当前位置:文档之家› 有源相控阵天线G-T测量及误差分析

有源相控阵天线G-T测量及误差分析

有源相控阵天线G-T测量及误差分析
有源相控阵天线G-T测量及误差分析

有源相控阵天线G/T值测量及误差分析

任冀南秦顺友陈辉吴伟伟

(中国电子科技集团公司第54研究所,河北石家庄050081 )

摘要:简述了地面站天线系统G/T值测量的传统方法。论述了室外远场直接法测量有源相控阵天线G/T值的原理方法,推导出测量的原理方程。分析了G/T值测量误差,其均方根误差小于或等于±0.422dB。最后给出了S波段19元阵天线系统G/T测量结果,实测结果与预算结果吻合很好。

关键词:有源相控阵天线;G/T测量;误差分析

G/T Measurement and Error Analysis for Active Phased Array

Antenna

REN Ji-nan, QIN Shun-you, CHEN Hui, WU Wei-wei

(The Fifty Fourth Institute of CETC, Shijiazhuang Hebei 050081, China )

Abstract: In this paper, traditional measurement methods are described simply for earth station system G/T value. Measuring principle and procedure of active phased array antenna G/T value are discussed using outdoor direct far-field method, and measuring principle equation is derived. Error of G/T value measurement is analyzed, and results show that RMS error of G/T value measurement is less than or equal to ±0.422dB. Measuring result of S-band 19-unit array antenna G/T value is given, test result agrees with prediction result.

Key words:active phased array antenna; G/T measurement; error analysis

引言

G/T是地面站系统的重要性能参数之一,其性能好坏直接影响系统的灵敏度。目前G/T值传统的测量方法有间接法和直接法[1][2][3]。所谓间接法就是分别测量出天线接收增益和系统噪声温度,从而计算系统G/T值的方法;直接法又可细分为卫星载噪比法和射电源法。卫星载噪比法就是直接测量地面站天线接收卫星信号的载噪比,从而确定G/T值的方法,该方法非常适合卫星通信地面站天线系统G/T测量;射电源法就是测量地面站天线指向射电星和冷空时的Y因子,从而计算G/T值的方法。由于射电源的信号很微弱,对于小型地面站,其系统G/T很小,则很难观测到射电源的信号[4]。

对于有源相控阵天线,因其射频单元与天线单元集成在一起,其天线测试方法不同于常规的无源天线测量[5][6]。对于有源相控阵天线系统G/T 值测量,无法采用间接法测量系统G/T值;另外如果天线工作频段与卫星频段不符,且系统G/T 值较小,则采用卫星载噪比或射电源法测量其G/T值具有局限性。为此我们提出了在室外远场直接法测量有源相控阵天线G/T值的方法。实践证明:该方法是切实可行的,在G/T值测量中值得推广和应用。

1 测量原理和方法

图1所示为室外远场法测量有源相控阵天线G/T值原理方框图。

图1 室外远场法测量相控阵天线G/T值原理方框图图1中,R为测试距离,R应满足远场测试距离条件,即R≥2D2/λ(D为待测天线最大尺寸,λ为工作波长)。由功率传输方程可得:频谱分析仪测量的载波功率C为[7]:

RF

P

net

S

t

L

L

GG

G

P

C (1) 式中:

相控阵天线

标准天线

R

C —频谱仪测量的载波功率;

P t —标准增益喇叭天线的发射功率; G S —标准增益喇叭天线的增益; G —待测有源相控阵天线的增益; G net —有源相控阵天线网络的总增益; L P —自由空间的传播损耗;

L RF —相控阵天线与频谱仪之间射频电缆损耗。

将待测有源相控阵天线方位偏开,俯仰转到测量的仰角上(确保有源相控阵天线接收不到标准增益喇叭的发射信号),则频谱分析仪测量的噪声功率N 为:

RF

net

L kTBG N = (2)

式中:

k —波尔兹曼常数,等于1.38×10-23(J/K); T —有源相控阵天线系统噪声温度;

B —接收机噪声带宽,它等于频谱分析仪分辨带宽RBW 的1.2倍。

由式(1)和式(2)可得测量的载噪比C/N 为:

T

G

kB L G P N C P S t = (3) 由式(3)可求得用分贝表示的有源相控阵天线的G/T 值为:

S t P G P B L N

C

T G --+++-=6.228 (4) 式(4)就是室外远场直接法测量G/T 值原理公式,式中发射功率单位为dBW 。现代频谱分析仪可直接测量归一化噪声功率N 0,则G/T 值与归一化载噪比C /N 0的关系为:

S t P G P L N C T G --++-=0

6.228 (5) 如果待测天线为圆极化天线,利用式(5)测量出待测天线长轴方向的G/T 值,然后加上极化损失即得待测圆极化天线的G/T 值。由测量出待测天线的轴比AR (dB ),则计算极化损失L pol 为[8]:

()

10101log 10AR pol L -+?= (6)

2 测量误差分析

由式(5)的G/T 值测量方程和测量原理可知:

