当前位置:文档之家› 基于有效缺口应力法的正交异性钢桥面板疲劳评价

基于有效缺口应力法的正交异性钢桥面板疲劳评价

基于有效缺口应力法的正交异性钢桥面板疲劳评价
基于有效缺口应力法的正交异性钢桥面板疲劳评价

正交异性桥面板设计参数和构造

正交异性桥面板设计参数和构造 细节的疲劳研究进展 1 背景 第二次世界大战后,一方面大量被战争毁坏的桥梁急需修复,另一方面建筑材料非常短缺。在此情况下,欧洲的工程师们开始尝试采用一种新型的桥面结构形式——正交异性钢桥面板。它由面板、纵肋和横肋组成,三者互相垂直,通过焊缝连接成一体共同工作。它以自重轻、极限承载力大、施工周期短等优点,成为世界上大、中跨度现代钢桥通常采用的桥面结构形式。从20世纪50年代德国最先使用这种桥面板至今,欧洲已有1000多座各种形式的正交异性钢桥面板桥梁,日本有将近250座正交异性钢桥面板桥梁,北美有100余座正交异性钢桥面板桥梁[1]。 我国正交异性钢桥面板我国正交异性钢桥面板的研究和应用起步较晚,直到20世纪70年代初,才建成第一座钢桥面板桥——潼关黄河铁路桥。改革开放以来,国内正交异性钢桥面板桥呈现出迅猛发展势头。迄今为止,我国已建造的采用正交异性钢桥面板的桥梁有30余座。正在建造的采用正交异性钢桥面板的铁路钢桥有郑州黄河公铁两用桥和京沪高速铁路南京大胜关长江大桥等。 正交异性钢桥面板有其独特的优点,但同时钢桥面板疲劳开裂的事例也在许多国家的钢桥中出现。最早报道的是英国Seven桥,该桥1966年建成通车后,分别于1971年和1977年发现了3种焊接细节的疲劳裂纹。德国的Haseltal和Sinntal桥投入使用后不久,钢桥面板也都出现了疲劳裂纹。此外,法国、日本、美国、荷兰等国也都发现了钢桥面板疲劳开裂事例。钢桥面板在我国使用的时间虽然不长,但是已经在某些桥中发现了钢桥面板疲劳开裂的现象。这些疲劳裂纹严重影响了桥梁的使用寿命,因此,对正交异性桥面板疲劳问题的研究是目前桥梁建设中的关键和热点,各国学者在此领域取得了一系列研究成果。国内在20世纪80年代初,铁道科学研究院等相关单位以西江大桥为研究背景,对公路正交异性钢桥面板参与主桁共同工作时的结构特性进行了较为全面的分析及试验研究[2]。1995年,同济大学童乐为在博士论文中对采用开口肋形式的钢桥面板的疲劳性能进行了较为系统的分析[3]。时至今日,正交异性桥面板的结构形式较当初已经发生很大变化,大量新的研究成果相继涌现。 2 正交异性桥面板设计参数的疲劳研究 2.1 面板 面板的最小厚度一般取决于其在轮载作用下的允许变形,为保证桥面铺装层不产生裂纹,纵肋之间面板的竖向挠曲变形不大于0.4mm。基于上述原 则,面板厚度t d可由Kloeppel公式计算: 式中:a为开口截面纵肋间距或闭口截面纵肋腹板最大间距,mm;p 为轮载面压力,kPa。 同时各国规范根据各自的车辆荷载及桥面铺装层情况,为保证钢桥面板的施

