当前位置:文档之家› DS1052E型数字示波器使用说明书

DS1052E型数字示波器使用说明书

DS1052E型数字示波器使用说明书
DS1052E型数字示波器使用说明书

DS1052E型数字示波器使用说明概述

DS1052E型示波器以优异的技术指标及众多功能特性的完美结合,向用户提供了简单而功能明晰的前面板,以进行所有的基本操作。各通道的标度和位置旋钮提供了直观的操作,完全符合传统仪器的使用习惯,用户不必花大量的时间去学习和熟悉示波器的操作,即可熟练使用。为加速调整,便于测量,用户可直接按AUTO键,立即获得适合的波形显现和档位设置。除易于使用之外,示波器还具有更快完成测量任务所需要的高性能指标和强大功能。通过1GSa/s的实时采样和25GSa/s的等效采样,可在示波器上观察更快的信号。强大的触发和分析能力使其易于捕获和分析波形。清晰的液晶显示和数学运算功能,便于用户更快更清晰地观察和分析信号问题。

技术性能

双模拟通道,每通道带宽:50MHz。

高清晰彩色液晶显示系统:320×234分辨率。

支持即插即用闪存式USB存储设备以及USB接口打印机,并可通过USB存储设备进行软件升级。

模拟通道的波形亮度可调。

自动波形、状态设置(AUTO )。

波形、设置、CSV和位图文件存储以及波形和设置再现。

精细的延迟扫描功能,轻易兼顾波形细节与概貌。

自动测量20种波形参数。

自动光标跟踪测量功能。

独特的波形录制和回放功能。

内嵌FFT。

实用的数字滤波器,包含LPF,HPF,BPF,BRF。

Pass/Fail检测功能,光电隔离的Pass/Fail输出端口。

多重波形数学运算功能。

独一无二的可变触发灵敏度,适应不同场合下特殊测量要求。

多国语言菜单显示。

弹出式菜单显示,用户操作更方便、直观。

中英文帮助信息显示及支持中英文输入。

第一章示波器的初步操作说明

DS1052E示波器向用户提供简单而功能明晰的前面板,以进行基本的操作。面板上包括旋钮和功能按键。显示屏右侧的一列5个灰色按键为菜单操作键(自上而下定义为1号至

5号)。通过它们,您可以设置当前菜单的不同选项;其它按键为功能键,通过它们,您可以进入不同的功能菜单或直接获得特定的功能应用。

一、DS1052E前面板控制件位置图及功能(图一)

菜单操作键多功能

旋钮功能按钮控制按钮

触发控制

水平控制

垂直控制

校准

信号

外部

触发输入

信号

输入通道

USB接口

图F1-1 DS1052E前面板控制件位置图

值得注意的是,MENU 功能键的标识用一方框包围的文字表示,如,代表前面板上的标注Measuee文字的透明功能键。

标识为的多功能旋钮,用表示。

两个标识为POSITION 的旋钮,用表示。

两个标识为SCALE 的旋钮,用表示。

标识为LEVEL 的旋钮,用表示。

菜单操作键的标识用带阴影的文字表示,如波形存储,表示存储菜单中的存储波形选项。

图F1-2 显示界面说明(仅模拟通道打开)

图F1-3 显示界面说明(模拟和数字通道同时打开)

二、探头补偿

在首次将探头与任一输入通道连接时,进行此项调节,使探头与输入通道相配。未经补偿或补偿偏差的探头会导致测量误差或错误。若调整探头补偿,请按如下步骤:

1. 将探头菜单衰减系数设定为10X,将探头上的开关设定为10X,并将示波器探头与

通道1连接。如使用探头钩形头,应确保与探头接触紧密。

将探头端部与探头补偿器的信号输出连接器相连,基准导线夹与探头补偿器的地线连接器相连,打开通道1,然后按AUTO 。

2. 检查所显示波形的形状。

图F1-4 探头补偿调节

3. 如必要,用非金属质地的改锥调整探头上的可变电容,直到屏幕显示的波形如上图“补偿正确”。

4. 必要时,重复以上步骤。

三、波形显示的自动设置

DS1052E型数字示波器具有自动设置的功能。根据输入的信号,可自动调整电压倍率、时基、以及触发方式至最好形态显示。应用自动设置要求被测信号的频率大于或等于50Hz,占空比大于1%。

使用自动设置:

(1)将被测信号连接到信号输入通道。

(2)按下AUTO 按钮。

示波器将自动设置垂直,水平和触发控制。如需要,可手工调整这些控制使波形显示达到最佳。

四、垂直系统

如图F1-5所示,在垂直控制区(VERTICAL)有一系

列按键、旋钮。下面介绍垂直设置的使用。

1. 使用垂直旋钮在波形窗口居中显示

信号。垂直旋钮控制信号的垂直显示位

置。当转动垂直旋钮时,指示通道地

(GROUND)的标识跟随波形而上下移动。

测量技巧:如果通道耦合方式为DC,可以通过观察波

形与信号地之间的差距来快速测量信号的直流分量。如果图F1-5 垂直控制系统

耦合方式为AC,信号里面的直流分量被滤除。这种方式可以以更高的灵敏度显示信号的交流分量。

双模拟通道垂直位置恢复到零点快捷键:旋动垂直旋钮不但可以改变通

道的垂直显示位置,更可以通过按下该旋钮作为设置通道垂直显示位置恢复到零点的快捷键。

2. 改变垂直设置,并观察因此导致的状态信息变化。

可以通过波形窗口下方的状态栏显示的信息,确定任何垂直档位的变化。转动垂直旋钮改变“Volt/div(伏/格)”垂直档位,可以发现状态栏对应通道的档位显示发

生了相应的变化。按CH1 、CH2 、MATH 、REF ,屏幕显示对应通道的操作菜单、标志、波形和档位状态信息。按OFF 按键关闭当前选择的通道。

Coarse/Fine(粗调/微调)快捷键:可通过按下垂直旋钮作为设置输入通道的粗调/微调状态的快捷键,然后调节该旋钮即可调节粗调/微调垂直档位。

五、水平系统

如图F1-6所示,在水平控制区(HORIZONTAL)有一个按键、两个旋钮。下面介绍水平时基的设置。

1. 使用水平旋钮改变水平档位设置,并观察因此导

致的状态信息变化。

转动水平旋钮改变“s/div(秒/格)”水平档位,可

以发现状态栏对应通道的档位显示发生了相应的变化。水平扫描

速度从5ns至50s,以1-2-5 的形式步进。

Delayed(延迟扫描)快捷键:水平旋钮不但可以通过转动调整

“s/div(秒/格)”,更可以按下切换到延迟扫描状态。

2. 使用水平旋钮调整信号在波形窗口的水平

位置。

水平旋钮控制信号的触发位移。当应用于触发图F1-6 水平控制系统位移时,转动水平旋钮,可以观察到波形随旋钮而水平移动。

触发点位移恢复到水平零点快捷键:水平旋钮不但可以通过转动调整信

号在波形窗口的水平位置,更可以按下该键使触发位移(或延迟扫描位移)恢复到水平零点处。

3. 按MENU 按钮,显示TIME 菜单。在此菜单下,可以开启/关闭延迟扫描或切换Y-T、X-Y和ROLL 模式,还可以设置水平触发位移复位。

★名词解释触发位移:指实际触发点相对于存储器中点的位置。转动水平旋钮,可水平移动触发点。

六、触发系统

如图图F1-7所示,在触发控制区(TRIGGER)有一个旋钮、三个按键。下面介绍触发系统的设置。

1. 使用旋钮改变触发电平设置。转动

旋钮,可以发现屏幕上出现一条桔红色的触发线以

及触发标志,随旋钮转动而上下移动。停止转动旋钮,此触发

线和触发标志会在约5 秒后消失。在移动触发线的同时,可以

观察到在屏幕上触发电平的数值发生了变化。

触发电平恢复到零点快捷键:旋动垂直旋钮不但

可以改变触发电平值,更可以通过按下该旋钮作为设置触发电

平恢复到零点的快捷键。

2. 使用MENU 调出触发操作菜单(见图F1-8),改变触发

的设置,观察由此造成的状态变化。

按1号菜单操作按键,选择边沿触发。图F1-7 触发系统

按2号菜单操作按键,选择“信源选择”为CH1。

按3号菜单操作按键,设置“边沿类型”为上升沿。

按4号菜单操作按键,设置“触发方式”为自动。

按5号菜单操作按键,进入“触发设置”二级菜单,对触发的耦合方式,触发灵敏度和触发释抑时间进行设置。

强制产生一触发信号,主要应用于触发方式中的“普通”和“单次”模式。

★名词解释触发释抑:指重新启动触发电路的时间间隔。旋动多功

图F1-8 触发操作菜单能旋钮,可设置触发释抑时间。

第二章示波器的高级操作说明(指南)

