当前位置:文档之家› Cargese Lectures on Brane Induced Gravity

Cargese Lectures on Brane Induced Gravity

a r

X

i

v

:07

5

.

1

9

2

9

v

1

[

h

e p

-

t

h

]

1

4

M

a y

2

7

NYU-TH-07/03/16Carg`e se Lectures on Brane Induced Gravity Gregory Gabadadze Center for Cosmology and Particle Physics Department of Physics,New York University,New York,NY,10003,USA Abstract A brief introduction is given to the subject of brane induced gravity.The 5D example is discussed in detail.The 4D laws of gravity are obtained on a brane embedded in an in?nite volume extra space,where the problem of stabilization of the volume modulus is absent.The theory has two classi-cally disjoint branches of solutions –the conventional and self-accelerated one.The conventional branch gives a perturbatively stable model of a metastable graviton,with potentially testable predictions within the Solar system.The self-accelerated branch,on the other hand,provides an existence proof for an idea that the accelerated expansion of the Universe could be due to modi?ed gravity.The issue of perturbative stability of the self-accelerated branch is obscured by a breakdown of the conventional perturbative expansion.How-ever,a certain exact non-perturbative solution found in hep-th/0612016ex-hibits a net negative gravitational mass,while this mass is positive on the conventional branch.This suggest that the self-accelerated solution must be non-perturbatively unstable.A proposal to overcome this problem in an ex-tension of the original model,that also allows for the quantum gravity scale to be unrestricted,is brie?y discussed.

1Introduction

The discovery of Refs.[1]that that the present-day expansion of the Universe is accelerating,has been con?rmed by a number of subsequent e?orts.One way to parametrize the accelerated expansion is to postulate the existence of a “dark energy”component in the Einstein equation:

G μν=8πG N (T matter μν+T dark energy μν),(1)

were G μν=R μν?g μνR/2,is the 4D Einstein tensor of the metric g μν(x ),and T matter μνand T dark energy μνdenote the stress-tensors for matter (including dark matter)and dark energy,respectively;the latter has to have a negative enough pressure to account for the observations.

On the other hand,one can consider another logical possibility that the accel-erated expansion is due to modi?ed General Relativity (GR).Schematically,the modi?ed Einstein equation could be written as:

G μν?K μν(g,m c )=8πG N T matter μν,(2)

where K μν(g,m c )denotes a tensor that could depend on a metric g ,its derivatives,as well as on other ?elds not present in GR.Moreover,K contains a dimensionful

constant m c ~H 0~10?42GeV ,which sets a distance/time scale r c ≡m ?1c at which the Newtonian potential obtained from (2)signi?cantly deviates from the

conventional one.One concrete example of K μν(g,m c )is given by the DGP model

[2],and will be discussed in detail in the next section.

At a ?rst sight,there does not seem to be a di?erence between (2)and (1),as the new term on the l.h.s.of (2)could be transfered to its r.h.s.and regarded as the “dark energy”component,similar to the one present in (1).

In reality,however,the di?erence between (2)and (1)is signi?cant.It is typically implied in (1)that the dark energy is either due to cosmological constant or a light scalar ?eld.This ?eld forms an independent sector of the theory,the dynamics of which is not restricted by severe constraints that general covariance imposes on tensor ?elds.In contrast with this,the new term in (2)contains metric itself in a nontrivial way.As such it is highly restricted by general covariance.This gives rise to both the theoretical and observational di?erences between models of “dark energy”and modi?ed gravity.

It is worth emphasizing that a primary theoretical motivation for the models of modi?ed gravity is to evade the S.Weinberg’s no-go theorem on the “old”cosmo-logical constant problem (CCP)[3],see Ref.[4]for a summary of these discussions.This attractive possibility still exists,in principle,in models of brane induced gravity with the number of space-time dimensions D ≥6[5,6,7],however,many aspects of those models are not well-understood,and we won’t be discussing them here.In-stead we concentrate on the 5D brane induced gravity [2].The latter does not o?er a solution to the old CCP,however,it can be used as an example for understanding of a new dynamics introduced by modi?ed gravity.

2Brane induced gravity

An explicit example of the modi?ed Einstein equation(2)is provided by the DGP model[2].All the known4D interactions,except gravity,are thought to be con?ned to a brane that is embedded in a5D in?nite-volume(uncompacti?ed)empty space where only gravity propagates.In this setup,the additional term on the l.h.s.of (2)is provided by the4D extrinsic curvature terms of the brane

Gμν?m c(Kμν?gμνK)=8πG N Tμν(x).(3) Here,Gμν=Rμν?gμνR/2,is the4D Einstein tensor for the metric that depends on both4D coordinates xμ,and the?fth coordinate y,gμν(x,y);K=gμνKμν,is the trace of the extrinsic curvature tensor

1

Kμν=

d4x dy√

2 d4x√2

Another form of the action(9)can be

given

in

the

ADM formalism

S=M2Pl

g4R(g4)+

M3?

gN(R+K2?K2μν).(10)

The above action gives rise to the equations of motion(3,6-8),where

m c≡2M3?

2 d4x(?μφ(x,0))2?M3?

M2

Pl

exp(?p|y|)

p2.

The solution (15)

exhibits a number of

interesting

properties:

(1)At short distances (i.e.,the large momenta p ?m c )it reduces to a 4D solution with the inverse square law,1/r 2,for the force mediated by this scalar.At large distances (i.e.,small momenta p ?m c )it turns into a 5D solution with the 1/r 3force law.

(2)The expression (15)appears to have two poles,one at p 2=0and another one at p =

p 2term in (15),and re?ects the presence

of a continuum of the Kaluza-Klein (KK)states.

(3)Two localized sources on a brane exchange one 5D scalar state the propagator of which can be read o?(15).From the 4D perspective what is being exchanged is an in?nite number of KK states,the 4D couplings of which are suppressed as compared to the ordinary 5D theory by the following factor [10]:

1

p 2+m c p

exp(?p |y |),(17)where

T 21/3≡8πG N T 2μν?1

2

T ·T .(19)

The di?erence between(18)and(19)is due to the fact that a5D graviton(or a mas-sive graviton for that matter)propagates5on-shell degrees of freedom(helicity-2, helicity-1,and helicity-0),while the GR graviton propagates only2on-shell degrees of freedom(helicity-2state).The helicity-1state of the5D graviton does not con-tribute to the one-graviton exchange amplitude(18)because of the conservation of the stress-tensor.However,the helicity-0state does contribute and gives rise to the ?nite di?erence between(18)and(19).Observationally(18)is excluded!This is the essence of the van Dam-Veltman-Zakharov discontinuity(vDVZ)[11].

Fortunately,the vDVZ argument fails for observationally interesting sources. This is due to nonlinear interactions[12,13],and can easily be understood as fol-lows[13]:the longitudinal part of the graviton propagator in DGP contains terms proportional to

pμpν

1It is also possible to modify the theory at the linearized level so that the conventional pertur-bative expansion is well-behaved[15,16],[17],[18].

(the so-called Vainshtein scale 2)[13]:r ?≡(r M r

2c )1/3.(21)

Below this scale the predictions of the theory are in a good agreement with the GR results.Above this scale,however,gravity of a compact object deviates substantially from the GR result.Note that r ?is huge for typical astrophysical objects.An isolated star of a solar mass would have r ?~100pc .However,if we draw a sphere of a 100pc radius with the Sun in its center there will be many other starts enclosed by that sphere.The matter enclosed by this sphere would have even larger r ?.We could draw a bigger sphere,but it will enclose more matter which would yield yet larger r ?and so on.An isolated object which could potentially be separated from a neighboring one by a distance larger than its own r ?is a cluster of galaxies.For typical clusters,r ?~(few Mpc )is just somewhat larger than their size.The above arguments suggest that interactions of isolated clusters may be di?er-ent in the DGP model.On the other hand,at scales beneath a few Mpc or so,there will be agreement with the GR results with potentially interesting small deviations.For simplicity,we discuss below these issues for a single isolated Schwarzschild source.There exist in the literature two di?erent (but both partial)solutions for the Schwarzschild problem in the DGP model.The ?rst one is based on approximate expansions in the r ?r ?and r ?r ?regions [2,13,14](see also [31]).We call this set of results the perturbative Schwarzschild (PS)solution.The second one [32]is a solution on the brane that interpolates smoothly from r ?r ?to r ?r c ?r ?,and is non-analytic in the either parameters used to obtain the PS solution.We call this the non-perturbative Schwarzschild (NPS)solution.What is certain,is that at observable distances both solutions are in good agreement with the GR results,but predict a tiny and potentially measurable deviations from GR [33,34](see also

[35,36]).

It is important to understand which of these two solutions,if any,is physically viable.Since neither of the two were solved completely in the entire 5D space-time,a ?rst step to discriminate between them would be to look closely at the predictions that could by tested observationally.This was discussed in detail in Ref.[36].We brie?y summarize some of the results.