正交异性钢桥面板U肋嵌补段焊缝疲劳裂纹加固

正交异性钢桥面板U肋嵌补段焊缝疲劳裂纹加固 摘要; 本文调查研究了某大跨度桥梁正交异性钢桥面板U肋嵌补段对接焊缝位置疲劳裂纹,采用安全寿命法分析了疲劳裂纹产生的原因,提出了U肋嵌补段疲劳裂纹加固方案。 关键词: 正交异性钢桥面板,U肋嵌补段,疲劳裂纹,加固 Abstract: In this paper the research of a long-span Bridges orthotropic steel bridge panel U rib fill section embedded butt weld position fatigue crack, the safety life was analyzed the reasons of the fatigue crack, and put forward the U rib for fatigue crack embedded for strengthening project. Keywords: orthotropic steel bridge panel, U ribs for embedded section, the fatigue crack, reinforcement 1 引言 正交异性钢桥面板是由纵、横互相垂直的加劲肋连同桥面盖板所组成的共同承受车轮荷载的结构,以其自重轻、承载能力强和整体性好等优点在国内外大跨度桥梁中得到广泛应用,如日本的明石海峡大桥、法国的诺曼底大桥和中国的苏通长江大桥等都采用了正交异性钢桥面板的形式。 U肋嵌补段是大跨度钢桥节段施工过程中两个相邻节段预留的在现场拼装的U肋,对于桥面顶板的U肋嵌补段,在现场拼装焊接时要采用仰焊工艺,焊接质量不易保证,在重载交通下容易产生疲劳裂纹,是正交异性钢桥面板典型的疲劳细节之一。 本文通过对某大跨度桥梁的正交异性钢桥面板U肋嵌补段的疲劳裂纹进行分析研究,提出了此类疲劳裂纹的加固方案。 2 U肋嵌补段焊缝疲劳裂纹 2011年6月,在某大跨度桥梁正交异性钢桥面板U肋嵌补段对接焊缝位置发现疲劳裂纹,如图1所示。U肋嵌补段疲劳裂纹1(a)和裂纹2(b)已经完全贯穿整个U肋,U肋在此位置已经丧失承载能力;疲劳裂纹3由于及时钻了止裂孔,裂纹在U肋底板止裂孔位置停止扩散,没有扩散到整个U肋;从图1(d)中可以发现,有些裂纹已经从U肋发展到桥面顶板,并沿着U肋与桥面顶板的焊缝发展,逐渐贯穿桥面顶板,对桥梁的安全性造成极大的影响。从图片中可以看出,U肋嵌补段对接焊缝位置的疲劳裂纹都是在焊缝的热影响区内产生

钱冬生--关于正交异性钢桥面板的疲劳

关于正交异性钢桥面板的疲劳 ——对英国在加固其塞文桥渡时所作研究的评介 钱冬生3 提 要 对英国塞文桥渡正交异性板构造的疲劳裂纹产生的原因、所作试验及对其疲劳寿命计算作了介绍,并进行了探讨。 关键词 英国 塞文桥渡 钢正交异性板 疲劳 3教授,610031,西南交通大学 1 塞文桥渡的原结构 塞文桥渡包含:中跨988m 的塞文悬索桥,中跨 234.7m 的瓦埃斜拉桥,跨度61.7~64.0m 的连续梁(引桥)。其钢梁为全部采用正交异性钢桥面板的单室单箱截面梁。 钢正交异性板桥面是在第二次世界大战之后于50年代初期出现的。开始时纵肋用开口截面,在60年代逐渐改为闭口截面。由于制造工艺使闭口纵肋长度受到限制,其设计长度以相邻两横梁之间的距离来决定。在塞文桥渡,此长度为4.572m (悬索桥范围内)和4.267m (其余部分)。纵梁两端抵住横梁,用角焊缝作连接(横梁实质上由横肋及横隔板组成,将箱梁的部分顶板和底板 当作横梁的翼缘使用;横梁高度与箱梁高度相同。)。按照悬索桥的设计说明,强度和刚度都不控制加劲 梁。因此,钢材厚度主要按制造和安装要求决定。面板厚度为11.5mm ,纵肋厚度为6.4mm ,角焊缝焊脚为6mm 。图1为英国TRRL (T ran spo rt and Road R esearch L abo rato ry ,运输和道路研究试验所)所用试件的截面,其中(a )完全按塞文桥渡各钢梁的尺寸办理,(b )表示改进方案,将纵肋截面从梯形改为V 形; 在纵 图1 TRRL 试件截面 肋同横梁相遇处,在横梁开孔,让纵肋穿过。 还需指出:塞文悬索桥在压低造价方面有些过火。它省去储梁场地,省去运梁驳船;只是需要在梁段端头敞口处,用一厚5mm 的横隔板充当“封头板”,使梁段变成浮体;既可在水上储存,又可用拖船直接将它推顶到桥位。这样一来,封头板上端便同梯形纵肋下缘相焊,而这一焊接构造就使纵肋在运营中开裂。2 英国桥规BS 5400第10篇 英国B S 5400第10篇是1980年公布的。其译本见文献[1],对其主要部分、特别是其从文献[3]制订焊接构造分级的经过,见文献[2]。 此规范的优点,在于讲明基本原理,那就是凭借荷载频值谱来推算验算点的应力频值谱,再用M iner 的线性积伤规则,将应力频值谱换算成常幅加载的应力,借以同验算点的疲劳抗力相比,若前者不大于后者,则验算就是通过。文献[1]p 182的插页内的表11,或文献[2]p 84的插页内的图3-11,都是该规范的典型营业车荷载。而文献[1]p 181的图10-17则是迹线分布频数图,这就是说,当某验算点的应力在横桥方向的影响线很短而纵标变化剧烈时,需要将横向影响线按100mm 宽度划分成10多份,按这图所给分布频数推算各份之内的车数,再按影响线纵标推算相应的应力,从而推出应力频值谱。文献[4]p 1所介绍的疲劳检算方法,就指出了要使用文献[1]的表11和图10-17。 关于验算点的疲劳抗力,文献[1]在第10篇附录H 用表17a 、b 、c 的图和文字说明了各种构造按疲劳抗力所进行的分级,包含A 、B 、C 、D 、E 、F 、F 2和G 以及W ,而附录A 则用S 2N 关系(致伤应力脉—加载次数)表达不同分级构造对疲劳的抗力。由文献[2]所介绍的制订这项构造分级的经过可知:所用作依据的疲劳试验的试件,一般是承受轴向力的小试件。因此,在这一规范正文第5.4条(见文献[1]p 115)明确指出:表17中的各分级不适用于公路桥正交异性钢桥面板的焊接构造。 8 桥梁建设 1996年第2期

