当前位置:文档之家› 高中物理竞赛辅导 动量 角动量和能量

高中物理竞赛辅导 动量 角动量和能量

高中物理竞赛辅导  动量 角动量和能量
高中物理竞赛辅导  动量 角动量和能量

动量 角动量和能量

§4.1 动量与冲量 动量定理 4.1. 1.动量

在牛顿定律建立以前,人们为了量度物体作机械运动的“运动量”,引入了动量的概念。当时在研究碰撞和打击问题时认识到:物体的质量和速度越大,其“运动量”就越大。物体的质量和速度的乘积mv 遵从一定的规律,例如,在两物体碰撞过程中,它们的改变必然是数值相等、方向相反。在这些事实基础上,人们就引用mv 来量度物体的“运动量”,称之为动量。

4.1.2.冲量

要使原来静止的物体获得某一速度,可以用较大的力作用较短的时间或用较小的力作用较长的时间,只要力F 和力作用的时间t ?的乘积相同,所产生的改变这个物体的速度效果就一样,在物理学中把F t ?叫做冲量。

4.1.3.质点动量定理

由牛顿定律,容易得出它们的联系:对单个物体:

01mv mv v m t ma t F -=?=?=? p t F ?=?

即冲量等于动量的增量,这就是质点动量定理。

在应用动量定理时要注意它是矢量式,速度的变化前后的方向可以在一条直线上,也可以不在一条直线上,当不在一直线上时,可将矢量投影到某方向上,分量式为:

x tx x mv mv

t F 0-=? y ty y mv mv t F 0-=? z tz z mv mv t F 0-=? 对于多个物体组成的物体系,按照力的作用者划分成内力和外力。对各个质点用动量定理:

第1个 1I 外+1I 内=10111v m v m t - 第2个 2I 外+2I 内=20222v m v m t -

第n 个 n I 外+n I 内=0n n nt n v m v m - 由牛顿第三定律: 1I 内+2I 内+……+n I 内=0 因此得到:

1I 外+2I 外+ ……+n I 外=(t v m 11+t v m 22+……+nt n v m )-(101v m +202v m +……0n n v m )

即:质点系所有外力的冲量和等于物体系总动量的增量。 §4,2 角动量 角动量守恒定律

动量对空间某点或某轴线的矩,叫动量矩,也叫角动量。

它的求法跟力矩完全一样,只要把力F 换成动量P 即可,故B 点上的动量P 对原点O 的动量矩J 为

P r J

?= (r

=)

以下介绍两个定理:

(1).角动量定理:

质点对某点或某轴线的动量矩对时间的微商,等于作用在该质点上的力对比同点或同轴的力矩,即

M dt dJ

= (M 为力矩)。

(2).角动量守恒定律

如果质点不受外力作用,或虽受外力作用,但诸外力对某点的合力矩为零,则对该点来讲,质点的动量矩J 为一恒矢量,这个关系叫做角动量守恒定律 即 r ×F=0,则J=r ×mv=r ×P=恒矢量

§4.3动量守恒定律

动量守恒定律是人们在长期实践的基础上建立的,首先在碰撞问题的研究中发现了它,随着实践范围的扩大,逐步认识到它具有普遍意义,

对于相互作用的系统,在合外力为零的情况下,由牛顿第二定律和牛顿第三定律可得出物体的总动量保持不变。

即: t v m 11+t v m 22+……+n n v m =+'+'221

1v m v m ……n n v m ' 上式就是动量守恒定律的数学表达式。 应用动量守恒定律应注意以下几点:

(1)动量是矢量,相互作用的物体组成的系统的总动量是指组成物体系的所有物体的动量的矢量和,而不是代数和,在具体计算时,经常采用正交分解法,写出动量守恒定律的分量方程,这样可把矢量运算转化为代数运算,

(2)在合外力为零时,尽管系统的总动量恒定不变,但组成系统的各个物体的动量却可能不断变化,系统的内力只能改变系统内物体的动量,却不能改变系统的总动量。在合外力不为零时,系统的总动量就要发生改变,但在垂直于合外力方向上系统的动量应保持不变,即合外力的分量在某一方向上为零,则系统在该方向上动量分量守恒。

(3)动量守恒定律成立的条件是合外力为零,但在处理实际问题时,系统受到的合外力不为零,若内力远大于外力时,我们仍可以把它当作合外力为零进行处理,动量守恒定律成立。如遇到碰撞、爆炸等时间极短的问题时,可忽略外力的冲量,系统动量近似认为守恒。

(4)动量守恒定律是由牛顿定律导出的,牛顿定律对于分子、原子等微观粒子一般不适用,而动量守恒定律却仍适用。因此,动量守恒定律是一条基本规律,它比牛顿定律具有更大的普遍性。

动量守恒定律的推广 由于一个质点系在不受外力的作用时,它的总动量是守恒的,所以一个质点系的内力不能改变它质心的运动状态,这个讨论包含了三层含意:

(1)如果一个质点系的质心原来是不动的,那么在无外力作用的条件下,它的质心始终不动,即位置不变。

(2)如果一个质点系的质心原来是运动的,那么在无外力作用的条件下,这个质点系的质心将以原来的速度做匀速直线运动。

(3)如果一个质点系的质心在某一个外力作用下作某种运动,那么内力不能改变质心的这种运动。比如某一物体原来做抛体运动,如果突然炸成两块,那么这两块物体的质心仍然继续做原来的抛体运动。

如果一个质量为A m 的半圆形槽A 原来静止在水平面上,原槽半径为R 。将一个质量为B m 的滑块B 由静止释放(图4-3-1),若不计一切摩擦,问A 的最大位移为多少?

由于A 做的是较复杂的变加速运动,因此很难用牛顿定律来解。由水平方向动量守恒和机械能守恒,可知B 一定能到达槽A 右边的最高端,而且这一瞬间A 、B 相对静止。因为A 、B 组成的体系原来在水平方向的动量为零,所以它的质心位置应该不变,初始状态A 、B 的质心距离圆槽最低点的水平距离为:

R

m m m s B

A B

?+=

。 所以B 滑到槽A 的右边最高端时,A 的位移为(图4-3-2)

R

m m m s B

A B

?+=

22

如果原来A 、B 一起以速度v 向右运动,用胶水将B 粘在槽A 左上端,某一时刻胶水突然失效,B 开始滑落,仍然忽略一切摩擦。设从B 脱落到B 再次与A 相对静止的时间是t ,那么这段时间内A 运动了多少距离?