Let us start with the Newton potential ?(r ).The result for r ?r ?leads:

?2?=r M

r 3

2and β=0for the perturbative solution (PS),while α=±0.84and

β=3/2?2(

√2

A similar,but not exactly the same scale was discovered by Vainshtein in massive gravity [12],hence the name.

The deviation from 4D gravity at r ?r ?gives rise to the additional perihelion precession of circular orbits [33,34](see

also

[35]

for

comprehensive

studies

of these

and related

issues).

In

a

simplest

approximation this e?ect is quanti?ed by a fraction of the deviation of the potential ?from its Newtonian form

?≡??

?P S ?0.59 r

r ?3π|α|

r ? 3/2 r

3

Note that in the leading order of the relativistic expansion the answer is given by the correction to the Newtonian potential,while the correction to the rr component of the metric is not important.

Here we discuss a slight modi?cation of the DGP model which retains the most of the important properties of the original theory and yet allows to relax the constrain on the bulk quantum gravity scale M?.

For simplicity we?rst discuss this for the scaler example.The main idea is that the strength of the5D kinetic term could depend on the y coordinate,so that its value is small on the brane but is large o?the brane.We could parametrize this as

dxdyF(x,y)(?Aφ(x,y))2,(26) where the new scalar F(a“dilaton”)is assumed to have an x independent pro?le in the y direction such that F(y→0)=m c M2Pl/4,while F(y=0)sets the bulk quantum gravity scale,which is unrestricted and could be as large as M Pl.

Let us perform these calculations more carefully.To account for the above prop-erties,we introduce an additional term into the action(12)which is just a opposite sign5D kinetic term peaked on the brane.To make things tractable,we smear the brane,that is,instead of the Dirac functionδ(y),we use its regularized version δ(y)→ˉδ(y)≡π?1ε/(y2+ε2),withε→0.The term that we’ll be adding to(12) then reads:

M2

?yφ=J/M2Pl.(30)

M2

Pl

Finally,introducing

ˉM3)

m c≡2(M3??

Two comments.First,the wrong-sign kinetic term(27)that is peaked only on the brane is dominated by the large positive4D kinetic term in(12),proportional to M2Pl>M2.Second,the number of adjusted parameters here is the same as in DGP: In(12)one should tune the value of M?such that the ratio2M3?/M2Pl is of order H0,while in the action(27)the value of M?

In the case of gravity,to which we turn now,similar considerations can applied. As before,we smooth out the brane by replacingδ(y)→ˉδ(y),and think of the5D EH term to have a pro?le due to the“dilaton”?eld

d4x dy√

2 d4x dyˉδ(y)√2

d4x dyˉδ(y)√

2 d4x√2 d4x dy√

2 d4x dyˉδ(y)√

M2

Pl

(Kμν?gμνK)=8πG N Tμν(x).(39)

IfˉM=0,as in(9),we get back the result(3)with m c=2M3?/M2Pl.However,ˉM does not have to be zero.For an arbitrary value of M?we tune the value ofˉM so that the crossover scale(31),which appears in(39),is adjusted to the value of the present-day Hubble scale m c~H0~10?42GeV.Hence,(39)recovers(46).

What we have shown is that for M?M Pl the junction condition is not mod-i?ed as compared to DGP.The5D gravitational constant in the bulk equations of (35)would change,though,if we were to consider sources extending into the bulk. However,our primary interest is in the sources localized on the brane,and for those, the new model(35)with M?M Pl.recovers the results of DGP.

5Cosmology

Let us turn to the cosmological solutions.To this end we consider distributions of matter and radiation that are homogeneous at scales?r c.Therefore,the compli-cations due to non-linear dynamics outlined in the previous section do not apply to these sources5.

The metric is parametrized as follows:

ds2=?P2(t,y)dt2+Q2(t,y)γij dx i dx j+Σ2(t,y)dy2.(40) There are two branches of solutions that are labeled by an integer?=±1[19]:

P(t,y)=1+?|y|

¨a

˙a2+k

,Q(t,y)=a(t)+?|y|

5Although,those complications will be relevant to perturbations about the background cosmo-logical solutions.

the cosmological expansion from a4D point of view looks as if it had the equation of state parameter less than?1.This is because gravity turns into the5D regime at scales H~m c,which implies less“deceleration”of matter due to attractive gravity, and this appears to a4D observed as“faster”acceleration[40].

It is straightforward to introduce matter/radiation on the brane.Following[19] we obtain the Friedmann equation

H2+k8πG N

4

+?

m c

6One could look at this breakdown in terms of the scalar“conformal”mode.In massive gravity this mode decouples from the rest of the modes in a certain limit[41].In the DGP model,however, such a decoupling does not take place[42].

7In contrast with this,screening of the similar sources on the conventional branch of DGP, leaves them with positive5D mass(tension)[32,49].

it requires a growing metric in the bulk.For instance,in a simplest spatially-?at case,the full5D metric of the self-accelerated solution takes the form[19]:

ds2=(1+H|y|)2 ?dt2+e2Ht d x2 +dy2,(44) where y is the5th coordinate and H denotes the dS expansion rate of the4D worldvolume(the latter is labeled here by Cartesian coordinates(t, x),and we use the5D coordinate system in which the brane is located at y=0.).The unusual feature of the above metric is that it grows in the bulk,even though the worldvolume metric is that of dS space.A linearly growing metric,similar to(44),would have been produced by a negative tension3-brane8.The growing metric(44)imprints its “negative”e?ects on the brane worldvolume through the extrinsic curvature,giving rise to the solutions mentioned in the previous paragraph.

Can this problem be cured?It turns out that one can modify the DGP equations in such a way that the new system admits a background that is equivalent to the self-accelerated solution on the4D brane,however,di?ers from it in the bulk.

The new solution that we will discuss takes the form:

ds2=(1?H|y|)2 ?dt2+e2Ht d x2 +dy2.(45) In order to obtain this solution one needs to?ip the sign in front of the extrinsic curvature term in one of the DGP equations,keeping the rest of the equations intact.Below will discuss how such equations can be obtained by modifying the DGP action.

The solution(45)is formally identical to that for a3-brane endowed with a positive4D cosmological constant(brane tension)which is embedded in5D empty space in5D GR[50].However,unlike the latter,the worldvolume expansion in the present case(45)is due to modi?ed gravity,while the4D cosmological constant is set to zero.This di?erence is what is responsible for the modi?ed Friedmann equation, and distinct cosmological evolution on the self-accelerated background.

The bulk space in both(44)and(45)is locally equivalent to5D Minkowski space. In the chosen coordinate system the solution(45)encounters the Rindler horizon at |y|=H?1.However,an analytic continuation beyond this point can be performed by employing new coordinates.In that coordinate system the brane(with closed spatial sections)can be regarded as a4D dS bubble that is?rst contracting and then re-expanding in5D Minkowski space.

The proposal of Ref.[9]is to add a new term on the brane worldvolume such that the sign in front of the second term on the l.h.s.of(3)would?ip.In other words,we introduce a new set of equations in which(3)is replaced by:

Gμν+m c(Kμν?gμνK)+γΣμν=8πG N Tμν(x),(46) while all the other equations(6),(7)and(8)remain intact.Here,in a simplest case Σμν≡(Gμν?1

8This could be in,e.g.,5D Minkowski or Anti de Sitter(AdS)space-time.

is in general nonzero for a regularized brane width.An important property of the tensorΣμνis that it equals to Gμνon the self-accelerated solution given below,while it contributes in a non-trivial way to perturbations about it.

The action functional that gives rise to this new set of equations happens to be the one that we have already discussed in the previous section(35).The only di?erence is that in the junction condition(39)we need to?ip the sign of the coe?cient in front of the extrinsic curvature terms.This can be achieved if we chooseˉM>M?and set

m c≡2(

ˉM3?M3?)

√˙a2+k,Σ(t,y)=1,(48)

where we have chosen a negative sign in front of the terms proportional to|y|.Let us now see how the change of the positive signs in the metric(41)into the negative signs in(48)changes the value of the extrinsic curvature evaluated at y=0+.On the solution(48),Nμ=0,N=1,and Kμν=?y gμν/2.Hence,at y=0+the components of the extrinsic curvature tensor evaluated on the solution(48)equal to minus the corresponding components evaluated on(41).Therefore,substitution of(41)into(3)would give the same equation as the substitution of(48)into(46). The corresponding Friedmann equation on the empty brane,which now follows from (46)instead of(3),reads:

H2+k

H2+

k

9There are two other solutions to(49).For k=0one?nds the H=0?at solution.For k=?1 one?nds the Milne solution a(t)=t.

It still remains to be shown that the modi?ed model described by(35)gets read of all the negative mass states that may appear in the self-accelerated solution,this question will be discussed in[53].I just point out that an additional bene?t of the new term in(35)is that it allows to relax the constraint on the bulk gravity scale.The latter can take an arbitrary value below M Pl.This opens a window for a possible string theory realization of this model,or its D>5counterparts[5,7](for earlier proposals see[51,52]).