正交异性钢桥面铺装结构理论研究进展_杨建军

文章编号:1671-2579(2006)04-0179-06 正交异性钢桥面铺装结构理论研究进展 杨建军,周志刚,刘晓燕 (长沙理工大学,湖南长沙 410076) 摘 要:正交异性钢箱梁桥桥面铺装在大跨径桥梁上的工程应用一直是一项极具挑战性的工程技术难题,因此正交异性钢桥面铺装技术的研究受到学术界和工程界的广泛关注。近几年来关于该课题的研究不断深入,取得了一些阶段性的研究成果。该文综述了国内外关于正交异性钢桥面铺装体系结构理论方面的主要研究成果,特别是近10年来在该领域取得的新进展,以期为关注该课题的科研人员和相关项目的工程技术人员提供参考。 关键词:正交异性;桥面铺装;钢箱梁;结构理论;研究进展 钢箱梁桥面铺装是国际性的工程技术难题。由于钢箱梁桥面铺装的使用条件、施工工艺、质量控制与要求的特殊性,对它的强度、抗疲劳性能、抗车辙性能、抗剪切性能以及变形协调性等均有较高的要求,目前尚未形成普遍有效的钢桥面铺装设计理论与方法。随着国内外大跨径桥梁建设的发展(表1为我国新建或在 建的部分大跨径钢箱梁桥),以及扁平异性钢箱梁以其卓越的力学性能和经济性能得到了广泛的采用,但正交异性钢桥面铺装的工程应用一直没有得到很好解决,国内外钢箱梁桥面铺装在使用年限内发生破坏的情况屡见不鲜,因此正交异性钢桥面铺装技术的研究受到学术界和工程界的广泛关注。 收稿日期:2006-04-10 基金项目:湖南省自然科学基金重点项目(编号:04JJ6027).作者简介:杨建军,男,硕士研究生,讲师. 6 总结 (1)国外对钢桥面铺装的研究和应用较早,但随着现代交通的发展,其钢桥面铺装也出现了部分问题,需要用发展的眼光不断进行研究。 (2)钢桥面铺装设计需要考虑的因素主要包括:气温环境条件、交通荷载特点、桥面板刚度特性等。 (3)我国钢桥面铺装使用的环境条件较国外更苛刻,应在合理借鉴国外成功经验的基础上,研究设计出适合我国气候、交通、桥面板结构特点的钢桥面铺装方案。参考文献: [1] Medani,T.O.Asphalt Surfacing A pplied to Orthotr opic Steel Bridg e Decks,A Literature Study.Report 7-01-127-1[R],Road and Railroad Res.L ab.Delft U niver sity of T echno lo gy ,the N ether lands,M arch 2001. [2] M edani,T.O.T ow ards a N ew D esign Philoso phy for Surfacing s o n O rthotr opic Steel Bridg e Decks.Report 7-01-127-2[R ],Ro ad and Railro ad https://www.doczj.com/doc/b29231879.html,b.Delft U niv ersity of T echnolo g y,the N etherlands,June 2001.[3] R.Gar y H icks,Ian J.Dussek,Char les Seim.A sphalt Sur faces o n Steel Deck Br idges.T r anspor tatio n Research Record N o.00-0149[C],N atio nal Resear ch Council,Washingto n D.C.,2000. [4] 潘承纬.Guss 沥青混凝土成效特性之研究[D].国立中 央大学土木工程研究所硕士学位论文,2002. [5] 陈仕周,张 华.钢桥面SM A 铺装技术的研究与发展 [J].公路交通科技,2004(10). [6] 吕伟民,郭忠印.高强沥青混凝土的配制及其特性[J]. 中国公路学报,1996(1). [7] 黄 卫,张晓春,胡光伟.大跨径钢桥面铺装理论与设计 的研究进展[J].东南大学学报(自然科学版),2002(3). 第26卷 第4期 2006年8月 中 外 公 路 179

