铁块达到共同速度v 1 。

车第二次碰墙后,车速变为-v 1 ,然后与速度仍为v 1的铁块作用,动量守恒,作用完毕后,共同速度v 2 = M m )v (M mv 11+-+ = 3v 1 = 23

v ,因方向为正,必朝墙运动。 车第三次碰墙,……共同速度v 3 =

3v 2 = 33v ,朝墙运动。

……

以此类推,我们可以概括铁块和车的运动情况——

铁块:匀减速向右→匀速向右→匀减速向右→匀速向右……

平板车:匀减速向左→匀加速向右→匀速向右→匀减速向左→匀加速向右→匀速向右……

显然,只要车和铁块还有共同速度,它们总是要碰墙,所以最后的稳定状态是:它们一起停在墙角(总的末动能为零)。

1、全程能量关系:对铁块和车系统,-ΔE k =ΔE 内 ,且,ΔE 内 = f 滑 S 相 , 即:2

1(m + M )v 2 = μmg ·S 相 代入数字得:S 相 = 5.4 m

2、平板车向右运动时比较复杂,只要去每次向左运动的路程的两倍即可。而向左是匀减速的,故

第一次:S 1 = a

2v 2

第二次:S 2 = a

2v 21 = a 2122

3v 第三次:S 3 = a

2v 22 = a 2142

3v ……

n 次碰墙的总路程是:

ΣS = 2( S 1 + S 2 + S 3 + … + S n )= a v 2

( 1 + 231 + 431 + … + )(1n 23

1- ) = M

mg v 2μ( 1 + 231 + 431 + … + )

(1n 231- ) 碰墙次数n →∞,代入其它数字,得:ΣS = 4.05 m

(学生活动)质量为M 、程度为L 的木板固定在光滑水平面上,另一个质量为m 的滑块以水平初速v 0冲上木板,恰好能从木板的另一端滑下。现解除木板的固定(但无初速),让相同的滑块再次冲上木板,要求它仍能从另一端滑下,其初速度应为多少?

解:由第一过程,得滑动摩擦力f = L

2mv 20 。 第二过程应综合动量和能量关系(“恰滑下”的临界是:滑块达木板的另一端,和木板具有共同速度,设为v ),设新的初速度为0v '

m 0v ' =( m + M )v

21m 20v ' - 2

1( m + M )v 2 = fL 解以上三式即可。

答:0v '= M

M m +v 0 。

高中物理奥赛经典讲义全套资料

目录 中学生全国物理竞赛章程 (2) 全国中学生物理竞赛内容提要全国中学生物理竞赛内容提要 (5) 专题一力物体的平衡 (10) 专题二直线运动 (12) 专题三牛顿运动定律 (13) 专题四曲线运动 (16) 专题五万有引力定律 (18) 专题六动量 (19) 专题七机械能 (21) 专题八振动和波 (23) 专题九热、功和物态变化 (25) 专题十固体、液体和气体的性质 (27) 专题十一电场 (29) 专题十二恒定电流 (31) 专题十三磁场 (33) 专题十四电磁感应 (35) 专题十五几何光学 (37) 专题十六物理光学原子物理 (40)

中学生全国物理竞赛章程 第一章总则 第一条全国中学生物理竞赛(对外可以称中国物理奥林匹克,英文名为Chinese Physic Olympiad,缩写为CPhO)是在中国科协领导下,由中国物理学会主办,各省、自治区、直辖市自愿参加的群众性的课外学科竞赛活动,这项活动得到国家教育委员会基础教育司的正式批准。竞赛的目的是促使中学生提高学习物理的主动性和兴趣,改进学习方法,增强学习能力;帮助学校开展多样化的物理课外活动,活跃学习空气;发现具有突出才能的青少年,以便更好地对他们进行培养。 第二条全国中学生物理竞赛要贯彻“教育要面向现代化、面向世界、面向未来”的精神,竞赛内容的深度和广度可以比中学物理教学大纲和教材有所提高和扩展。 第三条参加全国中学生物理竞赛者主要是在物理学习方面比较优秀的学生,竞赛应坚持学生自愿参加的原则.竞赛活动主要应在课余时间进行,不要搞层层选拔,不要影响学校正常的教学秩序。 第四条学生参加竞赛主要依靠学生平时的课内外学习和个人努力,学校和教师不要为了准备参加竞赛而临时突击,不要组织“集训队”或搞“题海战术”,以免影响学生的正常学习和身体健康。学生在物理竞赛中的成绩只反映学生个人在这次活动中所表现出来的水平,不应当以此来衡量和评价学校的工作和教师的教学水平。 第二章组织领导 第五条全国中学生物理竞赛由中国物理学会全国中学生物理竞赛委员会(以下简称全国竞赛委员会)统一领导。全国竞赛委员会由主任1人、副主任和委员若干人组成。主任和副主任由中国物理学会常务理事会委任。委员的产生办法如下: 1.参加竞赛的省、自治区、直辖市各推选委员1人; 2.承办本届和下届决赛的省。自治区、直辖市各推选委员3人。 3.由中国物理学会根据需要聘请若干人任特邀委员。 在全国竞赛委员会全体会议闭会期间由主任和副主任组成常务委员会,行使全国竞赛委员会职权。 第六条在全国竞赛委员会领导下,设立命题小组、组织委员会和竞赛办公室等工作机构。命题小组成员由全国竞赛委员会聘请专家和高等院校教师担任。组织委员会由承办决赛的省、自治区、直辖市物理学会与有关方面协商组成,负责决赛期间各项活动的筹备与组织

高中物理奥赛解题方法七 对称法

七、对称法 方法简介 由于物质世界存在某些对称性,使得物理学理论也具有相应的对称性,从而使对称现象普遍存在于各种物理现象和物理规律中。应用这种对称性它不仅能帮助我们认识和探索物质世界的某些基本规律,而且也能帮助我们去求解某些具体的物理问题,这种思维方法在物理学中称为对称法。利用对称法分析解决物理问题,可以避免复杂的数学演算和推导,直接抓住问题的实质,出奇制胜,快速简便地求解问题。 赛题精析 例1:沿水平方向向一堵竖直光滑的墙壁抛出一个弹性小球A ,抛出点离水平地面的高度为h ,距离墙壁的水平距离为s ,小球与墙壁发生弹性碰撞后,落在水平地面上,落地点距墙壁的水平距离为2s ,如图7—1所示。求小球抛出时的初速度。 解析:因小球与墙壁发生弹性碰撞,故与墙壁碰撞前后入射速度与反射速度具有对称性,碰撞后小球的运动轨迹与无墙壁阻挡时小球继续前进的轨迹相对称,如图7—1—甲所示,所以小球的运动可以转换为平抛运动处理,效果上相当于小球从A′点水平抛出所做的运动。 根据平抛运动的规律: 2 x v t 1 y gt 2 = ? ? ? = ?? 因为抛出点到落地点的距离为3s ,抛出点的高度为h ,代入后可解得: v0 例2:如图7—2所示,在水平面上,有两个竖直光滑墙壁A和B ,间距为d ,一个小球以初速度v0从两墙正中间的O点斜向上抛出,与A和B各发生一次碰撞后正好落回抛出点O ,求小球的抛射角θ。

