当前位置:文档之家› 实现图像相似度算法

实现图像相似度算法

实现图像相似度算法
实现图像相似度算法

C# 实现图像相似度算法

近日逛博客的时候偶然发现了一个有关图片相似度的Python算法实现。想

着很有意思便搬到C#上来了,给大家看看。

闲言碎语

才疏学浅,只把计算图像相似度的一个基本算法的基本实现方式给罗列了出来,以至于在最后自己测评的时候也大发感慨,这个算法有点不靠谱。不管怎么样,这个算法有时候还是有用的,所以还是列出来跟大家伙一起分享

基本知识介绍

颜色直方图

颜色直方图是在许多图像检索系统中被广泛采用的颜色特征,它所描述的

是不同色彩在整幅图像中所占的比例,而并不关心每种色彩所处的空间位置,即无法描述图像中的对象或物体。颜色直方图特别适用于描述那些难以进行自动分割的图像。

灰度直方图

灰度直方图是灰度级的函数,它表示图像中具有每种灰度级的像素的个数,反映图像中每种灰度出现的频率。灰度直方图的横坐标是灰度级,纵坐标是该灰度级出现的频率,是图像的最基本的统计特征。

本文中即是使用灰度直方图来计算图片相似度,关于算法那一块也不赘言了,毕竟图像学图形学,直方图我是门儿都不懂,我也不准备打肿脸充胖子,只想实现一个最基本的算法,然后从最直观的角度看看这个算法的有效性,仅此而已。

算法实现

诸位看官休怪笔者囫囵吞枣,浅尝辄止的学习态度。额毕竟是因兴趣而来,于此方面并无半点基础(当然,除了知道RGB是啥玩意儿——这还幸亏当年计算机图形学的老师是个Super美女,因此多上了几节课的缘故),更谈不上半点造诣,看官莫怪莫怪,且忍住怒气,是走是留,小生不敢有半点阻拦~~

大致步骤如下:

1,将图像转换成相同大小,以有利于计算出相像的直方图来

2,计算转化后的灰度直方图

3,利用XX公式,得到直方图相似度的定量度量

4,输出这些不知道有用没用的相似度结果数据

代码实现

步骤1,将图像转化成相同大小,我们暂且转化成256 X 256吧。

public Bitmap Resize(string imageFile, string newImageFile)

{

img = Image.FromFile(imageFile);

Bitmap imgOutput = new Bitmap(img, 256, 256);

imgOutput.Save(newImageFile,

System.Drawing.Imaging.ImageFormat.Jpeg);

imgOutput.Dispose();

return (Bitmap)Image.FromFile(newImageFile);

}

这部分代码很好懂,imageFile为原始图片的完整路径,newImageFile为强转大小后的256 X 256图片的路径,为了“赛”后可以看到我们转化出来的图片长啥样,所以我就把它保存到了本地了,以至于有了上面略显丑陋的代码。

步骤2,计算图像的直方图

public int[] GetHisogram(Bitmap img)

{

BitmapData data = img.LockBits( new

System.Drawing.Rectangle( 0 , 0 , img.Width , img.Height ), ImageLockMode.ReadWrite , PixelFormat.Format24bppRgb );

int[ ] histogram = new int[ 256 ];

unsafe

{

byte* ptr = ( byte* )data.Scan0;

int remain = data.Stride - data.Width * 3;

for( int i = 0 ; i

histogram[ i ] = 0;

for( int i = 0 ; i

{

for( int j = 0 ; j

{

int mean = ptr[ 0 ] + ptr[ 1 ] + ptr[ 2 ];

mean /= 3;

histogram[ mean ] ++;

ptr += 3;

}

ptr += remain;

}

}

img.UnlockBits( data );

return histogram;

}

这段就是惊天地泣鬼神的灰度直方图计算方法,里面的弯弯绕还是留给诸位自己去掺和。

步骤3,计算直方图相似度度量

这一步骤的法宝在于这个:

Sim(G,S)= 其中G,S为直方图,N 为颜色空间样点数为了大家少敲两行字儿,也给出一堆乱七八糟的代码:

//计算相减后的绝对值

private float GetAbs(intfirstNum, intsecondNum)

{

float abs = Math.Abs((float)firstNum - (float)secondNum);

float result = Math.Max(firstNum, secondNum);

if (result == 0)

result = 1;

return abs / result;

}

//最终计算结果

public float GetResult(int[] firstNum, int[] scondNum)

{

if (firstNum.Length != scondNum.Length)

{

return 0;

}

else

{

float result = 0;

int j = firstNum.Length;

for (int i = 0; i < j; i++)

{

result += 1 - GetAbs(firstNum[i], scondNum[i]);

Console.WriteLine(i + "----" + result);

}

return result/j;

}

}

步骤4,输出

这个……诸位爱怎么输出就怎么输出吧。直接Console也好,七彩命令行输出也罢,亦或者保存到文本文件中留作纪念啦啦,诸位“好自为之”~~

后记

开始看到这玩意儿的时候觉得这玩意儿很简单啊,可是一想不对劲,没有这么容易的事情,要不Google,MS这些大牛们做了这么久还没有像样的玩意儿出来。果不其然,为了多了解一点相关的内容,我不得不Google了一下,觉得那