室外远场直接法测量有源相控阵天线G/T 值的主

要误差有:信号源发射功率的测量误差、标准喇叭的增益校准误差、载噪比测量误差、路径损耗误差、极化损失误差、天线指向损耗误差和有限测试距离引起的误差等等。表1所示为G/T 值测量均方根误差的估算结果。由表1可知远场直接法测量有源相控阵天线G/T 值的均方根误差小于或等于±0.422dB 。

表1 G/T 值测量的均方根误差 误差源

误差(dB ) 信号源发射功率测量误差 ±0.20 标准喇叭的增益误差 ±0.20 载噪比测量误差 ±0.30 自由空间传播损耗测量误差 ±0.05 有限测试距离引起的测量误差 -0.03 极化失配引起的测量误差 -0.05 指向引起的测量误差 -0.05 G/T 测量的均方根误差

±0.422

3 测量实例

这里给出S 波段圆极化19元阵天线的G/T 值测量为例,说明室外远场法测量有源相控阵天线G/T 值的方法。图2所示为实际的测试系统图。

图2 室外远场测量相控阵天线G/T 值实际系统图

已知测试频率为2.185GHz ,标准增益喇叭增益为17.3dBi ,使用测试仪器Agilent 8563EC 频谱分析仪,测得信号源的输出功率-40dBm ,信号源与标准增益喇叭之间射频电缆损耗为2.24dB ,收发天线之间的距离为6米,测量的载波功率为-30.50dBm 。

有源相控阵天线指向天顶方向时,测量的归一化噪声功率为-136.1dBm/Hz ,则由式(5)计算待测天线的G/T 值为:

3.

17

24

.

72

79

.

54

6.

105

6.

228-

+

+

+

-

=

T

G

27

.

13

-

=dB/K

因有源相控阵天线极化为圆极化,应考虑极化损失。测得在最大方向圆极化轴比为0.6dB,由式(6)计算得极化损失 2.72dB,则待测圆极化相控阵天线的G/T值为:

55

.

10

72

.2

27

.

13-

=

+

-

=

T

G dB/K

该相控阵天线系统G/T的理论预算结果为-10.19dB,由此可见在测试误差允许的范围内,测试结果同理论估算结果吻合很好,从而验证了该方法的可行性。

4 结束语

随着有源相控阵天线技术的发展,相控阵天线校准和测量技术面临着挑战。传统的天线测量技术无法满足有源相控阵天线测试的需求。本文简述了地面站天线系统G/T值测量的传统方法。论述了室外远场直接法测量有源相控阵天线G/T 值的原理方法,推导出测量的原理方程。分析了G/T值测量误差,其均方根误差小于或等于±0.422dB。实践证明:该方法是切实可行的,在有源相控阵天线G/T值测量中,值得推广和应用。

参考文献

[1]秦顺友, 许德森编著. 卫星通信地面站天线工程测

量技术[M]. 北京:人民邮电出版社, 2006:147-157.

[2]INTELSAT SSOG 210. Earth station verification

tests[S]. 2002.

[3]陈奇波. 地球站品质因数(G/T)测量方法综述[J]. 通

信学报, 1995, 16(2):40-50.

[4]陈奇波, 英风仪. 在G/T值测量中选择射电源的三

原则[J]. 无线电通信技术,1997,23(01):10-14.

[5]孟明霞, 丁晓磊, 丁克乾, 赵英华. 低副瓣有源相控

阵天线测试方法研究[J]. 遥控遥测,2011,32(4):55-60.

[6]李宏, 薛冰, 杨英科. 相控阵天线的测试技术[J]. 中

国测试技术, 2003,(5):10-13.

[7]毛乃宏等编著. 天线测量手册[M]. 北京:国防工业

出版社, 1987:28-29.

[8]秦顺友, 杨可忠, 陈辉. 不同极化天线增益测量技

术[J]. 2003,17(01):7-11.

作者简介

任冀南 (1982-),男,石家庄人,助理工程师.从事卫星通信地球站天线工程测量技术.

秦顺友(1964-)男,河南人。研究员,硕士研究生导师,中国电子学会高级会员。主要从事研究的领域为:微波与天线测量技术、微弱信号检测和电磁干扰测量等.

陈辉 (1969-),男,石家庄人,高级工程师.从事微波与天线测量技术.