解析:小球的运动是斜上抛和斜下抛等三段运动组成,若按顺序求解则相当复杂,如果视墙为一平面镜,将球与墙的弹性碰撞等效为对平面镜的物、像移动,可利用物像对称的规律及斜抛规律求解。 物体跟墙A 碰撞前后的运动相当于从O ′点开始的斜上抛运动,与B 墙碰后落于O 点相当于落到O ″点,其中O 、O ′关于A 墙对称,O 、O ″对于B 墙对称,如图7—2—甲所示,于是有: 020x v cos t 1y v sin t gt 2 =θ????=θ?-??,落地时x 2d y 0=??=? 代入可解得:sin2θ = 202gd v 所以,抛射角θ =1 2arcsin 202gd v 例3:A 、B 、C 三只猎犬站立的位置构成一个边长为 a 的正三角形,每只猎犬追捕猎物的速度均为v ,A 犬想追 捕B 犬,B 犬想追捕C 犬,C 犬想追捕A 犬,为追捕到猎 物,猎犬不断调整方向,速度方向始终“盯”住对方,它们 同时起动,经多长时间可捕捉到猎物? 解析:以地面为参考系,三只猎犬运动轨迹都是一条复杂的曲线,但根据对称性,三只猎犬最后相交于三角形的中心点,在追捕过程中,三只猎犬的位置构成三角形的形状不变,以绕点旋转的参考系来描述,可认为三角形不转动,而是三个顶点向中心靠近,所以只要求出顶点到中心运动的时间即可。 由题意作图7—3 ,设顶点到中心的距离为s ,则由已知条件得: a 由运动合成与分解的知识可知,在旋转的参考系中顶点向中心运动的速度为: v ′= vcos30° 由此可知三角形收缩到中心的时间为:t =s v '=2a 3v (此题也可以用递推法求解,读者可自己试解。) 例4:如图7—4所示,两个同心圆代表一个圆形槽,质量为m ,内外半径几乎同为R 。槽内A 、B 两处分别放有一个质量也为m 的小球,AB 间的距离为槽的直径。不计

高中物理奥林匹克竞赛专题4.动量和角动量习题

习题 4-1. 如图所示的圆锥摆,绳长为l ,绳子一端固定,另一端系一质量为m 的质点,以匀角速ω绕铅直线作圆周运动,绳子与铅直线的夹角为θ。在质点旋转一周的过程中,试求: (1)质点所受合外力的冲量I ; (2)质点所受张力T 的冲量I T 。 解: (1)根据冲量定理:???==t t P P d dt 00 ??P P F 其中动量的变化:0v v m m - 在本题中,小球转动一周的过程中,速度没有变化,动量的变化就为0,冲量之和也为0,所以本题中质点所受合外力的冲量I 为零 (2)该质点受的外力有重力和拉力,且两者产生的冲量大小相等,方向相反。 重力产生的冲量=mgT=2πmg /ω;所以拉力产生的冲量2πmg /ω,方向为竖直向上。 4-2.一物体在多个外力作用下作匀速直线运动,速度=4m/s 。已知其中一力F 方向恒与运动方向一致,大小随时间变化内关系曲线为半个椭圆,如图。求:

(1)力F 在1s 到3s 间所做的功; (2)其他力在1s 到s 间所做的功。 解: (1)由做功的定义可知: (2)由动能定理可知,当物体速度不变时,外力做的总功为零,所以当该F 做的功为125.6J 时,其他的力的功为-125.6J 。 4-3.质量为m 的质点在Oxy 平面内运动,运动学方程为j i r t b t a ωωsin cos +=,求: (1)质点在任一时刻的动量; (2)从0=t 到ωπ/2=t 的时间内质点受到的冲量。 解:(1)根据动量的定义:(sin cos )P mv m a t b t ωωωω==-+i j (2)从0=t 到ωπ/2=t 的时间内质点受到的冲量等于它在这段时间内动量的变化,因为动量没变,所以冲量为零。 4-4.质量为M =2.0kg 的物体(不考虑体积),用一根长为l =1.0m 的细绳悬挂在天花板上。今有一质量为m =20g 的子弹

高中物理奥赛必看讲义——静电场

静电场 第一讲基本知识介绍 在奥赛考纲中,静电学知识点数目不算多,总数和高考考纲基本相同,但在个别知识点上,奥赛的要求显然更加深化了:如非匀强电场中电势的计算、电容器的连接和静电能计算、电介质的极化等。在处理物理问题的方法上,对无限分割和叠加原理提出了更高的要求。 如果把静电场的问题分为两部分,那就是电场本身的问题、和对场中带电体的研究,高考考纲比较注重第二部分中带电粒子的运动问题,而奥赛考纲更注重第一部分和第二部分中的静态问题。也就是说,奥赛关注的是电场中更本质的内容,关注的是纵向的深化和而非横向的综合。 一、电场强度 1、实验定律 a、库仑定律 内容; 条件:⑴点电荷,⑵真空,⑶点电荷静止或相对静止。事实上,条件⑴和⑵均不能视为对库仑定律的限制,因为叠加原理可以将点电荷之间的静电力应用到一般带电体,非真空介质可以通过介电常数将k进行修正(如果介质分布是均匀和“充分宽广”的,一般认为k′= k /εr)。只有条件⑶,它才是静电学的基本前提和出发点(但这一点又是常常被忽视和被不恰当地“综合应用”的)。 b、电荷守恒定律 c、叠加原理 2、电场强度 a、电场强度的定义 电场的概念;试探电荷(检验电荷);定义意味着一种适用于任何电场的对电场的检测手段;电场线是抽象而直观地描述电场有效工具(电场线的基本属性)。 b、不同电场中场强的计算 决定电场强弱的因素有两个:场源(带电量和带电体