一、设置垂直系统 1. 通道的设置

每个通道都有独立的垂直菜单,每个项目都按不同的通道单独设置。 按

CH1 或 CH2 功能按键,系统显示CH1或CH2通道的操作菜单,说明见图F1-8及表F1-1:

表F1-1 通道设置菜单 图F1-9

表F1-2 通道设置菜单

图F1-10

(1)设置通道耦合

以CH1通道为例,被测信号是一含有直流偏置的正弦信号。按CH1 →耦合→交流,设置为交流耦合方式。被测信号含有的直流分量被阻隔。波形显示如图F1-11所示。

图F1-11 交流耦合设置

按CH1 →耦合→直流,设置为直流耦合方式。被测信号含有的直流分量和交流分量都可以通过。波形显示如图F1-12所示。

图F1-12 直流耦合设置

按CH1 →耦合→接地,设置为接地方式。被测信号含有的直流分量和交流分量都被阻隔。波形显示如图F1-13所示。

图F1-13 接地耦合设置

(2)设置通道带宽限制

以CH1通道为例,被测信号是一含有高频振荡的脉冲信号。按CH1 →带宽限制→ 关闭,设置带宽限制为关闭状态。被测信号含有的高频分量可以通过。波形显示如图F1-14所示。

图F1-14 关闭带宽限制

按CH1 →带宽限制→打开,设置带宽限制为打开状态。被测信号含有的大于20MHz 的高频分量被阻隔。波形显示如图F1-15所示。

图F1-15 打开带宽限制

(3)调节探头比例

为了配合探头的衰减系数,需要在通道操作菜单中相应调整探头衰减比例系数。如探头衰减系数为10:1,示波器输入通道的比例也应设置成10X ,以避免显示的档位信息和测量的数据发生错误。图F1-16为应用1000:1探头时的设置及垂直档位的显示。

图F1-16 设置探头衰减系数

表F1-3 探头衰减系数菜单

(4)档位调节设置

垂直档位调节分为粗调和微调两种模式。垂直灵敏度的范围是2mV/div至10V/div(探头比例设置为1X)。粗调是以1-2-5步进方式调整垂直档位。即以2mV/div、5mV/div、10mV/div、20mV/div……10V/div方式步进。

微调指在当前垂直档位范围内进一步调整。如果输入的波形幅度在当前档位略大于满刻度,而应用下一档位波形显示幅度稍低,可以应用微调改善波形显示幅度,以利于观察信号细节,见图F1-17。

图F1-17 档位调节示意图

★操作技巧:

切换粗调/微调不但可以通过此菜单操作,更可以通过按下垂直旋钮作为设

置输入通道的粗调/微调状态的快捷键。

(5)波形反相的设置

波形反相:显示的信号相对地电位翻转180度。见图F1-18和图F1-19。

图F1-18 未反相的波形

图F1-19 反相的波形

(6)数字滤波

按CH1 (第一页)→数字滤波,系统显示FILTER数字滤波功能菜单,旋动多功能旋

钮设置频率上限和下限,设定滤波器的带宽范围。说明见图F1-21及表F1-4。

图F1-20 关闭数字滤波

图F1-20 打开数字滤波

表F1-4 滤波器设置菜单

图F1-21 数字 滤波器设置菜单

2. 数学运算

数学运算(MA TH )功能是显示CH1、CH2通道波形相加、相减、相乘以及FFT 运算的结果。数学运算的结果同样可以通过栅格或游标进行测量,数学运算界面见图F1-21。数学运算菜单及说明见图F1-22及表F1-5。

图F1-21 数学运算界面

设置频率上

设置频率下

表F2-5 数学运算菜单说明

图F2-21 数学运算菜单

FFT频谱分析

(1)使用FFT(快速傅立叶变换)数学运算可将时域(YT)信号转换成频域信号。使用FFT可以方便地观察下列类型的信号:

①测量系统中谐波含量和失真

②表现直流电源中的噪声特性

③分析振动

FFT操作菜单及说明见图F2-22和表F2-6。

表F2-6 FFT操作菜单说明

图F2-22 FFT操作菜单

★FFT操作技巧:具有直流成分或偏差的信号会导致FFT波形成分的错误或偏差。为减少直流成分可以选择交流耦合方式。

为减少重复或单次脉冲事件的随机噪声以及混叠频率成分,可设置示波器的获取模式为平均获取方式。如果在一个大的动态范围内显示FFT波形,建议使用dBVrms垂直刻度。dB刻度应用对数方式显示垂直幅度大小。

(2)选择FFT窗口

在假设YT波形是不断重复的条件下,示波器对有限长度的时间记录进行FFT变换。这样当周期为整数时,YT波形在开始和结束处波形的幅值相同,波形就不会产生中断。但是,如果YT波形的周期为非整数时,就引起波形开始和结束处的波形幅值不同,从而使连接处产生高频瞬态中断。在频域中,这种效应称为泄漏。因此为避免泄漏的产生,在原波形上乘以一个窗函数,强制开始和结束处的值为0。FFT窗函数说明见表F2-7。

表F2-7FFT窗函数说明

★名词解释

FFT分辨率:定义为采样率与运算点的商。在运算点数固定时,采样率越低FFT分辨率就越好。

奈奎斯特频率:对最高频率量为F的波形,必须使用至少2F的采样率才能重建原波形。它也被称为奈奎斯特判则,这里F是奈奎斯特频率,而2F是奈奎斯特率。

3. REF功能(略)

在实际测试过程中,用DS1052E示波器测量观察有关组件的波形,可以把波形和参考波形样板进行比较,从而判断故障原因。此方法在具有详尽电路工作点参考波形条件下尤为适用。

4. 选择和关闭通道

DS1052E示波器的CH1、CH2为信号输入通道。此外,对于数学运算(MA TH)和(REF)的显示和操作也是按通道等同处理。即在处理MATH和REF时,也可以理解为是在处理相对独立的通道。

欲打开或选择某一通道时,只需按其对应的通道按键。通道按键灯亮说明该通道已被激活,若希望关闭某个通道,再次按下该通道按键或此通道在当前处于选中状态时,按OFF

按键也可将其关闭,通道按键灯灭。

表F2-8 通道打开和关闭的状态标志

★注:示波器在屏幕左下角显示上述通道状态标志。5. 垂直位移和垂直档位旋钮的应用 (1)垂直旋钮调整所有通道(包括数学运算和REF )波形的垂直位置。 (2)垂直

旋钮调整所有通道(包括数学运算和REF )波形的垂直分辨

率。粗调是以1-2-5 方式步进确定垂直档位灵敏度。顺时针增大,逆时针减小垂直灵敏度。微调是在当前档位进一步调节波形显示幅度。同样顺时针增大,逆时针减小显示幅度。粗调、微调可通过按垂直