吴伟伟 (1982-),女,河北藁城人,工程师.目前主要从事天线调试、检修和测量工作。

相控阵天线的平台布局仿真设计

相控阵天线的平台布局仿真设计Simulation and Design of the phased array antenna placement 王真刘志惠 (南京电子技术研究所南京210039) 摘要: 随着相控阵天线技术的发展,天线设计工程师除了进行相控阵天线自身性能的详细设计以外,还更多地关注相控阵天线在载体平台上的布局设计,因为这样的载体平台布局设计才决定了相控阵天线最终可实现的性能特性,而非实验室的理论性能。相控阵天线与平台的一体化仿真也越来越借助FEKO等高频电磁仿真软件,本文从具体实例出发,论述了利用FEKO软件对相控阵天线的平台布局进行仿真优化设计。 关键词: 相控阵天线平台布局FEKO Abstract:Along with the development of the phased array antenna technology, phased array antenna design engineers in addition to their own performance of detailed design, also pay more attention to the platform layout of the phased array antenna, because it determines the performance characteristics which the phased array antenna can realize, not the theoretical performance of laboratory. The platform layout simulation of phased array antenna is becoming more and more with the help of a high frequency electromagnetic simulation software FEKO, etc, starting from the concrete examples, this paper discusses the platform layout of phased array antenna simulation optimization design by using FEKO. Key words:phased array antenna,platform layout,FEKO 1 概述 随着相控阵天线技术的发展,天线设计工程师除了进行相控阵天线自身性能的详细设计以外,还更多地关注相控阵天线在载体平台上的布局设计,因为这样的载体平台布局设计才决定了相控阵天线最终可实现的性能特性,而非实验室的理论性能。 相控阵天线按照载体的不同可以分为地基固定、车载、机载、星载等不同类型,每一种类型的相控阵天线都会遇到需要连带载体一起进行的平台布局设计。而这样的平台布局设计所依赖的仿真软件一定要具备足够强大的仿真运算能力,可以进行平台级别的电磁仿真能力。相控阵天线按照工作体制可以分为无源相控阵天线和有源相控阵天线,其中有源相控阵

5G集成相控阵天线:设计,制造和测试

Received February6,2020,accepted March4,2020,date of publication March13,2020,date of current version March25,2020. Digital Object Identifier10.1109/ACCESS.2020.2980595 Research on Structurally Integrated Phased Array for Wireless Communications QING-QIANG HE1,SHUAI DING2,CHEN XING1,JUN-QUAN CHEN1,GUO-QING YANG1,AND BING-ZHONG WANG2,(Senior Member,IEEE) 1Southwest China Institute of Electronic Technology,Chengdu610036,China 2Institute of Applied Physics,University of Electronic Science and Technology of China,Chengdu610054,China Corresponding authors:Qing-Qiang He(heqingqiang518@https://www.doczj.com/doc/bc9826786.html,)and Shuai Ding(uestcding@https://www.doczj.com/doc/bc9826786.html,) This work was supported in part by the National Natural Science Foundation of China under Grant61601087,in part by the Fundamental Research Funds for the Central Universities under Grant ZYGX2019Z016,and in part by the Sichuan Science and Technology Program under Grant2018GZ0518and Grant2019YFG0510. ABSTRACT Structurally integrated antenna is a kind of highly integrated microwave device with a load-bearing function,and it is usually installed on the structural surface of the air,water and ground vehicles.This paper presents the design,fabrication and testing of a novel structurally integrated Ka-band active antenna for airborne5G wireless communications.The proposed antenna is mainly composed of three parts:a package layer,a control and signal process layer and a RF layer.In the RF layer,the microstrip antenna array,tile transmitting(Tx)modules,micro-channel heat sinks and a stripline feeding network are highly integrated into a functional block with a thickness of2.8mm.Electromechanical co-design methods are developed to design the active antenna array with the superstrates,and two schemes for designing micro-channel heat sinks are evaluated to obtain a uniform temperature distribution.The RF layer is fabricated by using the low-temperature co?red ceramic process,and the three layers are assembled to form the full-size antenna prototype.The mechanical and electromagnetic experiments are carried out,and the results demonstrate the feasibility of the structurally integrated active antenna for airborne wireless communications. INDEX TERMS5G communications,phased array antenna,structurally integrated active antenna,low-temperature co?red ceramic(LTCC),micro-channel heat sinks. I.INTRODUCTION Signi?cant momentum has started to build around the5G wireless communication technologies for delivering mobile experience differentiation by providing higher data rates, lower latency,and improved link robustness[1],[2].In this regard,millimeter-wave phased array antenna is a very promising solution for5G wireless communications,due to the wide bandwidths and steerable beams.The millimeter-wave phased array antenna can be applied to realize the wireless connection between the base stations and wireless terminals in a mobile vehicle such as the aircraft,high-speed train,car,and ship.Moreover,it can be continuously steered to the base stations,which could guarantee reliable connec-tions in these mobile environments[3]–[5].In addition,the multi-gigabits-per-second data speeds in5G will provide new wireless communication applications such as uncompressed video streaming,mobile distributed computing,fast large?le The associate editor coordinating the review of this manuscript and approving it for publication was Yasar Amin.transfer,and of?ce in a high-speed mobile environment[6]. However,because of the limited space in a mobile vehicle like the aircraft,the phased array antenna is usually required to have a compact size,light weight and easy installation[7]. In this condition,it is highly desirable to use structurally integrated active antennas for5G wireless communications in a mobile vehicle. Structurally integrated active antennas can embed an active planar printed antenna into the structural surface of the aircraft,high-speed train,car,ship,and armored vehi-cles[8]–[11].For example,the active microstrip antenna array is integrated into the wing or fuselage of an aircraft. Compared with the antennas mounted on the structural sur-face,structurally integrated active antenna features several advantages such as reduced weight,volume and aerodynamic drag.Structurally integrated active antenna is a kind of highly integrated antenna,which receives great attention in recent years.Antenna-on-chip(AoC)and antenna-in package(AiP) solutions are two commonly used techniques to realize the highly integrated antennas[12]–[14].Compared to AiP,AoC VOLUME8,2020 This work is licensed under a Creative Commons Attribution4.0License.For more information,see https://https://www.doczj.com/doc/bc9826786.html,/licenses/by/4.0/52359

