当前位置:文档之家› 金属液/固相润湿性研究进展--铝合金增强润湿性

金属液/固相润湿性研究进展--铝合金增强润湿性

金属液/固相润湿性研究进展--铝合金增强润湿性
金属液/固相润湿性研究进展--铝合金增强润湿性

铝及铝合金的焊接特点

铝及铝合金的焊接特点 (1)铝在空气中及焊接时极易氧化,生成的氧化铝(Al2O3)熔点高、非常稳定,不易去除。阻碍母材的熔化和熔合,氧化膜的比重大,不易浮出表面,易生成夹渣、未熔合、未焊透等缺欠。铝材的表面氧化膜和吸附大量的水分,易使焊缝产生气孔。焊接前应采用化学或机械方法进行严格表面清理,清除其表面氧化膜。在焊接过程加强保护,防止其氧化。钨极氩弧焊时,选用交流电源,通过“阴极清理”作用,去除氧化膜。气焊时,采用去除氧化膜的焊剂。在厚板焊接时,可加大焊接热量,例如,氦弧热量大,利用氦气或氩氦混合气体保护,或者采用大规范的熔化极气体保护焊,在直流正接情况下,可不需要“阴极清理”。 (2)铝及铝合金的热导率和比热容均约为碳素钢和低合金钢的两倍多。铝的热导率则是奥氏体不锈钢的十几倍。在焊接过程中,大量的热量能被迅速传导到基体金属内部,因而焊接铝及铝合金时,能量除消耗于熔化金属熔池外,还要有更多的热量无谓消耗于金属其他部位,这种无用能量的消耗要比钢的焊接更为显着,为了获得高质量的焊接接头,应当尽量采用能量集中、功率大的能源,有时也可采用预热等工艺措施。 (3)铝及铝合金的线膨胀系数约为碳素钢和低合金钢的两倍。铝凝固时的体积收缩率较大,焊件的变形和应力较大,因此,需采取预防焊接变形的措施。铝焊接熔池凝固时容易产生缩孔、缩松、热裂纹

及较高的内应力。生产中可采用调整焊丝成分与焊接工艺的措施防止热裂纹的产生。在耐蚀性允许的情况下,可采用铝硅合金焊丝焊接除铝镁合金之外的铝合金。在铝硅合金中含硅%时热裂倾向较大,随着硅含量增加,合金结晶温度范围变小,流动性显0.5. 着提高,收缩率下降,热裂倾向也相应减小。根据生产经验,当含硅5%~6%时可不产生热裂,因而采用SAlSi条(硅含量4.5%~6%) 焊丝会有更好的抗裂性。 (4)铝对光、热的反射能力较强,固、液转态时,没有明显的色泽变化,焊接操作时判断难。高温铝强度很低,支撑熔池困难,容易焊穿。 (5)铝及铝合金在液态能溶解大量的氢,固态几乎不溶解氢。在焊接熔池凝固和快速冷却的过程中,氢来不及溢出,极易形成氢气孔。弧柱气氛中的水分、焊接材料及母材表面氧化膜吸附的水分,都是焊缝中氢气的重要来源。因此,对氢的来源要严格控制,以防止气孔的形成。 (6)合金元素易蒸发、烧损,使焊缝性能下降。 (7)母材基体金属如为变形强化或固溶时效强化时,焊接热会使热影响区的强度下降。 (8)铝为面心立方晶格,没有同素异构体,加热与冷却过程中没有相变,焊缝晶粒易粗大,不能通过相变来细化晶粒。 2. 焊接方法 几乎各种焊接方法都可以用于焊接铝及铝合金,但是铝及铝合金对