些术语完全不知所云,看不懂啊;看来我得祭出我一般不使用的大杀器了——百度一搜。嘿,还真找出来了一堆东西,比Google上面的看起来容易多了,可是打开链接进去瞅瞅,发现还是非我当前能力之所及。没学到东西,但是好歹还是了解了一点皮毛上的皮毛。

相似度算法比较

图像相似度计算主要用于对于两幅图像之间内容的相似程度进行打分,根据分数的高低来判断图像内容的相近程度。 可以用于计算机视觉中的检测跟踪中目标位置的获取,根据已有模板在图像中找到一个与之最接近的区域。然后一直跟着。已有的一些算法比如BlobTracking,Meanshift,Camshift,粒子滤波等等也都是需要这方面的理论去支撑。 还有一方面就是基于图像内容的图像检索,也就是通常说的以图检图。比如给你某一个人在海量的图像数据库中罗列出与之最匹配的一些图像,当然这项技术可能也会这样做,将图像抽象为几个特征值,比如Trace变换,图像哈希或者Sift特征向量等等,来根据数据库中存得这些特征匹配再返回相应的图像来提高效率。 下面就一些自己看到过的算法进行一些算法原理和效果上的介绍。 (1)直方图匹配。 比如有图像A和图像B,分别计算两幅图像的直方图,HistA,HistB,然后计算两个直方图的归一化相关系数(巴氏距离,直方图相交距离)等等。 这种思想是基于简单的数学上的向量之间的差异来进行图像相似程度的度量,这种方法是目前用的比较多的一种方法,第一,直方图能够很好的归一化,比如通常的256个bin条的。那么两幅分辨率不同的图像可以直接通过计算直方图来计算相似度很方便。而且计算量比较小。 这种方法的缺点: 1、直方图反映的是图像像素灰度值的概率分布,比如灰度值为200的像素有多少个,但是对于这些像素原来的位置在直方图中并没有体现,所以图像的骨架,也就是图像内部到底存在什么样的物体,形状是什么,每一块的灰度分布式什么样的这些在直方图信息中是被省略掉得。那么造成的一个问题就是,比如一个上黑下白的图像和上白下黑的图像其直方图分布是一模一样的,其相似度为100%。 2、两幅图像之间的距离度量,采用的是巴氏距离或者归一化相关系数,这种用分析数学向量的方法去分析图像本身就是一个很不好的办法。 3、就信息量的道理来说,采用一个数值来判断两幅图像的相似程度本身就是一个信息压缩的过程,那么两个256个元素的向量(假定直方图有256个bin条)的距离用一个数值表示那么肯定就会存在不准确性。 下面是一个基于直方图距离的图像相似度计算的Matlab Demo和实验结果. %计算图像直方图距离 %巴氏系数计算法 M=imread('1.jpg'); N=imread('2.jpg'); I=rgb2gray(M); J=rgb2gray(N); [Count1,x]=imhist(I); [Count2,x]=imhist(J); Sum1=sum(Count1);Sum2=sum(Count2); Sumup = sqrt(Count1.*Count2); SumDown = sqrt(Sum1*Sum2); Sumup = sum(Sumup); figure(1); subplot(2,2,1);imshow(I); subplot(2,2,2);imshow(J);

地址相似度算法

一、计算过程: 1、根据输入一个地址,生成一个地址每个字的数组: T1={w1,w2,w3..wn}; 比如:有两个地址广东省梅州市江南彬芳大道金利来步街xx号和广东省梅州市梅江区彬芳大道金利来步行街xx号,会生成 T1={广,东,省,梅,州,市,江,南,彬,芳,大,道,金,利,来,步,街,xx,号}; T2={广,东,省,梅,州,市,梅,江,区,彬,芳,大,道,金,利,来,步,行,街,xx,号}; 2、这两个地址的并集,对出现多次的字只保留一次 比如:T={广,东,省,州,市,梅,江,南,区,彬,芳,大,道,金,利,来,步,行,街,xx,号}; 3、求出每个t中每个词在t1和t2中出现的次数得到m和n m={m1,m2,m3..mn}; n={n1,n2,n3.nn}; 比如:t1和t2可以得到两个出现次数的数组 m={1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1,0,1,1,1}; n={1,1,1,1,1,2,1,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1}; 4、计算相似度 Sim=m1*n1+m2*n2+..mn*nn/sqrt(m1*m1+m2*m2+..mn*mn)* sqrt(n1*n1+n2*n2+..nn*nn) 二、计算原理: 假如这两个数组是只有{x1,y1}和{x2,y2}的数组,这两个数组可以在平面直角坐标系中用两个由原点出发的向量来表示,我们可以通过向量的夹角的大小来判断向量的相似度,夹角越小,相似度越高。计算向量的夹角,我们可以使用余弦定理,余弦定理用坐标表示的公式: 余弦的这种计算方法不止对于2维向量成立,对n维向量也成立,n维向量表示为: 所以我们可以使用这个公式得出余弦的值,值越接近1,夹角越小,两个向量越相似,这种计算方式叫做余弦相似性。

图像分割算法研究与实现

中北大学 课程设计说明书 学生姓名:梁一才学号:10050644X30 学院:信息商务学院 专业:电子信息工程 题目:信息处理综合实践: 图像分割算法研究与实现 指导教师:陈平职称: 副教授 2013 年 12 月 15 日