旋钮切换。

(3)需要调整的通道(包括数学运算和REF )只有处于选中的状态时,垂直

和垂直

旋钮才能调节此通道。REF (参考波形)的垂直档位调

整对应其存储位置的波形设置。

(4)调整通道波形的垂直位置时,屏幕左下角显示垂直位置信息。例如: POS :32.4mV ,显示的文字颜色与通道波形的颜色相同,以“V ”(伏)为单位。 二、设置水平系统 1. 水平控制旋钮

使用水平控制钮可改变水平刻度(时基)、触发在内存中的水平位置(触发位移)。屏幕水平方向上的中点是波形的时间参考点。改变水平刻度会导致波形相对屏幕中心扩张或收缩。水平位置改变波形相对于触发点的位置。 (1)水平

:调整通道波形(包括数学运算)的水平位置。这个控制钮

的解析度根据时基而变化,按下此旋钮使触发位置立即回到屏幕中心。 (2)水平

:调整主时基或延迟扫描(Delayed )时基,即秒/格(s/div )。当

延迟扫描被打开时, 将通过改变水平旋钮改变延迟扫描时基而改变窗口宽度。

详情请参看延迟 扫描(Delayed )的介绍。

(3)水平控制按键

MENU :显示水平菜单。水平设置菜单及说明见图F2-23和表F2-9。

表F2-9 水平设置菜单说明 图F2-23 水平设置菜单

图F2-24是水平设置各个标志的说明。

图F2-24 水平设置标志说明

标志说明:

①此标识表示当前的波形视窗在内存中的位置。

②标识表示触发点在内存中的位置。

③标识表示触发点在当前波形视窗中的位置。

④水平时基(主时基)显示,即“秒/格”(s/div)。

⑤触发位置相对于视窗中点的水平距离。

★名词解释

Y-T方式:此方式下Y轴表示电压量,X轴表示时间量。

X-Y方式:此方式下X轴表示通道1为电压量,Y轴表示通道2为电压量。

滚动方式:当仪器进入滚动模式,波形自右向左滚动刷新显示。在滚动模式中,波形水平位移和触发控制不起作用。一旦设置滚动模式,时基控制设定必须在500ms/div,或更慢。

慢扫描模式:当水平时基控制设定在50ms/div或更慢,仪器进入慢扫描采样方式。在此方式下,示波器先行采集触发点左侧的数据,然后等待触发,在触发发生后继续完成触

秒/格(s/div)键),时基控制可扩张或压缩波形。

2. 延迟扫描

延迟扫描用来放大一段波形,以便查看图像细节。延迟扫描时基设定不能慢于主时基的设定。

图F2-25 延迟扫描示意图

在延迟扫描下,分两个显示区域,如图F2-25所示。上半部分显示的是原波形,未被半透明蓝色覆盖的区域是期望被水平扩展的波形部分。此区域可以通过转动水平

旋钮左右移动,或转动水平旋钮扩大和减小选择区域。下半部

分是选定的原波形区域经过水平扩展的波形。值得注意的是,延迟时基相对于主时基提高了分辨率(如图F2-25所示)。由于整个下半部分显示的波形对应于上半部分选定的区域,

因此转动水平旋钮减小选择区域可以提高延迟时基,即提高了波形的水平扩展

倍数。

★操作技巧:进入延迟扫描不但可以通过水平区域的MENU 菜单操作,也可以直接按下此区域的水平旋钮作为延迟扫描快捷键,切换到延迟扫描状态。

3. X-Y方式

此方式只适用于通道1和通道2。选择X-Y 显示方式以后,水平轴上显示通道1为电压,垂直轴上显示通道2为电压。X-Y 显示方式如图F2-26所示。

图F2-26 X-Y显示方式

注意:示波器在正常Y-T方式下可应用任意采样速率捕获波形。在X-Y方式下同样可以调整采样率和通道的垂直档位。X-Y方式缺省的采样率是100MSa/s。一般情况下,将采样率适当降低,可以得到较好显示效果的李沙育图形。

以下功能在X-Y显示方式中不起作用:

①自动测量模式

②光标测量模式

③参考或数学运算波形

④延迟扫描(Delayed)

⑤矢量显示类型

⑥水平旋钮

⑦触发控制

4. 设置触发系统

数字示波器使用实验操作指导

DS1000E-EDU 数字示波器实验操作指导 一、显示和测量正弦信号 观测电路中的一个未知信号,迅速显示和测量信号的频率和峰峰值。 1、欲迅速显示该信号,请按如下步骤操作: (1) 信号发生器输出一正弦信号,将通道1连接到信号发生器。 (2) 按下 示波器将自动设置使波形显示达到最佳状态。在此基础上,您可以进一步调节垂直、水平档位,直至波形的显示符合您的要求。 2. 进行自动测量 示波器可对大多数显示信号进行自动测量。欲测量信号频率和峰峰值,请按如下步骤操作 (1) 测量峰峰值 按下 Measure 按键以显示自动测量菜单。 按下1号菜单操作键以选择信源 CH1 。 按下2号菜单操作键选择测量类型: 电压测量 。 在电压测量弹出菜单中选择测量参数: 峰峰值 。 此时,您可以在屏幕左下角发现峰峰值的显示。 (2) 测量频率 按下3号菜单操作键选择测量类型: 时间测量 。 在时间测量弹出菜单中选择测量参数: 频率 。 此时,您可以在屏幕下方发现频率的显示。 3、用Cursor 光标测量功能进行手动测量 (1) 信号发生器输出一任意频率的正弦信号,将信号发生器输出端连接示波器通道1。 (2) 按下Cursor 光标测量键,选择手动测量,测量出信号的周期、频率,电压峰峰值,画出信号波形,标出周期、频率,电压峰峰值。 二、X -Y 功能的应用,观察李沙如图形 1. 将信号A 连接通道1,将信号B 连接通道2。 2. 若通道未被显示,则按下 CH1 和 CH2 菜单按钮。 3. 按下 AUTO (自动设置)按钮。 4. 调整垂直旋钮使两路信号显示的幅值大约相等。 5. 按下水平控制区域的 MENU 菜单按钮以调出水平控制菜单。 6. 按下时基菜单框按钮以选择 X -Y 。示波器将以李沙如(Lissajous )图形模式显示。 7. 调整垂直、垂直和水平旋钮使波形达到最佳效果。 8.调节信号发生器A 路信号频率为f X =50Hz ,根据频率比值关系和f X =50Hz ,算出相应的f Y 值。缓慢调节信号发生器B 路信号频率频率f Y ,分别调出 ==Y X X Y N N f f ::3:1;2:1;3:2;1:1的稳定李萨如图形,将所见稳定图形描绘在记录表格(参考下表)中并同时记录信号发生器相应的频率读数f Y 。并计算f Y 信和f Y 的相对偏差