氧化铝陶瓷与金属连接的研究现状

万方数据

万方数据

万方数据

万方数据

周健等Ⅲo对A1203一A1203以及A1203和HAP(羟基磷灰石)生物陶瓷进行了焊接,并借助电镜、电子探针分析了界面结合情况。前者在2MPa、1300℃、保温15min时结合强度达到基体强度。后者在2.5MPa、1200℃、保温15min左右将两类材料焊接在一起。. 蔡杰等¨引采用1’E103型谐振腔分别在1300和1400℃对A1203一A1203进行焊接,认为在1300℃焊接时,虽经长时间保温,焊接效果不理想,在1400℃、保温20min,焊缝消失。如上所述,氧化铝陶瓷一般采用直接焊接,对于高纯度氧化铝陶瓷一般采用低纯氧化铝或玻璃做中间层,目前也有人用溶胶凝胶方法制备的氧化铝做中间层。 目前微波焊接腔体的微波场的均匀区域还不大,改进微波场的分布,提高加热均匀区域,可以提高材料的焊接尺寸。同时增加焊接材料的种类。 7激光焊接 激光焊接陶瓷是近年来发展的新技术,Mittweida公司开发了双束激光焊接陶瓷方法,其原理见图9。 图9双束激光焊接示意图¨引 Fig.9Skd【chofdoublelaserweldiIlg 采用高能束激光焊方法,可快速加热和冷却,配以氮气筛的冷却和温度场调节,诱导和改善复合材料增强相和基体界面反应,而提高接头强度。采用脉冲输入方式,可抑制界面反应,细化组织,减少缺陷,获得良好接头,在操作时对激光功率控制非常重要啪J。用该法焊接的Al:O,陶瓷试样,激光焊接区细晶粒均匀,在电子显微镜下,可以看到晶粒呈片瓦结构,防止了裂纹的产生和扩展。经100次反复加热和冷却后,试样的弯曲强度无明显下降。 8结语 随着Al,O,陶瓷的广泛应用,其连接技术已成为世界各国集中研究的重点,其中钎焊与扩散连接是最常用的连接方法,但都有其局限性。例如:用钎焊方法形成的陶瓷接头的高温性能和抗氧化性能较差;钎焊的界面反应机理现在还处于试验阶段,缺乏系统性和理论性。扩散连接虽然可以减小界面缺陷,并适合大尺寸构件的接合,但易发生试件的变形和损伤等。近来新发展的微波连接能很好地实现接头处均匀连接,避免了开裂的发生,而且由于升温速度极快,陶瓷内部的晶粒不会剧烈长大。而sHs焊接和激光焊接还处于起步阶段,有待于发展。 参考文献 1王颖.AJ:0,陶瓷与Kover合金钎焊工艺研究.哈尔滨工业大学硕士论文,2006:l一50 2Ham咖dJP,DB“dSA,SameUaMLB阳zingo既帅icox-id船tom吨IlsatlowteⅡ聊舶hlr酷.WeldJ,1992;(5):145—1493赵永清.利用化学镀实现A120,陶瓷与金属的连接.焊接技术,1999;(2):16—17 4顾小龙,王大勇,王颖.Al:0,陶瓷/AgCuT∥可伐合金钎焊接头力学性能.材料科学与艺,2007;15(3):366—3695吴铭方.反应层厚度对他03/AgCu7n/n一6m一4V接头强度的影响.稀有金属材料与工程,2000;19(26):419—4226王洪潇.氧化铝陶瓷与金属活性封接技术研究.大连交通大学硕士论文,2006:1—50 7刘军红.复相Al:0,基陶瓷/钢大气中直接钎焊连接界面的微观组织结构.焊接学报,2003;24(6):26—28 8张玮.镍离子注入灿203/1crl8Ni9Ti的钎焊界面成分分析.包头钢铁学院学报,2000;19(3):219—22l 9王大勇,冯吉才,刘会杰.灿:O,/Cu/Al扩散连接工艺参数的优化.材料科学与工艺,2003;11(1):73~76 10陈铮,赵其章,方芳等.陶瓷/陶瓷(金属)部分瞬间液相连接.硅酸盐学报,1999;27(2):186~188 1lMerzh锄ovAG.InterSymposium∞coIIIbus阴dpl嬲一眦syn.ofhigll—te呷.Mater.s明Fr锄cisco,cA,988 12余圣甫等.Al:0,陶瓷/不锈钢自蔓延高温原位合成连接.焊接学报,2004;25(2)119一122 13周健,章桥新,刘桂珍等.微波焊接陶瓷辊棒.武汉工业大学学报,1999;21(3):1~2 14MeekTT,BlalceRD.Ceramic?ce硼icsealsbymicro-w盯ehe砒ing.J.Mat.Sci.L肚.,1986;(5):270~274 15Fukushi眦H。YamanakaT,Ma协uiM.Micmwaveheat—ingof ce姗icsandi协applic砒i叩tojoining.JMat.R∞.,1990;5(2):397—405 16Bi衄erJGP,F唧ieJA,WhitakerPAeta1.Thee妇fect0fcompositi∞ontlIeIIlicn)wavebondirIg0falulIli啪ce捌【nics.JMat.sci.,1998;33(12):3017~3029 17zlI伽Ji蛐,Zh衄gQia喇n,MEIBingchueta1.Mic胁wavejoiIlingof aluIIli腿c廿枷candh”Iroxyl印atitebioce枷c.JWuh粕Univ.ofTech.Mater.Sci.,1999;14(2):46~4918ChenXinm伽,ⅡuW嘶.HigllFrequencyHeatillgDie.1ectricTechnology.BeijiIlg:scie眦ePr鹤s,1979:l一30 19C蛐G,K0caI【M.h咿ssinjoiniIlgofadv锄cedmate—rials.htematioIlalMaterialsRevie啪,1998;43(1):卜4420广赖明夫.金属基复合材料。结合.溶接会志,1996;65(4):l692一l698 (编辑吴坚) 宇航材料工艺2008年第4期 万方数据

表面活性剂的润湿性能

表面活性剂的润湿性能 一、润湿功能 例子:水润湿玻璃,加入表面活性剂润湿容易;水滴在石蜡上,石蜡几乎不被润湿,加入少量表面活性剂石蜡就容易被润湿了;较厚的毛毡或棉絮放入水中,很难渗透,加入一些表面活性剂就容易浸透了。 表面活性剂具有渗透作用或润湿作用 所谓润湿是指一种流体被另一种流体从固体表面或固液界面所取代的过程。 润湿过程往往涉及三相,其中至少两相为流体。 1.润湿过程润湿作用是一个过程。润湿过程主要分为三类:沾湿、浸湿和铺展。产生的 条件不同。其能否进行和进行的程度可根据此过程热力学函数变化判断。在恒温恒压条件下可方便使用润湿过程体系自由能变化表征。 (1)沾湿主要指液-气界面和固-气界面上的气体被液体取代的过程,在此过程中消失的固-气界面的大小与其后形成的固-液界面的大小是相等的。如喷洒农药,农药附着于植物的枝叶上。 沾湿附着发生条件:△G A=γSL-γSG-γLG<0 W A=γSG-γSL+γLG≥0 (沾湿) 式中:γSG、γSL和γLG分别为气-固、液-固和气-液界面的表面张力 (2)浸湿浸湿是指固体浸入液体的过程,原有的固气界面空气被固液取代。如洗衣时衣物泡在水中;织物染色前先用水浸泡过程 浸湿发生条件:△G i=γSL-γSG≤0 W i=γSG-γSL≥0 (W i:浸湿功) (3)铺展液体取代固体表面上的气体,固-气界面被固-液界面取代的同时液体表面能够扩展的现象。 铺展发生条件为:△G S=γSL+γLG-γSG≤0 S=γSG-γSL-γLG≥0 (S:铺展功) 一般,若液体能够在固体表面铺展,则沾湿和浸湿现象必然能够发生。 从润湿方程可以看出:固体自由能γSG越大,液体表面张力γLG越低,对润湿越

金属/陶瓷复合材料润湿性的研究

金属/陶瓷复合材料润湿性的研究 摘要:研究金属对陶瓷的润湿性对开发新型金属/陶瓷体系,探寻和发展材料的制备技术有重大的意义。制备高性能金属/陶瓷复合材料有着重要的现实意义。本文从陶瓷/金属的润湿现象、机理及其分类出发,介绍了润湿性研究的实验研究方法,并探讨改善润湿性的途径。 关键词:金属/陶瓷复合材料;润湿性;接触角;粘附功 一.润湿现象 润湿是固体表面的气体被液体取代的过程。在复合材料的制备过程中,只要涉及液相与固相的相互作用,必然就有液相与固相的润湿问题。在制备金属基复合材料时,液态金属对增强材料的润湿性如何直接影响到界面黏结强度。润湿性表示液体在固体表面上的铺展程度。优良的润湿性意味着液体在固体表面上铺展开来覆盖整个增强材料的表面。按热力学的条件,只有体系自由能减少时,液体才能铺展开来,即 因此,铺展系数SC[1]被定义为 当铺展系数SC>0时,才会润湿,根据力学平衡,可得: 式中,θ为接触角。 由θ可以知道润湿程度。θ=0°时,金属熔液会在基体上完全的铺展开;θ=180°时,熔滴呈圆球状,只与基体表面形成点接触,称其为完全不润湿;0°90°时则称为不润湿,液相对固体的粘着性较差。对于一个特定的系统,接触角θ会随温度、保温时间、吸附气体等而变化。润湿过程可按顺序分为沾湿、浸湿、铺展三个阶段。对于一个固定的系统,沾湿过程的铺展力最大,最容易进行,属于最低层次的润湿;铺展过程的铺展力最小,属于最高层次的润湿。润湿性好的液体将尽力覆盖更多的固-气界面,直至完全平铺固体表面,润湿性差的液体的润湿过程将终止于较大的平衡接触角。金属/陶瓷的润湿性对金属基复合材料的生产有重要的意义。