的形状)和空间位置。这可以从不同电场的场强决定式看出—— ⑴点电荷:E = k 2 r Q 结合点电荷的场强和叠加原理,我们可以求出任何电场的场强,如—— ⑵均匀带电环,垂直环面轴线上的某点P :E = 2 322 ) R r (k Qr +,其中r 和R 的意义见图7-1。 ⑶均匀带电球壳 内部:E 内 = 0 外部:E 外 = k 2 r Q ,其中r 指考察点到球心的距离 如果球壳是有厚度的的(内径R 1 、外径R 2),在壳体中(R 1 <r <R 2): E = 2 3 1 3r R r k 34-πρ ,其中ρ为电荷体密度。这个式子的物理意义可以参照万有引力定律当中(条件部分)的“剥皮法则”理解〔)R r (3 433-πρ即为图7-2中虚线以内部分的总电量…〕。 ⑷无限长均匀带电直线(电荷线密度为λ):E = r k 2λ ⑸无限大均匀带电平面(电荷面密度为σ):E = 2πk σ 二、电势 1、电势:把一电荷从P 点移到参考点P 0时电场力所做的功W 与该电荷电量q 的比值,即 U = q W 参考点即电势为零的点,通常取无穷远或大地为参考点。 和场强一样,电势是属于场本身的物理量。W 则为电荷的电势能。 2、典型电场的电势 a 、点电荷 以无穷远为参考点,U = k r Q b 、均匀带电球壳 以无穷远为参考点,U 外 = k r Q ,U 内 = k R Q 3、电势的叠加 由于电势的是标量,所以电势的叠加服从代数加法。很显然,有了点电荷电势的表达式

高中物理奥赛讲义热学doc热学

热 学 热学知识在奥赛中的要求不以深度见长,但知识点却非常地多(考纲中罗列的知识点几乎和整个力学——前五部分——的知识点数目相等)。而且,由于高考要求对热学的要求逐年降低(本届尤其低得“离谱”,连理想气体状态方程都没有了),这就客观上给奥赛培训增加了负担。因此,本部分只能采新授课的培训模式,将知识点和例题讲解及时地结合,争取让学员学一点,就领会一点、巩固一点,然后再层叠式地往前推进。 一、分子动理论 1、物质是由大量分子组成的(注意分子体积和分子所占据空间的区别) 对于分子(单原子分子)间距的计算,气体和液体可直接用3分子占据的空间,对固体,则与分子的空间排列(晶体的点阵)有关。 【例题1】如图6-1所示,食盐(N a Cl )的晶体是由钠离子(图中的白色圆点表示)和氯离子(图中的黑色圆点表示)组成的,离子键两两垂直且键长相等。已知食盐的摩尔质量为58.5×10-3 kg/mol ,密度为2.2×103 kg/m 3 ,阿伏加德罗常数为6.0×1023 mol -1 ,求食盐晶体中两个距离最近的钠离子中心之间的距离。 【解说】题意所求即图中任意一个小立方块的变长(设为a )的2倍,所以求a 成为本题的焦点。 由于一摩尔的氯化钠含有N A 个氯化钠分子,事实上也含有2N A 个钠离子(或氯离子),所以每个钠离子占据空间为 v = A m ol N 2V 而由图不难看出,一个离子占据的空间就是小立方体的体积a 3 , 即 a 3 = A m ol N 2V = A m ol N 2/M ,最后,邻近钠离子之间的距离l = 2a 【答案】3.97×10-10 m 。 〖思考〗本题还有没有其它思路? 〖答案〗每个离子都被八个小立方体均分,故一个小立方体含有81 ×8个离子 = 2 1 分子,所以…(此法普遍适用于空间点阵比较复杂的晶体结构。) 2、物质内的分子永不停息地作无规则运动 固体分子在平衡位置附近做微小振动(振幅数量级为0.1A 0 ),少数可以脱离平衡位置运动。液体分子的运动则可以用“长时间的定居(振动)和短时间的迁移”来概括,这是由于液体分子间距较固体大的结果。气体分子基本“居无定所”,不停地迁移(常温下,速率数量级为102 m/s )。 无论是振动还是迁移,都具备两个特点:a 、偶然无序(杂乱无章)和统计有序(分子数比率和速率对应一定的规律——如麦克斯韦速率分布函数,如图6-2所示);b 、剧烈程度和温度相关。