利用数字示波器测试开关电源的方法

利用数字示波器测试开关电源的方法 从传统的模拟型电源到高效的开关电源,电源的种类和大小千差万别。它们都要面对复杂、动态的工作环境。设备负载和需求可能在瞬间发生很大变化。即使是“日用的”开关电源,也要能够承受远远超过其平均工作电平的瞬间峰值。设计电源或系统中要使用电源的工程师需要了解在静态条件以及最差条件下电源的工作情况。 过去,要描述电源的行为特征,就意味着要使用数字万用表测量静态电流和电压,并用计算器或PC进行艰苦的计算。今天,大多数工程师转而将示波器作为他们的首选电源测量平台。现代示波器可以配备集成的电源测量和分析软件,简化了设置,并使得动态测量更为容易。用户可以定制关键参数、自动计算,并能在数秒钟内看到结果,而不只是原始数据。 电源设计问题及其测量需求 理想情况下,每部电源都应该像为它设计的数学模型那样地工作。但在现实世界中,元器件是有缺陷的,负载会变化,供电电源可能失真,环境变化会改变性能。而且,不断变化的性能和成本要求也使电源设计更加复杂。考虑这些问题: 电源在额定功率之外能维持多少瓦的功率?能持续多长时间?电源散发多少热量?过热时会怎样?它需要多少冷却气流?负载电流大幅增加时会怎样?设备能保持额定输出电压吗?电源如何应对输出端的完全短路?电源的输入电压变化时会怎样? 设计人员需要研制占用空间更少、降低热量、缩减制造成本、满足更严格的EMI/EMC标准的电源。只有一套严格的测量体系才能让工程师达到这些目标。 示波器和电源测量 对那些习惯于用示波器进行高带宽测量的人来说,电源测量可能很简单,因为其频率相对较低。实际上,电源测量中也有很多高速电路设计师从来不必面对的挑战。 整个开关设备的电压可能很高,而且是“浮动的”,也就是说,不接地。信号的脉冲宽度、周期、频率和占空比都会变化。必须如实捕获并分析波形,发现波形的异常。这对示波器的要求是苛刻的。多种探头——同时需要单端探头、差分探头以及电流探头。仪器必须有较大的存储器,以提供长时间低频采集结果的记录空间。并且可能要求在一次采集中捕获幅度相差很大的不同信号。 开关电源基础 大多数现代系统中主流的直流电源体系结构是开关电源(SMPS),它因为能够有效地应对变化负载而众所周知。典型SMPS的电能信号路径包括无源器件、有源器件和磁性元件。SMPS尽可能少地使用损耗性元器件(如电阻和线性晶体管),而主要使用(理想情况下)无损耗的元器件:开关晶体管、电容和磁性元件。

数字示波器的简单使用

预备实验:数字示波器使用方法(简介) 内容提示:1、数字示波器功能简介 2、示波器面板照 3、示波器各按钮操作功能 4、示波显示状态的含义 5、常用功能按钮的操作 6、垂直控制按钮的操作 7、水平控制按钮的操作显示 8、触发电平控制按钮的操作 9、操作注意事项 10、显示、测量直流信号 11、显示、测量交流信号 一、数字示波器功能简介 数字示波器是一种小巧,轻型、便携式的可用来进行以接地电平为参考点测量的数字式实时示波器。它的屏幕既能显示被测信号的波形,还能显示被测信号的电压幅度、周期、频率等有关电参数。 ADS1000CA特点: ●全新的超薄外观设计、体积小巧、携带更方便 ●彩色TFT LCD 显示,波形显示更清晰、稳定 ●双通道,带宽: 25MHZ-100MHZ ●实时采样率:1GSa/s ●存储深度:2Mpts ●丰富的触发功能:边沿、脉冲、视频、斜率、交替、延迟 ●独特的数字滤波与波形录制功能 ●Pass/Fail 功能 ●32 种自动测量功能 ●2 组参考波形、20 组普通波形、20 组设置内部存储/调出;支持波形、设置、CSV 和位图文件U 盘外部存储及调出 ●手动、追踪、自动光标测量功能 ●通道波形与FFT 波形同时分屏显示功能 ●模拟通道的波形亮度及屏幕网格亮度可调 ●弹出式菜单显示模式,用户操作更灵活、自然 ●丰富的界面显示风格:经典、现代、传统、简洁 ●多种语言界面显示,中英文在线帮助系统 ●标准配置接口:USB Host:支持U 盘存储并能通过U 盘进行系统软件升级; USB Device:支持PictBridge 直接打印及与PC 连接远程控制;RS-232

数字示波器使用方法

数字示波器因具有波形触发、存储、显示、测量、波形数据分析处理等独特优点,其使用日益普及。由于数字示波器与模拟示波器之间存在较大的性能差异,如果使用不当,会产生较大的测量误差,从而影响测试任务。 区分模拟带宽和数字实时带宽 带宽是示波器最重要的指标之一。模拟示波器的带宽是一个固定的值,而数字示波器的带宽有模拟带宽和数字实时带宽两种。数字示波器对重复信号采用顺序采样或随机采样技术所能达到的最高带宽为示波器的数字实时带宽,数字实时带宽与最高数字化频率和波形重建技术因子K相关(数字实时带宽=最高数字化速率/K),一般并不作为一项指标直接给出。从两种带宽的定义可以看出,模拟带宽只适合重复周期信号的测量,而数字实时带宽则同时适合重复信号和单次信号的测量。厂家声称示波器的带宽能达到多少兆,实际上指的是模拟带宽,数字实时带宽是要低于这个值的。例如说TEK公司的TES520B的带宽为500MHz,实际上是指其模拟带宽为500MHz,而最高数字实时带宽只能达到400MHz远低于模拟带宽。所以在测量单次信号时,一定要参考数字示波器的数字实时带宽,否则会给测量带来意想不到的误差。 有关采样速率 采样速率也称为数字化速率,是指单位时间内,对模拟输入信号的采样次数,常以MS/s表示。采样速率是数字示波器的一项重要指标。 1.如果采样速率不够,容易出现混迭现象 如果示波器的输人信号为一个100KHz的正弦信号,示波器显示的信号频率却是50KHz,这是怎么回事呢?这是因为示波器的采样速率太慢,产生了混迭现象。混迭就是屏幕上显示的波形频率低于信号的实际频率,或者即使示波器上的触发指示灯已经亮了,而显示的波形仍不稳定。混迭的产生如图1所示。那么,对于一个未知频率的波形,如何判断所显示的波形是否已经产生混迭呢?可以通过慢慢改变扫速t/div到较快的时基档,看波形的频率参数是否急剧改变,如果是,说明波形混迭已经发生;或者晃动的波形在某个较快的时基档稳定下来,也说明波形混迭已经发生。根据奈奎斯特定理,采样速率至少高于信号高频成分的2倍才不会发生混迭,如一个500MHz的信号,至少需要1GS/s的采样速率。有如下几种方法可以简单地防止混迭发生: ·调整扫速; ·采用自动设置(Autoset); ·试着将收集方式切换到包络方式或峰值检测方式,因为包络方式是在多个收集记录中寻找极值,而峰值检测方式则是在单个收集记录中寻找最大最小值,这两种方法都能检测到较快的信号变化。 ·如果示波器有Insta Vu采集方式,可以选用,因为这种方式采集波形速度快,用这种方法显示的波形类似于用模拟示波器显示的波形。 2.采样速率与t/div的关系 每台数字示波器的最大采样速率是一个定值。但是,在任意一个扫描时间t/div,采样速率fs由下式给出: fs=N/(t/div) N为每格采样点

数字示波器使用方法总结

数字示波器使用小方法 前言 本文的结构逐条编排,目的是使内容成为开放性和可添加型的,欢迎有经验的同事增加新的内容。 对本文中用到按键符号作如下规定: TRIGGER MENU→Type(main)→Edge(pop-up)→Coupling(main)→DC(Side) 代表按面板上的TRIGGER MENU键,再按显示屏下方的T ype键,重复按这个钮直到Edge高亮显示,再按显示屏下方的Coupling,再按显示屏右侧的DC键。 注:main代表显示屏下方的键,Side代表显示屏右方的键,pop-up代表一直按此键,直到项目高亮显示。 目录 一.安全问题 (1) 二.使用探头 (2) 三.触发方式 (11) 四.测试方法 (15) 五.小常识、小经验 (23)