陶瓷与金属焊接

陶瓷与金属焊接技术:金属陶瓷材料发展应用 的关键 (Jul 31 2007 03:37PM ) Ti(C,N)基金属陶瓷是一种颗粒型复合 材料,是在TiC基金属陶瓷的基础上发展起来的新型金属陶瓷。Ti(C,N)基金属 陶瓷具有高硬度、耐磨、耐氧化、耐腐蚀等一系列优良综合性能,在加工中显示出较高的红硬性和强度,它在相同硬度时耐磨性高于WCCo硬质合金,而其密度却只有硬质合金的1/2。因此,Ti(C,N)基金属陶瓷刀具在许多加工场合下可成功地取代WC基硬质合金而被广泛用作工具材料,填补了WC基硬质合金和Al2O3陶瓷刀具材料之间的空白。我国金属钴资源较为贫乏,而作为一种战略性贵重金属,近年来钴的价格持续上扬,因此,Ti(C,N)基金属陶瓷刀具 材料的研制开发和广泛应用,不仅可推动我国硬质合金材料的升级换代,而且在提高国家资源保障程度方面也具有重要的意义。

我们研制的是添加TiN的Ti(C,N)基金属陶瓷。由于TiC比WC具有更高的硬度和耐磨性,TiN的加入可起到细化晶粒的作用,故Ti(C,N)基金属陶瓷可表现出比WC基或TiC基硬质合金更为优越的综合性能。这种新型金属陶瓷刀具材料的广泛应用是以其成功的连接技术为前提的,国内外对陶瓷与金属的连接开展了不少的研究,但对于金属陶瓷与金属连接的技术研究较少,以致于限制了Ti(C,N)基金属陶瓷材料在工业生产中的广泛应用。常用的连接陶瓷与金属的焊接方法有真空电子束焊、激光焊、真空扩散焊和钎焊等。在这些连接方法中,钎焊、扩散焊连接方法比较成熟、应用较广泛,过渡液相连接等新的连接方法和工艺正在研究开发中。本文在总结各种陶瓷与金属焊接方法的基础上,对金属陶瓷与金属的焊接技术进行初步探讨,在介绍各种适用于金属陶瓷与金属焊接技术方法的同时,指出其优缺点和有待研究解决的问题,

材料表面润湿性前沿综述

材料表面润湿性前沿综述 润湿性是材料表面的重要特征之一。随着对自然界中自清洁现象和润湿性可控表面的深入研究,制备无污染、自清洁表面的梦想成为现实。通常将接触角小于90?的表面称为亲水表面( hydrop hilic surface) ,大于90?的表面为疏水表面(hydrop hobic surface) ,而超疏水指表面上水的表观接触角超过150?的一种特 殊表面现象。超疏水表面在国防、工农业生产和人们日常生活中有着重要的应用前景,引起了人们的普遍关注。超疏水表面已经被广泛用于天线、门窗防积雪,船、潜艇等外壳减小阻力,石油输送管道内壁、微量注射器针尖防止粘附堵塞,减少损 [1]耗,纺织品、皮革制品防水防污等。 1.自然界中的疏水现象 自然界中存在许多无污染、自清洁的动植物表面,如荷叶、水稻、芋头叶、蝴蝶、水黾脚等表面。自清洁表面可通过两种途径制备: (1) 制备超亲水表面,如利用紫外光诱导产生接触角接近0?的超亲水TiO 表面 ,这种材料已经成功运2 用于防雾、自洁的透明涂层,其机理是液滴在高能表面上铺展形成液膜,再通过液膜流动,带走表面污物而起到自洁的作用;(2) 制备超疏水表面,对动植物的研究发现,自然界中通过形成超疏水表面从而达到自洁功能的现象更为普遍,最典型的如以荷叶为代表的多种植物叶子表面(荷叶效应) 、蝴蝶等鳞翅目昆虫的翅膀以及水鸟的羽毛等。这类超疏水表面除具有疏水的化学组分外,更重要的是具有微细的表面粗糙结构。如图1a为荷叶表面的显微结构,由微米尺度的细胞和纳米 [2]尺度蜡状晶体的双层微观结构组成;图1b为芋头叶表面 ,分布了均匀的微/ 纳米结构,大小为8,10μm ,单个微凸体有许多纳米结构的堆积而成,切下表层分布了直径为20,50nm 针状结构纳米微粒,其表面水接触角和滚动角分别为 157.0??2.5?;图1c 为蝶类翅膀上的微细结构,由100μm 左右的扁平囊状物组成,

铝及铝合金焊接 (2)要点

xx职业技术学院 毕业设计(论文)题目铝及铝合金焊接工艺适应性研究 系别材料工程系 学生姓名xxxx 学号1002040135 专业名称焊接技术及自动化 指导教师xx 2012年12月4日

摘要 铝及铝合金是工业中应用最广泛的一类有色金属结构材料,在航空、航天、汽车、机械制造、船舶及化学工业中已大量应用。随着近年来科学技术以及工业经济的飞速发展, 对铝合金焊接结构件的需求日益增多, 使铝合金的焊接性研究也随之深入。掌握铝合金的焊接性特点、焊接操作技术、接头质量和性能、缺陷的形成及防止措施等, 对正确制定铝合金的焊接工艺, 获得良好的接头性能和扩大铝合金的应用范围具有十分重要的意义。铝的重量轻和耐腐蚀是其性能的两大突出特点, 纯铝的密度约为2.7 g/cm3, 仅为铁、铜密度的1/3;铝及铝合金的表面易生成一层致密、牢固的Al2O3保护膜,这层保护膜只有在卤素离子或碱离子的激烈作用下才会遭到破坏,因此具有很好的耐大气(包括工业性大气和海洋大气)腐蚀和水腐蚀的能力,能抵抗多数酸和有机物的腐蚀。采用缓蚀剂,可耐弱碱液腐蚀;采用保护措施,可以提高铝合金的耐蚀性能。在各种牌号的变形铝及铝合金中,铝锰和铝镁合金属于防锈铝合金,不能热处理强化,但强度比纯铝高,并具有优秀的抗蚀性和焊接性能。 铝及铝合金焊接特性氩弧焊