中北大学 课程设计任务书 13/14 学年第一学期 学院:信息商务学院 专业:电子信息工程 学生姓名:焦晶晶学号:10050644X07 学生姓名:郑晓峰学号:10050644X22 学生姓名:梁一才学号:10050644X30 课程设计题目:信息处理综合实践: 图像分割算法研究与实现 起迄日期:2013年12月16日~2013年12月27日课程设计地点:电子信息科学与技术专业实验室指导教师:陈平 系主任:王浩全 下达任务书日期: 2013 年12月15 日

课程设计任务书 1.设计目的: 1、通过本课程设计的学习,学生将复习所学的专业知识,使课堂学习的理论知识应用于实践,通过本课程设计的实践使学生具有一定的实践操作能力; 2、掌握Matlab使用方法,能熟练运用该软件设计并完成相应的信息处理; 3、通过图像处理实践的课程设计,掌握设计图像处理软件系统的思维方法和基本开发过程。 2.设计内容和要求(包括原始数据、技术参数、条件、设计要求等): (1)编程实现分水岭算法的图像分割; (2)编程实现区域分裂合并法; (3)对比分析两种分割算法的分割效果; (4)要求每位学生进行查阅相关资料,并写出自己的报告。注意每个学生的报告要有所侧重,写出自己所做的内容。 3.设计工作任务及工作量的要求〔包括课程设计计算说明书(论文)、图纸、实物样品等〕: 每个同学独立完成自己的任务,每人写一份设计报告,在课程设计论文中写明自己设计的部分,给出设计结果。

仪表显示的图像识别算法研究

仪表显示的图像识别算法研究 摘要:随着社会的逐渐发展,人类的生活越来越趋于智能化。本文根据当今社会对于图像识别研究的发展现状,针对目前人们生活中人工读表的弊端,提出了通过采集仪表显示的图像并进行图像识别算法处理来达到智能自动读表的方法。 为了能快速获得采集数据,减少人们生活中繁复的人工作业。本文通过多样的图像处理来代替人眼识别图像。只需要得到采集到的图像,就可以利用计算机来进行计算和识别,得出最后的数字。本文采用了一系列的图像处理方法,包括图像的去噪,二值化分割,边缘检测和基于数学形态学的膨胀腐蚀操作等。同时通过多种尝试和比较各种方法的优缺点得到了一套简易而又完善,快速的图像识别算法。 在进行多次测试试验后,本文采用数码相机来进行图像的采集,同时经过图像预处理、图像分割、图像识别等一系列流程得出了较为完善的图像采集和识别系统,为未来信息传递智能化提供了基础,对于促进工业发展或是改善生活水平都有重要的意义。 关键词:图像预处理、二值化、边缘检测、形态学、去噪、图像分割、图像匹配 The research of image recognition displayed by the instrument Abstract: With the continuous development of society, people's lives become more and more intelligent. Based on the current development in today's society for the study of image recognition, according to the present disadvantages of manual meter reading in peop le’s lives, this page proposed the way by collecting the instruments display image and then deals it with image recognizing algorithms to achieve intelligent automatic meter. In order to quickly gather data, reducing manual work in people’s lives complicated. The page uses a series of image processing to replace human eye image recognition. Just need the collected images, we can use a computer to calculate and identify, then we will arrive at a final figure. We used a variety of image processing methods, including image denoising, thresholding segmentation, expansion of edge-detection based on mathematical morphology and corrosion and so on. And

文本相似度算法

1.信息检索中的重要发明TF-IDF 1.1TF Term frequency即关键词词频,是指一篇文章中关键词出现的频率,比如在一篇M个词的文章中有N个该关键词,则 (公式1.1-1) 为该关键词在这篇文章中的词频。 1.2IDF Inverse document frequency指逆向文本频率,是用于衡量关键词权重的指数,由公式 (公式1.2-1) 计算而得,其中D为文章总数,Dw为关键词出现过的文章数。2.基于空间向量的余弦算法 2.1算法步骤 预处理→文本特征项选择→加权→生成向量空间模型后计算余弦。 2.2步骤简介 2.2.1预处理 预处理主要是进行中文分词和去停用词,分词的开源代码有:ICTCLAS。 然后按照停用词表中的词语将语料中对文本内容识别意义不大但出

现频率很高的词、符号、标点及乱码等去掉。如“这,的,和,会,为”等词几乎出现在任何一篇中文文本中,但是它们对这个文本所表达的意思几乎没有任何贡献。使用停用词列表来剔除停用词的过程很简单,就是一个查询过程:对每一个词条,看其是否位于停用词列表中,如果是则将其从词条串中删除。 图2.2.1-1中文文本相似度算法预处理流程 2.2.2文本特征项选择与加权 过滤掉常用副词、助词等频度高的词之后,根据剩下词的频度确定若干关键词。频度计算参照TF公式。 加权是针对每个关键词对文本特征的体现效果大小不同而设置的机制,权值计算参照IDF公式。 2.2.3向量空间模型VSM及余弦计算 向量空间模型的基本思想是把文档简化为以特征项(关键词)的权重为分量的N维向量表示。