一.安全问题 结论一示波器电源线要用三相插头良好接地(即接实验室的地线)说明为了避免电冲击对示波器造成损伤,输出及输入端进行电气连接前要保证示波器良好接地。 结论二探头地线只能接电路板上的地线,不可以搭接在电路板的正、负电源端说明交流供电系统或经整流后直流供电的系统的地一般都是接大地的。探头的地也是经示波器安全地线接大地的。如果探头的地搭在电路板上不是地的点上,就会造成此点和电源地短路,轻者使电路板工作不正常,重者会烧坏电路板或探头,造成严重后果。 尤其注意不能把探头的地接到电路板上的正、负电源端。 结论三不允许在探头还连接着被测试电路时插拔探头。 说明避免对示波器和探头造成损伤,尤其是有源探头。厂家说明。 结论四信号的幅度不要超过探头和示波器的安全幅度,以免造成损坏说明信号幅度超过±40V时,用有源探头P6245和P6243测量会造成探头的损坏。不同探头的幅度量程是不同的,要留心探头及示波器上的说明文字。

DS1052E型数字示波器使用说明书

DS1052E 型数字示波器使用说明 概述 DS1052E 型示波器以优异的技术指标及众多功能特性的完美 结合,向用户提供了简单而功能明晰的前面板,以进行所有的基本操作。各通道的标度和位置旋钮提供了直观的操 作,完全符合传统仪器的使用习惯,用户不必花大量的时间去学习和熟悉示波器的操作, 即可熟练使用。为加速调整,便于测量,用户可直接按AUTO 键,立即获得适合的波形显 现和档位设置。除易于使用之外,示波器还具有更快完成测量任务所需要的高性能指标和 强大功能。通过1GSa/s 的实时采样和25GSa/ s 的等效采样,可在示波器上观察更快的信号。 强大的触发和分析能力使其易于捕获和分析波形。清晰的液晶显示和数学运算功能,便于 用户更快更清晰地观察和分析信号问题。

技术性能 50MHz 。双模拟通道,每通道带宽: 分辨率。×234 320高清晰彩色液晶显示系统: USB 存储设备以及USB 接口打印机,并可通过USB 存储设备进支持即插即用闪存式 行软件升级。 模拟通道的波形亮度可调。 AUTO )。自动波形、状态设置( 波形、设置、CSV 和位图文件存储以及波形和设置再现。 精细的延迟扫描功能,轻易兼顾波形细节与概貌。 自动测量20 种波形参数。 自动光标跟踪测量功能。 独特的波形录制和回放功能。 内嵌FFT。 LPF,HPF,BPF,BRF 。实用的数字滤波器,包含 Pass/ Fail 检测功能,光电隔离的输出端口。Pass/ Fail 多重波形数学运算功能。 独一无二的可变触发灵敏度,适应不同场合下特殊测量要求。多国语言菜单显示。 弹出式菜单显示,用户操作更方便、直观。

数字示波器的使用

数字示波器的使用 实验报告 姓名: 学号: 座位号: 指导教师: 报告箱号: 实验日期:年月日星期第节

数字示波器的使用 预习提示:完整地学习使用某一仪器的最好方法一般是对照着用户手册,按照提示一步一步地操作,并观察记录实验现象和结果,思考自己所完成的仪器操作的作用。但初次接触像示波器这样的通用仪器,一方面,我们不可能在短时间内学会其所有的操作;另一方面,通用仪器的各种功能之间并不一定有直接的相互关联,我们可以选择其中的部分功能进行学习,其他功能可以留到以后用到时再参考用户手册来学习和实践。实验预习时,学生可以粗读用户手册中与实验内容相关的章节(第一章和第二章),知道有关功能/操作大致是哪些步骤、可以得到哪些结果。千万不要尝试去“背诵”用户手册的某个章节甚至整本用户手册。 实验目的: 预习作业: 1.示波器是一个什么样的仪器?它有哪些应用? 2.本实验所用数字示波器的电压显示范围V pp是_________;若待测量信号的V pp小于此值,则可将信号 直接接到数字示波器的信号输入端(通道1或通道2);若待测量信号的V pp大于此值,则需用示波器10:1衰减探头,且在探头线___________开关打开的情况下才能将信号接入示波器。 3.信号接入示波器之后,如果发现信号幅度纵向只占屏幕的很小部分或上下均超出屏幕显示范围,应调 节相应通道的________旋钮;若信号纵向偏离屏幕中心位置,则应调节相应通道的_________旋钮。若屏幕上显示的信号周期数太少或太多,则应调节该通道的________旋钮。 4.若屏幕上显示的信号一直在左右移动,很可能是因为_________源/模式选择或________电平设置不当。 5.(本题可在实验过程中完成)电压档位显示在液晶屏的_________位置,时基档位显示在液晶屏的 _________位置,触发源和触发模式选择显示在液晶屏的________位置。 6.(本题可在实验过程中完成)屏幕上,信号电压的零点由显示屏________位置的_______符号来指示。 信号以直流耦合方式输入时的指示符号是________;信号以交流耦合方式输入时的指示符号是 ________。

示波器的认识及使用

调整与使用示波器 郭明超 09015008 1.实验目的 (1)了解示波器的基本结构,熟悉数字示波器的调节和使用; (2)学会用数字示波器观测电压波形; (3)通过观测李萨如图形,学会一种用示波器测量频率和相位的方法。 2.实验仪器 GDS-2062数字示波器一台,F-05数字合成函数信号发生器一台。 3.实验原理 (1) 示波器的基本机构 示波器的规格和型号较多,但所有的示波器所具有的基本结构都相同,大致可分为:示波管(又称阴极射线管)、X 轴放大器和Y 轴放大器(含各自的衰减器)、锯齿波发生器等,见图8-1所示。 ○1示波管 示波管是示波器的核心部件,它主要包括电子枪、偏转系统和荧光屏三部分,这三部分全部被密封在高真空的玻璃外壳内(如图8-2所示)。电子枪有灯丝、阴极、控制栅极、第一阳极和第二阳极共五部分组成。灯丝通电后加热表面涂有氧化物的金属圆筒(即阴极),使之发射电子。控制栅极是一个套在阴极外面的金属圆筒,其顶端有一小孔,它的电位比阴极低,对阴极发射出来的电子起减速作用, 只有初速度较大的电子才可能穿过栅极顶端的小孔,进入加速区的阳极。因此控制栅极实际上起控制电子流密度的作用。调整示波器面板上的“亮度”旋纽,其实就是调节栅极电位改变飞出栅极的电子数目,飞出的电子数目越多,荧光屏上亮斑就越亮。从栅极飞出来的电子再经过第一阳极和第二阳极的加速与聚焦后打到荧光屏上形成一个明亮清晰的小圆点。偏转系统是由两对相互垂直的电极板组成。电子束通过偏转系统时,同时受到两个相互垂直方向的电场的作用,荧光屏上小亮点的运动轨迹就是电子束在这两个方向运动的叠加。 ○ 2X 、Y 轴电压放大器和衰减器 由于示波管本身的X 及Y 偏转板的灵敏度不高(约0.1~1mm /V ),当加在偏转板上的信号电压较小时,电子束不能发生足够的偏转,屏上的光点位移较小,不便观测。这就需要 Y 输入 X 图8-1 示波器的基本结构图 偏转系统 图8-2 示波管结构图