CST-偶极子相控阵天线的仿真及优化

实验报告 学生:学号:指导教师: 实验地点:实验时间: 一、实验室名称: 二、实验项目名称:微波工程CAD实验 三、实验学时:20 四、实验原理: CST仿真软件是基于有限积分法,将整个计算区域离散化并进行数值计算,模拟各种实际器件得出场分布及其各种参数的特性曲线,最后可根据实际要求对所得结果进行优化,得出最优化下的器件尺寸参数。 本次实验利用CST对偶极子相控阵天线及微带到波导转换模型进行了仿真模拟,以此来掌握CST的应用。 五、实验目的: 了解并掌握CST仿真软件的基本操作,学习利用CST仿真软件进行一些简单的工程设计。 六、实验容: 第一题偶极子相控阵天线的仿真与优化:①偶极子天线尺寸如下图,在4~12GHz的频率围,请优化单个偶极子天线的工作频率谐振在f0=8GHz,待优化的变量Lambda初值取为29mm,绘出在该工作频率点的方向图;②将该单个天线在x和y方向分别以Lambda/4作为空间间隙、以90度作为相位间隙,扩展成一个2*2的相控阵天线阵,请使用三种方法计算该天线阵的方向图;③对结果进行比较、分析和讨论。

第二题微带到波导转换的仿真与优化:在26~30GHz频率围优化下图微带到波导的转换,使全频带反射最小,并绘出中心频点28GHz的电场、磁场与表面电流的分布;微带是Duroid5880基片,介电常数2.2,基片厚0.254mm,金属层厚0.017mm,介质上的空气尺寸3*1*8mm,标准50欧姆微带线宽0.77mm;波导是Ka波段的BJ320波导,尺寸7.112*3.556*10mm;L 是微带基片底面到波导短路面距离,W0*L0是伸入波导中的微带探针的宽与长,W1*L1是第一段变阻线的宽与长,W2*L2是第二段变阻线的宽与长,7个待优化变量可取下图给的初值。 七、实验器材(设备、元器件): 台式计算机;CST Design Environment 2009仿真软件;U盘(学生自备)。 八、实验步骤: 第一题:偶极子相控阵天线的仿真 a.单个偶极子天线模型 单个偶极子天线方向图

有源相控阵天线G-T测量及误差分析

有源相控阵天线G/T值测量及误差分析 任冀南秦顺友陈辉吴伟伟 (中国电子科技集团公司第54研究所,河北石家庄050081 ) 摘要:简述了地面站天线系统G/T值测量的传统方法。论述了室外远场直接法测量有源相控阵天线G/T值的原理方法,推导出测量的原理方程。分析了G/T值测量误差,其均方根误差小于或等于±0.422dB。最后给出了S波段19元阵天线系统G/T测量结果,实测结果与预算结果吻合很好。 关键词:有源相控阵天线;G/T测量;误差分析 G/T Measurement and Error Analysis for Active Phased Array Antenna REN Ji-nan, QIN Shun-you, CHEN Hui, WU Wei-wei (The Fifty Fourth Institute of CETC, Shijiazhuang Hebei 050081, China ) Abstract: In this paper, traditional measurement methods are described simply for earth station system G/T value. Measuring principle and procedure of active phased array antenna G/T value are discussed using outdoor direct far-field method, and measuring principle equation is derived. Error of G/T value measurement is analyzed, and results show that RMS error of G/T value measurement is less than or equal to ±0.422dB. Measuring result of S-band 19-unit array antenna G/T value is given, test result agrees with prediction result. Key words:active phased array antenna; G/T measurement; error analysis 引言 G/T是地面站系统的重要性能参数之一,其性能好坏直接影响系统的灵敏度。目前G/T值传统的测量方法有间接法和直接法[1][2][3]。所谓间接法就是分别测量出天线接收增益和系统噪声温度,从而计算系统G/T值的方法;直接法又可细分为卫星载噪比法和射电源法。卫星载噪比法就是直接测量地面站天线接收卫星信号的载噪比,从而确定G/T值的方法,该方法非常适合卫星通信地面站天线系统G/T测量;射电源法就是测量地面站天线指向射电星和冷空时的Y因子,从而计算G/T值的方法。由于射电源的信号很微弱,对于小型地面站,其系统G/T很小,则很难观测到射电源的信号[4]。 对于有源相控阵天线,因其射频单元与天线单元集成在一起,其天线测试方法不同于常规的无源天线测量[5][6]。对于有源相控阵天线系统G/T 值测量,无法采用间接法测量系统G/T值;另外如果天线工作频段与卫星频段不符,且系统G/T 值较小,则采用卫星载噪比或射电源法测量其G/T值具有局限性。为此我们提出了在室外远场直接法测量有源相控阵天线G/T值的方法。实践证明:该方法是切实可行的,在G/T值测量中值得推广和应用。 1 测量原理和方法 图1所示为室外远场法测量有源相控阵天线G/T值原理方框图。 图1 室外远场法测量相控阵天线G/T值原理方框图图1中,R为测试距离,R应满足远场测试距离条件,即R≥2D2/λ(D为待测天线最大尺寸,λ为工作波长)。由功率传输方程可得:频谱分析仪测量的载波功率C为[7]: RF P net S t L L GG G P C (1) 式中: 相控阵天线 标准天线 R