B 脱落后,A 将开始做变加速运动,但A 、B 两物体的质心仍然以速度v 向右运动。所以在t 时间内A 运动的距离为:

R

m m m vt L B A B

+-

=2

§4.4 功和功率 4.4.1功的概念

力和力的方向上位移的乘积称为功。即θcos Fs W = 式中θ是力矢量F 与位移矢量s 之间的夹角。

功是标量,

图4-3-1 s

F 1F 12

图4-4-1

有正、负。外力对物体的总功或合外力对物体所做功等于各个力对物体所做功的代数和。

对于变力对物体所做功,则可用求和来表示力所做功,即 i si F W i θcos ?∑=

也可以用F=F (s )图象的“面积”来表示功的大小,如图4-4-1所示。

由于物体运动与参照系的选择有关,因此在不同的参照系中,功的大小可以有不同的数值,但是一对作用力与反作用力做功之和与参照系的选择无关。因为作用力反作用力做功之和取决于力和相对位移,相对位移是与参照系无关的。

值得注意的是,功的定义式中力F 应为恒力。如F 为变力中学阶段常用如下几种处理方法:(1)微元法;(2)图象法;(3)等效法。

4.4.2. 几种力的功

下面先介绍一下“保守力”与“耗散力”。

具有“做功与路径无关”这一特点的力称为保守力,如重力、弹力和万有引力都属于保守力。不具有这种特点的力称为

非保守力,也叫耗散力,如摩擦力。

(1)重力的功 重力在地球附近一个小范围内我们认为是恒力,所以从高度

1h 处将重力为mg 的物移到高2h 处。重力做功为:

)(12h h mg W c -=,显然与运动路径无关。

(2)弹簧弹力的功

物体在弹簧弹力F=-kx 的作用下,从位置1x 运动至位置

2x ,如图4-4-2(a )所示,其弹力变化F=F (x )如图4-4-2(b )所示则该过程中弹力的功W 可用图中斜线“面积”表示,功大小为

2

2

2112212121)(2)1(kx kx x x x kx W -=-?+-=

(3)万有引力的功

质量m 的质点在另一质量M 的质点的作用下由相对距离1r 运动至相对距离2r 的过程

中,引力所做功为

1221)11(

r GMm r GMm r r GMm W -=--=

4.4.3.功率

作用于物体的力在单位时间内所做功称为功率,表达式为

t W

P =

求瞬时功率,取时间0→?t 则为

θθ

cos cos 00

v F t s F Iim t W Iim P t t ?=??=??=

=→?→?

12)(

a 图4-4-2

式中v 为某时刻的瞬时速度,θ为此刻v 与F 方向的夹角 §4.5 动能 动能定理 4.5.1. 质点动能定理

质量m 的质点以速度v 运动时,它所具有动能k E 为:

221mv E k =

动能是质点动力学状态量,当质点动能发生变化时,是由于外力对质点做了功,其关系是:

W 外=21K K K E E E -=?

上式表明外力对质点所做功,等于质点动能的变化,这就是质点动能定理。 4.5.2.质点系动能定理

若质点系由n 个质点组成,质点系中任一质点都会受到来自于系统以外的作用力(外力)和系统内其它质点对它作用力(内力),在质点运动时,这些力都将做功。设质点系由N 个质点组成,选取适当的惯性系,对其中第i 个质点用质点动能定理

i W 外+i W 内=2

1

222121i i i i v m v m -

对所有n 个质点的动能定理求和就有

∑i W 外+∑i W 内=2

1

222121i i i i v m v m ∑-∑

若用W 外、W 内、2K E 、1K E 分别表示∑i W 外、∑i W 内、2221i i v m ∑、2

1

21i i v m ∑

则上式可写成

W 外+ W 内=2K E -1K E

由此可见,对于质点系,外力做的功与内力做的功之和等于质点系动能的增量,这就是质点系动能定理。和质点动能定理一样,质点系动能定理只适用于惯性系,但质点系动能定理中的W 内一项却是和所选的参照系无关的,因为内力做的功取决于相对位移,而相对位移和所选的参照系是无关的。这一点有时在解题时十分有效。

§4.6 势能

4.6.1 势能

若两质点间存在着相互作用的保守力作用,当两质点相对位置发生改变时,不管途径如何,只要相对位置的初态、终态确定,则保守力做功是确定的。存在于保守力相互作用质点之间的,由其相对位置所决定的能量称为质点的势能。规定保守力所做功等于势能变化的负值,即

W 保=P E ?-。

(1)势能的相对性。

通常选定某一状态为系统势能的零值状态,则任何状态至零势能状态保守力所做功大小等于该状态下系统的势能值。原则上零势能状态可以任意选取,因而势能具有相对性。

(2)势能是属于保守力相互作用系统的,而不是某个质点独有的。 (3)只有保守力才有相应的势能,而非保守力没有与之相应的势能。 4.6.2 常见的几种势能 (1)重力势能

在地球表面附近小范围内,mg 重力可视为恒力,取地面为零势能面,则h 高处重物m 的重力势能为

m g h E p =

(2)弹簧的弹性势能

取弹簧处于原长时为弹性势能零点,当弹簧伸长(压缩)x 时,弹力F=-kx ,弹力做的功为

2

21kx W -=

由前面保守力所做功与势能变化关系可知

)0(--=?-=P P E E W

2

21kx E P =

(3)引力势能

两个质点M 、m 相距无穷远处,规定00=P E ,设m 从无穷远处移近M ,引力做功W ,

由于F 引=2

r Mm

,大小随r 变化,可采用微元法分段求和方式。如图4-5-1,取质点n 由A 到B ,位移为21r r r -=?,引力做功

r r Mm

W ?=

?2

r ? 很小,A r 、B r 差异很小,则 A B B A A

B A A r GMm

r GMm r r r GMm r r r GMm W -=-=-=

?)()(2

2 由无穷远至距r 处,引力功W 为

)1

1()111(

初末r r GMm ri ri GMr W W i -=-+∑=∑?=

开始时∞→初r ,最后相对距离为末r =r

r GMm

W =

又有

)P r (∞--=?-=E E E W P r G M m E -

=Pr

质点与均匀球体间引力势能,在球体外,可认为球体质量集中于球心,所以引力势能为

A

m

图4-6-1

r GMm

E P -

= r ≥R R 为球半径

质量M ,半径为R 的薄球壳,由于其内部引力合力为零,故任意两点间移动质点m ,引力均不做功,引力势能为恒量,所以质量m 质点在薄球壳附近引力势能为

P E =?????<≥R r R GMm R r r

GMm

§4.7 功能原理和机械能守恒定律

4.7.1 功能原理 根据质点系动能定理

12k k E E W W -=+内外

当质点系内有保守力作用和非保守力作用时,内力所做功又可分为

非保保内W W W +=

而由保守力做功特点知,保守力做功等于势能增量的负值,即

21P P P E E E W -=?-=保

于是得到

1221K K P P E E E E W W -=-++非保外

)()1122P K P K E E E E W W +-+=+(非保外

用E 表示势能与动能之和,称为系统机械能,结果得到

12E E W W -=+非保外

外力的功和非保守力内力所做功之和等于系统机械能的增量,这就是质点系的功能原理。可以得到(外力做正功使物体系机械能增加,而内部的非保守力作负功会使物体系的机械能减少)。

功能原理适用于分析既有外力做功,又有内部非保守力做功的物体系,请看下题: 劲度系数为k 的轻质弹簧水平放置,左端固定,右端连接一个质量为m 的木块(图4-7-1)开始时木块静止平衡于某一位置,木块与水平面之间的动摩擦因数为μ。然后加一个水平向右的恒力作用于木块上。(1)要保证

在任何情况下都能拉动木块,此恒力F 不得小于多少?(2)用这

个力F 拉木块,当木块的速度再次为零时,弹簧可能的伸长量是

多少?