这个模型假设词与词间不相关(这个前提造成这个模型无法进行语义相关的判断,向量空间模型的缺点在于关键词之间的线性无关的假说前提),用向量来表示文本,从而简化了文本中的关键词之间的复杂关系,文档用十分简单的向量表示,使得模型具备了可计算性。 在向量空间模型中,文本泛指各种机器可读的记录。 用D(Document)表示文本,特征项(Term,用t表示)指出现在文档D中且能够代表该文档内容的基本语言单位,主要是由词或者短语构成,文本可以用特征项集表示为D(T1,T2,…,Tn),其中Tk是特征项,要求满足1<=k<=N。 下面是向量空间模型(特指权值向量空间)的解释。 假设一篇文档中有a、b、c、d四个特征项,那么这篇文档就可以表示为 D(a,b,c,d) 对于其它要与之比较的文本,也将遵从这个特征项顺序。对含有n 个特征项的文本而言,通常会给每个特征项赋予一定的权重表示其重要程度,即 D=D(T1,W1;T2,W2;…,Tn,Wn) 简记为 D=D(W1,W2,…,Wn) 我们把它叫做文本D的权值向量表示,其中Wk是Tk的权重,

车辆牌照图像识别算法研究与实现本科毕设论文

Q260046902 专业做论文 西南科技大学 毕业设计(论文)题目名称:车辆牌照图像识别算法研究与实现

车辆牌照图像识别算法研究与实现 摘要:近年来随着国民经济的蓬勃发展,国内高速公路、城市道路、停车场建设越来越多,对交通控制、安全管理的要求也日益提高。因此,汽车牌照识别技术在公共安全及交通管理中具有特别重要的实际应用意义。本文对车牌识别系统中的车牌定位、字符分割和字符识别进行了初步研究。对车牌定位,本文采用投影法对车牌进行定位;在字符分割方面,本文使用阈值规则进行字符分割;针对车牌图像中数字字符识别的问题,本文采用了基于BP神经网络的识别方法。在学习并掌握了数字图像处理和模式识别的一些基本原理后,使用VC++6.0软件利用以上原理针对车牌识别任务进行编程。实现了对车牌的定位和车牌中数字字符的识别。 关键词:车牌定位;字符分割;BP神经网络;车牌识别;VC++

Research and Realization of License Plate Recognition Algorithm Abstract:In recent years, with the vigorous development of the national economy,there are more and more construct in the domestic expressway, urban road, and parking area. The requisition on the traffic control, safety management improves day by day. Therefore, license plate recognition technology has the particularly important practical application value in the public security and the traffic control. In the paper, a preliminary research was made on the license location, characters segment and characters recognition of the license plate recognition. On the license location,the projection was used to locate the license plate; On the characters segmentation, the liminal rule was used to divide the characters; In order to solve the problem of the digital characters recognition in the plate, BP nerve network was used to recognize the digital characters. After studying and mastering some basic principles of the digital image processing and pattern recognition, the task of license plate recognition was programmed with VC++ 6.0 using above principles. The license location and the digital characters recognition in the license plate were implemented. Keywords: license location, characters segmentation, BP nerve network, license plate recognition, VC++

图像相似度计算

图像相似度计算 图像相似度计算主要用于对于两幅图像之间内容的相似程度进行打分,根据分数的高低来判断图像内容的相近程度。 可以用于计算机视觉中的检测跟踪中目标位置的获取,根据已有模板在图像中找到一个与之最接近的区域。然后一直跟着。已有的一些算法比如BlobTracking,Meanshift,Camshift,粒子滤波等等也都是需要这方面的理论去支撑。 还有一方面就是基于图像内容的图像检索,也就是通常说的以图检图。比如给你某一个人在海量的图像数据库中罗列出与之最匹配的一些图像,当然这项技术可能也会这样做,将图像抽象为几个特征值,比如Trace变换,图像哈希或者Sift特征向量等等,来根据数据库中存得这些特征匹配再返回相应的图像来提高效率。 下面就一些自己看到过的算法进行一些算法原理和效果上的介绍。 (1)直方图匹配。 比如有图像A和图像B,分别计算两幅图像的直方图,HistA,HistB,然后计算两个直方图的归一化相关系数(巴氏距离,直方图相交距离)等等。 这种思想是基于简单的数学上的向量之间的差异来进行图像相似程度的度量,这种方法是目前用的比较多的一种方法,第一,直方图能够很好的归一化,比如通常的256个bin条的。那么两幅分辨率不同的图像可以直接通过计算直方图来计算相似度很方便。而且计算量比较小。 这种方法的缺点: 1、直方图反映的是图像像素灰度值的概率分布,比如灰度值为200的像素有多少个,但是对于这些像素原来的位置在直方图中并没有体现,所以图像的骨架,也就是图像内部到底存在什么样的物体,形状是什么,每一块的灰度分布式什么样的这些在直方图信息中是被省略掉得。那么造成的一个问题就是,比如一个上黑下白的图像和上白下黑的图像其直方图分布是一模一样的,其相似度为100%。 2、两幅图像之间的距离度量,采用的是巴氏距离或者归一化相关系数,这种用分析数学向量的方法去分析图像本身就是一个很不好的办法。 3、就信息量的道理来说,采用一个数值来判断两幅图像的相似程度本身就是一个信息压缩的过程,那么两个256个元素的向量(假定直方图有256个bin条)的距离用一个数值表示那么肯定就会存在不准确性。 下面是一个基于直方图距离的图像相似度计算的Matlab Demo和实验结果.