有源相控阵天线的近场校准

doi:10.3969/j.issn.1001-893x.2016.04.018 引用格式:焦禹,陈文俊.有源相控阵天线的近场校准[J].电讯技术,2016,56(4):453-457.[JIAO Yu,CHEN Wenjun.Near-field calibration of active phased array antenna[J].Telecommunication Engineering,2016,56(4):453-457.] 有源相控阵天线的近场校准* 焦禹**,陈文俊 (南京船舶雷达研究所,南京210015) 摘要:为实现对相控阵天线的校准,降低幅相误差和阵元失效对天线性能的影响,提出了一种考虑互耦效应的近场校准方法三在利用近场扫描法完成逐一通道校准的基础上,使用旋转矢量法进行二次校准三在应用旋转矢量法(REV)时,为使被测信号的变化明显,将大规模相控阵天线分为中间二边缘区域进行分区校准三通过二次校准可判定阵元是否失效,提高相控阵天线的幅相一致性;通过分区校准减小阵元间互耦的影响,缩短校准时间三仿真结果表明:此方法用于大型相控阵的校准具有较高的准确性,可改善校准结果三 关键词:相控阵天线校准;旋转矢量法;近场扫描法;互耦效应;幅相一致性 中图分类号:TN820 文献标志码:A 文章编号:1001-893X(2016)04-0453-05 Near-field Calibration of Active Phased Array Antenna JIAO Yu,CHEN Wenjun (Nanjing Marine Radar Institute,Nanjing210015,China) Abstract:In order to calibrate the phased array antenna and reduce the impact of element failure and am-plitude-phase errors,this paper proposes a calibration method which considers the mutual coupling.On the basis of the calibration with the near-field scanning method,the elements is calibrated by the rotating ele-ment electric-field vector(REV)method.With the REV method,the large-scale phased array antenna is distributed into some small areas such as middle areas and edge areas to make the signal vary more signifi-cantly.The re-calibration method can find out the failure elements and improve the phased array antenna's amplitude-phase consistency.The calibration of sub-region with the REV method can diminish the effect of the mutual coupling and shorten the calibration period.The simulations validate that the method has a good accuracy to calibrate the large-scale phased array antenna and can improve the calibration results. Key words:phased array antenna calibration;rotating element electric-field vector method;near-field scanning method;mutual coupling effect;amplitude-phase consistency 1 引言 由于制造公差和天线互耦的影响,天线各通道间通常存在较大的幅相误差,因此需对其进行校准,使天线性能达到设计要求三现阶段常用的天线校准方法有快速傅里叶变换(Fast Fourier Transform, FFT)法二矩阵求逆法二近场扫描法二旋转矢量法二互耦校准法二换相法等[1-2]三近场扫描法[2-3]操作简单,但忽略阵元间存在的互耦效应,因此难以精确地修正通道间的幅相误差三文献[4]提出的互耦技术校准无需外场测量装置,但要求各阵元通道可以独立控制其工作状态,仅适用于相控阵天线的机内测试系统三文献[5]介绍的换相法通过引入Walsh函 四354四 第56卷第4期 2016年4月电讯技术 Telecommunication Engineering Vol.56,No.4 April,2016 * **收稿日期:2015-09-24;修回日期:2015-12-16 Received date:2015-09-24;Revised date:2015-12-16通信作者:jiaoyu0918@https://www.doczj.com/doc/bc9826786.html, Corresponding author:jiaoyu0918@https://www.doczj.com/doc/bc9826786.html,