绪论 有色金属non-ferrous metal,狭义的有色金属又称为非铁金属,是铁、锰、铬以外的所有金属的统称。广义的有色金属还包括有色合金。有色合金是以一种有色金属为基体(通常大于50%),加入一种或几种其他元素而构成的合金。随着科学技术的发展,有色金属的应用日趋广泛。虽然有色金属只占金属总量的5%左右,但有色金属在工程应用中的重要作用确实钢铁或其他材料无法代替的。有色金属具有特殊的性能,比常规钢铁材料的焊接更复杂,这给焊接工作带来很大的困难。 铝合金是工业中应用最广泛的一类有色金属结构材料,在航空、航天、汽车、机械制造、船舶及化学工业中已大量应用。随着近年来科学技术以及工业经济的飞速发展,对铝合金焊接结构件的需求日益增多,使铝合金的焊接性研究也随之深入。铝合金的广泛应用促进了铝合金焊接技术的发展,同时焊接技术的发展又拓展了铝合金的应用领域,因此铝合金的焊接技术正成为研究的热点之一。

陶瓷与金属的连接方法

陶瓷与金属的连接方法 陶瓷与金属的连接方法主要有:粘合剂粘接、机械连接、熔化焊、钎焊、固相扩散连接、自蔓延高温合成连接、瞬时液相连接等连接方法。将陶瓷与金属连接起来制成复合构件,可充分发挥两种材料的性能优点,对于改善结构件内部应力分布状态、降低制造成本、拓宽陶瓷材料的应用范围具有特别重要的意义。1、粘合剂粘接:是利用胶粘剂将陶瓷与金属连接在一起,主要应用于飞机的应急修理、炮弹与导弹的辅助件连接、涡轮和压缩机转子的修复等处。尽管粘接连接可以一定程度缓解陶瓷与金属间的热应力且工 艺简单、效率高,但接头强度通常小于100MPa,使用温度一般低于200℃,大多用于静载荷和超低静载荷零件。2、机械连接:机械连接是一种借助结构设计的连接方法,有螺栓连接和热套连接两种。机械连接由于方便已经在部分增压转子与金属的连接中应用。热套连接获得的接头具有一定的气密性,但仅限于低温使用,且这种接头具有较大的残余应力。3、钎焊连接:钎焊是最常用的连接陶瓷与金属的方法之一,它是以熔点比母材低的材料做钎料,加热到略高于钎料熔点的温度,利用熔化的液态钎料润湿被连接材料表面,从而填充接头间隙,通过母材与钎料间元素的互扩散实现连接。包括直接钎焊和间接钎焊。4、固相扩散连接:

是将被连接材料置于真空或惰性气氛中,使其在高温和压力作用下局部发生塑性变形,通过原子间的互扩散或化学反应形成反应层,实现可靠连接。按连接方式,可分为直接扩散连接和间接扩散连接。固相扩散连接适用于各种陶瓷与金属的连接,相对于钎焊连接,其具有连接强度高,接头质量稳定、耐腐蚀性能好,可实现大面积连接,且接头不存在低熔点钎料金属或合金,能够获得耐高温接头等优点。5、熔化焊:采用高能束具有加热和冷却速度快的优点,能在陶瓷不熔化的条件下使金属熔化,形成连接。熔化焊连接陶瓷和金属主要包括激光焊和电子束焊接。此法能获得高温下稳定的接头,但是需要对被连接材料进行预热和缓冷,而且陶瓷与金属组配相对困难,连接工艺参数难以控制,设备造价昂贵。6、瞬时液相连接:简称为TLP 连接或液相扩散焊,是在真空条件下,施加较小或不施加压力,当温度达到中间层熔点或中间层与母材元素通过互扩散形成低熔共晶 产物时,在中间层与母材之间形成液相薄膜,通过中间层降熔元素向母材扩散及母材中高熔点元素向液相中溶解,使液相层熔点不断升高,并在等温条件下凝固,最后经过均匀化形成致密接头。瞬时液相连接综合了钎焊和固相扩散焊的优点,已经成功应用在金属间化合物、先进陶瓷、耐热耐蚀超合金、单晶合金等多种先进材料的连接。7、自蔓延高温合成(SHS)连接:是在陶瓷和金属之间预置高温焊料,

固体表面物理化学第一章复习总结

第一章固体材料与表面结构 表面物理化学性质的特殊性 1、组成(成分偏析、表面吸附) 2、原子排列结构(重排)、原子振动状态等 3、悬挂键,化学性质活泼 4、周期势场中断,表面电子状态差异 表面浓度(surface concentration) Area of unit cell =(0.3 x 10-9)2m2 1 atom per unit cell 表面原子浓度= 1/ (0.3 x 10-9)2= 1.1 x 1019atoms m-2= 1.1 x 1015atoms cm-2 体相原子浓度=3.7*1022cm-3 分散度 随原子数增加,D下降。颗粒尺寸增加,D下降。 立方八面体,催化剂理论模型中常用的颗粒形状,是热力学平衡条件下表面能最低的形状。 表面粗糙度

表面形貌非均匀性 1、平台 2、螺型位错 3、刃型位错 4、8、10、外来吸附原子 5、单原子台阶 6、9、11、褶皱 7、扭折 原因:由于固体表面原子的组成、排列、振动状态和体相原子的不同,由于悬挂键导致的化学性质活泼,以及周期性的势场中断导致的表面电子状态差异,固体表面形成很多导致表面形貌非均匀性的元素。 位错密度 位错分割平台 表面原子排列有序性 表现在具有一定原子间距,二维周期性 1、具有底物结构 2、表面原子重排 原矢

米勒指数(miller index) 晶面间距d(hkl) 晶体类型:体心立方,面心立方,简单立方 在立方晶系中,晶向和晶面垂直 Wood记号和矩阵表示(必考) 100,110,111