高中奥林匹克物理竞赛解题方法之七对称法

例1:沿水平方向向一堵竖直光滑的墙壁抛出一个弹性小球A , 抛出点离水平地面的高度为h ,距离墙壁的水平距离为s , 小球与墙壁发生弹性碰撞后,落在水平地面上,落地点距墙壁的水平距离为2s ,如图7—1所示. 求小球抛出时的初速度. 解析:因小球与墙壁发生弹性碰撞, 故与墙壁碰撞前后入射速度与反射速度具有对称性, 碰撞后小球的运 动轨迹与无墙壁阻挡时小球继续前进的轨迹相对称,如图7—1—甲所示,所以小球的运动可以转换为平抛运动处理, 效果上相当于小球从A ′点水平抛出所做的运动. 根据平抛运动的规律:?? ? ??==2 021gt y t v x 因为抛出点到落地点的距离为3s ,抛出点的高度为h 代入后可解得:h g s y g x v 2320 == 例2:如图7—2所示,在水平面上,有两个竖直光滑墙壁A 和B ,间距为d , 一个小球以初速度0v 从两墙正中间的O 点斜向上抛出, 与A 和B 各发生一次碰撞后正好落回抛出点O , 求小球的抛射角θ. 解析:小球的运动是斜上抛和斜下抛等三段运动组成, 若按顺序求解则相当复杂,如果视墙为一平面镜, 将球与墙的弹性碰撞等效为对平面镜的物、像移动,可利用物像对称的规律及斜抛规律求解. 物体跟墙A 碰撞前后的运动相当于从O ′点开始的斜上抛运动,与B 墙碰后落于O 点相当于落到O ″点,其中O 、O ′关于A 墙对称,O 、O ″对于B 墙对称,如图7—2—甲所示,于是有 ? ??==?? ???-==0221sin cos 200y d x gt t v y t v x 落地时θθ 代入可解得2 202arcsin 2122sin v dg v dg == θθ 所以抛射角 例3:A 、B 、C 三只猎犬站立的位置构成一个边长为a 的正三角形,每只猎犬追捕猎物的速度均为v ,A 犬想追捕B 犬,B 犬 想追捕C 犬,C 犬想追捕A 犬,为追捕到猎物,猎犬不断调整方向,速度方向始终“盯”住对方,它们同时起动,经多长时间可捕捉到猎物? 解析:以地面为参考系,三只猎犬运动轨迹都是一条复杂的曲线,但根据对称性,三只猎犬最后相交于 三角形的中心点,在追捕过程中,三只猎犬的位置构成三角形的形状不变,以绕点旋转的参考系来描述,可认为三角形不转动,而是三个顶点向中心靠近,所以只要求出顶点到中心运动的时间即可. 由题意作图7—3, 设顶点到中心的距离为s ,则由已知条件得 a s 3 3 = 由运动合成与分解的知识可知,在旋转的参考系中顶点向中心运动的速度为 v v v 2330cos = =' 由此可知三角形收缩到中心的时间为 v a v s t 32='= 此题也可以用递推法求解,读者可自己试解. 例4:如图7—4所示,两个同心圆代表一个圆形槽,质量为m ,内外半径几乎同为R. 槽内A 、B 两处分别放有一个质量也为m 的小球,AB 间的距离为槽的直径. 不计一切摩擦. 现将系统置于光滑水平面上,开始时槽静止,两小球具有垂直于AB 方向的速度v ,试求两小球第一次相距R 时,槽中心的速度0v . 解析:在水平面参考系中建立水平方向的x 轴和y 轴. 由系统的对称性可知中心或者说槽整体将仅在x 轴方向上 运动。设槽中心沿x 轴正方向运动的速度变为0v ,两小球相对槽心做角速度大小为ω的圆周运动,A 球处于

全国高中物理竞赛专题十三 电磁感应训练题解答

1、 如图所示为一椭圆形轨道,其方程为()22 2210x y a b a b +=>>,在中心处有一圆形区域, 圆心在O 点,半径为()r b <,圆形区域中有一均匀磁场1B ,方向垂直纸面向里,1B 以 1B t k ??=的速率增大,在圆外区域中另 有一匀强磁场2B ,方向与1B 相同,在初始时,A 点有一带正电q 的质量为m 的粒子, 粒子只能在轨道上运动,把粒子由静止释放,若要其通过C 点时对轨道无作用力,求2B 的大小。 解:由于r b a <<,故轨道上距O 为R 的某处,涡旋电场强度为 22122B r kr E R t R ?==? 方向垂直于R 且沿逆时针方向,故q 逆时针运动。 q 相对O 转过θ?角时,1B 对其做功为 2 2kr W F x Eq x q R R θ?=?=?=? 而2B 产生的洛伦兹力及轨道支持力不做功,故q 对O 转过θ角后,其动能为 2 2122 k kr E mv W q θ==?=∑ q 的速度大小为 2kr q v m θ = q 过C 时,()3 20,1,2,2 n n θππ=+= C 处轨道不受力的条件为 2 2mv qvB ρ = 其中ρ为C 处的曲率半径,可以证明:2 a b ρ=(证明略) A C 1 B 2 B O x y

将v 和θ的表达式代入上式可得 ()22 320,1,2,2br mk B n n a q ππ?? = += ??? 2、 两根长度相等,材料相同,电阻分别为R 和2R 的细导线,两者相接而围成一半径为a 的圆环,P Q 、为其两个接点,如图所示,在圆环所围成的区域内,存在垂直于图面、指向纸内的匀强磁场,磁感应强度的大小随时间增大的变化率为恒定值b 。已知圆环中感应电动势是均匀分布的,设M N 、为圆环上的两点,M N 、间的圆弧为半圆弧的一半,试求这两点间的电压()M N U U -。 解:根据法拉第定律,整个圆环中的感应电动势的大小 2E r b t π?Φ = =? (1) 按楞次定律判断其电流方向是逆时针的,电流大小为 23E E I R R R = =+ (2) 按题意,E 被均匀分布在整个圆环上,即?MN 的电动势为4E ,?NQPM 的电动势为34E ,现考虑?NQPM ,在这段电路上由于欧姆电阻所产生电势降落为()22I R R +,故 3242M N R U U E R I ? ?-=-+ ?? ? (3) 由(1)、(2)、(3)式可得 21 12 M N U U r b π-=- (4) 当然,也可采用另一条路径(?MTN 圆弧)求电势差 ()211 424321212 N M M N E R E E R U U I E r b U U R π-= -=-===--g g 与(4)式相符。 3、 如图所示,在边长为a 的等边三角形区域内有匀强磁场B ,其方向垂直纸面向外。一个边长也为a 的等边三角形导轨框架ABC ,在0t =时恰好与上述磁场区域的边界重合,而后以周期T 绕其中心在纸面内顺时针方向匀速转动,于是在框架ABC 中产生感应电流,规 R T M N P Q 2R S

高中物理竞赛流程详细解析

高中物理竞赛流程详细解析 高中物理竞赛国内竞赛主要分为:物理竞赛预赛、物理竞赛复赛、物理竞赛决赛三个流程,国际性赛事分为国际物理奥林匹克竞赛和亚洲物理奥林匹克竞赛。 一、全国中学生物理竞赛预赛(CPhO) 1、高中物理竞赛入门级赛事,每年9月上旬举办(也就是秋学期开学),由全国竞赛委员会统一命题,各省市、学校自行组织,所有中学生均可报名; 2、考试形式:笔试,共3小时,5道选择题、每题6分,5道填空题、每题10分,6道大题、每题20分,共计200分; 3、考试主要考力学、热学、电磁学、光学、近代物理等相关内容(回台回复“物竞考纲”查看明细); 4、比赛分别设置了一等奖、二等奖和三等奖,因为预赛主要是各省市为了选拔复赛选手而筹备的,所以一般一等奖可以参加复赛。 5、一般来说,考完试后2~3天即可在考点查询成绩。 二、全国中学生物理竞赛复赛(CPhO) 1、高中阶段最重要的赛事,其成绩对于自主招生及参加清北学科营等有直接影响,每年9月下旬举办(也就是预赛结束后)。 2、复赛分为笔试+实验: 笔试,共3小时,8道大题,每题40分,共计320分; 实验,共90分钟,2道实验,每道40分,共计80分; 总分400分。 3、笔试由全国竞赛委员会统一命题,各省市自行组织、规定考点,大多数省份只有预赛一等奖的同学可以参加; 实验由各省市自行命题,根据笔试成绩组织前几十名左右考生参加(也就是说实验不是所有人都考,只有角逐一等奖的同学才参加),最终根据实验和笔试的总成绩评定出一等奖、二等奖、三等。 4、各省市的实验时间稍有不同,具体可参考当地往年的考试时间。 5、考试内容在预赛的基础上稍有增加,具体考纲后台回复“物竞考纲”查看。 6、比赛设置了一等奖、二等奖、三等奖,也就是我们常说的省一、省二、省三,其中各省省一前几名入选该省省队,可参加决赛。 7、成绩有什么用? 省一等奖可基本满足除清华、北大、复旦以外其他985/211高校的自主招生条件; 省二等奖可满足部分985/211高校的自主招生条件; 省三等奖可满足大部分211学校的自主招生条件。 8、各省省队成员可参加清北金秋营、冬令营,并根据成绩获得降分优惠。