题目告知“开始时木块静止平衡于某一位置”,并未指

明确切的位置,也就是说木块在该位置时所受的静摩擦力和弹簧的形变量都不清楚,因此要考虑各种情况。如果弹簧自然伸展时,木块在O 点,那么当木块在O 点右方时,所受的弹簧的作用力向右。因为木块初始状态是静止的,所以弹簧的拉力不

F 图4-7-1

能大于木块所受的最大静摩擦力μmg 。要将木块向右拉动,还需要克服一个向左的静摩擦力μmg ,所以只要F ≥2μmg ,即可保证在任何情况下都能拉动木块。

设物体的初始位置为0x ,在向右的恒力F 作用下,物体到x 处的速度再次为零,在此过程中,外部有力F 做功,内部有非保守力f 做功,木块的动能增量为零,所以根据物体系的功能原理有

)(2

1

2

121)()(020200x x k m g F kx kx x x m g x x F +=

--=---μμ

可得

)

(2x k mg F x --=

μ

因为木块一开始静止,所以要求

k mg μ-

≤0x ≤k mg μ

可见,当木块再次静止时,弹簧可能的伸长是

k mg

μ≤x ≤k mg μ3

4.7.2 机械能守恒定律

若外力的与非保守内力的功之和为零时,0=+非保外W W 则系统机械能守恒,这就是机械能守恒定律。

注意:该定律只适用于惯性系,它同时必须是选择同一惯性参照系。在机械能守恒系统中,由于保守内力做功,动能和势能相互转化,而总的机械能则保持不变。

下面介绍一例由机械能守恒推出的重要定理:伯努利方程

理想流体 不可压缩的、没有粘滞性的流体,称为理想流体。

定常流动 观察一段河床比较平缓的河水的流动,你可以看到河水平静地流着,过一会儿再看,河水还是那样平静地流着,各处的流速没有什么变化。河水不断地流走,可是这段河水的流动状态没有改变。河水的这种流动就是定常流动。流体质点经过空间各点的流速虽然可以不同,但如果空间每一点的流速不随时间而改变,这样的流动就叫做定常流动。自来水管中的水流,石油管道中石油的流动,都可以看

做定常流动。流体的流动可以用流线形象地表示。

在定常流动中,流线表示流体质点的运动轨迹。图4-7-2是液体流过圆柱体时流线的分布。A 、B 处液

体流过的横截面积大,CD 处液体流过的横截面积

小。液体在CD 处流得急,流速大。AB 处的流线疏,

CD 处的流线密,这样,从流线的分布可以知道流速

的大小。流线疏的地方,流速小;流线密的地方,图4-7-2

流速大。

伯努利方程 现在研究理想流体做定常流动时流体中压强和流速的关系。

图4-7-3表示一个细管,其中流体由左向右流动。在管的1a 处和2a 处用横截面截出一段流体,即1a 处和2a 处之间的流体,作为研究对象。

1a 处的横截面积为1S ,流速为1v ,高度为1h ,

1a 处左边的流体对研究对象的压强为1p ,方向垂直于1S 向右。

2a 处的横截面积为2S ,流速为2v ,高度为2h ,2a 处左边的流体对研究对象的压强为2p ,方向垂直于2S 向左。

经过很短的时间间隔t ?,这段流体的左端1S 由1a 移到1b 。右端2S 由2a 移到2b 。两端移动的距离分别为1l ?和2l ?。左端流入的流体体积为111l S V ?=?,右端流出的流体体积为222l S V ?=?,理想流体是不可压缩的,流入和流出的体积相等,21V V ?=?,记为V ?。

现在考虑左右两端的力对这段流体所做的功。

作用在液体左端的力111S p F =,所做的功

V p l S p l F W ?=?=?=1111111。

作用在右端的力222S p F =,所做的功

V p l S p l F W ?-=?-=?-=2222222。

外力所做的总功

V p p W W W ?-=+=)(2121 (1)

外力做功使这段流体的机械能发生改变。初状态的机械能是1a 到2a 这段流体的机械能1E ,末状态的机械能是1b 到2b 这段流体的机械能2E 。由1b 到2a 这一段,经过时间t ?,虽然流体有所更换,但由于我们研究的是理想流体的定常流动,流体的密度ρ和各点的流速v 没有改变,

动能和重力势能都没有改变,所以这一段的机械能没有改变,这样机械能的改变12E E -就等于流出的那部分流体的机械能减去流入的那部分流体的机械能。

由于V m ?=ρ,所以流入的那部分流体的动能为

V

v mv ?=212121

21ρ

重力势能为

V gh mgh ?=11ρ

流出流体的动能为

b 图4-7-3

V

v mv ?=2

2222121ρ

重力势能为

V gh mgh ?=22ρ

机械能的改变为

V h h g V v v E E ?-+?-=

-)()(2112212

212ρρ (2)

理想流体没有粘滞性,流体在流动中机械能不会转化为内能,所以这段流体两端受的

力所做的总功W 等于机械能的改变

12E E -,即 W=12E E - (3)

将(1)式和(2)式代入(3)式,得

V h h g V v v V p p ?-+?-=

?-)()(21)(12212221ρρ

整理后得

22

2212112121gh v p gh v p ρρρρ++=++

(4)

1a 和2a 是在流体中任意取的,所以上

式可表示为对管中流体的任意处:

=++

gh v p ρρ2

21常量 (5)

(4)式和(5)式称为伯努利方程。

流体水平流动时,或者高度差的影响不显著时(如气体的流动),伯努利方程可表达为

=

+221

v p ρ常量 (6)

从(6)式可知,在流动的流体中,压强跟流速有关,流速v 大的地方要强p 小,流

速v 小的地方压强p 大。

知道压强和流速的关系,就可以解释本节开始所做的实验了。经过漏斗吹乒乓球时,乒乓球上方空气的流速大,压强小,下方空气的压强大,乒乓球受到向上的力,所以会贴在漏斗上不会掉下来。向两张纸中间吹气,两张纸中间空气的流速大,压强小,外边空气的压强大,所以两张纸将互相贴近。同样的道理,两艘并排的船同

向行驶时(图4-7-4)如果速度较大,两船会互相靠近,有相撞的

危险。历史上就曾经发生过这类事故。在航海中。对并排同向行驶的船舶,要限制航速和两船的距离。

伯努利方程的应用:

球类比赛中的旋转球和不转球的飞行轨迹不同,是因为球周

图4-7-4

甲:不转球乙:旋转球

图4-7-5

围空气流动情况不同造成的。图4-7-5甲表示不转球水平向左运动时周围空气的流线。球的上方和下方流线对称,流速相同,上下不产生压强差。现在考虑球的旋转,致使球的下方空气的流速增大,上方流速减小,周围空气流线如图乙所示。球的下方流速大,压强小,上方流速小,压强大。跟不转球相比,图4-1-6乙所示旋转球因为旋转而受到向下的力,飞行轨迹要向下弯曲。

例:如图4-7-6所示,用一弹簧把两物块A 和B 连接起来后,置于水平地面上。已知A 和B 的质量分别为1m 和2m 。问应给物块A 上加多大的压力F ,才可能在撤去力F 后,A 向上跳起后会出现B 对地无压力的情况?弹簧的质量略去不计。

设弹簧原长为0l ,建立如图4-7-7所示的坐标,以k 表示弹簧的劲度系数,则有 01kx g m =

取图中O 点处为重力势能零点,当A 受力F 由O 点再被压缩了x 时,系统的机械能为

)()(21

02201gl m x x k gx m E x -+++

-= ②

撤去F 当A 上升到最高处即弹簧较其自然长度再伸长x '时,系统的机械能为 )(21)(022

01gl m x k x x g m E x -+'+

'+=' ③

A 在x 处时,其受力满足

0)(01='+-+x x k g m F ,

以①式的01kx g m =代入上式,乃有

kx F = ④

当F 撤去A 上升到x x '+0处时,弹簧的弹力大小为x k ',设此时B 受到地面的支持力为N ,则对于B 应有

02=-'+g m x k N

要B 对地无压力,即N=0,则上式变为

g m x k 2=' ⑤

因为A 由x 处上升至x x '+0处的过程中,对此系统无外力和耗散力作功,则其机械能守恒,即

x E '=x E ⑥

联立解②~⑥式,可得

g m g m F 21+=。

显然,要出现B 对地无压力的情况,应为F ≥(g m m )21+。当F=(g m m )21+时,刚好能出现B 对地无压力的情况,但B 不会离开地面;当F >(g m m )21+时,B 将出现离开地面向上跳起的情况。