计算文本相似度几种最常用的方法,并比较它们之间的性能

计算文本相似度几种最常用的方法,并比较它们之间的性能 编者按:本文作者为Yves Peirsman,是NLP领域的专家。在这篇博文中,作者比较了各种计算句子相似度的方法,并了解它们是如何操作的。词嵌入(word embeddings)已经在自然语言处理领域广泛使用,它可以让我们轻易地计算两个词语之间的语义相似性,或者找出与目标词语最相似的词语。然而,人们关注更多的是两个句子或者短文之间的相似度。如果你对代码感兴趣,文中附有讲解细节的Jupyter Notebook地址。以下是论智的编译。 许多NLP应用需要计算两段短文之间的相似性。例如,搜索引擎需要建模,估计一份文本与提问问题之间的关联度,其中涉及到的并不只是看文字是否有重叠。与之相似的,类似Quora之类的问答网站也有这项需求,他们需要判断某一问题是否之前已出现过。要判断这类的文本相似性,首先要对两个短文本进行embedding,然后计算二者之间的余弦相似度(cosine similarity)。尽管word2vec和GloVe等词嵌入已经成为寻找单词间语义相似度的标准方法,但是对于句子嵌入应如何被计算仍存在不同的声音。接下来,我们将回顾一下几种最常用的方法,并比较它们之间的性能。 数据 我们将在两个被广泛使用的数据集上测试所有相似度计算方法,同时还与人类的判断作对比。两个数据集分别是: STS基准收集了2012年至2017年国际语义评测SemEval中所有的英语数据 SICK数据库包含了10000对英语句子,其中的标签说明了它们之间的语义关联和逻辑关系 下面的表格是STS数据集中的几个例子。可以看到,两句话之间的语义关系通常非常微小。例如第四个例子: A man is playing a harp. A man is playing a keyboard.

图像相似度算法的C#代码

近日逛博客的时候偶然发现了一个有关图片相似度的Python算法实现。想着很有意思便搬到C#上来了,给大家看看。 闲言碎语 才疏学浅,只把计算图像相似度的一个基本算法的基本实现方式给罗列了出来,以至于在最后自己测评的时候也大发感慨,这个算法有点不靠谱。不管怎么样,这个算法有时候还是有用的,所以还是列出来跟大家伙一起分享分享~~ PS:图像处理这一块博大精深,个人偶尔发现了点东西拿来分享。说的不好的地方,写得太糟的地方,诸位准备扔砖头还望淡定,淡定~~ 基本知识介绍 颜色直方图 颜色直方图是在许多图像检索系统中被广泛采用的颜色特征,它所描述的是不同色彩在整幅图像中所占的比例,而并不关心每种色彩所处的空间位置,即无法描述图像中的对象或物体。颜色直方图特别适用于描述那些难以进行自动分割的图像。 灰度直方图 灰度直方图是灰度级的函数,它表示图像中具有每种灰度级的像素的个数,反映图像中每种灰度出现的频率。灰度直方图的横坐标是灰度级,纵坐标是该灰度级出现的频率,是图像的最基本的统计特征。 本文中即是使用灰度直方图来计算图片相似度,关于算法那一块也不赘言了,毕竟图像学图形学,直方图我是门儿都不懂,我也不准备打肿脸充胖子,只想实现一个最基本的算法,然后从最直观的角度看看这个算法的有效性,仅此而已。

算法实现 诸位看官休怪笔者囫囵吞枣,浅尝辄止的学习态度。额毕竟是因兴趣而来,于此方面并无半点基础(当然,除了知道RGB是啥玩意儿——这还幸亏当年计算机图形学的老师是个Super美女,因此多上了几节课的缘故),更谈不上半点造诣,看官莫怪莫怪,且忍住怒气,是走是留,小生不敢有半点阻拦~~ 大致步骤如下: 1,将图像转换成相同大小,以有利于计算出相像的直方图来 2,计算转化后的灰度直方图 3,利用XX公式,得到直方图相似度的定量度量 4,输出这些不知道有用没用的相似度结果数据 代码实现 步骤1,将图像转化成相同大小,我们暂且转化成256 X 256吧。 public Bitmap Resize(string imageFile, string newImageFile) { img = Image.FromFile(imageFile); Bitmap imgOutput = new Bitmap(img, 256, 256); imgOutput.Save(newImageFile, System.Drawing.Imaging.ImageFormat.Jpeg); imgOutput.Dispose(); return (Bitmap)Image.FromFile(newImageFile);

相似度计算方法

基于距离的计算方法 1. 欧氏距离(Euclidean Distance) 欧氏距离是最易于理解的一种距离计算方法,源自欧氏空间中两点间的距离公式。 (1)二维平面上两点a(x1,y1)与b(x2,y2)间的欧氏距离: (2)三维空间两点a(x1,y1,z1)与b(x2,y2,z2)间的欧氏距离: (3)两个n维向量a(x11,x12,…,x1n)与b(x21,x22,…,x2n)间的欧氏距离: 也可以用表示成向量运算的形式: (4)Matlab计算欧氏距离 Matlab计算距离主要使用pdist函数。若X是一个M×N的矩阵,则pdist(X)将X矩阵M行的每一行作为一个N维向量,然后计算这M个向量两两间的距离。例子:计算向量(0,0)、(1,0)、(0,2)两两间的欧式距离 X = [0 0 ; 1 0 ; 0 2] D = pdist(X,'euclidean') 结果: D = 1.0000 2.0000 2.2361 2. 曼哈顿距离(Manhattan Distance) 从名字就可以猜出这种距离的计算方法了。想象你在曼哈顿要从一个十字路口开车到另外一个十字路口,驾驶距离是两点间的直线距离吗?显然不是,除