Acknowledgments

I would like to thank the organizers of the Carg`e se2007School,especially Laurent Baulieu,Pierre Vanhove,Paul Windy,and Elena Gianolio.The work is supported by NASA grant NNGG05GH34G and NSF grant0403005.

References

[1]A.G.Riess et al.[Supernova Search Team Collaboration],Astron.J.116,1009

(1998)[arXiv:astro-ph/9805201];

S.Perlmutter et al.[Supernova Cosmology Project Collaboration],Astrophys.

J.517,565(1999)[arXiv:astro-ph/9812133].

[2]G.Dvali,G.Gabadadze and M.Porrati,Phys.Lett.B485,208(2000)

[hep-th/0005016].

[3]S.Weinberg,Rev.Mod.Phys.61,1(1989).

[4]G.Gabadadze,arXiv:hep-th/0408118;In Ian Kogan Memorial Volume,Shif-

man,M.(ed.)et al.World Scienti?c,2004;vol.2,pp1061-1130.

[5]G.R.Dvali and G.Gabadadze,Phys.Rev.D63,065007(2001)

[arXiv:hep-th/0008054].

[6]G.Dvali,G.Gabadadze and M.Shifman,Phys.Rev.D67,044020(2003)

[arXiv:hep-th/0202174];

G.Dvali,G.Gabadadze and M.Shifman,arXiv:hep-th/0208096.Published in

*Minneapolis2002,Continuous advances in QCD*566-581.

[7]G.Gabadadze and M.Shifman,Phys.Rev.D69,124032(2004)

[arXiv:hep-th/0312289].

[8]R.Arnowitt,S.Deser and C.W.Misner,”Gravitation:an introduction to cur-

rent research”,L.Witten ed.(Wiley1962),pp227–265;arXiv:gr-qc/0405109.

[9]G.Gabadadze,arXiv:hep-th/0612213.

[10]G.R.Dvali,G.Gabadadze,M.Kolanovic and F.Nitti,Phys.Rev.D64,084004

(2001)[arXiv:hep-ph/0102216].

[11]H.van Dam and M.J.G.Veltman,Nucl.Phys.B22,397(1970);

V.I.Zakharov,JETP Lett.12(1970)312[Pisma Zh.Eksp.Teor.Fiz.12(1970) 447].

[12]A.I.Vainshtein,Phys.Lett.B39(1972)393.

[13]C.De?ayet,G.R.Dvali,G.Gabadadze and A.I.Vainshtein,Phys.Rev.D65,

044026(2002)[arXiv:hep-th/0106001].

[14]A.Gruzinov,New Astron.10,311(2005)[arXiv:astro-ph/0112246].

[15]G.Gabadadze,Phys.Rev.D70,064005(2004)[arXiv:hep-th/0403161].

[16]C.Middleton and G.Siopsis,Phys.Lett.B613,189(2005)

[arXiv:hep-th/0502020].

[17]M.Porrati and J.W.Rombouts,Phys.Rev.D69,122003(2004)

[arXiv:hep-th/0401211].

[18]M.N.Smolyakov,Phys.Rev.D72,084010(2005)[arXiv:hep-th/0506020].

[19]C.De?ayet,Phys.Lett.B502,199(2001)[arXiv:hep-th/0010186].

[20]C.De?ayet,G.R.Dvali and G.Gabadadze,Phys.Rev.D65,044023(2002)

[astro-ph/0105068].

[21]C.De?ayet,https://www.doczj.com/doc/b99443549.html,ndau,J.Raux,M.Zaldarriaga and P.Astier,Phys.Rev.

D66,024019(2002)[arXiv:astro-ph/0201164].

[22]A.Lue,R.Scoccimarro and G.Starkman,Phys.Rev.D69,044005(2004)

[arXiv:astro-ph/0307034].Phys.Rev.D69,124015(2004).

[23]D.Jain, A.Dev and J.S.Alcaniz,Phys.Rev.D66,083511(2002)

[arXiv:astro-ph/0206224].J.S.Alcaniz,D.Jain and A.Dev,Phys.Rev.D 66,067301(2002).

[24]M.Ishak,A.Upadhye and D.N.Spergel,Phys.Rev.D74,043513(2006)

[arXiv:astro-ph/0507184].

[25]E.V.Linder,Phys.Rev.D72,043529(2005)[arXiv:astro-ph/0507263].

[26]L.Knox,Y.S.Song and J.A.Tyson,arXiv:astro-ph/0503644.

[27]R.Maartens and E.Majerotto,Phys.Rev.D74,023004(2006)

[arXiv:astro-ph/0603353].

[28]K.Koyama and R.Maartens,JCAP0601,016(2006)

[arXiv:astro-ph/0511634].

[29]I.Sawicki and S.M.Carroll,arXiv:astro-ph/0510364.

[30]Y.S.Song,I.Sawicki and W.Hu,arXiv:astro-ph/0606286.

[31]T.Tanaka,Phys.Rev.D69,024001(2004)[arXiv:gr-qc/0305031].

[32]G.Gabadadze and A.Iglesias,Phys.Rev.D72,084024(2005)

[arXiv:hep-th/0407049];

[33]G.Dvali,A.Gruzinov and M.Zaldarriaga,Phys.Rev.D68,024012(2003)

[arXiv:hep-ph/0212069].

[34]A.Lue and G.Starkman,Phys.Rev.D67,064002(2003)

[arXiv:astro-ph/0212083].

[35]L.Iorio,Class.Quant.Grav.22,5271(2005)[arXiv:gr-qc/0504053];JCAP

0509,006(2005)[arXiv:gr-qc/0508047];JCAP0601,008(2006).

[36]G.Gabadadze and A.Iglesias,Phys.Lett.B632,617(2006)

[arXiv:hep-th/0508201].

[37]J.G.Williams,X.X.Newhall and J.O.Dickey,Phys.Rev.D53,6730(1996);

J.G.Williams,D.H.Boggs,J.O.Dickey,W.M.Folkner,“Lunar tests of grav-itational physics”,Proceedings of the Ninth Marcel Grossman Meeting,Rome, Italy,June2000,ed.R.Jantzen;World Scienti?c Co.,(2001)

[38]T.W.Murphy,Jr.,J.D.Strasburg,C.W.Stubbs,E.G.Adelberger,J.Angle,K.

Nordtvedt,J.G.Williams,J.O.Dickey,B.Gillespie,“The Apace Point Obser-vatory Lunar Laser-ranging Operation(APOLLO),“12th International Lunar Laser Ranging Workshop,Matera,Italy,2000.

[39]G.Dvali,G.Gabadadze,X.r.Hou and E.Sefusatti,Phys.Rev.D67,044019

(2003)[arXiv:hep-th/0111266].

[40]A.Lue and G. D.Starkman,Phys.Rev.D70,101501(2004)

[arXiv:astro-ph/0408246].

[41]N.Arkani-Hamed,H.Georgi and M.D.Schwartz,Annals Phys.305,96(2003)

[arXiv:hep-th/0210184].

[42]G.Gabadadze and A.Iglesias,Phys.Lett.B639,88(2006)

[arXiv:hep-th/0603199].

[43]M. A.Luty,M.Porrati and R.Rattazzi,JHEP0309,029(2003)

[arXiv:hep-th/0303116].

[44]K.Koyama,Phys.Rev.D72,123511(2005)[arXiv:hep-th/0503191].

[45]D.Gorbunov,K.Koyama and S.Sibiryakov,Phys.Rev.D73,044016(2006)

[arXiv:hep-th/0512097].

[46]C.Charmousis,R.Gregory,N.Kaloper and A.Padilla,JHEP0610,066(2006)

[arXiv:hep-th/0604086].

[47]C.De?ayet,G.Gabadadze and A.Iglesias,JCAP0608,012(2006)

[arXiv:hep-th/0607099].

[48]G.Dvali,arXiv:hep-th/0610013.

[49]G.Dvali,G.Gabadadze,O.Pujolas and R.Rahman,arXiv:hep-th/0612016.

[50]N.Kaloper and A. D.Linde,Phys.Rev.D59,101303(1999)

[arXiv:hep-th/9811141].

[51]I.Antoniadis,R.Minasian and P.Vanhove,Nucl.Phys.B648,69(2003)

[arXiv:hep-th/0209030].

[52]E.Kohlprath,Nucl.Phys.B697,243(2004)[arXiv:hep-th/0311251].E.Kohl-

prath and P.Vanhove,arXiv:hep-th/0409197.

[53]G.Gabadadze,in progress.