正交异性钢桥面板疲劳细节优化论文

正交异性钢桥面板疲劳细节优化 摘要:作为早期公路钢桁梁桥破损桥面板更新的主要选择,正交异性钢桥面板已得到应用。为了适应近年来日益增长和加重的车辆轮载,需要对钢桥面板进行疲劳细节的优化。本文采用montecarlo方法模拟50年的疲劳荷载作用,借助三维有限元模型获得两种闭口肋的疲劳细节影响面,运用经典的雨流计数法研究其疲劳损伤度。结果表明相同尺寸下,u形截面常见疲劳细节的受力优于v形截面,疲劳寿命大于v形截面。 关键词:栓焊桁梁桥;钢桥面板;疲劳细节优化;闭口肋 abstract: as the early highway steel truss bridge damage the main selection panel update, orthotropic steel bridge panel has been applied. in order to meet the increasing in recent years and aggravation of the vehicle wheel load, need to steel bridge panel fatigue of the detail of the optimization. in this article, the method of 50 years of simulation montecarlo fatigue load, with the aid of the three dimensional finite element model for two silent ribs fatigue details the extent, using the classical rain flow count method to study the fatigue degree. the results show that under the same size, u shape section of the detail of the stress fatigue common better than v section, fatigue life than v section. keywords: bolt welding truss; bridge steel plate; fatigue

正交异性钢桥面板疲劳性能的影响分析

广东建材2018年第11期正交异性钢桥面板疲劳性能的影响分析 刘森 (厦门市路桥管理有限公司) 【摘要】正交异性钢桥面板由于重量轻,极限承载力大,适用范围广,已广泛应用于大跨度公路桥 梁钢箱梁。作为全焊接结构,由于其复杂的几何结构,在车轮载荷下的独特力性能,焊接操作引入的残 余应力和焊接缺陷等导致正交异性钢桥面板疲劳开裂现象突出。在本文的研究中,首先分析了正交异 性钢桥面板的力学特性和疲劳影响因素,然后提出了疲劳修复方法。 【关键词】正交异性钢桥面板;疲劳性能;成因;修复 1引言 正交异性钢桥面板因其在机械性能和经济性方面的突出优势而被广泛应用于现代桥梁工程中。然而,虽然具有突出的优点,但这种结构的疲劳问题更加突出。国内外正交异性桥梁钢桥面典型疲劳案例表明:一旦正交异性钢桥面发生疲劳,就会直接影响结构的运行质量,甚至会大大降低其承载能力;疾病修复不仅昂贵且难以实现期望的修复效果。因此,研究正交异性钢桥面板的疲劳特性具有重要的理论和实际意义。 2正交异性钢桥面板的受力特点 作为主梁的组成部分,正交异性钢桥面板是纵梁的上法兰和主梁的上法兰。根据传统的三结构系统分析方法,可以概括为主梁系统、桥面系统和覆盖系统。主梁系统是指由盖板和纵向肋构成的主梁的上凸缘,纵梁是主梁的组成部分。甲板系统是指盖板作为纵肋和横肋的公共上法兰,桥面系统的三个部件支撑在主梁上以承受桥面上的载荷。盖系统仅将盖子视为支撑在纵向肋和横向肋上的各向同性连续板,直接承受车轮的局部载荷并将载荷传递给纵向肋和横向肋。 钢桥面板的应力分布具有以下特点。 ⑴在车辆活载荷的作用下,主梁系统的应力相对较小,主要反映在桥面系统和盖板系统的局部应力中。 ⑵车轮载荷的大小决定了钢桥面板的应力大小,但其车轮载荷影响线较短,冲击范围相对有限。 ⑶对于钢桥面板的某些结构细节,车辆产生的应力循环次数与应力的纵向影响线的长度和车辆的轴距有关。 ⑷盖板中的第三系统平膜具有较小的应力,主要由平面外弯曲应力反映。 ⑸在纵向肋的下边缘的平面中仅存在纵向膜应力,并且存在纵向肋腹板的平面外的弯曲应力和面内膜应力。 ⑹梁的腹板上的应力主要由平面中的薄膜应力反映,但在与纵向肋的腹板连接处的腹板处存在一定的平面外弯曲应力。且应力集中现象明显。 ⑺纵向肋穿过梁腹板的弯曲开口处的应力集中也是非常明显的。 总之,正交异性钢桥面板由于应力线短、接头细节的应力集中以及面外变形下的二次应力而易于疲劳开裂。 3正交异性钢桥面板疲劳问题的影响因素 正交异性钢桥面板具有力性能和经济性的双重优势。横向肋(隔板)板连接以形成板结构,该板结构满足纵向和横向上的不同力要求。结构体系和成形方法使正交异性钢桥面板具有突出的优点,结构复杂,焊缝多,局部轮载直接作用。桥面板以鼓形变形,并且应力集中发生在几何构造的不连续部分中,例如主构件的互连和相互约束。焊接工作中的瑕疵问题以及制造时出现的偏差问题,都会产生应力集中现象,这又会加重导致疲劳和板面的脆性。随着现代交通工具的发达,桥面和路面往往要承受非常大的压力,这种情况下,疲劳易损部位就很容易出现裂缝,进而不断扩大范围,最后导致钢桥表面部位的疲劳问题,一些常见的疲劳部位以及脆弱部位如图1所示。 日本东京两条具有代表性的高速公路约7,000个封闭纵肋正交异性钢桥面板疲劳缺陷的统计分析得到的主要疲劳裂纹类型及其组成如表1所示。 在我国,到现在为止,桥面一共出现了大约十七种疲劳裂痕,这其中比较常见的一种裂痕以及它所占的百 质量控制与检测44 --