图4-7-6

§4.8 碰撞

质量1m 和2m 的两个物块,在直线上发生对心碰撞,碰撞前后速度分别为10v 和20v 及1v 和2v ,碰撞前后速度在一条直线上,由动量守恒定律得到2211202101v m v m v m v m +=+ 根据两物块在碰撞过程中的恢复情况,碰撞又可分类为下列几种 (1)弹性碰撞

在碰撞过程中没有机械能损失的碰撞称为弹性碰撞,由动能守恒有

2222112202210121212121v m v m v m v m +=+

结合动量守恒解得

20

2

12

10212112v m m m v m m m m v +++-=

20

2

11

21021222v m m m m v m m m v +-++= 对上述结果可作如下讨论

①21m m =,则201v v =,102v v =,即21m m 交换速度。

②若1m >>2m ,且有20v =0,则101v v ≈,1022v v ≈即质量大物速度几乎不变,小物以二倍于大物速度运动。

③若1m <<2m ,且20v =0,则101v v -=,02≈v ,则质量大物几乎不动,而质量小物原速率反弹。

(2) 完全非弹性碰撞

两物相碰粘合在一起或具有相同速度,被称为完全非弹性碰撞,在完全非弹性碰撞中,系统动量守恒,损失机械能最大。

v m m v m v m )(21202101+=+

2

120

2101m m v m v m v ++=

碰撞过程中损失的机械能为

2

20102

1212212

2022101))((21)(212121v v m m m

m v m m v m v m E -+=+-+=

? (3 )一般非弹性碰撞,恢复系数

一般非弹性碰撞是指碰撞后两物分开,速度21v v ≠,且碰撞过程

中有机械损失,但比完全非弹性碰撞损失机械能要小。物理学中用恢

2图4-9-1

复系数来表征碰撞性质。恢复系数e 定义为

201012v v v v e --=

①弹性碰撞, e=1。

②完全非弹性碰撞 12v v =,e=0。 ③一般非弹性碰撞 0<e <1。 (4) 斜碰

两物碰撞前后不在一条直线上,属于斜碰,如图4-9-1所示 设两物间的恢复系数为e ,设碰撞前1m 、2m 速度为10v 、20v ,

其法向、切向分量分别为n v 10、n v 20、τ10v 、τ20v ,碰后分离速度1v 、2v ,法向、切向速度分量n v 1、n v 2、t v 1、t v 2,则有

n n n n v v v v e 201012--=

若两物接触处光滑,则应有1m 、2m 切向速度分量不变 t t v v 101=、τ202v v t =

若两物接触处有切向摩擦,这一摩擦力大小正比于法向正碰力,也是很大的力,它提供的切向冲量便不可忽略。

§4.9 质心及质心运动

4.9.1 质心及质心位置

任何一个质点系中都存在着一个称为质心的特殊点,它的运动与内力无关,只取决于外力。当需要将质点组处理成一个质点时,它的质量就是质点组的总质量。当需要确定质心的运动时,就设想把质点组所受的全部外力集中作用在质心上。

注意:质心是一个假想的质点。

设空间有N 个质点,其质量、位置分别记作i m 、n ,质量组质心记为C ,则质量、位置。

i C m m ∑=

在x 、y 、z 直角坐标系中,记录质心的坐标位置为

i i

i C m x m x ∑∑=

i i

i C m y m y ∑∑=

i i

i C m z m z ∑∑=

4.9.2、质心的速度、加速度、动量

质心速度

i i i i i i e c m v m m t r m t r v ∑∑=

∑??∑=??= /,在空间直角坐标系中,质心速度可表达为 i ix

i cx m v m v ∑∑=

i iy

i cy m v m v ∑∑=

i iz

i cz m v m v ∑∑=

质心的动量mc p =

,i i i

v m v ∑=质心的动量等于质点组中各个质点动量的矢量和。 质心的加速度a

i i

i i i

i c c m a m m i v m t v a ∑∑=∑??∑=

??= c i i c m F m F a 1 ∑=

∑∑=

i c c F a m

∑=

由上式可见,当质点组所受合外力为零时,质心将保持静止状态或匀速直线运动状态。 同样,质点组的动量定理也可表述为

12c c c c i v m v m I -=∑

外力的冲量的矢量和等于质心动量的增量。 4.9.3、质心的动能与质点组的动能

以二个质点为例,质量1m 、2m 两质点相对于静止参照系速度1v 、2v ,质心C 的速度

C v ,

二质点相对于质心速度是'1v 和'2v ,可以证明有

2

222112121v m v m E K +=

22

22112212121'+'+=v m v m v m C C

'

+=K KC K E E E 即二个质点的总动能等于质心的动能与两质点相对质心动能之和。

§4.10天体的运动与能量

4.10.1、天体运动的机械能守恒

二体系统的机械能E 为系统的万有引力势能与各天体的动能之和。仅有一个天体在运动

时,则E 为系统的万有引力势能与其动能之和。由于没有其他外力作用,系统内万有引力属于保守力,故有机械能守恒,E 为一恒量,如图4-10-1所示,设M 天体不动,m 天体绕M 天体转动,则由机械动能守恒,有

2

2

22112121mv r GMm mv r GMm E +--=+-=

当运动天体背离不动天体运动时,P E 不断增大,而K E 将不断减小,可达无穷远处,此时0=P E 而K E ≥0,则应满足E ≥0,即

021

2≥+-mv r GMm

例如从地球发射人造卫星要挣脱地球束缚必有

021

2≥+-mv R GMm s

km Rg R GM v 2.1122==≥

我们称v =11.2km/s 为第二宇宙速度,它恰为第一宇宙速度为

2倍。

另外在上面的二体系统中,由于万有引力属于有心力,所以

对m 而言,遵循角动量守恒

恒量=?r v m 或 恒量=?θsin mvr

r v 与是θ方向的夹角。它实质可变换得到开普勒第二定律,

即行星与恒星连线在相等时间内扫过面积等。

4.10.2、天体运动的轨道与能量 若M 天体固定,m 天体在万有引力作用下运动,其圆锥曲线可能是椭圆(包括圆)、抛物线或双曲线。

i )椭圆轨道

如图4-7-1所示,设椭圆轨道方程为

122

22=+b y a x (a>b )

则椭圆长,短半轴为a 、b ,焦距2

2b a c -=,近地点速度1v ,远地点速度2v ,则有

c a GMm mv c a GMm mv E +-=--=

2

2212121 )()(21c a mv c a mv +=- 或由开普勒第二定律:

图4-10-1

)

(21

)(2121c a v c a v +=-

可解得

??????+-=?-+=a c a GM c a v a

c a GM c a v )/()()/()(21

代入E 得

02<-

=a GMm

E

ii)抛物线

设抛物线方程为

2Ax y =

太阳在其焦点(A 41

,

0)处,则m 在抛物线顶点处能量为

AGMm

mv A GMm mv E 421)41(212

020-=-=

可以证明抛物线顶点处曲率半径

A 21=ρ,则有2

2

0)41/(/A GMm mv =ρ得到 AGM v 80=

抛物线轨道能量

04)8(21

=-?=

AGM AGM m E

iii )双曲线 设双曲线方程为

122

22=-b y a x 焦距2

2b a c +=,太阳位于焦点(C ,0),星体m 在双曲线正半支上运动。如图4-10-3

所示,其渐近线OE 方程为y=bx/a ,考虑m 在D 处与无穷远处关系,有

2202121∞=--=

mv x c GMm mv E

考虑到当∞→r ,运动方向逼近渐近线,焦点与渐近线距FC 为

b b a cb FC =+=22/

故有

b v a

c v D ?=-∞21

)(21 或 b mv a c mv D ?=-∞)(

联解得

??