选取基矢时,若中心包含原子,则写成c(q×r) 矩阵表示: 固体表面性质简介 1、相界面(Gibbs界面) 2、表面热力学函数 其他类推:S,G,G s 3、固体表面能的理论估算 表面自由能 表面的分子处于一种比体相更大的自由能状态,这是由于在表面缺乏最近邻的相互作用。 减小表面能的方法

金属与陶瓷的润湿性概述

龙源期刊网 https://www.doczj.com/doc/b08209427.html, 金属与陶瓷的润湿性概述 作者:刘娟娟苟小斌 来源:《城市建设理论研究》2013年第24期 摘要:研究金属对陶瓷的润湿性对开发新型金属—陶瓷体系,探寻和发展材料的制备技术,制备高性能金属—陶瓷复合材料有着重要的现实意义。本文阐述了润湿性的分类、界面化学反应对金属—陶瓷润湿性和陶瓷材料性能的影响,并介绍了润湿性研究的实验研究方法,探讨改善润湿性的途径。 关键词:金属—陶瓷;接触角;化学反应;润湿性 中图分类号:TL25 文献标志码:A 文章编号: 1 引言 金属—陶瓷复合材料作为一种以一种或多种陶瓷相为基体,以金属或合金为粘结相的复合材料[1],如何发挥其中陶瓷相基体的优良性能一直是科研人员研究的重点方向。其中陶瓷与 金属润湿性的好坏很大程度上决定了金属—陶瓷复合材料综合性能的发挥,因此金属—陶瓷复合材料研究的热点在于开发新型金属—陶瓷体系、改善金属—陶瓷界面结合状况以提高材料综合性能,这一切都是建立在金属对陶瓷具有良好的润湿性的基础之上。研究金属对陶瓷的润湿性对制备高性能金属—陶瓷复合材料有着重要的现实意义。金属陶瓷复合材料的研究还处于初期阶段。研究较多的有金刚石、石墨、SiC、Al2O3、ZrO2、TiC等陶瓷相和金属合金所组成 的体系。由于陶瓷和金属的晶体类型及物理化学特性的差异,两者的相容性很差,绝大部分液态金属都不能润湿陶瓷,因此如何改善金属与陶瓷的润湿性,从而改善材料的综合性能性能成为当前材料制备中的一个重要问题。 2 润湿性的分类 根据陶瓷—金属的界面结合情况,金属对陶瓷的润湿过程可分为非反应性润湿和反应性润湿。 非反应性润湿是指界面润湿过程中不发生化学反应,润湿过程的驱动力仅仅是扩散力及范德华力。其中液态金属的表面张力是决定液态金属是否能在固相陶瓷表面润湿的主要热力学参数。一般此类润湿过程进行得很快,在很短的时间内就能达到平衡;且温度和保温时间对润湿性影响不大。非反应性润湿体现出对体系成分的不敏感性。添加合金元素对改善金属—陶瓷润湿性有较大的影响,其机制为合金元素在液态金属表面及固—液界面的吸附和富集,降低了液态金属表面张力及固—液界面张力。如在Cu中添加Cr不但降低液态金属表面张力,且Cr在金属—陶瓷界面偏聚造成界面张力降低,从而有效地降低Cu对ZrO2的接触角。

介绍陶瓷材料能与金属快速连接的方法

介绍陶瓷材料能与金属快速连接的方法 介绍这种方法的目的是:为克服锂离子电池固体电解质与电极材料之间接触电阻较大的可参考的加工方法之一,当然并不是说就是推荐采纳这一方案。 采用健合工艺,来解决离子导电材料ZrO2与金属铝的快速连接问题。阳极健合工艺是作为陶瓷/金属在静电场中固相扩散连接的一种特殊方法,具有低温、快速和简便的工艺特点,适用于微型仪表、传感器、燃料电池及其它微电子机械系统。功能陶瓷与金属的快速连接,对于性能相异的材料组合及微电子器件的制备有着重要的意义。 ZrO2是氧离子型离子导电陶瓷,优点是具有耐高温和导电率高等优点,是燃料电池和化学传感器的理想材料。但是缺点是容易在高温下由单斜晶形转变为四方晶体,因此而产生裂纹。 一般通过在原料中加入与Zr4+有相似半径元素的氧化物,形成置换固溶体以避免开裂。因为ZrO2具有耐高温化学稳定性,经过高温真空烧结成的ZrO2材料表面致密度大,不利于电场条件下扩散条件的连接,这里的加工方法有利于研究了陶瓷/金属的结合原理及连接工艺。 方法: 使用Y2O3稳定的ZrO2。用Y2O3增韧的ZrO2改善了陶瓷原有的韧性差和抗热震性能差的缺点。这时使用的ZrO2材料采用真空烧结法制备,热膨胀系数为5.1×10-6/K。 配方组成:(重量比) ZrO2 90%,Y2O3 3-5%,MgO 3-5%

表面活化采用真空磁控濺射薄膜工艺,然后把ZrO2表面抛光后采用JGP560V型高真空磁控溅射机溅镀SiO2薄膜。溅射用靶材为石英玻璃,磁场频率为13.56Hz,Ar分压3×10-5Pa,工作真空度6×10-6Pa,健合时间为10min。让ZrO2表面形成1.5~2μm厚度的SiO2薄膜。表面粗糙度Re=0.1μm。 工作方法: 把材料切成20mm×20mm的方形,连接表面采用金刚砂进行研磨和机械抛光,表面粗糙度Re≤0.1μm。焊接之前用丙酮清洗。所用铝箔材料为:厚度0.02mm,纯度为99.997%的产品。将陶瓷ZrO2与金属铝片的研磨面相对迭放,并且夹持在专用的焊接加热炉的平台,金属铝接正极。 连接工艺参数为:健合温度450~600℃,电场电压100~300V,夹持压力0.5MPa,健合时间5~15min。连接完成后工件随炉冷却,降温速度4℃/min。 工艺参数对连接过程的影响 ZrO2具有十分优势的离子导电性。在健合温度500℃,电场电压200V的静电场建立数秒钟内,工件界面两端的电流密度达到较大值(高于7ma),然后缓慢下降,几分钟之后达到一定值(约1~3ma),电场电压和健合温度的增大都使极化电流Ip值显著提高,表明连接区域的离子密度受温度的场强的影响明显。