非你能穿越大楼。实际驾驶距离就是这个“曼哈顿距离”。而这也是曼哈顿距离名称的来源,曼哈顿距离也称为城市街区距离(City Block distance)。 (1)二维平面两点a(x1,y1)与b(x2,y2)间的曼哈顿距离 (2)两个n维向量a(x11,x12,…,x1n)与b(x21,x22,…,x2n)间的曼哈顿距离 (3) Matlab计算曼哈顿距离 例子:计算向量(0,0)、(1,0)、(0,2)两两间的曼哈顿距离 X = [0 0 ; 1 0 ; 0 2] D = pdist(X, 'cityblock') 结果: D = 1 2 3 5. 标准化欧氏距离 (Standardized Euclidean distance ) (1)标准欧氏距离的定义 标准化欧氏距离是针对简单欧氏距离的缺点而作的一种改进方案。标准欧氏距离的思路:既然数据各维分量的分布不一样,好吧!那我先将各个分量都“标准化”到均值、方差相等吧。均值和方差标准化到多少呢?这里先复习点统计学知识吧,假设样本集X的均值(mean)为m,标准差(standard deviation)为s,那么X的“标准化变量”表示为: 而且标准化变量的数学期望为0,方差为1。因此样本集的标准化过程(standardization)用公式描述就是: 标准化后的值= ( 标准化前的值-分量的均值) /分量的标准差 经过简单的推导就可以得到两个n维向量a(x11,x12,…,x1n)与 b(x21,x22,…,x2n)间的标准化欧氏距离的公式: 如果将方差的倒数看成是一个权重,这个公式可以看成是一种加权欧氏距离(Weighted Euclidean distance)。

基于Matlab的图像边缘检测算法的实现及应用汇总

目录 摘要 (1) 引言 (2) 第一章绪论 (3) 1.1 课程设计选题的背景及意义 (3) 1.2 图像边缘检测的发展现状 (4) 第二章边缘检测的基本原理 (5) 2.1 基于一阶导数的边缘检测 (8) 2.2 基于二阶导的边缘检测 (9) 第三章边缘检测算子 (10) 3.1 Canny算子 (10) 3.2 Roberts梯度算子 (11) 3.3 Prewitt算子 (12) 3.4 Sobel算子 (13) 3.5 Log算子 (14) 第四章MATLAB简介 (15) 4.1 基本功能 (15) 4.2 应用领域 (16) 第五章编程和调试 (17) 5.1 edge函数 (17) 5.2 边缘检测的编程实现 (17) 第六章总结与体会 (20) 参考文献 (21)

摘要 边缘是图像最基本的特征,包含图像中用于识别的有用信息,边缘检测是数字图像处理中基础而又重要的内容。该课程设计具体考察了5种经典常用的边缘检测算子,并运用Matlab进行图像处理结果比较。梯度算子简单有效,LOG 算法和Canny 边缘检测器能产生较细的边缘。 边缘检测的目的是标识数字图像中灰度变化明显的点,而导函数正好能反映图像灰度变化的显著程度,因而许多方法利用导数来检测边缘。在分析其算法思想和流程的基础上,利用MATLAB对这5种算法进行了仿真实验,分析了各自的性能和算法特点,比较边缘检测效果并给出了各自的适用范围。 关键词:边缘检测;图像处理;MATLAB仿真

引言 边缘检测在图像处理系统中占有重要的作用,其效果直接影响着后续图像处理效果的好坏。许多数字图像处理直接或间接地依靠边缘检测算法的性能,并且在模式识别、机器人视觉、图像分割、特征提取、图像压缩等方面都把边缘检测作为最基本的工具。但实际图像中的边缘往往是各种类型的边缘以及它们模糊化后结果的组合,并且在实际图像中存在着不同程度的噪声,各种类型的图像边缘检测算法不断涌现。早在1965 年就有人提出边缘检测算子,边缘检测的传统方法包括Kirsch,Prewitt,Sobel,Roberts,Robins,Mar-Hildreth 边缘检测方法以及Laplacian-Gaussian(LOG)算子方法和Canny 最优算子方法等。 本设计主要讨论其中5种边缘检测算法。在图像处理的过程需要大量的计算工作,我们利用MATLAB各种丰富的工具箱以及其强大的计算功能可以更加方便有效的完成图像边缘的检测。并对这些方法进行比较