???-=

=∞a GM a c b v a GM v D / 双曲线轨道能量

02>=

a GMm

E

小结

02>-

=a GMm

E 椭圆轨道

0=E 抛物线轨道 0

2>=a GMm E 双曲线轨道

以下举一个例子

质量为m 的宇宙飞船绕地球中心0作圆周运动,已知地球半径为R ,飞船轨道半径为2R 。现要将飞船转移到另一个半径为4R 的新轨道上,如图4-10-4所示,求 (1)转移所需的最少能量;

(2)如果转移是沿半椭圆双切轨道进行的,如图中的ACB 所示,则飞船在两条轨道的交接处A 和B 的速度变化B A v v ??和各为多少?

解: (1)宇宙飞船在2R 轨道上绕地球运动时,万有引力提供向心力,令其速度为1v ,乃有

R mv R GMm 2)

2(2

1

2

= 故得

R GM v 21=

此时飞船的动能和引力势能分别为

R GMm mv E k 421211== R GMm E p 21

-

=

所以飞船在2R 轨道上的机械能为

R GMm E E E p k 4111-

=+=

R R

2R

4A

B

C

O

图4-10-4

同理可得飞船在4R 轨道上的机械能为

以两轨道上飞船所具有的机械能比较,知其机械能的增量即为实现轨道转移所需的最少能量,即

R GMm E E E 812=

-=?

(2)由(1)已得飞船在2R 轨道上运行的速度为

R GM v 21=

同样可得飞船4R 轨道上运行的速度为

R GM

v 42=

设飞船沿图示半椭圆轨道ACB 运行时,在A 、B 两点的速度分别为''21

v v 和。则由开普勒第二定律可得

R v R v 4221

?'=?' 又由于飞船沿此椭圆轨道的一半运行中机械能守恒,故应有

R GMm

v m R GMm v m 42122122

21-'=-'

联立以上两式解之可得

R GMm

v 321

=' R GMm v 32212

=' 故得飞船在A 、B 两轨道交接处的速度变化量分别为

R

GM

v v v A 213411???? ??-=-'=? R GM

v v v B 43212

2???? ??-='-=?

例如:三个钢球A 、B 、C 由轻质的长为l 的硬杆连接,竖立在水平面上,如图4-10-5所示。已知三球质量m m A 2=,

m mc m B ==,距离杆

l

a 82

5=

处有一面竖直墙。因受微小扰动,

两杆分别向两边滑动,使B 球竖直位置下降。致使C

球与墙面发生

图4-10-5

碰撞。设C 球与墙面碰撞前后其速度大小不变,且所有摩擦不计,各球的直径都比l 小很多,求B 球落地瞬间三球的速度大小。

解:

(1)球碰墙前三球的位置

视A 、B 、C 三者为一系统,A 、C 在水平面上滑动时,只要C 不与墙面相碰,则此系统不受水平外力作用,此系统质心的水平坐标不发生变化。

以图4-10-6表示C 球刚好要碰墙前三球的位置,以a 表示

此时BC 杆与水平面间的夹角,则AB 杆与水平面间的夹角

也为a ,并令BA 杆上的M 点与系统质心的水平坐标相同,

则应有

a BC m a MB m a AM m C B A cos cos cos ?+?=?

故得 ① 由上述知M 点的水平坐标应与原来三秋所在的位置的水平坐标相同,故知此刻M 点与右侧墙面的距离即为a ,即M 点与C 球的水平距离为a ,由此有a a BC a MB =?+?cos cos ,即

l a l a l 825cos cos 4=+。

由上式解得

22

cos =

a ,故有 45=a ②

(2)求三球碰墙前的速度

由于碰墙前M 点的水平坐标不变,则在A 、C 沿水平面滑动过程中的任何时刻,由于

图中的几何约束,C 点与M 点的水平距离总等于A 点与M 点的水平距离的35

倍,可见任何时

刻C 点的水平速度大小总为A 点水平速度大小的35

倍。以A v 、B v 、C v 分别表示图5-2-2中

三球的速度,则有

A

C v v 35=

又设B v 沿BC 方向的分量为BC v ,则由于B v 和C v 分别为杆BC 两端的小球速度,则此两小球速度沿着杆方向的投影应该相等,即

a v v C BC cos =。

再设B v 沿BA 方向的分量为BA v ,同上道理可得

a v v A BA cos =

图4-10-7 441l

AB MB ==

注意到BA 与BC 两个方向刚好互相垂直,故得B v 的大小为

a v v v v v A C BA BC B cos 2

222+=+=

以②③两式带入上式,乃得

A

B v v 917

=

由于系统与图5-2-1状态到图5-2-2状态的机械能守恒,乃有

2

22212121sin C

C B B A A B B v m v m v m a l g m gl m +++?=。

以①~④式代入上式。解方程知可得

gl

v A )22

1(103-= ⑤

(3)求C 球在刚碰墙后三球的速度

如图4-10-8所示,由于C 球与墙碰撞,导致C 球的速度反向而大小不变,由于杆BC 对碰撞作用力的传递,使B 球的

速度也随之变化,这一变化的结果是:B 球速度沿CB 方向的分量BC v '

与C 球速度沿CB 方向的分量相等,即

a v a v v C C BC cos cos ='=' ⑥

由于BC 杆只能传递沿其杆身方向的力,故B 球在垂直于杆身方向(即BA 方向)的速度不因碰撞而发生变化,A 球的速度也不因碰撞而发生变化,即其仍为A v 。故得此时B 球速度

沿BA 方向的分量BA v '

满足

图4-10-8

动量与角动量习题解答

第三章 动量与动量守恒定律习题 一选择题 1. 一辆洒水车正在马路上工作,要使车匀速直线行驶,则车受到的合外力:( ) A. 必为零; B. 必不为零,合力方向与行进方向相同; C. 必不为零,合力方向与行进方向相反; D. 必不为零,合力方向是任意的。 解:答案是C 。 简要提示:根据动量定理,合力F 的冲量F d t = d p = d (m v )=m d v +v d m =v d m 。因d m <0,所以F 的方向与车行进速度v 的方向相反。 2. 两大小和质量均相同的小球,一为弹性球,另一为非弹性球,它们从同一高度落下与地面碰撞时,则有:() A. 地面给予两球的冲量相同; B. 地面给予弹性球的冲量较大; C. 地面给予非弹性球的冲量较大; A. 无法确定反冲量谁大谁小。 解:答案是B 。 简要提示:)(12v v -=m I 3. 质量为m 的铁锤竖直向下打在桩上而静止,设打击时间为?t ,打击前锤的速率为v ,则打击时铁锤受到的合外力大小应为:() A . mg t m +?v B .mg C .mg t m -?v D .t m ?v 解:答案是D 。 简要提示:v m t F =?? 4. 将一长木板安上轮子放在光滑平面上,两质量不同的人从板的两端以相同速率相向行走,则板的运动状况是:() 选择题4图