示波器的调节与使用

数字示波器的调节与使用 一、实验目的 1.了解示波器的结构与示波原理 2.掌握示波器的使用方法,学会用示波器观测各种电信号的波形 3.学会用示波器测正弦交流信号的电压幅值及频率 4.学会用李萨如图法,测量正弦信号频率 二、实验仪器 RIGOL DS1000E型数字存储示波器,DG1022函数波形发生器 三、实验原理 1、双踪示波器的原理: 双踪示波器控制电路主要包括:电子开关、垂直放大电路、水平放大电路、扫描发生器、同步电路、电源等。 Y CH1 Y CH2 图1. 双踪示波器原理方框图 其中,电子开关使两个待测电压信号YCH1和YCH2周期性地轮流作用在Y偏转板,这样在荧光屏上忽而显示YCH1信号波形,忽而显示YCH2信号波形。由于荧光屏荧光物质的余辉及人眼视觉滞留效应,荧光屏上看到的是两个波形。 如果正弦波与锯齿波电压的周期稍不同,屏上出现的是一移动的不稳定图形,这是因为扫描信号的周期与被测信号的周期不一致或不呈整数倍,以致每次扫描开始时波形曲线上的起点均不一样所造成的。为了获得一定数量的完整周期波形,示波器上设有“time/div”调节旋钮,用来调节锯齿波电压的周期,使之与被测信号的周期呈合适的关系,从而显示出完整周期的正

弦波形。

当扫描信号的周期与被测信号的周期一致或是整数倍,屏上一般会显示出完整周期的正弦波形,但由于环境或其他因素的影响,波形会移动,为此示波器内装有扫描同步电路,同步电路从垂直放大电路中取出部分待测信号,输入到扫描发生器,迫使锯齿波与待测信号同步,此称为“内同步”。如果同步电路信号从仪器外部输入,则称为“外同步”。 2.示波器显示波形原理: 如果在示波器的YCH1或YCH2端口加上正弦波,在示波器的X 偏转板加上示波器内部的锯齿波,当锯齿波电压的变化周期与正弦电压的变化周期相等时,则在荧光屏上将显示出完整周期的正弦波形,如图2所示。如果在示波器的YCH1、YCH2端口同时加上正弦波,在示波器的X 偏转板加上示波器内部的锯齿波,则在荧光屏上将得到两个正弦波。 图2.示波器显示正弦波形的原理 3、数字存储示波器的基本原理 数字存储示波器的基本原理框图如图3所示: AMP A/D Display Input DeMUX Acquistion Memory uP Display Memory 图3.数字存储示波器的基本原理框图

数字示波器的使用

实验原理 1、双踪示波器的原理: 双踪示波器控制电路主要包括:电子开关、垂直放大电路、水平放大电路、扫描发生器、同步电路、电源等。 Y CH1 Y CH2 图1. 双踪示波器原理方框图 其中,电子开关使两个待测电压信号YCH1和YCH2周期性地轮流作用在Y偏转板,这样在荧光屏上忽而显示YCH1信号波形,忽而显示YCH2信号波形。由于荧光屏荧光物质的余辉及人眼视觉滞留效应,荧光屏上看到的是两个波形。 如果正弦波与锯齿波电压的周期稍不同,屏上出现的是一移动的不稳定图形,这是因为扫描信号的周期与被测信号的周期不一致或不呈整数倍,以致每次扫描开始时波形曲线上的起点均不一样所造成的。为了获得一定数量的完整周期波形,示波器上设有“time/div”调节旋钮,用来调节锯齿波电压的周期,使之与被测信号的周期呈合适的关系,从而显示出完整周期的正弦波形。 当扫描信号的周期与被测信号的周期一致或是整数倍,屏上一般会显示出完整周期的正弦波形,但由于环境或其他因素的影响,波形会移动,为此

示波器内装有扫描同步电路,同步电路从垂直放大电路中取出部分待测信号,输入到扫描发生器,迫使锯齿波与待测信号同步,此称为“内同步”。如果同步电路信号从仪器外部输入,则称为“外同步”。操作时,使用“电平(LEVEL)”旋钮,改变触发电平高度,当待测电压达到触发电平时,扫描发生器开始扫描,直到一个扫描周期结束。但如果触发电位高度超出所显示波形最高点或最低点的范围,则扫描电压消失,扫描停止。 2.示波器显示波形原理: 如果在示波器的YCH1或YCH2端口加上正弦波,在示波器的X偏转板加上示波器内部的锯齿波,当锯齿波电压的变化周期与正弦电压的变化周期相等时,则在荧光屏上将显示出完整周期的正弦波形,如图2所示。如果在示波器的YCH1、YCH2端口同时加上正弦波,在示波器的X偏转板加上示波器内部的锯齿波,则在荧光屏上将得到两个正弦波。 图2. 示波器显示正弦波形的原理 3、数字存储示波器的基本原理 数字存储示波器的基本原理框图如图3所示:

信号示波器使用方法(一)

数字示波器使用方法 前言 本文的结构逐条编排,目的是使内容成为开放性和可添加型的,欢迎有经验的同事增加新的内容。 对本文中用到按键符号作如下规定: TRIGGER MENU →Type(main) →Edge(pop-up) →Coupling(main)→DC(Side) 代表按面板上的TRIGGER MENU 键,再按显示屏下方的Type 键,重复按这个钮直到Edge 高亮显示,再按显示屏下方的Coupling,再按显示屏右侧的DC 键。 注:main代表显示屏下方的键,Side 代表显示屏右方的键,pop-up 代表一直按此键,直到项目高亮显示。 目录 一.安全问题 (2) 二.使用探头 (3) 三.触发方式 (6) 四.测试方法 (8) 五.小常识、小经验 (11)

一.安全问题 结论一示波器电源线要用三相插头良好接地(即接实验室的地线) 说明:为了避免电冲击对示波器造成损伤,输出及输入端进行电气连接前要保证示波器良好接地。 结论二探头地线只能接电路板上的地线,不可以搭接在电路板的正、负电源端 说明:交流供电系统或经整流后直流供电的系统的地一般都是接大地的。探头的地也是经示波器安全地线接大地的。如果探头的地搭在电路板上不是地的点上,就会造成此点和电源地短路,轻者使电路板工作不正常,重者会烧坏电路板或探头,造成严重后果。尤其注意不能把探头的地接到电路板上的正、负电源端。 结论三不允许在探头还连接着被测试电路时插拔探头 说明:避免对示波器和探头造成损伤,尤其是有源探头。 结论四信号的幅度不要超过探头和示波器的安全幅度,以免造成损坏 说明:不同探头的幅度量程是不同的,要留心探头及示波器上的说明文字。

DS1052E型数字示波器使用说明书

DS1052E型数字示波器使用说明概述 DS1052E型示波器以优异的技术指标及众多功能特性的完美结合,向用户提供了简单而功能明晰的前面板,以进行所有的基本操作。各通道的标度和位置旋钮提供了直观的操作,完全符合传统仪器的使用习惯,用户不必花大量的时间去学习和熟悉示波器的操作,即可熟练使用。为加速调整,便于测量,用户可直接按AUTO键,立即获得适合的波形显现和档位设置。除易于使用之外,示波器还具有更快完成测量任务所需要的高性能指标和强大功能。通过1GSa/s的实时采样和25GSa/s的等效采样,可在示波器上观察更快的信号。强大的触发和分析能力使其易于捕获和分析波形。清晰的液晶显示和数学运算功能,便于用户更快更清晰地观察和分析信号问题。 技术性能 双模拟通道,每通道带宽:50MHz。 高清晰彩色液晶显示系统:320×234分辨率。 支持即插即用闪存式USB存储设备以及USB接口打印机,并可通过USB存储设备进行软件升级。 模拟通道的波形亮度可调。 自动波形、状态设置(AUTO )。 波形、设置、CSV和位图文件存储以及波形和设置再现。 精细的延迟扫描功能,轻易兼顾波形细节与概貌。 自动测量20种波形参数。 自动光标跟踪测量功能。 独特的波形录制和回放功能。 内嵌FFT。 实用的数字滤波器,包含LPF,HPF,BPF,BRF。 Pass/Fail检测功能,光电隔离的Pass/Fail输出端口。 多重波形数学运算功能。 独一无二的可变触发灵敏度,适应不同场合下特殊测量要求。 多国语言菜单显示。 弹出式菜单显示,用户操作更方便、直观。 中英文帮助信息显示及支持中英文输入。 第一章示波器的初步操作说明 DS1052E示波器向用户提供简单而功能明晰的前面板,以进行基本的操作。面板上包括旋钮和功能按键。显示屏右侧的一列5个灰色按键为菜单操作键(自上而下定义为1号至