基于ASM的一体化膜生物反应器工艺模拟与多目标优化研究

基于ASM的一体化膜生物反应器工艺模拟与多目标优化研究膜生物反应器(MBR)是一种高效的污水处理与再生工艺,制约其大面积推广 应用的关键问题是其运行能耗偏高。本论文结合已运行的采用MBR工艺的分散式污水处理工程,采用Biowin软件建立了AAO-MBR污水处理工艺模拟模型,得出决策变量与主要出水水质参数的函数关系,建立出水水质达标、总建设成本、总运行成本的多目标优化模型,提出优化运行策略,降低污泥回流量,调整曝气策略, 实现用于分散式污水处理MBR工艺的整体优化。 本研究在工程现场开展了连续采样和监测,获得进出水水质、水量的时变化数据,并结合该污水处理工程的建设及运行资料,采用Biowin软件建立MBR工艺模拟模型,采用灵敏度分析方法筛选对模拟结果有显著影响的反应动力学参数和化学计量学系数。选用现场测试的进水水量及水质指标作为工艺模拟模型的输入,调整模型的反应动力学参数和化学计量学系数,使模型模拟出水COD、氨氮、总 氮及总磷浓度与实测值达到较高的吻合度,平均偏差分别为4.15mg/L、0.72mg/L、4.05mg/L、0.34mg/L。 采用实测数据对校正后模型的输入值进行动态模拟,以评估校正后模型与该污水处理工程的吻合度,结果表明模型对于COD、氨氮、总氮及总磷去除的模拟 可信度较高,模拟输出值与实测值的平均偏差分别为3.92mg/L、0.87mg/L、 1.84mg/L及0.25mg/L。基于Biowin模拟模型,确定了对MBR出水水质、建设成本、运行成本有显著影响的决策变量,利用响应曲面法中心组合设计的方法,建立了决策变量与出水水质参数COD、氨氮、总磷的函数关系,结果显示回归方程拟 合较好,模型显著。 采用类电磁机制算法求出了MBR工艺在满足出水水质达标情况下,使总体水

葡萄籽提取物原花青素(OPC)的功效和作用

葡萄籽提取物的基本介绍: 葡萄籽提取物是从天然葡萄籽中提取的有效活性营养成份配以维生素E等主要原料精制而成的营养食品。葡萄籽提取物是从葡萄籽中提取的一种人体内不能合成的新型高效天然抗氧化剂物质。陕西浩洋生物科技有限公司经过研究发现葡萄籽提取物是目前自然界中抗氧化、清除自由基能力最强的物质,其抗氧化活性为维生素E的50倍、维生素C的20倍,它能有效清除人体内多余的自由基,具有超强的延缓衰老和增强免疫力的作用。抗氧化、抗过敏、抗疲劳增强体质、改善亚健康状态延缓衰老、改善烦躁易怒、头昏乏力、记忆力减退等症状。葡萄籽的功效与作用。 葡萄籽提取物的功效和作用: 1.清除自由基、抗衰老、增强免疫力: 清除自由基,阻止自由基对人体细胞的破坏。保护人体器官和组织,防治心脏病、癌症、早衰、糖尿病、动脉硬化等100多种由自由基所引起的疾病。 2.保护皮肤、美容养颜: 有“皮肤维他命”和“口服化妆品”的美誉,保护胶原蛋白,改善皮肤弹性与光泽,美白、保湿、祛斑;减少皱纹、保持皮肤的柔润光滑;清除痤疮、愈合疤痕。 增强皮肤抵抗力、免疫力,防治皮肤过敏及各类皮肤病;增强皮肤抗辐射能力,阻止紫外线侵害; 3.抗过敏: 深入细胞从根本上抑制致敏因子“组胺”的释放,提高细胞对过敏源的耐受性;清除致敏自由基,抗炎、抗过敏;稳定皮肤血管组织,缓解荨麻疹、干革热、过敏性鼻炎等各种过敏症状;有效调节机体免疫力,彻底改善过敏体质。 4.保护血管: 保护心脑血管,降低胆固醇,防止动脉硬化,预防脑溢血、中风、偏瘫等; 维持毛细血管适度的渗透性,增加血管强度,减低毛细血管易脆性; 降血脂、降血压,抑制血栓的形成,减少脂肪肝的发生;预防血管壁脆弱引起的浮肿、血丝;减轻水肿及腿部肿胀,减轻淤伤、运动受伤; 改善静脉曲张、静脉机能不全、静脉炎,防治毛细血管出血。 5.抗辐射: 有效预防和减轻紫外线辐射对皮肤的损伤,抑制自由基引发的脂质过氧化;减少电脑、手机、电视等辐射对皮肤、内脏器官造成的伤害。 6.保护消化系统: 保护胃粘膜,防治胃炎、胃溃疡及十二指肠溃疡。 7.保护眼睛: 保护眼睛免受辐射损伤,防治红血丝;增强夜视力、减少视网膜症等。阻止自由基对晶状体蛋白的氧化,预防白内障、视网膜炎。

葡萄籽中分离提取原花青素的研究

葡萄籽中分离提取原花青素的研究 花青素是一类多酚类化合物,其具有高效的清除自由基的功能,是一种新型、高效、低毒的天然抗氧化剂。本实验通过浸提的方法从葡萄籽中提取原花青素,考察了不同溶剂、浸提时间、浸提温度、乙醇体积分数和料液比等单因素对浸提效果的影响,确定了最佳的单因素水平。研究结果表明:本项目产品投资费用少,操作费用低,产品附加值高;原料为废物利用,变废为宝符合国家相关产业政策;几乎没有“三废”排放,使用的溶剂全部回收利用,废渣可以作为造纸或者饲料综合利用。 标签:花青素;葡萄籽;提取;正交实验 1 概述 原花青素是广泛存在于植物中的一类天然多酚类化合物,多以糖苷的形式存在,也称花色苷。属于缩合鞣质或黄烷醇类。最早而最丰富的花青素是从红葡萄渣中提取的葡萄皮红。它于1879年在意大利上市。 由于原花青素的多种功效,由葡萄籽提取的原花青素已被我国卫生部批准为保健原料。目前对原花青素的提取研究及保健作用研究已非常成熟。已经将其应用到工业化产业,开发出多种原花青素的保健产品和化妆产品。原花青素的产品已被广大消费者普遍接受。 2 葡萄籽中花青素的提取 本实验通过浸提的方法从葡萄籽中提取原花青素,考察了不同溶剂、浸提时间、浸提温度、乙醇体积分数和料液比等单因素对浸提效果的影响,确定了最佳的单因素水平。并通过设计正交实验,得出原花青素提取最佳工艺条件。 2.1 实验方法 2.1.1 葡萄籽中原花青素的提取 本实验采用甘肃紫轩酒业葡萄酒厂生产葡萄酒产生的葡萄籽下脚料作为本实验的原材料。在生产葡萄酒压榨葡萄汁的糟粕和葡萄酒生产前和发酵后压榨的榨粕,所得的这些榨渣中,以换成干品计,约有50%的葡萄皮,45%的葡萄籽和少量的梗等,将该榨渣经粗选分离出葡萄籽,作为提取的原料。 所得的葡萄籽用粉碎机粉碎后,过20目筛,于磨口三角瓶中,经石油醚脱脂脱水份,得脱脂葡萄籽粉,用一浸提液在50℃的恒温水浴中回流浸提,离心后取上清液,反复提取若干次,最后洗涤残渣,将上清液和洗涤液合并,加入固体无水硫酸钠脱水,倾出上层溶液,在真空度为0.095MPa,温度为40℃的条件下真空浓缩,浓缩液冷却至室温,得到原花青素粗提液,干燥,制得粗提物。测