A. 静止不动; B. 朝质量大的人行走的方向移动; C. 朝质量小的人行走的方向移动; D. 无法确定。 解:答案是B 。 简要提示:取m 1的运动方向为正方向,由动量守恒: 02211='+-v v v M m m ,得:M m m /)(21v v --=' 如果m 1> m 2,则v ′< 0。 5. 一只猴子用绳子拉着一个和它质量相同的石头,在一水平的无摩擦的地面上运动,开始时猴子和石头都保持静止,然后猴子以相对绳子的速度u 拉绳,则石头的速率为:() A. u B. u /2 C. u /4 D. 0 解:答案是B 。 简要提示:由动量守恒:0v v =+2211m m ,u =-12v v ;得2/2u =v 。 6. 高空悬停一气球,气球下吊挂一软梯,梯上站一人,当人相对梯子由静止开始匀速上爬时,则气球:() A.仍静止; B.匀速上升; C.匀速下降; D.匀加速上升。 解:答案是C 。 简要提示:由质心运动定理,系统的质心位置不变。 7. 一背书包的小学生位于湖中心光滑的冰面上,为到达岸边,应采取的正确方法是:() A. 用力蹬冰面 B. 不断划动手臂 C. 躺在冰面上爬行 D. 用力将书包抛出 解:答案是D 。 二填空题 1. 两个飞船通过置于它们之间的少量炸药爆炸而分离开来,若两飞船的质量分别为1200kg 和1800kg ,爆炸力产生的冲量为600Ns ,则两船分离的相对速率为ms –1。 解:答案为:5/6 ms –1

大学物理动量与角动量练习题与答案

大学物理动量与角动量练习题与答案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

第三章 动量与角动量 一、选择题 [ A ] 1.(基础训练2)一质量为m 0的斜面原来静止于水平光滑平面上,将一质量为m 的木块轻轻放于斜面上,如图3-11.如果此后木块能静止于斜面上,则斜面将 (A) 保持静止. (B) 向右加速运动. (C) 向右匀速运动. (D) 向左加速运动. 提示:假设斜面以V 向右运动。由水平方向动量守恒得 0(cos )0m V m V v θ+-= ,而0v =,得0V = [C ]2.(基础训练3)如图3-12所示,圆锥摆的摆球质量为m ,速率为v ,圆半径为R ,当摆球在轨道上运动半周时,摆球所受重力冲量的大小为 (A) 2m v . (B) 22)/()2(v v R mg m π+ (C) v /Rmg π. (D) 0. 提示:2T mg I G ?= , v R T π2= [ B ]3. (自测提高2)质量为20 g 的子弹,以400 m/s 的速率沿图3-15入一原来静止的质量为980 g 的摆球中,摆线长度不可伸 缩.子弹射入后开始与摆球一起运动的速率为 (A) 2 m/s . (B) 4 m/s . (C) 7 m/s . (D) 8 m/s . 提示:对摆线顶部所在点角动量守恒。 2sin 30()mv l M m lV ?=+;其中m 为子弹质量,M 为摆球质量,l 为 摆线长度。 [D ]4.(自测提高4)用一根细线吊一重物,重物质量为5 kg ,重物下面再系一根同样的细线,细线只能经受70 N 的拉力.现在突然向下拉一下下面的线.设力最大值为50 N ,则 (A)下面的线先断. (B)上面的线先断. (C)两根线一起断. (D)两根线都不断. m m 0 图3-11 ? 30v 2 图3-15 θ m v R

第三章 动量与角动量(答案)

一、选择题 [ A ]1.(基础训练2)一质量为m 0的斜面原来静止于水平光滑平面上,将一质量为 m 的木块轻轻放于斜面上,如图3-11 (A) 保持静止. (B) 向右加速运动. (C) 向右匀速运动. (D) 向左加速运动. 【提示】设m 0相对于地面以V 运动。依题意,m 静止于斜面上,跟着 m 0一起运动。根据水平方向动量守恒,得:00m V mV +=所以0V =,斜面保持静止。 [ C ]2.(基础训练3)如图3-12所示,圆锥摆的摆球质量为m ,速率为v ,圆半径为R ,当摆球在轨道上运动半周时,摆球所受重力冲量的大小为 (A) 2m v . (B) 22)/()2(v v R mg m π+ (C) v /Rmg π (D) 0. 【提示】2 2T G T I mgdt mg ==? ? , 而 v R T π2= [ B ]3. (自测提高2)质量为20 g 的子弹,以400 m/s 的速率沿图 3-15射入一原来静止的质量为980 g 的摆球中,摆线长度不可伸缩.子弹射入后开始与摆球一起运动的速率为 (A) 2 m/s . (B) 4 m/s . (C) 7 m/s . (D) 8 m/s . 【提示】相对于摆线顶部所在点,系统的角动量守恒: 2sin 30()mv l M m lV ?=+;其中m 为子弹质量,M 为摆球质量,l 为摆 线长度。(或者:系统水平方向动量守恒。) [ D ]4.(自测提高4)用一根细线吊一重物,重物质量为5 kg ,重物下面再系一根同样的细线,细线只能经受70 N 的拉力。现在突然向下拉一下下面的线.设力最大值为50 N ,则 (A)下面的线先断. (B)上面的线先断. (C)两根线一起断. (D)两根线都不断. 【提示】①下面的细线能承受的拉力大于所施加的最大力,所以下面的细线不断。②因为是“突然向下拉一下”,作用时间极短,上面的细线并没有因此而进一步形变,因此,拉力不变,细线也不断。 二、填空题 1.(基础训练8)静水中停泊着两只质量皆为0m 的小船.第一只船在左边,其上站一 图3-11 图3-15

第三章 动量与角动量(答案)2011

一、选择题 [ C ]1.(基础训练3)如图3-12所示,圆锥摆的摆球质量为m ,速率为v ,圆半径为R ,当摆球在轨道上运动半周时,摆球所受重力冲量 的大小为 (A) 2m v . (B) 22)/()2 (v v R mg m π+ (C) v /Rmg π. (D) 0. 【提示】2 2T G T I mgdt mg ==?? , 而v R T π2= [ C ]2.(自测提高1)质量为m 的质点,以不变速率v 沿图3-16中正三角形ABC 的水平光滑轨道运动.质点越过A 角时,轨道作用于质点的冲量的大小为 (A) m v . (B) . (C) . (D) 2m v . 【提示】如图,21 21t t I fdt mv mv ==-? , 21I mv mv ∴=-= [ B ]3. (自测提高2)质量为20 g 的子弹,以400 m/s 的速率沿图3-15 射入一原来静止的质量为980 g 的摆球中,摆线长度不可伸缩.子弹射入后 开始与摆球一起运动的速率为 (A) 2 m/s . (B) 4 m/s . (C) 7 m/s . (D) 8 m/s . 【提示】相对于摆线顶部所在点,系统的角动量守恒: 2sin30()mv l M m lV ?=+;其中m 为子弹质量,M 为摆球质量,l 为摆线长度。 [ C ]4.(附录E 考研模拟题2)体重、身高相同的甲乙两人,分别用双手握住跨过无摩擦轻滑轮的绳子各一端.他们从同一高度由初速为零向上爬,经过一定时间,甲相对绳子的速率是乙相对绳子速率的两倍,则到达顶点的情况是 (A)甲先到达. (B)乙先到达. (C)同时到达. (D)谁先到达不能确定. 【提示】以地面为参考系,系统的合外力矩为零,所以系统的角动量守恒:0Rmv Rmv v v =-=甲地乙地甲地乙地,所以对对对对 ,因此,从地面观察,两人永远同一高度。 图3-15 图3-16