示波器的调节与使用

数字示波器的调节与使用 一、 实验目的 1. 了解示波器的结构与示波原理 2. 掌握示波器的使用方法,学会用示波器观测各种电信号的波形 3. 学会用示波器测正弦交流信号的电压幅值及频率 4. 学会用李萨如图法,测量正弦信号频率 二、 实验仪器 RIGOL DS1000型数字存储示波器,DG 1 0 2 2函数波形发生器 三、 实验原理 1、双踪示波器的原理: 双踪示波器控制电路主要包括:电子开关、垂直放大电路、水平放大电 路、扫描发生器、同步电路、电源等。 图1.双踪示波器原理方框图 其中,电子开关使两个待测电压信号 YCH1和YCH2周期性地轮流作用在 丫偏 转板,这样在荧光屏上忽而显示 YCH1信号波形,忽而显示 YCH2信号波形。 由于荧光屏荧光物质的余辉及人眼视觉滞留效应,荧光屏上看到的是两个波 形。 如果正弦波与锯齿波电压的周期稍不同,屏上出现的是一移动的不稳定 图形,这是因为扫描信号的周期与被测信号的周期不一致或不呈整数倍,以 致每次扫描开始时波形曲线上的起点均不一样所造成的。为了获得一定数量 的完整周期波形,示波器上设有“ time/div ”调节旋钮,用来调节锯齿波电 压的周期,使之与被测信号的周期呈合适的关系,从而显示出完整周期的正 Y CHI — Y CH2 一 A 人 魅 J ....

弦波形。 当扫描信号的周期与被测信号的周期一致或是整数倍,屏上一般会显示 出完整周期的正弦波形,但由于环境或其他因素的影响,波形会移动,为此 示波器内装有扫描同步电路, 同步电路从垂直放大电路中取出部分待测信号, 输入到扫描发生器,迫使锯齿波与待测信号同步,此称为“内同步” 。如果同 步电路信号从仪器外部输入,则称为“外同步” 。 2 ?示波器显示波形原理: 如果在示波器的YCH1或YCH2端口加上正弦波,在示波器的 X 偏转板加 上示波器内部的锯齿波,当锯齿波电压的变化周期与正弦电压的变化周期相 等时,则在荧光屏上将显示出完整周期的正弦波形 ,如图2所示。如果在示 波器的YCH1 YCH2端口同时加上正弦波, 在示波器的X 偏转板加上示波器内 部的锯齿波,则在荧光屏上将得到两个正弦波。 图2.示波器显示正弦波形的原理 3、数字存储示波器的基本原理 数字存储示波器的基本原理框图如图 3所示: ▼ I : 1'nJt In put 图3.数字存储示波器的基本原理框图 Display

GDS-型数字存储示波器使用说明

附录1 GDS-2102型数字存储示波器使用说明 GDS-2102型数字存储示波器是100MHZ的宽带数字示波器,主要用以观察比较波形形状,测量电压、频率、时间、相位和调制信号的某些参数,具有自动测试、存储功能。下面介绍的基本使用方法。 (一)主要技术指标 1.垂直轴(Y轴) 输入灵敏度:2mv/div~5v/div,按1、2、5顺序步进,各档均可微调,其微调增益变化范围大于指示灵敏度值的2.5倍。 精度:校准后,在20℃~30℃下,精度为±3%,在使用“×5MAG”时为±5%。 频率范围:DC耦合时为0~100MHz;AC耦合时为10Hz~100MHz。 上升时间:约3.5ns 输入阻抗:1MΩ±2%,16PF 最大输入电压:300V(直流加交流峰值) 过冲:≤8% 2.水平轴(X轴或时间轴) 扫描时间(即扫描速率范围):1ns/div~10s/div,按1、2、5顺序步进,校准后各档精度为±5%,各档均可微调,其微调范围大于指示值的2.5倍。 3.校正信号:1KHz(20%)、幅值2Vpp(±3%)、占空比最小为48:52的方波信号。 4.电源:47Hz~63Hz,电压有AC100V~240v、正常情况下已设为220V,其它情况需进行设置。 5.最大允许输入电压:直接输入300V(DC+AC峰值1KHz) 使用探头输入400V(DC+AC峰值1KHz) 外触发输入300V(DC+AC峰值1KHz) Z轴输入30V(DC+AC峰值)(二)面板结构 GDS-2102型数字示波器面板结构如图F1.1所示,各按键(旋钮)功能及基本用法说明如下。

A LCD B F1~F5 Variable D ON/ E Main Trigger Trigger Horizontal Horizontal Time/ K Vertical L CH1~CH2 M Volts/Trigger Input Terminal key Connector ON/OFF key Compensation Output Terminal CH1~CH2 图F1.1 GDS-2102型数字示波器前面板结构 前面板说明 A LCD 显示器 TFT 彩色LCD 显示器具有320×234 的分辨率。 B F1~F5 功能键 一组位于显示器右边相互关连的功能键。 C Variable 旋钮 顺时针旋转此钮为增加数值或移动到下一个参数。 反时针旋转此钮则减少数值或回到前一个参数。 D On/Standby 键 按一次为开机(亮绿灯),再按一次为待机状态(亮红灯)。 E 主要功能键 Acquire 键 为波形撷取模式。 Display 键 为显示模式的设定。 Utility 键 为系统设定。用于Go-No Go 测试, 打印,与Hardcopy 键 并用可作数据传输和校正。 Program 键与Auto test/Stop 键并用可用于程序设定,和播放。 Cursor 键 为水平与垂直设定的光标。 Measure 键 用于自动测试。 Help 键 为操作辅助的说明。 Save/Recall 键 为储存/读取USB 和内部存储器之间的图像,波形和设定储存。 Auto Set 键 为自动搜寻信号和设定。

数字示波器使用必须注意的问题

数字示波器使用必须注意的问题 前言数字示波器因具有波形触发、存储、显示、测量、波形数据分析处理等独特优点,其使用日益普及。由于数字示波器与模拟示波器之间存在较大的性能差异,如果使用不当,会产生较大的测量误差,从而影响测试任务。 区分模拟带宽和数字实时带宽带宽是示波器最重要的指标之一。模拟示波器的带宽是一个固定的值,而数字示波器的带宽有模拟带宽和数字实时带宽两种。数字示波器对重复信号采用顺序采样或随机采样技术所能达到的最高带宽为示波器的数字实时带宽,数字实时带宽与最高数字化频率和波形重建技术因子K 相关(数字实时带宽=最高数字化速率/K),一般并不作为一项指标直接给出。从两种带宽的定义可以看出,模拟带宽只适合重复周期信号的测量,而数字实时带宽则同时适合重复信号和单次信号的测量。厂家声称示波器的带宽能达到多少兆,实际上指的是模拟带宽,数字实时带宽是要低于这个值的。例如说TEK 公司的TES520B 的带宽为500MHz,实际上是指其模拟带宽为500MHz,而最高数字实时带宽只能达到400MHz 远低于模拟带宽。所以在测量单次信号时,一定要参考数字示波器的数字实时带宽,否则会给测量带来意想不到的误差。有关采样速率采样速率也称为数字化速率,是指单位时间内,对模拟输入信号的采样次数,常以MS/s 表示。采样速率是数字示波器的一项重要指标。 1.如果采样速率不够,容易出现混迭现象如果示波器的输人信号为一个100KHz 的正弦信号,示波器显示的信号频率却是50KHz,这是怎么回事呢?这是因为示波器的采样速率太慢,产生了混迭现象。混迭就是屏幕上显示的波形频率低于信号的实际频率,或者即使示波器上的触发指示灯已经亮了,而显示的波形仍不稳定。混迭的产生如图1 所示。那么,对于一个未知频率的波形,如何判断所显示的波形是否已经产生混迭呢?可以通过慢慢改变扫速t/div 到较