李乔说桥-13:正交异性钢桥面板

李乔说桥-13:正交异性钢桥面板 1让人爱、让人恨的桥面板形式对正交异性钢桥面板,大家都很熟悉,这是钢桥尤其是大跨度钢桥结构中采用最多的一种桥面板结构形式,也是现代钢桥结构重要的标志性成果之一。但这种桥面结构同时也是钢桥领域里最令人头痛的结构之一,可以说是既“让人爱”又“让人恨”的一种桥面结构形式。让人爱,是因为这种结构具有众多的优点,如重量轻、承载力高、适用性强等,是目前为止仍然不能用其他形式桥面板取代的主要结构形式。而让人恨,则是因为它服役几十年以来,不断地出现令人头痛的疲劳开裂和桥面铺装破坏问题,而且成为了一个出现概率很高的普遍性病害、至今也没有公认的既经济又有效的解决措施的病害。 一般的正交异性钢桥面板指在桥面的面板下面采用纵横加 劲肋加强的构造形式,而目前应用最为广泛的正交异性钢桥面板是采用U形纵向加劲肋的构造形式。如图1所示,它由面板(顶板)、U形纵向加劲肋以及横向加劲肋或横隔板组成。目前世界各国已建成的采用正交异性钢桥面板的各类桥梁已超过1500座,我国正在运营和在建中的该类型桥梁数量已达200余座。(a)大跨度钢箱梁斜拉桥(b) 采用正交异性钢桥面板的钢箱梁横断面(c) 正交异性钢桥面板构造示意图及疲劳开裂统计图1 大跨度钢桥及正交异性钢桥面板

2 两大病害最早在大跨度钢桥上发现正交异性钢桥面板疲 劳开裂的是英国Severn桥,该桥开通运营仅5年即发现其 正交异性钢桥面板出现疲劳裂纹。此后,正交异性钢桥面板结构在包括欧洲、美国、日本及我国等世界范围内相继出现了大量的疲劳开裂案例。例如国内某大桥通车数年后即发现大量疲劳裂缝,经过维修加固,再经过几年的运营,又出现了更多的疲劳开裂。这种现象在很多类似结构的桥面板中出现,给桥梁的安全和耐久性带来巨大影响。由于桥面铺装的存在,这种发生在桥面板上的裂缝在开裂初期不容易被发现,一旦发现就已经贯穿顶板了。而且这种裂缝较难修复加固,多数情况下必须中断交通并拆除桥面铺装才能进行。 根据日本对东京2条代表性高速公路中约7000个闭口纵肋正交异性钢桥面板的疲劳病害进行的统计分析结果,主要疲劳裂纹类型及其构成如图1(c)所示。图中带圆圈的编号表示疲劳开裂的部位及类型,圆饼图表示各类型开裂所占的比例。由图可见,占比例最大的为②、③、④类,分别为纵向U肋与横隔板、竖向加劲肋与纵腹板以及纵向U肋与顶板的焊缝开裂。其中的第③类开裂对应的构造现在基本不再采用,所以目前出现最多的是②、④两类。 除了钢桥面板开裂以外,这种结构带来的另一个通病是桥面铺装过早损坏(图2),并成为每座同类桥面板结构的大桥设计时让人颇为纠结的问题。从我国90年代修建的此类结构