自旋和角动量

第六章 自旋和角动量 一、填空 1. ______实验是发现电子具有自旋的最早的实验之一.为了解释该实验,____和____提出了电子具有自旋角动量的说法. 2. 在),?(x 2σσ 的共同表象中,算符z y x σσσ、、对应的矩阵分别是_____、_____和_____. 二、概念与名词解释 1. 电子自旋 2. 泡利矩阵 3. 无耦合表象,耦合表象 4. 塞曼效应,正常塞曼效应和反常塞曼效应 三、计算 1. 求自旋角动量算符在(cos α, cos β, cos γ)方向的投影S n =S x cos α+S y cos β+S z cos γ的本征值和相应的本征矢. 在其两个本征态上,求S z 的取值概率及平均值. 2. 求下列状态中算符)S L J (J ,J z 2 +=的本征值: {} {}). ,()Y (S (4)),()Y (S ),()Y (S 231/ (3)),()Y (S ),()Y (S 231/ (2)) ,()Y (S (1)1- 1z 1/2- 41- 1z 1/2 10z 1/2- 311z 1/2- 10z 1/2211z 1/21?θχ=ψ?θχ+?θχ=ψ?θχ+?θχ=ψ?θχ=ψ 3. 对自旋态.)S ()S ( ,01)(S 2y 2x 21/2?????? ? ??=χ求 4. 一个由两个自旋为1/2的非全同粒子组成的体系. 已知粒子1处在S 1z =1/2的本征态,粒子2处在S 2x =1/2的本征态,取?=1,求体系

总自旋S 2的可能值及相应的概率,并求体系处于单态的概率. 5. 考虑三个自旋为1/2的非全同粒子组成的体系. 体系的哈密顿量是 , S )S S B(S S A H 32121 ?++?=A 、B 为实常数,试找出体系的守恒量,并确定体系的能级和简并度(取?=1为单位). 6. 设氢原子处于状态 ,)/2,((r)Y R 3-)/2,((r)Y R )r (10211121??? ? ???θ?θ=ψ 求轨道角动量z 分量 和自旋z 分量的平均值,进而求出总磁矩c /S e -c /2L -e μμ=μ 的z 分量的平均值. 7. 设总角动量算符为J ? ,记算符J 2与J z 的共同本征函数为|jm>,当j=1时: (1) 写出J 2、J x 的矩阵表示,并求出其共同本征矢|1m x >x ; (2) 若体系处于状态 ,2]/1-111[+=ψ求同时测J 2与J x 的取值概率; (3) 在|ψ>状态上,测量J z 得?时,体系处于什么状态上;在|ψ>状态上,计算J y 的平均值. 8. 在激发的氦原子中,若两个电子分别处于p 态和s 态,求出其总轨道角动量的可能取值. 9. 用柱坐标系,取磁场方向沿z 轴方向,矢势A φ=B ρ/2,A ρ=A z =0,求均匀磁场中带电粒子的本征能量. 10. 自旋为1/2的粒子,在均匀磁场中运动,磁场的绝对值不变,但各个分量随时间变化,满足B x =Bsin θcos ωt ,B y =Bsin θsin ωt ,B z =Bcos θ.设t=0时自旋在磁场方向上的分量等于1/2,求在时刻t 粒子跃迁到自旋在磁场方向上的分量等于-1/2的态中的概率. 11. 带电粒子在均匀磁场和三维谐振子势场U(r)=m e ω02r 2/2中运动,

2021年力矩与角动量的关系

在物理学里,作用力使物体绕着转动轴或支点转动的趋向,[1]称为力矩(torque)。转动力矩又称为转矩。力矩能够使物体改变其旋转运动。推挤或拖拉涉及到作用力,而扭转则涉及到力矩。 欧阳光明(2021.03.07) 根据国际单位制,力矩的单位是牛顿米。本物理量非能量,因此不能以焦耳(J)作单位; 力矩的表示符号是希腊字母,或。 力矩与三个物理量有关:施加的作用力、从转轴到施力点的位移矢量、两个矢量之间的夹角。力矩以矢量方程表示为 。 力矩的大小为 。 力矩的概念,起源于阿基米德对杠杆的研究。

力矩的定义:力矩等于作用于杠杆的作用力乘以支点到力的垂直距离。假设作用力施加于位置为的粒子。选择原点为参考点,力矩以方程定义为 。 力矩大小为 ; 其中,是两个矢量与之间的夹角。 力矩大小也可以表示为 ; 其中,是作用力对于的垂直分量。 任何与粒子的位置矢量平行的作用力不会产生力矩。 从叉积的性质,可以推论,力矩垂直于位置矢量和作用 力。力矩的方向与旋转轴平行,由右手定则决定。 使1牛顿米的力矩,作用1 全转,需要恰巧焦耳的能量: 。 其中,是能量,是移动的角度,单位是弧度。 力矩有大小方向是矢量,与动量等道理一样,只是一个力学名称。角动量在物理学中是与物体到原点的位移和动量相关的物理量,在经典力学中表示为到原点的位移和动量的叉积,通常写做。角动量是矢量。

其中,表示质点到原点的位移,表示角动量。表示动量。而又可写为: 其中表示杆状系统的转动惯量,ω是角速度矢量。 在不受非零合外力矩作用时,角动量是守恒的。需要注意的 是,由于成立的条件不同,角动量是否守恒与动量是否守恒 没有直接的联系。 角动量在量子力学中与角度是一对共轭物理量。 若物体(或系统)所受外力矩和为零,则物体(系统)的角动量守恒. 例如静电力或万有引力均是径向力. 因此不会产生力矩. 行星运动的相互作用力源自于万有引力.故行星运动满足角动量守恒. 所对应的就是开普勒行星运动定律中的第二定律. 需要特别说明的是:动量, 也就是说动量的方向和速度的方向一致. 角动量守恒定律是指系统所受合外力矩为零时系统的角动量保持不变。当方程式右边力矩为零时,可知角动量不随时间变化。 角动量守恒定律是自然界普遍存在的基本定律之一,角动量的守恒实质上对应着空间旋转不变性。例如,当考虑到太阳系中的行星受到太阳的万有引力这一有心力时,由于万有引力对太阳这个参考点力矩为零,所以他们以太阳为参考点的角动量守恒,这也说明了行

动量与角动量

动量、角动量 一.选择题: 1.动能为E k 的A物体与静止的B物体碰撞,设A物体的质量为B物体的二倍,m B A m 2=。若碰撞为完全非弹性的,则碰撞后两物体总动能为 (A)E k (B)k E 21 (C)k E 31 (D)k E 32 [ ] 2.质量为m 的小球在向心力作用下,在水平面内作半径为R、速率为v 的 匀速圆周运动,如图所示。小球自A点逆时针运动到B点的半周内,动量的增量应为: (A)2m v (B)-2m v (C)i mv 2 (D) i mv 2- [ ] 3.A、B两木块质量分别为m A 和m B ,且A B m m 2=,两者用一轻弹簧连 接后静止于光滑水平面上,如图所示。若用外力将两木块压近使弹簧被压缩,然后将外力撤去,则此后两木块动能之比E kA /E kB 为 (A)21 (B)2 (C)2 (D)22 [ ] 4.质量分别为m 和m 4的两个质点分别以动能E 和4E 沿一直线相向运动, 它们的总动量大小为 (A)2mE 2 (B) 3mE 2 (C) 5mE 2 (D) (2mE 2)12- [ ] 5.力i t F 12=(SI)作用在质量kg m 2=的物体上,使物体由原点从静止开始运动,则它在3秒末的动量应为: (A )s m kg i /54?- (B) s m kg i /54? (C) s m kg i /27?- (D) s m kg i /27? [ ] B v