高中物理竞赛专题训练

高中物理竞赛专题训练 1、一圆柱体的坚固容器,高为h,上底有一可以打开和关闭的密封阀门,现把此容器沉入深为H 的湖底,并打开阀门,让水充满容器,然后关闭阀门。设大气压强为P0, 湖水的密度为,则容器内部底面受到的向下的压强为_________,若将 此容器从湖底移动湖面上,这时容器内部底面上受到的向下的压强为 _________。(P 0+gH、P0+gH) 2、氢原子处于基态时,能量E=_________;当氢原子处于n=5的能量状态时,氢原子的能量为__________;当氢原子从n=5状态跃迁到n=1的基态时,辐射光子的能量是_________,是_________光线(红外线、可见或紫外线)。(—13.6 ev、—0.54ev 、13.06ev、紫外线) 3、质量为m的物体A置于质量为M、倾角为的斜面B上,A、B之间光滑接触,B的底面与水平地面也是光滑接触。设开始时A与B均为静止,而后A以某初速度沿B的斜面向上运动,如图所示,试问A在没有到达斜面顶部前是否会离开斜面?为什么?讨论中不必考虑B向前倾倒的可能性。(不会离开斜面,因为A与B的相互作用力为(mMcos g) / [M+m(sin)2],始终为正值) 4、一电荷Q1均匀分布在一半球面上,无数个点电荷、电量均为Q2位于通过球心的轴线上,且在半球面的下部。第k个电荷与球心的距离为,而k=1,2,3,4……,设球心处的电势为零,周围空间均为自由空间。若Q1已知求Q2。(—Q1/2)

5、一根长玻璃管,上端封闭,下端竖直插入水银中,露出水银面的玻璃管长为76 cm。水银充满管子的一部分。玻璃管的上端封闭有0.001mol的空气,如图所示。外界大气压强为76cmHg。空气的定容摩尔热容量为C V =20.5J/mol k。当玻璃管与管内空气的温度均降低100C时,试问管内空气放出多少热量?(0.247焦耳) 6、如图所示,折射率n=1.5的全反射棱镜上方6cm处放置一物体AB,棱镜直角边长为6cm,棱镜右侧10cm处放置一焦距f1=10cm的凸透镜,透镜右侧15cm处再放置一焦距f2=10cm的凹透镜,求该光学系统成像的位置和像放大率。(在凹透镜的右侧10cm处、放大率为2) 7、在边长为a的正方形四个顶点上分别固定电量均为Q的四个点电荷,在对角线交点上放一个质量为m,电量为q(与Q同号)的自由点电荷。若将q沿着对角线移动一个小的距离,它是否会做周期性振动?若会,其周期是多少?(会做周期性振动,周期为) 8、一匀质细导线圆环,总电阻为R,半径为a,圆环内充满方向垂直于 环面的匀强磁场,磁场以速率K均匀的随时间增强,环上的A、D、C三点位置对称。电流计G

高中物理奥赛必看讲义 直线运动

第一部分:直线运动 一、复习基础知识点 一、 考点内容 1.机械运动,参考系,质点,位移和路程。 2.匀速直线运动:速度,位移公式vt =x ,t x -图以及t v -图。 3.匀变速直线运动,加速度,平均速度,瞬时速度,速度公式at v v +=0,位移公式 202 1at t v x +=,推广式ax v v 22 2=-,t v -图。 二、 知识结构 ????????????? ??????? ???????? ? ? ? ?? ? ? ?=?????????=-+= -=? ??+=+== ?? ?? ? ???????? ?? ?????→ ??t v x ax v v t v v x at vt x at t v x at v v vt x 非匀变速匀变速匀速规律非匀变速直线运动匀减速直线运动匀加速直线运动 匀变速直线运动匀速直线运动种类竖直上抛运动自由落体运动匀变速直线运动匀速直线运动物理过程质点研究对象理想模型物理量参考系运动 名词概念直线运动2221212 0202200 三、 复习思路 本课时重点是瞬时速度和加速度概念,以及匀变速直线运动的规律,难点是加速度的理解。而匀变速直线运动规律与体育竞技、交通运输以及航空航天相结合是高考考查的热点。对匀变速直线运动规律要熟练掌握,同时学习研究物理的基本方法,如从简单问题入手的方法、运用图象研究物理问题和用数学公式表达物理规律的方法、实验的方法等等。 匀变速直线运动是高中阶段物理学习的重点内容之一,对匀变速直线运动的学习与研究要注意两方面的内容:一是如何描述物体的运动,匀变速直线运动的特点是什么;二是匀变速直线运动的基本规律是什么。在这一单元中,我们仅仅研究物体的运动规律而不涉及力与运动的关系,能否清楚正确的分析物体的运动过程是本单元要求的一个重要能力,分析运动过程是求解力学问题的主要环节,是正确运用各种知识的前提条件。能否正确运