野生毛葡萄籽原花青素抗氧化活性的研究

野生毛葡萄籽原花青素抗氧化活性的研究 郑燕升,莫倩 (广西工学院轻化系,广西柳州545006) 摘要 [目的]为进一步开发利用野生毛葡萄籽原花青素提供依据。[方法]选择清除超氧阴离子自由基(O 2-?)和羟基自由基(?O H )2个方面,对野生毛葡萄籽原花青素的抗氧化活性进行测定。[结果]野生毛葡萄籽原花青素对O 2- ?和?O H 均具有较强的清除能力,对O 2-?、?O H 野生毛葡萄籽原花青素的I C 50分别为0.37、0.33m g/m l 。[结论]野生毛葡萄籽原花青素具有较强的抗氧化活性。关键词 野生毛葡萄;原花青素;抗氧化活性 中图分类号 S58 文献标识码 A 文章编号 0517-6611(2008)18-07512-02 A n t iox ida tio n E ffe c t o f P roa n th o c y an d in s fromS e e d s o f W ild V itis quinquangu laris ZHENG Ya n -sh e n g e t a l (D epa r t m en t o f B io lo g ica l an d C h e m ica l E n g in ee rin g ,G u an gx i U n ive rs ity o f T ech n o log y ,L iu zh ou,G u an gx i 545006)A b s tra c t [O b jective]T h e re se archa i m edto p ro v ide scien tific basis fo r deve lop in g p roan th ocy and in s fromw ild V itis quinquangu laris .[M e th od]T h e rad-ica l scaven g in g e ffe ct o f pro an th ocyan d i n s fromw ild V itis quinquangu laris w a s stu d ied a t d iffe ren t sys tem s(O -?and ?OH )[R e su lt]P ro an th ocyan d i n s from w ild V itis qu i nquangu laris h ad s tron g scav en g in g e ffect on free radica ls gen e ra ted by d ife ren t sys tem s .F o r O 2-?an d ?OH,th e I C 50o f p ro an th o cyan d in s fromw ild V itis quinquangu laris w a s 0.37an d 0.33m g/m l .[C on clu s ion]P roan th ocy and in s fromw ild V itis qu inquangularis h ad stron g an tiox idan t a ctiv ity.K e y w o rd s W ild V itis quinquangu laris ;P roan th ocyan d i n s ;A n tiox idan t activ ity 基金项目 广西教育厅资助项目(200708LX198);广西工学院基金项目 (院科自0704104)。 作者简介 郑燕升(1964-),男,广西贵港人,硕士,副教授,从事天然 有机化学方面的研究。 收稿日期 2008-04-16 在自然界中,多酚类物质广泛存在,并作为天然的抗氧化剂而广泛应用。对于葡萄籽原花青素抗氧化性的研究报道很多 [1-4] ,既包括动物体内抗氧化试验,又包括体外细胞 培养及用化学方法测定。研究表明,葡萄籽原花青素是迄今为止所发现的最有效的自由基清除剂之一,特别是低聚花青素可以清除体内的自由基和活性氧,能预防因人体血液中低密度脂蛋白氧化而引起的动脉硬化 [5] 。许多研究表明,原花 青素抗氧化、清除自由基的能力远远强于V E 和V c ,能防治80多种因自由基引起的疾病,包括心脏病、关节炎等,还具有改善人体微循环的功能[6-7]。笔者研究了自制的野生毛葡萄籽原花青素产品在2种体系中清除自由基的活性,为进一步开发利用野生毛葡萄原花青素提供一定的科学依据。1 材料与方法 1.1 主要仪器与试剂 A L 104电子分析天平(梅特勒—托利多仪器有限公司);W F ZU V -2000紫外/可见分光光度计(尤尼柯仪器有限公司);PH S-25型精密酸度计(上海伟业仪器厂);ZFD —5250全自动新型鼓风干燥箱(上海智城分析仪器制造有限公司);2003型恒温磁力加热搅拌器(上海闵行虹浦仪器厂)。三羟甲基氨基甲烷(T ris)、邻二氮菲、邻苯三酚、F e-SO 4、H 2O 2、乙醇、丙酮等为国产分析纯试剂。 1.2 试验材料 供试材料为野生毛葡萄籽原花青素,自制[8](>95.0%)。1.3 试验方法 1.3.1 野生毛葡萄原花青素清除超氧阴离子自由基(O 2-?)的活性。采用邻苯三酚自氧化法[9]。在试管中加入4.5m l T ris-H C l 缓冲液(pH 值8.2)和0.1m l 不同浓度的样品溶液,置于25℃恒温水浴中20m in ,用微量注射器注入0.4m l 经25℃预热的邻苯三酚,混合均匀后置于25℃恒温水浴中反应4m in ,立即加入2滴8m o l/L H C l 中止反应。用去离子水调零,420nm 处测定吸光度,同时以0.1m l 去离子水代替样品做空白试验,则原花青素对O 2-?自由基的清除率按如下 公式计算。 清除率(%)= A 空白-A 样品 A 空白 ×100 (1) 1.3.2 野生毛葡萄原花青素清除羟基自由基(?OH )的活性。采用邻二氮菲-F e 2+氧化法[10]。在试管中依次加入5m m o l/L 邻二氮菲溶液0.6m l 、磷酸盐缓冲液(pH 值7.4)0.4m l 和5m m o l/L F e 2+-E DT A 溶液0.6m l ;其中,加入体积分数为0.1%H 2O 20.8m l 作为损伤管,加入体积分数为0.1%H 2O 20.8m l 和1m l 不同浓度的样品溶液作为样品管,不加H 2O 2和样品的作为空白管;将各管用无水乙醇定容到4m l ,37℃下反应1h ,535nm 处测定吸光度。野生毛葡萄原花青素对羟基自由基(?OH )的清除率按如下公式计算。 清除率(%)=A 样品-A 损伤 A 空白-A 损伤 ×100 (2) 2 结果与分析 野生毛葡萄原花青素在邻苯三酚自氧化体系和F e 2+/H 2O 2氧化体系中清除超氧阴离子自由基(O 2-?)和羟基自由基(?OH )的试验结果分别见图1、 2。 图1 野生毛葡萄原花青素对O 2- ?的清除效果 F ig.1 S c a v e n g in g e ffe c t o f p ro a n th o c y a n d in s from w i ld V itis qu in -quangu laris o n O 2-? 由图1可知,邻苯三酚自氧化体系中,随着原花青素浓度的升高,清除率也随之升高。将上述数据进行回归,得到回归方程: y =11.636x 3-151.66x 2+227.4x -13.46(R 2=0.9644) (3) 根据回归方程可求得在该试验条件下野生毛葡萄籽原 安徽农业科学,J ou rn a l o f A n hu i A g r i .S c i .2008,36(18):7512-7513 责任编辑 刘月娟 责任校对 况玲玲

膜生物反应器

膜生物反应器 科技名词定义 膜生物反应器 membrane bioreactor;MBR 定义1: 膜技术与生物技术结合的使系统出水水质和容积负荷都得到大幅提高的一种污水处理装置。 所属学科: 海洋科技(一级学科);海洋技术(二级学科);海水资源开发技术(三级学科)定义2: 一种含有固定酶或细胞、可用来促进特定生物化学反应的反应器。是工业生化在生产工艺上采用的一种膜技术。 简介 膜生物反应器 膜-生物反应器(Membrane Bio-Reactor,MBR)为膜分离技术与生物处理技术有机结合之新型态废水处理系统。是一种由膜分离单元与生物处理单元相结台的新型水处理技术,以膜组件取代二沉池在生物反应器中保持高活性污泥浓度减少污水处理设施占地,并通过保持低污泥负荷减少污泥量。主要利用沉浸于好氧生物池内之膜分离设备截留槽内的活性污泥与大分子固体物。因此系统内活性污泥(MLSS)浓度可提升至10,000mg/L,污泥龄(SRT)可延长30天以上,于如此高浓度系统可降低生物反应池体积,而难降解的物质在处理池中亦可不断反应而降解。故在膜制造技术不断提升支援下,MBR处理技术将更加成熟并吸引着全世界环境保护工业的目光,并成为21世纪污水处理与水资源回收再利用唯一选择。 用途

污水处理:中国是一个缺水国家,污水处理及回用是开发利用水资源的有效措施。污水回用是将城市污水通过膜生物反应器等设备的处理之后,将其用于绿化、冲洗、补充观赏水体等非饮用目的,而将清洁水用于饮用等高水质要求的用途。城市污水就近可得,免去了长距离输水:其在被处理之后污染物被大幅度去除,这样不仅节约了水资源,也减少了环境污染。污水回用已经在世界上许多缺水的地区广泛采用,被认为具有显著的社会、环境和经济效益。 迸出水水质比较: 设计进水水质:BOD5<30Omg/l CODcr<50Omg/l SS<30Omg/l T--N<4-5mg/l 出水水质:BOD5<5mg/l NH4+-N<1.Omg/l CODcr〈2Omg/l 浊度<1NTU 膜生物反应器 SS=Omg/l 细菌总数<20个/ml T-N<0.5mg/l 大肠杆菌数未检出 膜的种类繁多,按分离机理进行分类,有反应膜、离子交换膜、渗透膜等;按膜的性质分类,有天然膜(生物膜)和合成膜(有机膜和无机膜) ;按膜的结构型式分类,有平板型、管型、螺旋型及中空纤维型等。 工艺 膜生物反应器(MBR)是杨造燕教授及其领导的科研小组历经10年时间研究开发出来的新型污水生物处理装置,该技术被称为"21世纪的水处理技术",该项目曾被列为国家八?五、九?五重点科技攻关项目并被国家列为"中国21世纪议程实施能力及可持续发展实用新技术",此项技术在国内处于领先水平,部分指标达到国际领先水平。 MBR是膜分离技术与生物处理法的高效结合,其起源是用膜分离技术取代活性污泥法中的二沉池,进行固液分离。这种工艺不仅有效地达到了泥水分离的目的,而且具有污水三级处理传统工艺不可比拟的优点: 1、高效地进行固液分离,其分离效果远好于传统的沉淀池,出水水质良好,出水悬浮物和浊度接近于零,可直接回用,实现了污水资源化。