基于断裂力学城市钢桥面板疲劳寿命分析

基于断裂力学的城市钢桥面板疲劳寿命分析* 摘要:正交异性钢桥面板承受着车辆动荷载的反复作用,容易造成疲劳累计损伤,导致钢桥面板出现疲劳开裂现象。为研究某城市桥梁钢桥面板的疲劳寿命,建立钢桥面板有限元模型,选取钢桥面板4种典型疲劳细节,根据实测所得到的城市车辆荷载频值谱,计算得到相应的应力历程和应力谱。基于线弹性断裂力学理论,对这4种疲劳细节进行疲劳寿命分析,结果表明:在桥梁设计基准期内钢桥面板不会发生疲劳破坏。 关键词:正交异性钢桥面板;城市桥梁;车辆荷载;断裂力学;疲劳寿命分析 钢桥具有自重轻、强度高、施工快、造型优美等特点,受到了桥梁设计者的青睐[1]。由于其各组成板件的连接需要大量的焊接,从而产生焊接缺陷以及残余应力,在车辆动载的反复作用下,钢桥面板易出现疲劳开裂现象,这种现象已在英国、德国、法国等钢桥面板应用较早国家的许多实桥中出现[2]。钢桥面板疲劳寿命的评估问题是桥梁工程领域的热点研究课题。对钢桥面板进行疲劳寿命评估主要有基于S - N曲线法和基于线弹性断裂力学(LEFM)法这两种方法[3]。基于S - N曲线法中未考虑桥梁结构的构件的初始裂纹,以及运营阶段在荷载作用下裂纹的扩展,这不符合实际情况,在计算过程中存在相应的误差[4]。而采用LEFM法能较好地解决这个问题,经过实测或假定构造的初始裂纹,预测裂纹的扩展速率,进而得到桥梁的疲劳寿命。本文以某城市钢桥为例,采用经调查的城市道路车辆荷载频值谱,应用LEFM法对钢桥面板进行疲劳寿命评估。该成果可为城市桥梁疲劳寿命分析提供参考。

1 疲劳裂纹扩展模型 结构疲劳破坏的过程可以分为两个阶段:第一阶段为疲劳裂纹的形成,但在实际工程中由于钢桥本身的初始缺陷及残余应力等原因,这个阶段的寿命基本上为零;第二阶段为疲劳裂纹的扩展,在进行疲劳寿命分析时主要是要确定裂纹扩展速率da/dN与相关参数之间的关系[5](a为裂纹长度;N为循环次数)。通过大量的试验表明,裂纹扩展速率da/dN与应力强度因子幅度ΔK在对数坐标中的关系曲线如图1所示。 图1 疲劳裂纹扩展曲线 图1所示的关系曲线可以分为3个区域:第I区域为裂纹不扩展区域,ΔK略小于裂纹扩展门槛值ΔKth,基本上与纵坐标轴平行;第II区域为 裂纹亚临界扩展区域,疲劳裂纹稳定扩展,是疲劳裂纹寿命的重要组成部分;第III区域为裂纹失稳扩展区域,裂纹快速扩展,当Kmax达到材料 的断裂韧度KC时,构件将失稳断裂。

国外正交异性钢桥面铺装综述

国外正交异性钢桥面铺装综述 要:由于钢桥面铺装承受了交通荷载和自然环境的复杂影响,使用条件严酷,因此,成为各国工程技术人员研究解决的难题。在日本、欧洲、美国等经济发达地区,桥面铺装技术问题解决得较好,基本形成了本国的铺装体系和典型结构设计方法(经验法)。文章对具有代表性国家的情况进行了对照参考,为国内相关研究提供借鉴。 关键词:钢桥面铺装;国外发展;对照参考 1 异性钢桥的介绍 在某种意义上,正交异性钢桥是20世纪30年代的battledeck板的发展。它包括钢桥面钢板焊接到纵向(通常工字钢)的纵梁,并由横梁支撑。在该系统中,桥面板既没有加强横梁强度,也没有形成其上翼缘,也没有形成主纵梁的强度,它仅仅是将轮载横向传递给纵梁。加劲肋、横肋、纵肋在垂直方向相互交织形成组合体而发挥作用,形成一种效率很高的网格状承重结构,并且由于其相对较低的自重,并且可以大量采取预制并满足大量的需求量,已建成或正在建设的大跨径桥梁面板多数采用正交异性钢桥面板。 2 桥面铺装 2.1 介绍 沥青用于钢桥面铺装主要有三个目的:(1)给予行车路面良好的防滑性;(2)通过改变其厚度对钢板的不平整予以改善得到平整的行车舒适性;(3)通过防水层来保护钢桥面板。 考虑到满足这些功能,通常不可能只由一种材料以满足其要求,需被划