扫描法测量有源相控阵天线方向图及误差分析

扫描法测量有源相控阵天线方向图及误差分析 摘要:本文从单元一致性、地面反射、测量天线相位中心误差和方向图等方面分析了波束扫描法的误差来源,讨论了减小误差的方法,给出了改进后的实测方向图,结果表明,该方法原理简单、实施有效,对外场测量大尺寸阵列天线方向图具有重要意义。 【关键词】有源相控阵扫描法误差分析地面反射 1 引言 随着大规模相控阵天线的应用,在外场不具备精确坐标测量条件时,仅有测量天线情况下,波束扫描法可以准确的测量大型有源相控阵天线方向图,其测量误差主要来自单元一致性、地面反射、测量天线、相位中心等。 2 扫描法测量方向图基本原理 被测天线有N个距离为d的单元组成,如图1所示。根据相控阵天线理论,天线方向图为: 天线方向图F(θ,φ0)是指固定波束指向φ=φ0,阵列天线对不同方向电磁波响应的集合;而扫描方向图F(θ0,φ)是指连续调整波束指向,阵列天线对固定方向θ=θ0电磁波响应的集合。可以证明,不考虑单元方向图、地面反射等影响,天线方向图F(θ,φ0)与扫描方向图F(θ0,φ)

相等。 3 波束扫描法测量方向图误差分析 单元一致性主要通过单元方向图Fi(θ,φ)对扫描法测量精度产生影响,这是由于天线单元一致性差别及阵列中互耦环境的变化引起的。 地面反射通过多径效应影响扫描法测量误差。架设测量天线应满足远场条件,有条件时,在阵面前方的合适位置摆放一定高度的“吸波墙”。 几何中心与相位中心的偏移造成最大电平的偏移,影响扫描法测量的精度,如图2所示。因此,若外场不具备坐标精确测量的条件,可以优先通过扫描法对准测量天线相位中心与被测天线相位中心。 测量天线的方向性及有限的波束宽度影响扫描法在多大的角度范围内有效。为减小这一误差,测量天线方向图不宜过窄,对整个阵面单元的最大张角须控制在一个较小的范围以内。 4 实验与结论 以测量现有的一个全数字有源相控阵方向图验证了波束扫描方法的有效性,该阵列为24×1的线阵,得到接收均匀加权方向图如图3所示。结果均表明,线阵接收扫描方向图与天线实际方向图吻合良好,表明该测试方法在外场测试有较高的精度。

数字相控阵天线测试平台

龙源期刊网 https://www.doczj.com/doc/bc9826786.html, 数字相控阵天线测试平台 作者:戴海青胥志毅吴鸿超 来源:《电子技术与软件工程》2017年第15期 摘要:现代大型数字相控阵天线中,天线内的TR组件数目庞大同时工作频带很宽,阵面的暗室测试工作十分繁琐,工作量巨大。为简化测试过程,提高测试效率,文中对数字相控阵天线阵面的测试方案进行了研究,提出并搭建了一套测试平台,通过对天线阵面样机的试验,验证了测试方法的高效率和正确性。 【关键词】相控阵天线天线测试波控 在现代雷达领域,数字相控阵雷达相比较传统的模拟相控阵雷达,在波束扫描的灵活性、系统时问资源利用率以及多功能应用等多个方而有着明显优势。 为了保证数字相控阵天线性能,需完成天线组件的通道数据采集,对整个天线系统的组件相位幅度配平,以及完成对相控阵雷达天线的方向图测试。尤其对于大型相控阵雷达天线而言,测试工作量(尤其在近场测试)按TR组件数目、工作频点数目乘积激增,测试过程非常繁琐。所以建立一种能够快速、准确地测量出数字相控阵天线的特性参数的天线测试平台,对于满足新型数字相控阵雷达的研制十分重要。 1 数字相控阵天线阵面 数字相控阵天线阵而都包含天线罩、天线阵列、结构骨架和高频箱(内部包含了T/R组件、综合网络、阵而电源、阵而监测设备等),其主要功能是: (1)发射时,阵而对发射前级送来的信号进行放大、辐射和空问功率合成。 (2)接收时,阵而将天线接收到的目标回波信号放大,经过数字接收通道转换成数字信号,交由数字波束形成(DBF)形成自适应波束。 数字相控阵天线阵而的测试主要特点:数字相控阵天线阵而,收发波瓣测试时,天线阵而与测试探头之问一个是发射模拟信号,一个则是经过AD采样之后的接收数字IQ信号,二者之问的同步相参需要额外的硬件设备,并经过特殊的数据处理,同时数字相控阵天线阵而控制接口、下行数据接口一般采用光纤形式,需要测试系统满足该要求。 2 测试系统组成和原理框图 根据数字相控阵天线阵而暗室测试的特点,本文设计了一套测试系统,系统框图如图1所示。