葡萄籽原花青素液相检测方法

原花青素原花青素原花青素原花青素HPLC初步方案初步方案初步方案初步方案 一.实验目的:分析样品原花青素纯度,了解其中杂质成分。 二.实验方案: 1. 方案一:Waters 公司高效液相色谱,C18柱(4.6 ×250 mm) , 检测波长为280 nm,进样量10μL ,柱温为室温。待测液均经0.45μm 孔径的滤膜过滤。流动相及流速见下表(A —10 %乙酸,B —重蒸水): 2. 方案二:(间接法定量)(原理类似铁盐催化比色法) (1) 标准曲线:称取前花青素标准品10mg 溶于10ml甲醇中,吸取该溶液0、0.1、0.25、0.5、 1.0、1.5ml 置于10ml 容量瓶中,加甲醇至刻度,摇匀。各取1ml 测定。 (2) 试样测定: 将正丁醇与盐酸按95 :5的体积比混合后,取出6.0ml 置于具塞锥瓶中,再加入0.2ml硫酸铁铵[NH4Fe(SO4) 2·12H2O]溶液(用浓度为2mol/L 盐酸配成2%(w/v)的溶液)和1.0ml 经0.45μm滤膜过滤的试样溶液,混匀,置沸水浴回流,精确加热40min后,立即置冰水中冷却,待进行高效液相色谱分析。 (3)液相色谱参考分析条件: 色谱柱Shimadzu Shim –pak CLC –ODS 4.6 ×150mm;柱温35 ℃; 检测器:紫外检测器,检测波长525nm 流动相: 水:甲醇:异丙醇:10 %甲酸= 73 :13 :6 :8 流速0.9ml/min。注:该方法使用的水解方法与我们当前使用的铁盐催化水解原花青素方法稍有差异,哪种效果更好,可进行预实验加以比较。 3.方案三:(反相高效液相色谱)标样:原花青素标准品 色谱柱:Hypersi ODS-2 ,150 × 4.6mm 5μm; 流动相:A:0 . 2%(V/V) 乙酸;B:乙腈; 流量:1ml /min; 进样量:5μl; 柱温:30℃; 检测波长:280nm. 洗脱梯度:以乙腈的百分比浓度表示(B液溶于A液) 0 ~5 % ,10min; 5%~20%,10~20min; 20%~40%,20~40min; 40%~50%,40~50min; 50%~5%,45~50min; 5%~0,50~60min。 稳定液配制:取0.5g 抗坏血酸置于1L 容量瓶中,加约500mL 双蒸水,混合,溶解 抗坏血酸。加入100mL 乙腈,用双蒸水稀释至刻度。标准品溶液液的配制与稀释均使 用稳定液做溶剂。

膜生物反应器

膜生物反应器 概述 MBR一体化设备利用膜生物反应器(MBR)进行污水处理及回用的一体化设备,其具有膜生物反应器的所有优点:出水水质好,运行成本低、系统抗冲击性强、污泥量少,自动化程度高等,另外,作为一体化设备,其具有占地面积小,便于集成。它既可以作为小型的污水回用设备,又可以作为较大型污水处理厂(站)的核心处理单元,是目前污水处理领域研究的热点之一,具有广阔的应用前景。 2工作原理 MBR是一种将高效膜分离技术与传统活性污泥法相结合的新型高效污水处理工艺,它用具有独特结构的MBR平片膜组件置于曝气池中,经过好氧曝气和生物处理后的水,由泵通过滤膜过滤后抽出。它利用膜分离设备将生化反应池中的活性污泥和大分子有机物质截留住,省掉二沉池。活性污泥浓度因此大大提高,水力停留时间(HRT)和污泥停留时间(SRT)可以分别控制,而难降解的物质在反应器中不断反应、降解。 由于MBR膜的存在大大提高了系统固液分离的能力,从而使系统出水,水质和容积负荷都得到大幅度提高,经膜处理后的水水质标准高(超过国家一级A标准),经过消毒,最后形成水质和生物安全性高的优质再生水,可直接作为新生

水源。由于膜的过滤作用,微生物被完全截留在MBR膜生物反应器中,实现了水力停留时间与活性污泥泥龄的彻底分离,消除了传统活性污泥法中污泥膨胀问题。膜生物反应器具有对污染物去除效率高、硝化能力强,可同时进行硝化、反硝化、脱氮效果好、出水水质稳定、剩余污泥产量低、设备紧凑、占地面积少(只有传统工艺的1/3-1/2)、增量扩容方便、自动化程度高、操作简单等优点。 3与传统的污水处理生物处理技术相比,MBR具有以下明显优势: 1.设备紧凑,占地少

原花青素基本信息

原花青素 1外观 葡萄籽原花青素提取物外观一般为深玫瑰红至浅棕红色精制粉末,低聚物无色至 浅棕色,但因为葡萄籽种类、来源不同,所以在外观、色泽上都存在一定的差异。 2鞣性 原花青素能与蛋白质发生结合。一般情况下,结合是可逆的。原花青素一一蛋白 质结合反应是其最具特征性的反应之一。 3溶解性 低聚原花青素易溶于水、醇、酮、冰醋酸、乙酸乙酷等极性溶剂,不溶于石油醚、 氯仿、苯等弱极性溶剂中。高聚原花青素不溶于热水但溶于醇或亚硫酸盐水溶液, 这一点相当于水不溶性单宁,习惯上称为“红粉”。聚合度更大的聚合原花青素不 溶于中性溶剂,但溶于碱性溶液,习惯上又称为“酚酸”。 4紫外吸收特性 葡萄籽提取物原花青素水溶液的紫外最大吸收波长为278nm。因其分子中所含的 苯环结构,在紫外光区有很强的吸收。可起到“紫外光过滤器”的作用,在化妆品 中可开发研制防晒剂。 图1为原花青素分子结构

现在发现多种植物中含有原花青素,被提取的植物包括葡萄、英国山楂、花生、银杏、日本罗汉柏、北美崖柏、蓝莓和黑豆等。葡萄籽是葡萄酿酒的主要副产品,且它在葡萄皮渣中占65%,其多酚类物质含量可达5%~8%,在这些多酚物质中,原花青素含量最高,可达80%~85%。花青素广泛存在于各种植物的核、皮或种籽等部 位。 图2为原花青素常见来源植物蓝莓。

1.1提取 目前,普遍采用的工艺是先脱脂的方法包括压榨法、溶剂法、超临界CO2萃取 法,其中,超临界CO2萃取法最佳,不仅油脂提取率高,而且对原花青素的破 坏作用最小,质量较好。 1.2分离 纯化原花青素单体物质通常采用柱色谱进行分离,其中,聚酰胺、SephadexLH-20 和ToyopealHW-40是最有效的填料。对于较难分离或需要量较小的化合物,可 用半制备反相高效液相色谱法(RP-HPLC)和正相高效液相色谱法(NP-HPLC)制 备。随聚合度的增加,原花青素的同分异构体数目呈几何级数递增,分离纯化这 类大分子的单体物质非常困难。对于多聚体,可将其按分子量(聚合度)大小分段。 目前,已建立起来的分级方法有溶剂沉淀法和多种色谱法,如薄层色谱法、正相 高效液相色谱、凝胶排阻色谱、逆流色谱法等。 2.生物合成法 由硼氢化钠作为还原剂还原(2R,3R)-二氢-3′,4′,3,5,7-五羟黄烷的主要产物 是白矢车菊素(Leucocyanidin)的2,3-反-3,4-反异构体,而酶的还原产物是2, 3-反-3,4-顺异构体。在微酸的条件下,3,4-反异构体可能部分地转化为3,4- 顺异构体。3,4-顺异构体相对于3,4-反异构体较偏酸性,并且易于同硫醇和二 醇还原酶反应。酶合成要求的条件比较苛刻,同时也存在一个顺反异构体的问题, 目前,此法还不太成熟。 药理活性 1.抗氧化活性 原花青素具有极强的抗氧化活性,是迄今为止人类所发现的最强、最有效的自由 基清除剂之一,尤其是其体活性,原花青素的抗氧化活性呈现剂量-效应关系,但 如果超出一定的浓度,其抗氧化活性将随着浓度的升高而降低。 抗氧化特点及机理:①有效地清除超氧阴离子自由基和羟基自由基等,也可中断 自由基链式反应;②参与磷脂、花生四烯酸的新代和蛋白质磷酸化,保护脂质不 发生过氧化损伤;③为强有力的金属螯合剂,可螯合金属离子,在体形成惰性化 合物;④保护和稳定维生素C,有助于维生素C的吸收。 2.抗肿瘤活性 原花青素对于多种肿瘤细胞都具有显著的杀伤作用,对于多种致癌剂在启动及促 癌阶段都具有显著的抑制作用。原花青素能抑制癌细胞生长及诱导细胞凋亡。此 外,对于肝癌、前列腺癌、皮肤癌等,均表现出较好的抗癌活性,随着研究的深 入,原花青素将会在癌症的预防和治疗中发挥更大的作用,为癌症的治疗带来福 音。 3.抗炎、抗过敏、抗水肿活性 原花青素可降低由炎性介质组胺、缓激肽等引起的毛细血管通透性增高,减少毛 细血管壁的脆性,使毛细血管的力和通透性减小,保护毛细血管的物质转运能力, 从而起到抗炎的活性。此外,原花青素还可抑制组胺脱羧酶的活性,限制透明质 酸酶的作用,对各种关节炎及胃、十二指肠溃疡效果显著。 4.其它 原花青素还具有免疫调节活性、抗辐射作用、抗突变、抗腹泻、抗菌抗病毒、抗 龋齿、改善视觉功能、预防老年性痴呆、治疗运动损伤等功效。 保护心血管作用 1.抗心肌缺血再灌注损伤