图像相似度

1. 欧氏距离(Euclidean Distance) 欧氏距离是最易于理解的一种距离计算方法,源自欧氏空间中两点间的距离公式。 (1)二维平面上两点a(x1,y1)与b(x2,y2)间的欧氏距离: (2)三维空间两点a(x1,y1,z1)与b(x2,y2,z2)间的欧氏距离: (3)两个n维向量a(x11,x12,…,x1n)与b(x21,x22,…,x2n)间的欧氏距离: 也可以用表示成向量运算的形式: (4)Matlab计算欧氏距离 Matlab计算距离主要使用pdist函数。若X是一个M×N的矩阵,则pdist(X)将X矩阵M行的每一行作为一个N维向量,然后计算这M个向量两两间的距离。例子:计算向量(0,0)、(1,0)、(0,2)两两间的欧式距离 X = [0 0 ; 1 0 ; 0 2] D = pdist(X,'euclidean') 结果: D = 1.0000 2.0000 2.2361 2. 曼哈顿距离(Manhattan Distance) 从名字就可以猜出这种距离的计算方法了。想象你在曼哈顿要从一个十字路口开车到另外一个十字路口,驾驶距离是两点间的直线距离吗?显然不是,除非你能穿越大楼。实际驾驶距离就是这个“曼哈顿距离”。而这也是曼哈顿距离名称的来源,曼哈顿距离也称为城市街区距离(City Block distance)。

(1)二维平面两点a(x1,y1)与b(x2,y2)间的曼哈顿距离 (2)两个n维向量a(x11,x12,…,x1n)与b(x21,x22,…,x2n)间的曼哈顿距离 (3) Matlab计算曼哈顿距离 例子:计算向量(0,0)、(1,0)、(0,2)两两间的曼哈顿距离 X = [0 0 ; 1 0 ; 0 2] D = pdist(X, 'cityblock') 结果: D = 1 2 3 5. 标准化欧氏距离(Standardized Euclidean distance ) (1)标准欧氏距离的定义 标准化欧氏距离是针对简单欧氏距离的缺点而作的一种改进方案。标准欧氏距离的思路:既然数据各维分量的分布不一样,好吧!那我先将各个分量都“标准化”到均值、方差相等吧。均值和方差标准化到多少呢?这里先复习点统计学知识吧,假设样本集X的均值(mean)为m,标准差(standard deviation)为s,那么X的“标准化变量”表示为: 而且标准化变量的数学期望为0,方差为1。因此样本集的标准化过程(standardization)用公式描述就是: 标准化后的值= ( 标准化前的值-分量的均值) /分量的标准差 经过简单的推导就可以得到两个n维向量a(x11,x12,…,x1n)与 b(x21,x22,…,x2n)间的标准化欧氏距离的公式: 如果将方差的倒数看成是一个权重,这个公式可以看成是一种加权欧氏距离(Weighted Euclidean distance)。 (2)Matlab计算标准化欧氏距离

信息检索几种相似度计算方法作对比

句子相似度地计算在自然语言处理具有很重要地地位,如基于实例地机器翻译( )、自 动问答技术、句子模糊匹配等.通过对术语之间地语义相似度计算,能够为术语语义识别[]、术语聚类[]、文本聚类[]、本体自动匹配[]等多项任务地开展提供重要支持.在已有地术语相似度计算方法中,基于搜索引擎地术语相似度算法以其计算简便、计算性能较高、不受特定领域语料库规模和质量制约等优点而越来越受到重视[]. 相似度计算方法总述: 《向量空间模型信息检索技术讨论》,刘斌,陈桦发表于计算机学报, 相似度():指两个文档内容相关程度地大小,当文档以向量来表示时,可以使用向量文 档向量间地距离来衡量,一般使用内积或夹角地余弦来计算,两者夹角越小说明似度 越高.由于查询也可以在同一空间里表示为一个查询向量(见图),可以通过相似度计算 公式计算出每个档向量与查询向量地相似度,排序这个结果后与设立地阈值进行比较. 如果大于阈值则页面与查询相关,保留该页面查询结果;如果小于则不相关,过滤此页.这样就可以控制查询结果地数量,加快查询速度.资料个人收集整理,勿做商业用途 《相似度计算方法综述》 相似度计算用于衡量对象之间地相似程度,在数据挖掘、自然语言处理中是一个基础 性计算.其中地关键技术主要是两个部分,对象地特征表示,特征集合之间地相似关系. 在信息检索、网页判重、推荐系统等,都涉及到对象之间或者对象和对象集合地相似 性地计算.而针对不同地应用场景,受限于数据规模、时空开销等地限制,相似度计算 方法地选择又会有所区别和不同.下面章节会针对不同特点地应用,进行一些常用地相 似度计算方法进行介绍.资料个人收集整理,勿做商业用途 内积表示法: 《基于语义理解地文本相似度算法》,金博,史彦君发表于大连理工大学学报, 在中文信息处理中,文本相似度地计算广泛应用于信息检索、机器翻译、自动问答系统、文本挖掘等领域,是一个非常基础而关键地问题,长期以来一直是人们研究地热点和难点.计算机对于中文地处理相对于对于西文地处理存在更大地难度,集中体现在对文本分词 地处理上.分词是中文文本相似度计算地基础和前提,采用高效地分词算法能够极大地提 高文本相似度计算结果地准确性.本文在对常用地中文分词算法分析比较地基础上,提出 了一种改进地正向最大匹配切分()算法及歧义消除策略,对分词词典地建立方式、分词 步骤及歧义字段地处理提出了新地改进方法,提高了分词地完整性和准确性.随后分析比 较了现有地文本相似度计算方法,利用基于向量空间模型地方法结合前面提出地分词算法,给出了中文文本分词及相似度计算地计算机系统实现过程,并以科技文本为例进行了 测试,对所用方法进行了验证.这一课题地研究及其成果对于中文信息处理中地多种领域 尤其是科技类文本相似度地计算比较,都将具有一定地参考价值和良好地应用前景.资料 个人收集整理,勿做商业用途