镜像法-高中物理竞赛讲义

镜像法 思路 用假想的镜像电荷代替边界上的感应电荷。 保持求解区域中场方程和边界条件不变。 使用范围:界面几何形状较规范,电荷个数有限,且离散分布于有限区域。 使用范围 界面几何形状较规范,电荷个数有限,且离散分布于有限区域。 步骤 确定镜像电荷的大小和位置。 去掉界面,按原电荷和镜像电荷求解所求区域场。 求解边界上的感应电荷。 求解电场力。 平面镜像1 点电荷对平面的镜像 (a) 无限大接地导体平面上方有点电荷q (b)用镜像电荷-q代替导体平面上方的感应电荷 图4.4.1 点电荷的平面镜像 在无限大接地导体平面(YOZ平面)上方有一点电荷q,距离导体平面的高度为h。 用位于导体平面下方h处的镜像电荷-q代替导体平面上的感应电荷,边界条件维持不变,即YOZ平面为零电位面。 去掉导体平面,用原电荷和镜像电荷求解导体上方区域场,注意不能用原电荷和镜像电荷求解导体下方区域场。

电位: (4.4.2.1 ) 电场强度: (4.4.2.2) 其中, 感应电荷:=> (4.4.2.3) 电场力: (4.4.2.4) 图4.4.2 点电荷的平面镜像图4.4.3 单导线的平面镜像 无限长单导线对平面的镜像 与地面平行的极长的单导线,半径为a,离地高度为h。

用位于地面下方h处的镜像单导线代替地面上的感应电荷,边界条件维持不变。 将地面取消而代之以镜像单导线(所带电荷的电荷密度为) 电位: (4.4.2.5) 对地电容 : (4.4.2.6 平面镜像2 无限长均匀双线传输线对平面的镜 像 与地面平行的均匀双线传输线, 半径为a,离地高度为h,导线间距离为d, 导线一带正电荷+,导线二带负电荷-。 用位于地面下方h处的镜像双 导线代替地面上的感应电荷,边界条件维 持不变。 将地面取消而代之以镜像双导线。 图 4.4.4 无限长均匀传输线对地面的镜像 求解电位: (4.4.2.8) (4.4.2.9)

高中物理竞赛经典方法 2.隔离法

二、隔离法 方法简介 隔离法就是从整个系统中将某一部分物体隔离出来,然后单独分析被隔离部分的受力情况和运动情况,从而把复杂的问题转化为简单的一个个小问题求解。隔离法在求解物理问题时,是一种非常重要的方法,学好隔离法,对分析物理现象、物理规律大有益处。 赛题精讲 例1:两个质量相同的物体1和2紧靠在一起放在光滑水平桌面上,如图2—1所示,如果它们分别受到水平推力F 1和F 2作用,且F 1>F 2 , 则物体1施于物体2的作用力的大小为( ) A .F 1 B .F 2 C .12F F 2+ D .12F F 2 - 解析:要求物体1和2之间的作用力,必须把其中一个隔离出来分析。先以整体为研 究对象,根据牛顿第二定律:F 1-F 2 = 2ma ① 再以物体2为研究对象,有N -F 2 = ma ② 解①、②两式可得N = 12 F F 2 +,所以应选C 例2:如图2—2在光滑的水平桌面上放一物体A ,A 上再放一物体B ,A 、B 间有摩擦。施加一水平力F 于B ,使它相对于桌面向右运动,这时物体A 相对于桌面( ) A .向左动 B .向右动 C .不动 D .运动,但运动方向不能判断 解析:A 的运动有两种可能,可根据隔离法分析 设AB 一起运动,则:a =A B F m m + AB 之间的最大静摩擦力:f m = μm B g 以A 为研究对象:若f m ≥m A a ,即:μ≥A B B A m m (m m )g +F 时,AB 一起向右运动。 若μ< A B B A m m (m m )g + F ,则A 向右运动,但比B 要慢,所 以应选B 例3:如图2—3所示,已知物块A 、B 的质量分别为m 1 、m 2 ,A 、B 间的摩擦因数为μ1 ,A 与地面之间的摩擦因数为μ2 ,在水平力F 的推动下,要使A 、B 一起运动而B 不至下滑,力F 至少为多大? 解析: B 受到A 向前的压力N ,要想B 不下滑,需满足的临界条件是:μ1N = m 2g 。

高中物理奥赛专题十三 磁场

专题十三 磁场 【拓展知识】 1.几种磁感应强度的计算公式 (1)定义式:IL F B = 通电导线与磁场方向垂直。 (2)真空中长直导线电流周围的磁感应强度:r I K r I B ==πμ20 (πμ20=K )。 式中r 为场点到导线间的距离,I 为通过导线的电流,μ0为真空中的磁导率,大小为4π×10-7H/m 。 (3)长度为L 的有限长直线电流I 外的P 处磁感应强度:)cos (cos 4210θθπμ-= r I B 。 (4)长直通电螺线管内部的磁感应强度:B=μ0nI 。 式中n 为单位长度螺线管的线圈的匝数。 2.均匀磁场中的载流线圈的磁力矩公式:M=NBISsin θ。 式中N 为线圈的匝数,S 为线圈的面积,θ为线圈平面与磁场方向的夹角。 3.洛伦兹力 F =qvBsin θ (θ是v 、B 之间的夹角) 当θ=0°时,带电粒子不受磁场力的作用。 当θ=90°时,带电粒子做匀速圆周运动。 当0°<θ<时90°,带电粒子做等距螺旋线运动,回旋半径、螺距和回旋周期分别为 qB mv R θsin =; qB mv h θπcos 2= ; qB m T π2= ; 4.霍尔效应 将一载流导体放在磁场中,由于洛伦兹力的作用,会在磁场和电流两者垂直的方向上出现横向电势差,这一现象称为霍尔效应,这电势差称为霍尔电势差。

【典型例题】 1.如图所示,将均匀细导线做成的环上的任意两点A和B与固定电源连接起来,总电流为I,计算由环上电流引起的环中心的磁感应强度。 2.如图所示,倾角为θ的粗糙斜面上放一木制圆柱,其质量为m = 0.2kg,半径为r,长为l =0.1m,圆柱上顺着轴线绕有N =10匝线圈,线圈平面与斜面平行,斜面处于竖直向上的匀强磁场中,磁感应强度为B =0.5T,当通入多大电流时,圆柱才不致往下滚动? 3.如图所示,S为一离子源,它能各方向会均等地持续地大量发射正离子,离子的质量皆为m、电量皆为q,速率皆为v0。在离子源的右侧有一半径为R的圆屏,图中OOˊ是通过圆屏的圆心并垂直于屏面的轴线,S位于轴线上,离子源和圆屏所在的空间有一范围足够大的匀强磁场,磁感应强度的大小为B,方向垂直于圆屏向右。在发射的离子中,有的离子不管S的距离如何变化,总能打到圆屏面上,求这类离子的数目与总发射离子数之比,不考虑离