示波器使用方法

本文介绍示波器的使用方法。示波器种类、型号很多,功能也不同。数字电路实验中使用较多的是20MHz或者40MHz的双踪示波器。这些示波器用法大同小异。本节不针对某一型号的示波器,只是从概念上介绍示波器在数字电路实验中的常用功能。 2.1 荧光屏 荧光屏是示波管的显示部分。屏上水平方向和垂直方向各有多条刻度线,指示出信号波形的电压和时间之间的关系。水平方向指示时间,垂直方向指示电压。水平方向分为10格,垂直方向分为8格,每格又分为5份。垂直方向标有0%,10%,90%,100%等标志,水平方向标有10%,90%标志,供测直流电平、交流信号幅度、延迟时间等参数使用。根据被测信号在屏幕上占

的格数乘以适当的比例常数(V/DIV,TIME/DIV)能得出电压值与时间值。 2.2 示波管和电源系统 1.电源(Power) 示波器主电源开关。当此开关按下时,电源指示灯亮,表示电源接通。 2.辉度(Intensity) 旋转此旋钮能改变光点和扫描线的亮度。观察低频信号时可小些,高频信号时大些。一般不应太亮,以保护荧光屏。 3.聚焦(Focus) 聚焦旋钮调节电子束截面大小,将扫描线聚焦成最清晰状态。 4.标尺亮度(Illuminance) 此旋钮调节荧光屏后面的照明灯亮度。正常室内光线下,照明灯暗一些好。室内光线不足的环境中,可适当调亮照明灯。 2.3 垂直偏转因数和水平偏转因数 1.垂直偏转因数选择(VOLTS/DIV)和微调 在单位输入信号作用下,光点在屏幕上偏移的距离称为偏移灵敏度,这一定义对X轴和Y轴都适用。灵敏度的倒数称为偏转因数。垂直灵敏度的单位是为cm/V,cm/mV或者DIV/mV,

数字示波器的操作规程

SDS5000型数字示波器操作规程 一、使用前须知 1.仪器标配 2.注意事项 a.使用适当的电源线:只允许使用国家认可的本产品专用电源线 b.见本产品接地:本产品通过电源电缆的保护接地。为了防止电击,在连接本产品的任何输入端或输出端连接之前,请务必将本产品正确接地 c.正确连接信号线:信号地线与地地电势相同,请勿将地线连接到高压线上 d.查看所有终端额定值:为了避免火灾或电击,请查看本产品的所有额定值和标记说明。请在连接产品前阅读产品手册,以便了解有关的额定值的详细信息 e.防静电保护:静电会造成仪器的损坏,尽可能在防静电区进行测试。在连接电缆到仪器之前,应将其内外导体短暂接地以释放静电 f.保持良好的通风:通风不当会引起仪器温度升高,进而引起仪器损坏。使用时应保持良好的通过风,定期检查通风口和风扇 g.避免电路外露:电源接通后,请勿接触外露的接头和原件 h.请勿开盖操作:请勿将本仪器机箱打开时运行本产品 i.使用合适的保险丝:只允许使用本产品指定规格的保险丝(5x20mm,T-Rated, 3.15A/250V AC) j.保持产品表面干燥和清洁 k.请勿在潮湿环境下操作 l.请勿在易燃易爆环境下操作 m.注意搬运安全:为了避免仪器在搬运时滑落,造成仪器面板上的按键,旋钮或接口等部件损坏,请搬运仪器的过程中注意安全 n.怀疑产品出故障时,请勿操作:如怀疑本产品有故障,请联系SIGLENT授权

的维修人员进行检测,任何对于本产品的维护、调节或零件的更换必须有SIGLENT授权的维修人员执行。 二、仪器参数 三、操作方法 1.连接电源 SDS5000X可输入交流电源的规格:100-240V,50/60Hz;100-120,440Hz。请使用附件提供的电源线缆将示波器与交流电连接。电源开关按钮控制示波器的运行状态。长按电源按钮两秒可令示波器进入待机状态。若需要测底关机则需要断开示波器的交流电源输入。 本仪器还提供“上电开机”选项,当“上电开机”功能有效时,示波器通过连接电源线接入交流电,示波器马上开机;如果禁用此功能,在示波器通过电源线输入交流电时,需要按电源按钮,示波器才能才开机。 设置“上电开机”选项操作为: 通过触摸屏功能-菜单-上电开机功能。 2.语言选择:开机后按下Utility按钮,再按系统设置,再按Language。 3.启动触摸屏,按下Touch按钮即可。示波器整个屏幕都是触摸屏,可以直接 使用手指进行触控,大部分的显示和控制都可以通过触摸屏实现,效果等于按钮和旋钮。

示波器使用教程

示波器使用教程 示波器是一种图形显示设备,它描绘电信号的波形曲线。这一简单的波形能够说明信号的许多特性:信号的时间和电压值、振荡信号的频率、信号所代表电路中“变化部分”信号的特定部分相对于其它部分的发生频率、是否存在故障部件使信号产生失真、信号的直流成份(DC)和交流成份(AC)、信号的噪声值和噪声随时间变化的情况、比较多个波形信号等。 一、数字示波器与模拟示波器的异同及选择 示波器通常分模拟示波器和数字示波器两种。初期主要为模拟示波器。中期数字示波器独领风骚。 廿世纪八十年代数字示波器异军突起,成果累累,大有全面取代模拟示波器之势,模拟示波器逐渐从前台退到后台。 但是在发展初期模拟示波器的某些特点,却是数字示波器所不具备的: ○操作简单:全部操作都在面板上可以找到,波形反应及时,数字示波器往往要较长处理时间。 ○垂直分辨率高:连续而且无限级,数字示波器分辨率一般只有8位至10位。 ○数据更新快:每秒捕捉几十万个波形,数字示波器每秒捕捉几十个波形。 ○实时带宽和实时显示:连续波形与单次波形的带宽相同,数字示波器的带宽与取样率密切相关,取样率不高时需借助内插计算,容易出现混淆波形。 简而言之,模拟示波器为工程技术人员提供眼见为实的波形,在规定的带宽内可非常放心进行测试。人类五官中眼睛视觉神经十分灵敏,屏幕波形瞬间反映至大脑作出判断,细微变化都可感知。因此,刚开始模拟示波器深受使用者的欢迎。 如何选择示波器 自从示波器问世以来,它一直是最重要、最常用的电子测试工具之一;由于电子技术的发展,示波器的能力也在不断提升,其性能与价格也五花八门,市场参差不齐,本文从多方面阐述您如何选择示波器。 了解您的信号? 您要知道您用示波器观察什么?既您要捕捉并观察的信号其典型性能是什么?您的信号是否有复 杂的特性?您的信号是重复信号还是单次信号?您要测量的信号过渡过程带宽,或者上升时间是多大?您打算用何种信号特性来触发短脉冲、脉冲宽度、窄脉冲等?您打算同时显示多少信号? 模拟还是数字? 传统的观点认为模拟示波器具有熟悉的面板控制,价格低廉,因而总觉得模拟示波器“使用方便”。

相关主题
文本预览
相关文档 最新文档