一体化mbr膜生物反应器

SU-YT-100X型系列一体化mbr膜生物反应器 目前在污水处理中膜生物反应器即MBR技术得到了广泛的应用,膜生物反应器为膜分离技术与生物处理技术有机结合的新型态废水处理系统。以滤膜设备取代传统生物处理技术末端的二沉池,在膜生物反应器中保持高活性污泥浓度,提高生物处理有机负荷,从而减少污水处理设施占地面积,并通过保持低污泥负荷减少剩余污泥量。主要利用沉浸于好氧生化池内的滤膜截留好氧生化池内的活性污泥与大分子有机物。膜生物反应器因其有效的截留作用,可保留世代周期较长的微生物,可实现对污水深度净化,同时硝化菌在系统内能充分繁殖,其硝化效果明显,在工程实践中得到了很好的使用效果。 浸没式中空膜组件设置在框架内,上下两端分别设置出水腔,出水腔与产水管连接,膜丝两端分别与上下部的出水腔固定连接,膜丝的中间中空的孔与出水腔的内部连通,出水腔与产水管连接,膜组件的下部设置曝气管,曝气管与框架固定连接; 产水管与产水泵的进水口连接,通过产水泵的负压抽吸使滤膜外面的水通过滤膜表面进入滤膜内侧,通过产水管流出,污染物截留在滤膜的外侧。 传统的膜生物反应器 更换滤膜不方便,操作复杂:滤膜以组件的形式设置在框架内,框架安置在膜生物反应器的好氧池或膜池内,框架的底部与膜生物反应器的底板用螺栓固定,一体化膜生物反应器一般处理水量较少,多为钢结构或玻璃钢结构,空间较小,滤膜清洗和更换时操作人员需要进入反应器内部,移去与滤膜组件连接的产水管和滤膜下面的曝气管,松开框架与反应器固定的螺栓,将滤膜组件和框架整体移出,清洗完成或更换滤膜完成后整体移入再固定,反应器内有大量的污泥和对人体有害的气体,长时间的操作,对操作人员的身体健康十分不利。 无锡苏膜尔环保科技有限公司研发中心经过多年研究,开发了专利技术产品---苏膜尔SU-YT-100X型系列一体化mbr膜生物反应器,该膜生物反应器换膜方便,操作简单。 苏膜尔SU-YT-100X型系列一体化mbr膜生物反应器,其结构包括一体化膜生物反应器,膜组件,滑轨系统,曝气管,风机,产水泵和阀门;一体化膜生物

原花青素:我不是花青素

原花青素是葡萄籽中的主要成分之一,是一种强效抗氧化剂,不过对于原花青素的认识,不少人会将其与花青素混淆,事实上,花青素与原花青素并不是同一种 物质,二者存在多方面的差异。 原花青素也叫前花青素,英文名是Oligomeric Proantho Cyanidins 简称OPC,是一种在热酸处理下能产生花色素的多酚化合物,是目前国际上公认的清除人体 内自由基有效的天然抗氧化剂。一般为红棕色粉末,气微、味涩,溶于水和大多 有机溶剂。原花青素属于植物多酚类物质,分子由儿茶素,表儿茶素(没食子酸) 分子相互缩合而成,根据缩合数量及连接的位置而构成不同类型的聚合物,如二聚体、三聚体、四聚体十聚体等,其中二到四聚体称为低聚体原花青素(Oligomeric Proanthocyanidins ,缩写为OPC) ,五以上聚体称为高聚体。在各聚合体原花青素中功能活性最强的部分是低聚体原花青素(OPC) 。部分二聚体、三聚体、四聚体的结构式。通常把聚合度小于 6 的组分称为低聚原花青素,如儿茶素、表儿茶素、原花青素B1 和B2 等,而把聚合度大于 6 的组分称为多聚体。一般认为,药用植物提取物中存在的低聚原花青素是有效成分,它们具有抗氧化、捕捉自由基等多种生物活性。

花青素(Anthocyanidin) ,又称花色素,是自然界一类广泛存在于植物中的水溶性 天然色素,属黄酮类化合物。也是植物花瓣中的主要呈色物质,水果、蔬菜、花 卉等颜色大部分与之有关。在植物细胞液泡不同的pH 值条件下,使花瓣呈现五彩缤纷的颜色。在酸性条件下呈红色,其颜色的深浅与花青素的含量呈正相关性, 可用分光光度计快速测定,在碱性条件下呈蓝色。花青素的基本结构单元是 2 一苯基苯并吡喃型阳离子,即花色基元。现已知的花青素有20 多种,主要存在于植物中的有:天竺葵色素(Pelargonidin) 、矢车菊色素或芙蓉花色素(Cyanidin) 、翠雀素或飞燕草色(Delphindin) 、芍药色素(Peonidin) 、牵牛花色素(Petunidin) 及锦葵色素(Malvidin) 。自然条件下游离状态的花青素极少见,主要以糖苷形式 存在,花青素常与一个或多个葡萄糖、鼠李糖、半乳糖、阿拉伯糖等通过糖苷键 形成花色苷。已知天然存在的花色苷有250 多种。 花青素与原花青素的区别,首先从化学结构来看,花青素与原花青素是两种完全 不同的物质,原花青素属多酚类物质,花青素属类黄酮类物质。原花青素也叫前花青素,在酸性介质中加热均可产生花青素,故将这类多酚类物质命名为原花青素。

葡萄籽原花青素的提取和检测方法

葡萄籽原花青素的提取和检测方法 摘要:对原花青素的概念、测定方法及其存在的问题进行了分析,综述了原花青素的性质,安全性和提取、检测方法,并对统一的原花青素检测方法进行了展望。 关键词:葡萄籽原花青素提取检测 EXTRACTION AND DETERMINATION METHODS OF PROANTHOCYANIDIN FROM GRAPE SEED Abstract:The definition, determination methods of proanthocyanidin from grape seed and their problems were analyzed. The character, safety, extraction methods of proanthocyanidin were also introduced in this paper. Besides, the development foreground of uniform determination method of proanthocyanidin was illustrated. Key words:grape seed ; proanthocyanidins ; extraction; determination 20世纪70年代,法国科学家J.Masqulier发现了比松树皮更好的原花青素资源——葡萄籽。“地中海地区膳食”健康效果揭示了酚类化合物和不饱和脂肪酸的神奇功效Ⅲ;“法国悖论”现象更是揭示了葡萄籽的多酚神奇功能。葡萄籽中含有丰富的亚油酸、蛋白质、原花青素等成分,但研究最多的还是原花青素成分,现已被证明具有显著的抗氧化和清除自由基的活性,具有极大的开发前景。同时由于葡萄籽原花青素成分的复杂性,原花青素概念认识的不一致,还没有统一的检测方法。因此,迫切需要建立葡萄籽原花青素含量的统一分析方法,以便对葡萄籽原料及其产品中的原花青素准确定量。 1 葡萄籽原花青素的概念、性质和安全性 1.1 原花青素的概念 研究表明,葡萄籽中原花色素物质只有原花青素一种[21。关于原花青素的定义还不统一。原花青素因在酸性介质中加热产生红色的花青素而得名【3】,而儿茶素类单体在热酸条件下反应没有花色素现象,所以儿茶素单体应不属于原花青素。这个概念也得到了美国葡萄籽方法评定委员会和国内主要生产葡萄籽提取物的企业认可。葡萄籽原花青素是由儿茶素、表儿茶素及其没食子酸酯通过C4-C 或C4-C。键共价相连组成的多聚体,结构通式见图l【5J。通常把二~四聚体称为低聚体(OPCs),五聚体及五聚体以上的称为高聚体。