新版高一物理竞赛讲义

高中物理《竞赛辅导》力学部分 目录 :力学中的三种力 【知识要点】 (一)重力 重力大小G=mg,方向竖直向下。一般来说,重力是万有引力的一个分力,静止在地球表面的物体,其万有引力的另一个分力充当物体随地球自转的向心力,但向心力极小。 (二)弹力 1.弹力产生在直接接触又发生非永久性形变的物体之间(或发生非永久性形变的物体一部分和另一部分之间),两物体间的弹力的方向和接触面的法线方向平行,作用点在两物体的接触面上.2.弹力的方向确定要根据实际情况而定. 3.弹力的大小一般情况下不能计算,只能根据平衡法或动力学方法求得.但弹簧弹力的大小可用.f=kx(k 为弹簧劲度系数,x为弹簧的拉伸或压缩量)来计算. 在高考中,弹簧弹力的计算往往是一根弹簧,而竞赛中经常扩展到弹簧组.例如:当劲度系数分别为k1,k2,…的若干个弹簧串联使用时.等效弹簧的劲度系数的倒数为:,即弹簧变软;反之.若

以上弹簧并联使用时,弹簧的劲度系数为:k=k 1+…k n ,即弹簧变硬.(k=k 1+…k n 适用于所有并联弹簧的原长相等;弹簧原长不相等时,应具体考虑) 长为 的弹簧的劲度系数为k ,则剪去一半后,剩余 的弹簧的劲度系数为2k (三)摩擦力 1.摩擦力 一个物体在另一物体表面有相对运动或相对运动趋势时,产生的阻碍物体相对运动或相对运动趋势的力叫摩擦力。方向沿接触面的切线且阻碍物体间相对运动或相对运动趋势。 2.滑动摩擦力的大小由公式f=μN 计算。 3.静摩擦力的大小是可变化的,无特定计算式,一般根据物体运动性质和受力情况分析求解。其大小范围在0<f≤f m 之间,式中f m 为最大静摩擦力,其值为f m =μs N ,这里μs 为最大静摩擦因数,一般情况下μs 略大于μ,在没有特别指明的情况下可以认为μs =μ。 4.摩擦角 将摩擦力f 和接触面对物体的正压力N 合成一个力F ,合力F 称为全反力。在滑动摩擦情况下定义tgφ=μ=f/N ,则角φ为滑动摩擦角;在静摩擦力达到临界状态时,定义tgφ0=μs =f m /N ,则称φ0为静摩擦角。由于静摩擦力f 0属于范围0<f≤f m ,故接触面作用于物体的全反力同接触面法线 的夹角≤φ0,这就是判断物体不发生滑动的条件。换句话说,只要全反力的作用线落在(0,φ0)范围时,无穷大的力也不能推动木块,这种现象称为自锁。 本节主要内容是力学中常见三种力的性质。在竞赛中以弹力和摩擦力尤为重要,且易出错。弹力和摩擦力都是被动力,其大小和方向是不确定的,总是随物体运动性质变化而变化。弹力中特别注意轻绳、轻杆及胡克弹力特点;摩擦力方向总是与物体发生相对运动或相对运动趋势方向相反。另外很重要的一点是关于摩擦角的概念,及由摩擦角表述的物体平衡条件在竞赛中应用很多,充分利用摩擦角及几何知识的关系是处理有摩擦力存在平衡问题的一种典型方法。 【典型例题】 【例题1】如图所示,一质量为m 的小木块静止在滑动摩擦因数为μ=的水平面上,用一个与水平方 向成θ角度的力F 拉着小木块做匀速直线运动,当θ角为多大时力F 最小? 【例题2】如图所示,有四块相同的滑块叠放起来置于水平桌面上,通过细绳和定滑轮相互联接起来.如果所有的接触面间的摩擦系数均为μ,每一滑块的质量均为 m ,不计滑轮的摩擦.那么要拉动最上面一块滑块至少需要多大的水平拉力?如果有n 块这样的滑块叠放起 来,那么要拉动最上面的滑块,至少需多大的拉力? 【例题3】如图所示,一质量为m=1㎏的小物块P 静止在倾角为θ=30°的斜面 上,用平行于斜面底边的力F=5N 推小物块,使小物块恰好在斜面上匀速运动,试求小物块与斜面间的滑 动摩擦因数(g 取10m/s 2 )。 【练习】 1、如图所示,C 是水平地面,A 、B 是两个长方形物块,F 是作用在物块B 上沿水平方向的力,物块A 和B 以相同的速度作匀速直线运动,由此可知, A 、 B 间的滑动 θ F P θ F A B F C N F f m f 0 α φ

高一物理竞赛讲义第3讲.教师版

第3讲运动的关联 温馨寄语 前面我们讨论了物理量以及物理量之间的关系,尤其是变化率变化量的关系。我们还学习了非常牛的几个方法:相对运动法,微元法,图像法。 然而,物理抽象思想除了物理量之外,还有一大块就是模型,而各种模型都有自己的一些特点,根据这些特点,决定了这些模型的运动学性质。探究这些性质就成了我们今天的主要任务。 知识点睛 一、分速度和合速度 首先速度作为矢量是可以合成和分解的。但是同样的作为矢量,速度的合成和分解,和力这个矢量有一点不同。这个不同在于,两个作用在同一个物体上的力,可以直接合成。但是同一个物体,已经知道在两个方向上的速度,最后的总速度,并不一定是这两个速度的矢量和。 (CPhO选讲)例如: (这里面速度是通过两个速度各自从矢量末端做垂线相交得到的) 第二个原则就是:合速度=真实的这个物体的运动速度矢量。