分为几个层面铺筑于钢桥面板上,一般铺装包括粘结层、粘附层、隔离层和磨耗层。 (1)粘结层:以保证钢板和隔离层之间有足够的粘附力;(2)隔离层:防止底层钢板的腐蚀,并使钢板与磨耗层之间柔性过渡;(3)粘附层:保证隔离层和沥青磨耗层之间足够强的附着力;(4)磨耗层:承受并传递交通荷载到底层结构,并且提供必要的防滑性。 2.2 材料要求 由于要将不同功能层之间进行明显区分是不可能的,要满足有些要求不光只顾及一个层面。 对于正交异性钢桥面板材料的总体要求:(1)要求在高温下,沥青铺装层必须满足刚度要求,足够的抗车辙能力;(2)在低温下的材料应该是塑料或应具有高拉伸强度,以防止疲劳开裂,要求它不能开裂并且不应与钢板的粘结发生松动;(3)不同层间要保持良好的粘结力;(4)良好的抗滑性。 2.2.1 粘结层 (1)能够提供可靠的防腐性;(2)保证上覆层与钢板之间有足够强的附着力,所以它需要抵抗剪切应力,并能够在宽的温度范围保持其性能;(3)具有良好的密实性、憎水性,能够防止水气的渗入,这些功能可以由一个或多个结构层次来实现。 据国外学者Kohler和Deters(1974),粘结层需要具备低粘度以符合上述要求。 2.2.2 隔离层

正交异性板钢桥面(3.14)2

正交异性板钢桥面结构应用技术工艺的探讨 The structural characteristics and manufacturing craft of steel box girder with an orthotropic steel bridge deck 叶翔叶觉明 ( Ye Xiang Ye Jue-ming ) 中铁大桥局武汉桥梁科学研究院武汉 430034 ( Bridge Science Research Institute, Major Bridge Engineering Bureau of China Railways, Wuhan 430034) 摘要: 正交异性钢桥面板是钢结构桥梁的重要结构件,正交异性钢桥面板由钢板、U肋和横隔板组成。以钢箱梁正交异性钢桥面板为例,介绍正交异性钢桥面板结构特点和组拼、 焊接和工地连接工艺特点,探讨在目前焊接和组装工艺条件下,延长正交异性钢桥面板 使用寿命的加工技术和工艺。 abstract: The orthotropic steel bridge deck is important structural of the steel structure bridge, the orthotropic steel bridge deck made is composed by the steel plate、 the U-shaped stiffener and the cross spacer . Taking the steel box girder deck plate as research object, the orthotropic steel bridge deck unique feature and craft characteristic for assembling、welding and site connection of the plate elements was deal with。 under the condition of the current welding and assembling workmanship, technology and technique to prolong the service life of orthotropic steel bridge deck was researched and discussed. 关键词: 正交异性钢桥面板板单元横隔板 U肋焊接工艺焊接残余应力 Key word: orthotropic steel bridge deck plate element cross spacer U-shaped stiffener welding technology Weld residual stress 对于大跨度悬索桥和斜拉桥,钢箱梁是非常有利的结构形式。钢箱梁以面板、底板、腹板、纵横隔板及加劲结构件为主要构成。其中面板钢板一般刚度较小,在轮载作用下易发生较大的变形,因此需要一定的钢板厚度,同时在面板上安装纵肋和垂直于纵肋的横隔板加劲,这是一种典型的正交异性桥面板。钢桥面板结构在桥梁上是不可能更换的,如果产生缺陷或裂纹扩展后修补又比较困难,需要从结构和实用焊接加工技术工艺等方面予以重视,延长桥面板的安全使用寿命。 1.正交异性桥面板结构和制造加工特点

正交异性钢桥面系统设计与基本维护指南_报批稿

正交异性钢桥面系统的设计 和基本维护指南 (报批稿) Guidelines for Design and Maintain of Orthotropic Steel Deck 中交公路规划设计院有限公司 中 国 铁 道 科 学 研 究 院 浙江省舟山连岛工程建设指挥部 2010.09.25

前 言 本指南针对正交异性钢桥面板的设计、加工制造和正交异性钢桥面板维护技术而编制。在制订过程中,积极借鉴了欧洲《BS EN 1993-2:2006 Eurocode 3—Design of steel structures—Part 2:Steel bridges》、美国联邦州际公路与运输协会《AASHTO LRFD Bridge Design Specifications》和日本《钢构造物的疲劳设计指针同解说》,参考根据国家科技支撑计划项目——跨海特大跨径钢箱梁悬索桥关键技术研究及工程示范-特大跨径悬索桥分体式钢箱梁成套技术研究与示范(2008BAG07B04)的科研成果,并考虑了当前的设计和制造水平及公路运输的未来发展趋势。 本指南主要内容包括:术语和定义、符号及代号、材料及连接方法、结构及构造设计、疲劳设计强度、疲劳设计荷载、疲劳检算方法、加工质量要求以及基本养护维修方法,可供公路桥梁中索支撑的连续钢箱梁或索支撑的连续钢桁梁的正交异性钢桥面的设计和养护维修参考使用。 本指南在执行过程中,如发现需要修改和补充之处,请将意见及有关资料寄交中交公路规划设计院有限公司(地址:北京市西城区德胜门外大街85号A607,邮编:100088,电子邮件:njsq1418@https://www.doczj.com/doc/b29231879.html, )。 本指南由浙江省交通运输厅提出并归口。 本指南由中交公路规划设计院有限公司、中国铁道科学研究院铁道建筑研究所、浙江省舟山连岛工程建设指挥部起草。 本指南主要起草人:崔冰、刘晓光、张胜利、张玉玲、陶晓燕、童育强、孔庆凯、崔鑫、赵欣欣、曾志斌、田越、荣振环、于旭东。 本指南附录A为规范性附录。