材料表面润湿性及在材料工程中的意义

材料表面润湿性及在材料工程中的意义 润湿性是材料表面的重要特性之一,通过静态接触角来表征,影响润湿性的因素主要是材料表面的化学组成和微观结构,主要通过表面修饰和表面微造型来改变材料表面润湿性。润湿性已经直接应用到了生产和生活中,构建超疏水表面和润湿性智能可控表面是现阶段的研究热点,对于建筑、涂饰、生物医学等领域都有重要的意义。 润湿是自然界中最常见的现象之一,如水滴在玻璃上的铺展,雨滴对泥土的浸润等等。润湿性是材料表面的重要特性之一,并已经成功运用到人类生活的各个方面,例如润滑、粘接、泡沫、防水等。近年来,随着微纳米技术的飞速发展以及仿生学研究的兴起,对于固体表面润湿性的研究越来越引起了人们的重视,具有超疏水表面的金属材料具有自清洁作用,从而提高其抗污染、防腐蚀的能力;而在农药喷雾、机械润滑等方面却又要求液体具有良好的亲水性,所以对于材料表面润湿性的研究在材料工程中具有重要的意义。为了调控材料表面的润湿性,人们通过接枝、涂层、腐蚀等众多方法从化学组成和微观结构两个方面对材料进行了改性,并取得了良好的结果。 1、润湿性 润湿是指液体与固体接触,使固体表面能下降的现象,常见的润湿现象是固体表面上的气体被液体取代的过程。例如在水干净的玻璃板上铺展,形成了新的固/液界面,取代原有的固/气界面,这个过程的完成与固体和液体的表面性质以及固液分子的相互作用密切相关[1]。 润湿作用实际上涉及气、液、固三相界面,在三相交界处自固-液界面经过液体内部到气-液界面的夹角叫接触角,以θ表示,通常通过Young方程计算得到,该方程是研究液-固润湿作用的基础。一般来讲,接触角θ的大小是判定润湿性好坏的判据。若θ=0,液体完全润湿固体表面,液体在固体表面铺展;0<θ<90°,液体可润湿固体,且θ越小,润湿性越好;90°<θ<180°,液体不能润湿固体;θ=180°,完全不润湿,液体在固体表面凝聚成小球。 这是理想表面的情况,并且也没有考虑到重力的影响,然而对于实际表面,多数都是粗糙和不均匀的,还有表面污染的情况,影响接触角的因素变得复杂。可分为材料表面本身的影响和外界环境的因素,而材料组成和结构的因素处于主导地位。 2、润湿性的影响因素 材料表面的润湿性由表面原子或原子团的性质和密堆积方式所决定,它与内部原子或分子的性质及排列无关。有研究表明,材料表面的润湿性受两方面因素支配:化学组成和微观结构。 化学组成对润湿性的影响本质上是表面能对润湿性的影响。通过共价键、离子键或金属键等较强作用结合的固体,它们具有高能表面,通过范德瓦尔斯力或(氢键)结合的分子固体,具有低的表面能。而固体的表面能越大,通常越容易被液体润湿,反之亦然,所以无机固体

铝及铝合金的焊接性

铝及铝合金的焊接性。 ⑴强的氧化能力铝在空气中极易与氧结合生成致密结实的Al2O3膜薄,厚度约0.1μm。Al2O3的熔点高达2050℃,远远超过铝及铝合金的熔点(约660℃),而且体积质量大,约为铝的1.4倍。焊接过程中,氧化铝薄膜会阻碍金属之间的良好结合,并易形成夹渣。氧化膜还会吸附水分,焊接时会促使焊缝生成气孔。因此,焊前必须严格清理焊件表面的氧化物,并加强焊接区域的保护。 ⑵较大的热导率和比热容铝及铝合金的热导率和比热容约比钢大1倍,焊接过程中大量的热量被迅速传导到基体金属内部。因此,焊接铝及铝合金比钢要消耗更多的热量,焊前常需采取预热等工艺措施。 ⑶热裂纹倾向大线膨胀系数约为钢的2倍,凝固时的体积收缩率达6.5%左右,因此焊接某些铝合金时,往往由于过大的内应力而产生热裂纹。生产中常用调整焊丝成分的方法来防止产生热裂纹,如使用焊丝HS311。 ⑷容易形成气孔形成气孔的气体是氢。氢在液态铝中的溶解度为0.7mL/100g,而在660℃凝固温度时,氢的溶解度突降至0.04ml/100g,使原来溶解于液态铝中的氢大量析出,形成气泡。同时,铝和铝合金的密度小,气泡在熔池中的上升速度较慢,加上铝的导热性强,熔池冷凝快,因此,上升的气泡往往来不及逸出,留在焊缝内成为气孔。弧柱气

氛中的水分、焊接材料及母材表面氧化膜吸附的水分都是氢的主要来源,因此焊前必须严格做好焊件的表面清理工作。 ⑸接头不等强度铝及铝合金的热影响区由于受热而发生软化、强度降低使接头与母材无法达到等强度。纯铝及非热处理强化铝合金接头的强度约为母材的75%~100%;热处理强化铝合金的接头强度较小,只有母材的40%~505。 ⑹焊穿铝及铝合金从固态转变为液态时,无明显的颜色变化,所以不易判断母材温度,施焊时常会因温度过高无法察觉而导至焊穿。

外界刺激引发表面润湿性变化的研究进展

Material Sciences 材料科学, 2018, 8(5), 471-481 Published Online May 2018 in Hans. https://www.doczj.com/doc/b08209427.html,/journal/ms https://https://www.doczj.com/doc/b08209427.html,/10.12677/ms.2018.85053 Progress of Surfaces with Stimuli-Responsive Wettability Han Zhang1, Danyuan Li2, Yongmao Hu2, Shuhong Sun1, Yan Zhu1* 1Kunming University of Science and Technology, Kunming Yunnan 2Dali University, Dali Yunnan Received: Mar. 23rd, 2018; accepted: May 7th, 2018; published: May 14th, 2018 Abstract Stimuli-responsive wettability means that the surface wettability can vary with environmental stimuli such as temperature, solvent, electric field, pH or light. Due to the special properties, sur-faces with stimuli-responsive wettability have great prospects in chemical engineering, medical treatment and agriculture. In this article, we summarize the research progress on surfaces with stimuli-responsive wettability. Keywords Stimuli-Responsive, Wettability, Smart Surface 外界刺激引发表面润湿性变化的研究进展 张瀚1,李丹媛2,胡永茂2,孙淑红1,朱艳1* 1昆明理工大学,云南昆明 2大理大学,云南大理 收稿日期:2018年3月23日;录用日期:2018年5月7日;发布日期:2018年5月14日 摘要 刺激响应润湿性是指通过在表面构建可根据环境刺激而产生形态结构改变、表面化学基团转换、表面孔洞填充情况变化的结构,使表面原有的润湿性发生改变,进而表现出刺激响应性的润湿变化。根据环境刺激的类型可以分为以下几类:温度响应、溶剂响应、电场响应、pH值响应和光响应刺激润湿性。刺激*通讯作者。