相控阵雷达系统的仿真_王桃桃

计算机与现代化 2014年第2期 JISUANJI YU XIANDAIHUA 总第222期 文章编号:1006- 2475(2014)02-0209-04收稿日期:2013-09-29作者简介:王桃桃(1989-),女,江苏沭阳人, 南京航空航天大学自动化学院硕士研究生,研究方向:雷达系统仿真;万晓冬(1960-),女,江苏南京人, 副研究员,硕士生导师,研究方向:分布式仿真技术,实时分布式数据库技术,嵌入式软件测试技术;何杰(1988- ),男,安徽铜陵人,硕士研究生,研究方向:机载红外弱小目标检测,三维视景仿真。相控阵雷达系统的仿真 王桃桃,万晓冬,何 杰 (南京航空航天大学自动化学院,江苏南京210016) 摘要:雷达的数字仿真及雷达仿真库的建立已经成为近年来雷达领域研究的热点。本文主要进行相控阵雷达系统的仿真研究。首先根据相控阵雷达的组成和原理,建立相控阵雷达的仿真模型与数学模型。然后选择Simulink 作为仿真平台,对相控阵雷达系统进行仿真与研究。仿真的模块主要有天线模块、信号环境模块、信号处理模块以及GUI 人机交互界面模块。最终在Simulink 库中生成自己的雷达子库,形成相控阵雷达系统,为后续相控阵雷达的研究奠定基础。关键词:雷达;相控阵;信号处理中图分类号:TP391.9 文献标识码:A doi :10.3969/j.issn.1006-2475.2014.02.047 Simulation of Phased Array Radar Systems WANG Tao-tao ,WAN Xiao-dong ,HE Jie (College of Automation Engineering ,Nanjing University of Aeronautics and Astronautics ,Nanjing 210016,China )Abstract :The digital simulation of radar and the establishment of radar simulation libraries has become research hot spot in radar field in recent years.This paper mainly focuses on phased array radar system simulation.According to the composition and prin-ciple of phased array radar ,it establishes the simulation model and mathematical model of phased array radar.Then ,the paper does simulation and research on phased array radar system by choosing Simulink as the simulation platform.The simulation mod-ule mainly includes the antenna module ,the signal environment module ,the signal processing module and GUI man-machine in-terface module.Eventually it generates radar sub-libraries and forms phased array radar system ,which lay the foundation for fol-low-up phased array radar study. Key words :radar ;phased array ;signal processing 0引言 计算机仿真技术应用于雷达源于20世纪70年代,国内雷达仿真起步较晚,仿真主要是基于SPW 、Matlab 、Simulink 、ADS 、HLA 等平台,其中Simulink 是一种在国内外得到广泛应用的计算机仿真工具,它支持线性系统和非线性系统,连续和离散事件系统,或者是两者的混合系统以及多采样率系统。ADS (Ad-vanced Design System )软件可以实现高频与低频、时域与频域、噪声、射频电路、数字信号处理电路的仿真等。SPW (Signal Processing Workspace )是用于信号处理系统设计的强有力的软件包,在雷达领域有着广泛的应用。HLA (High Level Architecture )提供了基于分布交互环境下仿真系统创建的通用技术支撑框架, 可用来快速地建造一个分布仿真系统。比较4种仿 真平台,SPW 比较昂贵,只能在Unix 操作系统下使用,HLA 通信协议复杂,不同版本的RTI 可能有无法通信的问题。Simulink 应用于雷达仿真比ADS 广泛并易于推广,所以本文采用Simulink 作为仿真平台。 为了进行后期雷达与红外的数据融合,首先需要建立雷达模块以产生雷达数据源,本文根据相控阵雷达的工作原理,采用数字仿真的方法,仿真雷达模块。首先提出相控阵雷达的仿真结构图以及给出各个模块的数学模型,然后根据数学模型,利用Simulink 仿真平台,仿真实现雷达的各组成模块,从而构建一个完整的雷达系统。同时,也可以通过使用S 函数将各个模块封装,然后建成自己的雷达仿真库,从而可以形成不同类型的雷达系统,便于更好地进行雷达系统