正交异性板

正交异性板 正交异性版即正交异性钢桥面板,是用纵横向互相垂直的加劲肋(纵肋和横肋)连同桥面盖板所组成的共同承受车轮荷载的结构。这种结构由于其刚度在互相垂直的二个方向上有所不同,造成构造上的各向异性。 细部构造 对于大跨度悬索桥和斜拉桥,钢箱梁自重约为PC箱梁自重的1/5,1/6.5。正交异性钢板结构桥面板的自重约为钢筋混凝土桥面板或预制预应力混凝土桥面板自重的1/2,1/3。所以,受自重影响很大的大跨度桥梁,正交异性板铜箱梁是非常有利的结构形式。 通常在钢桥面板上铺装沥青混凝土铺装层,其主要作用是保护钢桥面板和有利于车辆的行走性。近代正交异性钢桥面板的构造细节如图回所示,由钢面板纵助和横肋组成,且互相垂直。钢面板厚度一般为12mm,纵肋通常为U形肋或球扁钢肋 或板式助,U形肋板厚一般为6mm或8mm,横梁间距一般为3.4,4.5m,两横梁之间设一横肋。 制造时,全桥分成若干节段在工厂组拼,吊装后在桥上进行节段间的工地连接。通常所有纵向角焊缝(纵向肋和纵隔板等)贯通,横隔板与纵向焊缝、纵肋下翼缘相交处切割成弧形缺口与其避开。 分析方法 正交异性板除作为桥面外,还是主梁截面的组成部份,它既是纵横梁的上翼缘,又是主梁的上翼缘。传统的分析方法是把它分成三个结构体系加以研究,即: (1)主梁体系:由盖板和纵肋组成主梁的上翼缘,是主梁的一部份。 (2)桥面体系:由纵肋、横梁和盖板组成,盖板成为纵肋和横梁的共同上翼缘。 (3)盖板体系:仅指盖板,它被视为支承在纵肋和横梁上的各向同性连续板。

计算方法 解析法是将正交异性钢桥面板结构作为弹性支承连续正交异性板分析的较为成熟的经典计算方法。根据所取的计算模型不同,解析法计算又可分为以下几种: (1)把板从肋的中间分开,并归并到纵横肋上去,构成格子梁体系。它的缺点是未能考虑板的剪切刚度。 (2)把纵横梁分摊到板上,也就是将板化成一种理想的正交异性板。当荷载作用在横肋上时,这种方法是较好的,但当荷载作用在两横肋中间时,此法的精度就差了。 (3)对法2的改进,即将作用有荷载的那个节间单独处理,令节间的横向抗弯刚度等于盖板的抗弯刚度,其余节间解同法2 (4)Pelikan-Esslinger法。此法是将纵肋均分摊到盖板上,而将横肋作为刚性支承,求解后再将横肋的弹性支承计入。 随着计算机技术的发展,正交异性板的求解又有了很多新的数值法。目前较有成效的是有限差分法、有限条法和有限单元法。疲劳问题 钢桥面板作为主梁的上翼缘,同时又直接承受车辆的轮载作用。如上所述,钢桥面板是由面板、纵肋和横助三种薄板件焊接而成,在焊缝交叉处设弧形缺口,其构造细节很复杂。当车辆通过时,轮载在各部件上产生的应力,以及在各部件交叉处产生的局部应力和变形也非常复杂,所以钢桥面板的疲劳问题是设计考虑的重点之一。自1966年英国Severn桥(悬索桥)采用扁平钢箱梁以来,钢桥面板陆续出现许多疲劳裂纹,主要产生的部位有纵助与面板之间的肋角焊缝、纵横肋交叉的弧形缺口处,U形肋钢衬垫板对接焊缝处等,其中梁段之间钢桥面板工地接头是抗疲劳最薄弱的部位。 由于钢桥面板不可能更换,产生裂纹后修补又比较困难,50年来(通过一系列的试验研究和有限元分析,以及实

相关主题
文本预览
相关文档 最新文档