表面润湿性

【交流】请教“润湿性”和“表面张力”是否有必然的联系? ★ 小木虫(金币+1):奖励一下,鼓励发有价值的话题 ①润湿性是指当存在两种非混相流体时,其中某一种流体沿固体表面延展或附着的倾向性;、 ②表面张力是指液体表面层由于分子引力不均衡而产生的沿表面作用于任一界线上的张力。 ③CNKI:粒子对液体的亲和程度也称为润湿性.不同粒子对同一种液体的亲和程度不相同,界面张力(也叫做表面张力)愈小的液体,对粒子的润湿性愈好。——所以这两个概念是一致的,“表面张力越小则润湿性越好。” ④但是看到某篇文献说:对于不同类型的泡沫,表面张力低并不一定润湿速率(即用以表示润湿性的参数)就快——也就是说表面张力和润湿性是不一致的? 囧——这应该怎么理解呢? 作者:polestar007 第四条,是不是因为加了“不同类型的”这个限制? 作者:liujunhero 没有必然的联系啊 作者:老甫Tiger :tiger28: 作者:贵2009 好像没有呢 作者:ashao QUOTE: Originally posted by liujunhero at 2010-07-15 14:36:21: 没有必然的联系啊 为啥没有必然的联系啊,难道cnki的那篇论文写错了?《陶瓷微滤膜在回收矿浆工业废水中的应用与再生性能研究》—— 粒子对液体的亲和程度也称为润湿性.不同粒子对同一种液体的亲和程度不相同,界面张力(也叫做表面张力)愈小的液体,对粒子的润湿性愈好。 谢谢指教

作者:monclua QUOTE: Originally posted by ashao at 2010-07-15 13:36:38: 【交流】请教“润湿性”和“表面张力”是否有必然的联系? ★ 小木虫(金币+1):奖励一下,鼓励发有价值的话题 ①润湿性是指当存在两种非混相流体时,其中某一种流体沿固体表面延展或附着的倾向性;、 ②表面 ... 你这个问题问得不清楚,表面张力与物质自身性质有关,还与接触相有关,与温度、压力都有关。你说的“不同泡沫”不知道是什么意思? 作者:ashao QUOTE: Originally posted by monclua at 2010-07-15 15:03:30: 你这个问题问得不清楚,表面张力与物质自身性质有关,还与接触相有关,与温 度、压力都有关。你说的“不同泡沫”不知道是什么意思? 哦,所谓的不同泡沫指的是相同测试条件下(温度、压力等都一样),只是泡沫的种类不同——谢谢指教 作者:赵环0924 应该有关系,查物化方面的书 作者:ashao QUOTE: Originally posted by polestar007 at 2010-07-15 13:40:46: 第四条,是不是因为加了“不同类型的”这个限制? “不同类型”指的是两种类型不同的泡沫,在相同的压力、温度等条件下测试,结果显示二者的表面张力都很低,但是一个润湿性低、一个润湿性高 作者:monclua 而且润湿性与液固、气液、气固的界面张力均有关,符合扬氏方程。你找本《物理化学》看看吧,南京大学编的比较好。

(完整版)功能陶瓷工艺学知识点整理

1.从广义的角度,材料定义为能够用以加工有用物质的物质。 2.材料分类: 按性能、使用用途分类:结构材料、功能材料 按化学组成和显微结构特点分类:金属材料、无机非金属材料、有机高分子材料、复合材料 3.无机非金属材料的定义:以某些元素的氧化物、碳化物、氮化物、卤素化合物、硼化物、及硅酸盐、铝酸盐、磷酸盐、硼酸盐和非氧化物等物质组成的材料,是除金属材料和有机高分子材料以外的所有材料的统称。 4.无机非金属材料的分类:胶凝材料、天然材料、玻璃、陶瓷 无机非金属材料的特性:具有复杂的晶体结构(7晶系,14中布拉菲格子)没有自由电子、高熔点、高硬度、较好的耐化学腐蚀性、绝大多数是绝缘体一般具有低导热性、大多数情况下变形微小。 5.无机非金属材料主要化学成分:CaO、SiO2、Al2O3、Na2O等 6.陶瓷成型在热加工之前;玻璃成型在热加工之后;水泥成型主要在使用时。 7.水泥煅烧;陶瓷烧结;玻璃熔融 8.胶凝材料定义:凡能在物理、化学作用下,从浆体变成坚固的石状体,并能胶结其他物料而具有一定机械强度的物质,统称为胶凝材料,又称胶结料。 9.胶凝材料分类: 按组成物质分类:有机胶凝材料、无机胶凝材料 10.水泥的定义:凡细磨成粉末状,加入适量水后成为塑性浆体,既能在空气中硬化,又能在水中硬化,并能将砂、石等散粒或纤维材料牢固地胶结在一起的水硬性胶凝材料,统称为水泥。 11.水泥的分类: 按用途和性能分类:通用水泥、专用水泥、特性水泥 按组成分类:硅酸盐水泥系列、铝酸盐水泥系列、氟铝酸盐水泥系列、硫铝酸盐水泥系列、铁铝酸盐水泥系列、其它:如无熟料、少熟料水泥