相控阵天线集成技术_彭祥龙

相控阵天线集成技术 彭祥龙 ( 西南电子技术研究所 成都 610036 ) 摘 要:低成本、更高频段与可扩展是推动相控阵天线集成技术发展的主要动力。本文综述了砖块式与瓦片式两种相控阵天线集成阵列结构,以及多功能芯片与射频晶圆集成技术的发展,指出开发多功能芯片是当前发展毫米波相控阵天线的重要途径。 关键词:相控阵天线,低成本,集成技术,多功能芯片,毫米波 Phased Array Antennas Integration Technology PENG Xiang-long (Southwest China Institute of Electronic Technology, Chengdu 610036) Abstract :Low-cost ,higher frequency and scalability are the main impetuses to the development of phased array antennas integration technology. In this paper, the progresses in architecture of phased array antennas (brick-type and tile-type building blocks) and RF circuit integration technology (chips with multi-function and RF-wafer scale integration) are reviewed. Finally, it is pointed out that development of chips performing multi-function is an important way to develop millimeter-wave phased array antennas. Key words :Phased array antennas, low cost, integration technology, multi-function chips, millimeter-wave 引 言 随着微电子与计算机技术的发展,相控阵系统逐渐应用于战术层面,如战斗机、直升机、无人机、精确制导等领域,通常工作于X 、Ku 与Ka 频段。这些武器平台空间狭小,自身价值有限或者雷达实际使用寿命很短,但是相控阵系统的战术技术指标要求却依然很高。大型天基通信与雷达探测也日益强调采用相控阵技术,成本虽非首要因素,但是体积、重量与功耗要求却非常苛刻。民用智能通信天线尤其关注成本控制。 相控阵天线是相控阵系统的核心部分,特别是两维有源相控阵天线,其集成水平决定了整个系统的性能与成本。工作频率愈高,每个阵元的面积(~λ2/4)愈小,集成度要求愈高。 传统的有源相控阵天线,当应用平台或者功能项目变化,需要扩大或者缩小阵列天线的口径时,除了要增加或减少T/R 组件的数量,还需要重新设计相控阵其它分系统,以适应射频、中频、数字信号与电源接口数量以及负荷能力的变化。开放式可扩展阵列天线,以子阵模块为基本单元,不仅封装了多个相控阵天线通道,还集成了相控阵其它分系统(如波束形成与幅相校正网络,电源、波束控制、频率源、波形产生等)的部分功能,大幅度减少接口类型与数量,实现模块化、通用化,提高可扩展性能。 过去十年间,单片微波集成电路迅速发展,在相控阵天线上得到广泛应用,提高了系统可靠性,减小了体积,降低了重量与成本。但是两维有源相 控阵仍然是代价不菲的,以机载有源相控阵雷达为例,迄今为止,仅仅美国换装了部分战斗机。在保证同样战技指标的条件下,提高相控阵天线集成度是降低成本最有力的措施。 相控阵天线集成阵列结构有两种:砖块式与瓦片式。电路集成技术由多芯片模块(MCM )向多功能集成芯片与晶圆级单片相控阵发展。 1 阵列结构与封装 将多个通道在电路与结构上封装为一个整体,作为阵列装配的基础积木块或在线可更换单元(LRU ),是相控阵天线最基本的集成手段。基础阵列模块通常集成了多个T/R 组件,射频馈电网络,控制与直流偏置等电路;如果还集成了天线辐射阵元,可称为子阵。 相控阵天线集成的阵列结构有两种:基于砖块式线子阵的纵向集成横向组装;基于瓦片式面子阵的横向集成纵向组装。通常砖块式用于较高频段,瓦片式用于较低频段,但是还要兼顾相控阵天线的且间距小,功耗大,砖块式设计相对容易;通信系统的发射功率要求不高,阵元数少且间距宽,瓦片式集成难度比较小;而共形相控阵天线必须采用瓦片式集成技术。 子阵模块集成能够大幅度减少相控阵天线与波束形成网络、控制电路、电源组件等分系统之间的信号互联,降低损耗,提高效率与电磁兼容水平;减少机械装配结构件,降低重量;简化封装与装配程序,提高相控阵天线的测试性、维修性与可扩展性。在较高的频段,还有利于降低机械公差要求,

相控阵天线协同设计

相控阵天线系统的 协同设计
西安电子科技大学天线系统设计高级培训 2008/06/20
刘 莹 高级应用工程师 aliu@https://www.doczj.com/doc/bc9826786.html, Ansoft公司 Ansoft公司
内容提纲
相控阵天线系统设计挑战 相控阵的协同设计 机载相控阵天线系统设计实例

相控阵天线组成(有源)
相控阵天线组成(无源)

相控阵天线系统概述
运载平台 有源通道 天线阵列
模块级设计要点
T/R 模组 天线阵列
6)通道宽带化设计 7)大功率射频发射模块:TWT, 铁氧体移相器,PA(无源) 8)基于MMIC的T/R模块(有源相控阵) )基于MMIC的T/R模块(有源相控阵) 9)天线信号处理与DBF技术(有源相控阵) )天线信号处理与DBF技术(有源相控阵)
1)单元超宽带设计 2)阵列高增益、低副瓣 3)方向图赋形 4)扫描盲区预评估 5)低天线RCS )低天线RCS

系统级设计难点
1)天线与有源T/R模组的相互作用(有源) )天线与有源T/R模组的相互作用(有源) 2)T/R模组的系统稳定性(有源) T/R模组的系统稳定性(有源) 3)带运载平台的方向图畸变 4)评估带运载平台的天线系统的扫描盲区 5)对飞机内电缆的电磁干扰(EMI) )对飞机内电缆的电磁干扰(EMI)
先进的协同设计功能
Ansoft确保相控阵天线系统设计成功的三大特有仿真技术 Ansoft确保相控阵天线系统设计成功的三大特有仿真技术 Dynamic Link - 解决T/R模组的系统稳定性设计 解决T/R模组的系统稳定性设计
Technology that provides bi-directional connection between circuit and electromagnetic simulators. Fully parameterized electromagnetic models are linked to circuits with parameters passed to the electromagnetic simulator and S-parameter results passed back.
Pushed Excitations -T/R模组的副相误差对天线副瓣的影响 T/R模组的副相误差对天线副瓣的影响
Technology that allows results from combined circuits and electromagnetic simulations to produce fields and radiation.
Data Link -运载平台与天线系统间的相互作用
Couples multiple 3D EM simulation projects by linking tangential fields on the outer surface of one project to another. This linkage between projects allows engineers to simulate very large and complex geometries efficiently.

相关主题
文本预览
相关文档 最新文档