膜生物反应器原理结构

膜生物反应器原理结构 时间:2007年12月14日 膜生物反应器 (Membrane Bioreactor,简称MBR)是将生物降解作用与膜的高效分离技术结合而成的一种新型高效的污水处理与回用工艺。它利 用膜分离设备将生化反应池中的活性污泥和大分子物质截留住,省掉二沉池。活性污泥浓度因此大大提高,水力停留时间(HRT)和污泥停留时间(SRT) 可以分别控制,而难降解的物质在反应器中不断反应、降解。因此,膜生物 反应器工艺通过膜分离技术大大强化了生物反应器的功能。下面是作用原理 基本图例 1.前言 随着全球范围经济的快速发展和人口的膨胀,水资源短缺已成为全球人类共同面临的严峻挑战。为解决困扰人类发展的水资源短缺问题,开发新的可利用水源是世界各国普遍关注的课题。世界上不少缺水国家把污水再生利用作为解决水资源短缺的重要战略之一。这不仅可以消除污水对水环境的污染,而且可以减少新鲜水的使用,缓解需水和供水之间的矛盾,给工农业生产的发展提供新的水源,取得显著的环境、经济和社会效益。开展新型高效污水处理与回用技术的研究对于推进污水资源化的进程具有十分重要的意义。 膜-生物反应器是近年新开发的污水处理与回用技术。该技术由于具有诸多传统污水处理工艺所无法比拟的优点,在世界范围受到普遍关注。本文将对近年来膜-生物反应器污水处理与回用技术的研究与应用进行介绍。

2.膜-生物反应器的技术原理与特点 在膜-生物反应器中,由于用膜组件代替传统活性污泥工艺中的二沉池,可以进行高效的固液分离,克服了传统活性污泥工艺中出水水质不够稳定、污泥容易膨胀等不足,从而具有下列优点[1]: (1)能高效地进行固液分离,出水水质良好且稳定,可以直接回用; (2)由于膜的高效截留作用,可使微生物完全截留在生物反应器内,实现反应器水力停留时间(HRT)和污泥龄(SRT)的完全分离,使运行控制更加灵活稳定; (3)生物反应器内能维持高浓度的微生物量,处理装置容积负荷高,占地面积省;...... MBR膜生物反应器 2003-06-17 技术概况 ·由于采用了先进的膜生物反应器技术,使系统出水水质在各个方面均优于传统的污水处理设备,出水水质在感官上已接近于自来水的情况,可以作为中水回用。 ·由于膜的高效分离作用,不必设立沉淀、过滤等固液分离设备,不需反冲洗,且出水悬浮物浓度远低于传统固液分离设备,使整个系统流程简单,易于集成,系统占地大为缩小。·生物膜反应器可以滤除细菌、病毒等有害物质,不需设消毒设备,不需加药,不需控制余氯,使管理和操作更为方便,并可节省加药消毒所带来的长期运行费用。 ·生物膜反应器内生物污泥在运行中可以达到动态平衡,不需污泥回流和排放剩余污泥。·整个系统自动化程度高,运行管理简单方便。 ·采用先进的日本进口中空纤维膜,膜使用寿命长,单位体积膜面积高,膜具有自修复能力,从而减少了设备维护工作。 ·通过独特的运行方式,使膜表面不易堵塞,洗膜间隔时间长,且洗膜方式简单易行。·独特的膜组件运行方式使水处理所需能耗很低。 技术原理 MBR膜生物反应器技术将超滤膜与生物反应器有机地结合起来,克服了传统污水处理工艺的流程冗长、占地面积大、操作管理复杂等缺点,稳定可靠,出水水质优于一般中水水质标准。 适用范围中水回用 应用实例清华中水 北京汇联食品废水处理工程 膜生物反应器(MBR)是一种由膜过滤取代传统生化处理技术中二次沉淀池和砂滤池的水处理技术。与传统的污水处理生物处理技术相比,MBR具有以下主要特点:^出水水质好; 由于膜的高效截留,出水中悬浮固体的浓度基本为零;对游离菌体和一些难降解的大分子颗粒状物质巨头截留作用,生物反应器内生物相丰富,如,世代时间较长的

葡萄籽原花青素的梯度分离及其抗氧活性研究

?实验研究Experimental R esearch ? 葡萄籽原花青素的梯度分离及其抗氧活性研究3 Studies of G radient Extraction of G rape Seed Proanthocyanidin and Their Anti 2oxidative Effects 杨怀霞Yang Huaixia 1,马庆一Ma Qingyi 2,许 闽Xu Min 1 1.河南中医学院Henan College of Traditional Chinese Medicine ; 2.郑州轻工业学院Zhengzhou Institute of Light Industry 摘要:目的:研究葡萄籽原花青素的梯度分离方法及各组分的抗氧化性能。方法:葡萄籽样品通过乙醇粗提后,用不同溶剂梯度分离得到各组分,以乙酸乙酯组分为代表确定DPPH ?法测定活性的最佳浓度范围,再比较各组分自由基淬灭能力。结果:最佳活性测定样品浓度范围1.0~10μg/ml ,运用此法测得的清除率在25%~80%之间,灵敏度和准确度较高;葡萄籽梯度分离各组分清除自由基能力:乙酸乙酯组分≥丙酮组分>乙醇组分>乙醚组分>乙醇粗提物>二氯甲烷组分>石油醚组分;其中乙酸乙酯组分和丙酮组分活性尤其突出,表明有高活性成分富集其中。结论:梯度分离葡萄籽原花青素提取物的效果令人满意。 Abstract :Objective :To explore gradient extraction of grape seed proanthocyanidin and their antioxdative effect.Method :After sam 2 ple grape seeds were extracted with ethanol ,the active components were obtained by application of different organic solvents.Through investigation of the free 2radical scavenging effect of ethylacetate components ,the optimum concentration range was deter 2mined by DPPH method and a comparison was made on the antioxidative effects of the different components from grape seeds.Re 2sult :The optimum assay range was 1.0~10ug/ml with the scavenging rate between 25%~80%.The sensitivity and accuracy of this method were satisfying.The free 2radical scavenging effects of different components from grape seed proanthocyanidin came in the following :Ethyl acetate >Acetone >Ethanol >Ether >the primary extracts of ethanol >Dichloromethane >Petroleum ether.A 2mong all components ,the activities of Ethyl acetate and Acetone extracts were excellent marked by the active components highly con 2centrated.Conclusion :Gradient extraction of grape seed proanthocyanidin was very promising. 关键词:葡萄籽;梯度分离;抗氧化性;DPPH ?法 K ey w ords :grape seed ;gradient extraction ;anti 2oxidative effect ;DPPH method 中图分类号CLC number :R284.2 文献标识码Document code :A 文章编号Article ID :1672-6839(2004)05-0014-03 许多生理、病理现象都与体内自由基的产生和积累密切相关,寻找阻遏自由基反应的抗氧化剂的工作格外重要[1]。近年来,植物源抗氧化剂由于其低毒、高效成为研究热点,葡萄籽中提取的原花青素更因其独特的抗氧化特性及高生物利用率倍受青睐,但因其组成复杂,各类成分之间性质相近,难以分离,极大地影响了有效成分的开发利用[2]。 DPPH ?法简便、快速、重现性好,广泛用于各种自由基清 除剂筛选研究的分析跟踪[3]。本文以梯度提取方法分离葡萄籽中的有效成分,以乙酸乙酯组分为代表确定DPPH ?法测定活性的最佳样品浓度范围,并对比了各组分的自由基淬灭能力,即其抗氧化活性的强弱。该研究方法简便、有效,既为葡萄籽提取物的开发应用提供理论依据,也为其它同类研究提供参考。 1 实验材料 材料:葡萄籽样品(民权葡萄酒厂下脚料)。 试剂:DPPH ? (1,1-二苯基-2-苦肼基自由基,日本东京工业株式会社生产),原花青素标准品(Sigma 公司生产,含3基金项目:河南省教育厅科技攻关项目(编号:20023600010) 量98%),其它试剂均为分析纯。 主要仪器:RE -52旋转蒸发器(上海安亭电子仪器厂), LD4-2离心机(北京医用离心机厂),752型紫外光栅可见分 光光度计(上海精密科学仪器有限公司),DZF -IB 型真空干 燥箱(上海跃进医疗器械厂)。 2 实验方法 2.1 样品处理及有效成分分离提取 取风干恒重的葡萄籽样品100g ,粉碎过20目筛,用700 ml 80%乙醇浸泡过夜,水浴回流5h ,将提取液浓缩至粘稠 油状,加入硅藻土拌匀,以滤纸包裹,移入索氏提取器,依次用石油醚、二氯甲烷、乙醚、乙酸乙酯、丙酮、乙醇等溶剂在避光下提取3h ,提取液减压浓缩后分别用乙醇定容记为A ,不溶部分用乙酸乙酯溶解后记为B 备用。 2.2 清除自由基活性试验(DPPH ?法) 取0.20ml 样品溶液,加入4.00ml 的50μmol/L 的 DPPH ?溶液混匀,放置30min ,以原溶剂调零点,在517nm 处测吸光度记为Ai ,同法0.20mL 溶剂+DPPH ?溶液混匀测定吸光度记为Ac ;0.20ml 样品溶液+4.00ml 的溶剂混匀测吸光度记为Aj 。按照以下公式计算自由基清除率: ? 41?2004年10月第5期No.5 Oct. 2004 河南中医学院学报 JOURNAL OF HENAN UNIVERSITYOF CHINESE MEDICINE 第19卷总第114期 Vol.19Serial No.114

相关主题
文本预览
相关文档 最新文档