12.水泥的基本特性:水泥浆具有良好的可塑性,与其它材料混合后的混和物可拥有适宜的和易性。较强的适应性。较好的耐侵蚀、防辐射性能。硬化后的水泥浆体具有较高的强度,且强度随龄期的延长而逐渐增长。良好的耐久性。通过改变水泥的组成,可适当调整水泥的质量。可与纤维、聚合物等多种有机、无机材料匹配。制得各种水泥基复合材料,充分发挥材料潜能。 13.玻璃的定义:玻璃是由熔融物冷却、硬化而得到的非晶态固体。 14.玻璃的特性:透明,坚硬,良好的耐蚀、耐热、电学和光学性质;通过调整化学组成,并结合各种工艺方法可大幅度调整玻璃性能;能够用多种成型制成各种形状和大小的制品;通过焊接和粉末烧结等加工方法制成形状复杂、尺寸严格的器件。 15.玻璃的通性:各向同性、介稳性、无固定熔点、固态和熔融态间转化的渐变性和可逆性、性质随成分变化的连续性和渐变性。 16.玻璃的分类: 按组成分类:元素玻璃、氧化物玻璃、非氧化物玻璃 按用途分类:建筑玻璃、日用轻工玻璃、仪器玻璃、光学玻璃、电真空玻璃 按加工工艺分类:钢化玻璃、磨砂玻璃、喷砂玻璃、压花玻璃、夹层玻璃 按性能分类:光学特性玻璃、热学特性玻璃、耐高温玻璃;导电玻璃、半导体玻璃、超导玻璃;力学方面的高强玻璃、耐磨玻璃;化学稳定性方面的耐碱玻璃、耐酸玻璃等 17.陶瓷的定义:所述陶瓷是指以无机非金属天然矿物或化工产品为原料,经原料处理、成型、干燥、烧成等工序制成的产品,是陶器和瓷器的总称。 18.陶瓷的分类:按组成可分为硅酸盐陶瓷、氧化物陶瓷、非氧化物陶瓷;按性能可分为普通陶瓷、特种陶瓷;按用途可分为日用瓷、艺术瓷、建筑瓷、化工瓷等。 19.陶瓷的基本特性与特点: 陶瓷的显微结构由结晶相、气孔和玻璃相组成。 优点:较高的弹性模量、强度高,抗压强度远远大于抗拉强度、耐磨性能良好、好的耐久性、硬度高、优良的电绝缘性能脆性大,理论强度高,但实际强度较低。

陶瓷和金属的连接

陶瓷和金属的连接 姓名:王玉琪学号:1130420125 一·为什要将陶瓷与金属连接在一起 陶瓷材料具有许多传统材料不具备的优点。陶瓷材料主要有氧化铝、氧化锆、碳化硅、氮化硅、碳化硼、氮化硼等,材料的性能特点主要是硬度高、耐高温、耐磨、大部分材料绝热绝缘性好、比重小于钢铁,主要用于工程机械配套需要耐高温、耐磨的场合,如航天工业高速摩擦件、各种密封件、泵和压缩机的柱塞和缸套、高级轴承等。 但是陶瓷材料脆、不耐冲击、抗拉及抗弯曲较差,而金属材一般有很高的机械强度、韧性好、较能耐高温、导电传热性好,广泛应用于机械工程中关键零部件和一切重工业中的大型构件,在工业生产中有广泛的应用。 陶瓷和金属材料的连接,可以很好地使两种材料的性能得到更好的发挥,如将 CC 与 TiAl 连接起来应用在航空航天领域中的热端部件,如制成火箭发动机喷管构件等,可以大大减轻构件重量,提高火箭发动机推重比。因而,研究陶瓷和金属两种材料简便、高效、节能的连接方法很有工业应用前景。 二·陶瓷与金属连接特点 金属和陶瓷是两类完全不同的材料。它是把两种材料性能差异很大的零件采用合适的工艺过程连接成为一个整体。由于陶瓷和金属在物理性质、化学键型、力学性质和微观结构等方面差异很大,使用一般的方法是很难按照需求把它们连接到一起的。 陶瓷与金属连接过程中,绝大多数金属与陶瓷存在较大的热失配,在加热过程中连接陶瓷与金属时,由于接头处很容易产生残余应力,使接头的力学性能被削弱;熔化的金属很难润湿陶瓷;陶瓷耐热冲击力弱,有较低的热导率,加热时很容易产生裂纹,所以应该控制加热和冷却速度并减小焊接区域的温度梯度。

金属和陶瓷的焊接属于异种材料的焊接,一般需要添加中间层,中间层的使用对焊接接头性能影响很大。焊接中间层在金属和陶瓷的连接连接中的主要作用包括:1改善母材表面接触,润湿母材;2可以抑制夹杂物的形成,促进其破碎或分解;3改善冶金反应,避免或者减少形成脆性金属间化合物和有害的共晶组织,优化接头显微结构从而提高接头强度;4可以降低焊接温度、减少扩散焊接时间,从而控制接头应力、提高接头强度;5减小金属和陶瓷间因力作用,改善因膨胀系数不同造成的变形。实验表明,添加不同厚度的中间层对接头强度的影响不同。ZrB2-SiC 陶瓷和 Ni 的扩散焊实验中发现:中间层为固态 Ni 和 1mm 泡沫Ni 会发生脆性断裂;2和 4mm 厚中间层时,外加载荷应力达到塑性应变,随后残余阻力导致接头失效;6mm 中间层有很好的塑性,但由于泡沫金属的多孔性导致接头刚度较低。 三·金属与陶瓷的扩散焊 扩散焊是压焊的一种,它是指在相互接触的表面,在高温压力的作用下,被连接表面相互靠近,局部发生塑性变形,经一定时间后结合层原子间相互扩散而形成整体的可靠连接过程。影响扩散焊质量的焊接工艺参数因素很多,主要有焊接温度、保温时间、焊接压力等,合理控制影响因素保证焊接接头力学性能,一直是众多研究者关注的焦点。 焊接温度是促进原子扩散连接的最主要因素。扩散系数D与加热温度 T成指函数关系。提高加热温度能够提高原子,分子的能量,对消除空隙起着决定性作用。温度还影响被焊材料原子的扩散行为及材料的屈服强度,但温度过高,接头强度有所降低。 保温时间是影响扩散焊接接头质量的重要因素。保温时间过短,元素扩散不能充分进行,严重时会导致焊缝中残留许多孔洞,焊接接头强度不高;但是,保温时间过长,会使焊件晶粒粗大,降低力学性能。在焊接过程中,扩散原子走过的平均距离与扩散时间的平方成正比,因此,必须选择合适的保温时间,得到一定宽度并且组织结构优良的扩散层,从而得到性能良好的焊接接头。 焊接面微观存在许多凸起,凸起程度主要取决于表面粗糙度。在焊接过程中常施加压力使焊接表面微观凸起部分产生塑性变形,激活界面区原子,消除界

相关主题
文本预览
相关文档 最新文档