数据隐藏课程设计论文——图像的信息隐藏检测算法和实现

中国科学技术大学继续教育学院课程设计 论文报告 论文题目:图像的信息隐藏检测算法和实现学员姓名:黄琳 学号:TB04202130 专业:计算机科学与技术 指导教师: 日期:2007年1月20日

图像的信息隐藏检测算法和实现 [摘要] Information hiding analysis is the art of detecting the message's existence or destroying the stega nographic cover in order to blockade the secret communication. And information Information hiding includes steganography and digital watermark. The application of steganography can be traced to ancient time, and it is also an n hiding detection is the very first step in information hiding analysis. Firstlly, architectonic analysis about information hiding detection is proposed, including the analysis of digital image characteristics, image based detecting algorithms and some problems in its realization. Secondly, many detecting algorithms are introduced with theoretical analyses and experimental results in details. Thirdly, two applications of detecting technology are put forward. Finally, a detecting model used in Internet is discussed [关键词]安全信息隐藏检测 1. 引言 数字图像的信息隐藏技术是数字图像处理领域中最具挑战性、最为活跃的研究课题之一。本文概述了数字图像的信息隐藏技术,并给出了一个新的基于彩色静止数字图像的信息隐藏算法。 数字图像可分为静止图像和动态图像两种,后者一般称为视频图像。视频图像的每一帧均可看作是一幅静止图像,但是这些静止图像之间并不是相互孤立的,而是存在时间轴上的相关性。静止图像是像素(Pixel)的集合,相邻像素点所对应的实际距离称为图像的空间分辨率。根据像素颜色信息的不同,数字图像可分为二值图像、灰度图像以及彩色图像。数字图像的最终感受者是人的眼睛,人眼感受到的两幅质量非常相同的数字图像的像素值可能存在很大的差别。这样,依赖于人的视觉系统(Human Visual System,HVS)的不完善性,就为数字图像的失真压缩和信息隐藏提供了非常巨大的施展空间。 信息隐藏与信息加密是不尽相同的,信息加密是隐藏信息的内容,而信息隐藏是隐藏信息的存在性,信息隐藏比信息加密更为安全,因为它不容易引起攻击者的注意。 2. 信息隐藏技术综述 2.1信息隐藏简介 信息隐藏(Information Hiding),也称作数据隐藏(Data Hiding),或称作数字水印(Digital Watermarking)。简单来讲,信息隐藏是指将某一信号(一般称之为签字信号,Signature Signal)嵌入(embedding)另一信号(一般称之为主信号,Host Signal,或称之为掩护媒体,cover-media)的过程,掩护媒体经嵌入信息后变成一个伪装媒体(stegano-media)。这一嵌入过程需要满足下列条件:

利用DCT系数计算两幅图像之间的相似度

Visual image retrieval on compressed domain with Q-distance Hong Heather Yu Panasonic Information and Networking Technology Lab. heathery@https://www.doczj.com/doc/be9553704.html, Abstract This paper proposes a new image retrieval scheme that works directly on compressed image(JPEG)databases.As we know,a large percentage of the image databases are stored in compressed image format,such as JPEG format.In addition,about half of the images on the Internet are also in JPEG format.Thus,image retrieval systems that require JPEG decompression greatly limit the speed of image searching.Subsequently,new methodologies for retrieving of images without JPEG decoding is needed for web image search and compressed image database retrieval.In this paper,we propose a new metric,Q-distance, that can be utilized to measure the distance between two compressed images.A system that uses Q-distance for fast image retrieval is also presented.Experiment results show that Q-distance is robust against variation and this new retrieval scheme,which directly works on compressed image domain,is fast to execute and suitable for web image searching and retrieval. 1.Introduction 1.1Motivation A study by Euro-marketing shows that there are over157million people worldwide who have access to the Internet,the gigantic multimedia information database.Needless to say,one of the most important functions of the Internet is'search'.The overwhelmingly available multimedia on such high traffic Internet demand fast searching and browsing capability of text,audio,as well as visual data.Since most of the images on the Internet are in compressed formats,it is therefore important to develop techniques that can allow visual image searching without image decompression,that is,directly search on compressed image domain. As we know,a compressed image,such as JPEG image,can compress an image whereas keeping the visual quality of it by discarding the small high frequency coefficients.This means by throwing away the least significant coefficients,the visual appearance of an image does not change significantly,i.e.,the overall structure of an image is kept in the significant coefficients.Is this characteristic useful in designing similarity-based image retrieval systems?Can this property be employed to design a compressed-domain image search engine?In this paper,we present such an image search engine and show that this characteristic of visual media is indeed helpful in designing a compressed-domain image retrieval ware.Why?With regards to image retrieval,many real world scenarios emphasize on the similarity of the overall structure of images.For instance,on web image searching,users may have a rough idea of the image they are looking for.Hopefully,a simple sketch of the overall structure of the image can help them to find the image in the database.This requires a good distance measurement between the query sketch and the images in the database.In this paper,we

相关主题
文本预览
相关文档 最新文档