这里力和速度的区别是:我们看到的多个力,不见得是“合力”在各个方向上的投影;但是我们看到的多个速度,就是“合速度”在各个方向上的分速度。所以,当且仅当两个分速度相互垂直的时候,合速度等于两个分速度的矢量和。 这个东西大家可以这样想。遛狗的时候,每个狗的力是作用在一起的,所以遛狗越多,需要的力越大。但是每个狗都有个速度,最后遛狗人的速度和狗的速度大小还是差不多的,不会因为遛狗个数越多就速度越快…… 二、体现关联关系的模型 1.绳(杆)两端运动的关联:实际运动时合运动,由伸缩运动与旋转运动合成。 实际运动=旋转运动+伸缩运动 【例】吊苹果逗小孩儿有两种逗法,一种是伸缩,一种是摆动。 不难总结: 一段不可伸长的细绳伸缩运动速度相等——沿绳(杆)速度相等,转速无论多大不可改变绳子长度。 2.叠加运动的关联 先举个例子:如图的定滑轮,两边重物都在竖直运动,并且滑轮也在竖直运动,设两边重物位移分别沃为x 1x 2,轮中心的位移为x 。 不难由绳子长度不变得位移关系: 12 2x x x += 对应的必然有速度关系: 12 2v v v += 加速度关系: 12 2 a a a += 我们用运动关联的目的是为了使未知量变少。 物理学中非常重要的思想就是把现实中的物体抽象成为理想的模型,然后用物理原理以及模型对应的牵连关系来解决问题.常见的模型有杆,绳,斜面,等等. 3.轻杆 杆两端,沿着杆方向的速度相同\ 4.轻绳 绳子的两端也是沿着绳子的方向速度相同\.绳子中的力是可以突变的,突变的条件是剪断或者是突然绷紧等等. 5.斜面

高中物理竞赛教程(超详细)电场

第一讲电场 §1、1 库仑定律和电场强度 1.1.1、电荷守恒定律 大量实验证明:电荷既不能创造,也不能被消灭,它们只能从一个物体转移到另一个物体,或者从物体的一部分转移到另一部分,正负电荷的代数和任何物理过程中始终保持 k 数, 0ε q F E = 式中q 是引入电场中的检验电荷的电量,F 是q 受到的电场力。 借助于库仑定律,可以计算出在真空中点电荷所产生的电场中各点的电场强度为 2 2r Q k q r Qq k q F E === 式中r 为该点到场源电荷的距离,Q 为场源电荷的电量。

1.1.4、场强的叠加原理 在若干场源电荷所激发的电场中任一点的总场强,等于每个场源电荷单独存在时在该点所激发的场强的矢量和。 原则上讲,有库仑定律和叠加原理就可解决静电学中的全部问题。 例1、如图1-1-1(a )所示,在半径为R 、体电荷密度 为ρ的均匀带电球体内部挖去半径为R '的一个小球,小球球心O '与大球球心O 相距为a ,试求O '的电场强度,并证明空腔内电场均匀。 ρ,R O 1.1.5.电通量、高斯定理、 (1)磁通量是指穿过某一截面的磁感应线的总条数,其大小为θsin BS =Φ,其中θ 为截面与磁感线的夹角。与此相似,电通量是指穿过某一截面的电场线的条数,其大小为 θ?sin ES = θ为截面与电场线的夹角。 高斯定量:在任意场源所激发的电场中,对任一闭合曲面的总通量可以表示为 ∑=i q k π?4 ( 041πε= k ) Nm C /1085.82120-?=ε为真空介电常 数 O O ' P B r a )

式中k是静电常量,∑i q为闭合曲面所围的所有电荷电量的代数和。由于高中缺少高等数学知识,因此选取的高斯面即闭合曲面,往往和电场线垂直或平行,这样便于电通 量的计算。尽管高中教学对高斯定律不作要求,但笔者认为简单了解高斯定律的内容,并 利用高斯定律推导几种特殊电场,这对掌握几种特殊电场的分布是很有帮助的。 (2)利用高斯定理求几种常见带电体的场强 ①无限长均匀带电直线的电场 一无限长直线均匀带电,电荷线密度为η,如图1-1-2(a)所示。考察点P到直线的 距离为r。由于带电直线无限长且均匀带电,因此直线周围的电场在竖直方向分量为零, 即径向分布,且关于直线对称。取以长直线为主轴,半径为r,长为l的圆柱面为高斯面, E 图1-1-5

高中物理奥赛复赛专项训练(全12套)每日两题

物理竞赛真题专项(1) 静力学平衡 1.〔26届复赛〕二、(20分)图示正方形轻质刚性水平桌面由四条完全相同的轻质细桌腿1、2、3、4支撑于桌角A 、B 、C 、D 处,桌腿竖直立在水平粗糙刚性地面上。已知桌腿受力后将产生弹性微小形变。现于桌面中心点 O 至角A 的连线OA 上某点P 施加一竖直向下的力F ,令 c OA OP ,求桌面对桌腿1的压力F 1。 A

设桌面对四条腿的作用力皆为压力,分别为1F 、2F 、3F 、4F .因轻质刚性的桌面处 在平衡状态,可推得1234F F F F F +++= (1)由于对称性,24F F =. (2) 考察对桌面对角线BD 的力矩,由力矩平衡条件可得13F cF F =+. (3) 根据题意, 10≤≤c ,c =0对应于力F 的作用点在O 点,c =1对应于F 作用点在A 点. 设桌腿的劲度系数为k , 在力F 的作用下,腿1的形变为1F k ,腿2和4的形变均为 2F k ,腿3的形变为3F k .依题意,桌面上四个角在同一平面上,因此满足132 12F F F k k k ??+= ???, 即 1322F F F +=. (4) 由(1)、(2)、(3)、(4)式,可得 1214c F F += , (5) 3124 c F F -=, (6) 当1 2 c ≥ 时,03≤F .30F =,表示腿3无形变;30F <,表示腿3受到桌面的作用力为拉力,这是不可能的,故应视30F =.此时(2)式(3)式仍成立.由(3)式,可得1F cF = (7) 综合以上讨论得F c F 4121+=, 1 02c ≤≤ . (8) cF F =1,12 1≤≤c . (9) 评分标准:本题20分. (1)式1分,(2)式1分,(3)式2分,(4)式7分,得到由(8)式 表示的结果得4分,得到由(9)式表示的结果得5分. 2.〔20届复赛〕五、(22分)有一半径为R 的圆柱A ,静止在水平地面上,并与竖直墙面相接触.现有另一质量与A 相同,半径为r 的较细圆柱B ,用手扶着圆 柱A ,将B 放在A 的上面,并使之与墙面相接触,如图所示,然后放手. 己知圆柱A 与地面的静摩擦系数为0.20,两圆柱之间的静摩擦系数为0.30.若放手后,两圆柱体能保持图示的平衡,问圆柱B 与墙面间的静摩擦系数和圆柱B 的半径r 的值各应满足什么条件?

相关主题
文本预览
相关文档 最新文档