6.粒子B的质量是粒子A的质量的4倍。开始时粒子A的速度为(34+), B 粒子的速度为(2j i 7-),由于两者的相互作用,粒子A 的速度变为(7j i 4-),此时粒子B 的速度等于 (A )j i 5- (B ) j i 72- (C )0 (D )j i 35- [ ] 7.一质点作匀速率圆周运动时, (A ) 它的动量不变,对圆心的角动量也不变。 (B ) 它的动量不变,对圆心的角动量不断改变。 (C ) 它的动量不断改变,对圆心的角动量不变。 (D ) 它的动量不断改变,对圆心的角动量也不断改变。 [ ] 8.人造地球卫星绕地球作椭圆轨道运动,卫星轨道近地点和远地点分别为A 和B 。用L 和E k 分别表示卫星对地心的角动量及其动能的瞬时值,则应有 (A)L B A L >,E kB kA E > (B )L kB kA B A E E L <=, (C )L kA B A E L ,=>E kB (D )L kB kA B A E E L <<, [ ] 9.已知地球的质量为m ,太阳的质量为M ,地心与日心的距离为R ,引力常 数为G ,则地球绕太阳作圆周运动的轨道角动量为 (A )m GMR (B ) R GMm (C )Mm R G (D )R GMm 2 [ ] 10.体重相同的甲乙两人,分别用双手握住跨过无摩擦轻滑轮的绳子两端。 当他们向上爬时,在某同一高度,相对于绳子,甲的速率是乙的两倍,则到达顶点的情况是 (A )甲先到达。 (B )乙先到达。 (C )同时到达。 (D )谁先到达不能确定。 [ ] 11.一力学系统由两个质点组成,它们之间只有引力作用。若两质点所受外 力的矢量和为零,则此系统 (A)动量、机械能以及对一轴的角动量都守恒。 (B)动量、机械能守恒,但角动量是否守恒不能断定。 (C)动量守恒,但机械能和角动量守恒与否不能断定。

自旋和角动量-Oriyao

第六章 自旋和角动量内容简介:在本章中,我们将先从实验上引入自旋,分析自旋角动量的性质,然后讨论角动量的耦合,并进一步讨论光谱线在磁场中的分裂和精细结构。最后介绍了自旋的单态和三重态。 § 6.1 电子自旋 § 6.2 电子的自旋算符和自旋函数 § 6.3 角动量的耦合 § 6.4 电子的总动量矩 § 6.5 光谱线的精细结构 § 6.6 塞曼效应 § 6.7 自旋的单态和三重态 首先,我们从实验上引入自旋,然后分析自旋角动量的性质。 施特恩-盖拉赫实验是发现电子具有自旋的最早实验之一。如右图所示,由 源射出的处于基K 态的氢原子束经过狭缝和不均匀磁场,照射到底片PP 上。结果发现射线束方向发生了偏转,分裂成两条分立的线。这说明氢原子具有磁矩,在非均匀磁场的作用下受到力的作用而发生里偏转。由于这是处于s 态的氢原子,轨道角动量为零,s 态氢原子的磁矩不可能由轨道角动量产生。这是一种新的磁矩。另外,由于实验上只有两条谱线,因而这种磁矩在磁场中的取向,是空间量子化的,而且只取两个值。假定原子具有的磁矩为M ,则它在沿z 方向的外磁场H 中的势能为 cos U M H MH θ=-=- (6.1.1) θ为外磁场与原子磁矩之间的夹角。则原子z 方向所受到的力为 cos z U H F M z z θ??=- =?? (6.1.2) 实验证明,这时分裂出来两条谱线分别对应于cos 1θ=+ 和cos 1θ=-两个值。 为了解释施特恩-盖拉赫实验,乌伦贝克和歌德斯密脱提出了电子具有自旋角动量,他们认为: ① 每个电子都具有自旋角动量S ,S 在空间任何方向上的投影只能取两个值。若将空间 的任意方向取为z 方向,则 2z S =± (6.1.3) ② 每个电子均具有自旋磁矩s M ,它与自旋角动量之间的关系为 s s e e M S M S m mc =-=- (SI ) 或 (C G S)(6.1.4) s M 在空间任意方向上的投影只能取两个值:

第三章《动量和角动量》习题

第三章《动量和角动量》习题 动量守恒和角动量守恒是物理学中各种运动所遵循的普遍规律,本章的主要内容有质点和质点系的动量定理、角动量定理,及动量守恒定律和角动量守恒定律。 基本要求: 掌握动量定理和动量守恒定律,并能分析、解决简单的力学问题。 掌握运用守恒定律分析问题的思想和方法,能分析简单系统在平面内运动的力学问题。 理解质心的概念和质心运动定律。 作业题: 1 质量为m 的铁锤竖直从高度h 处自由下落,打在桩上而静止,设打击时间为t ?,则铁锤所受的平均冲力大小为( ) (A )mg (B )t gh m ?2 (C ) mg t gh m +?2 (D )mg t gh m -?2 2 一个质量为m 的物体以初速为 0v 、抛射角为o 30=θ从地面斜上抛出。若不计空气阻力,当物体落地时, 其动量增量的大小和方向为( ) (A )增量为零,动量保持不变 (B )增量大小等于 0mv ,方向竖直向上 (C )增量大小等于0mv ,方向竖直向下 (D )增量大小等于03mv ,方向竖直向下 3 停在空中的气球的质量为m ,另有一质量m 的人站在一竖直挂在气球的绳梯上,若不计绳梯的质量,人沿梯向上爬高1m ,则气球将( ) (A )向上移动1m (B )向下移动1m (C )向上移动0.5m (D )向下移动0.5m 4 有两个同样的木块,从同高度自由下落,在下落中,其中一木块被水平飞来的子弹击中,并使子弹陷于其中,子弹的质量不能忽略,不计空气阻力,则( ) (A )两木块同时到达地面 (B )被击木块先到达地面 (C )被击木块后到达地面 (D )条件不足,无法确定 5 用锤压钉不易将钉压入木块内,用锤击钉则很容易将钉击入木块,这是因为( ) (A )前者遇到的阻力大,后者遇到的阻力小 (B )前者动量守恒,后者动量不守恒 (C )后者动量变化大,给钉的作用力就大 (D )后者动量变化率大,给钉的作 用冲力就大 6 质量为20×10-3kg 的子弹以4001 s m -?的速率沿图示方向击入一原来静止的质量为980×10-3 kg 的摆球中,摆线长为1. 0m ,不可伸缩,则子弹击入后摆球的速度大小为( ) (A )41s m -? (B )81s m -? (C )21s m -? (D )8π1s m -?

力矩与角动量的关系

而扭转则涉及到力矩。 根据国际单位制,力矩的单位是牛顿米。本物理量非能量,因此不能以焦耳(J)作单位; 力矩的表示符号是希腊字母,或。 力矩与三个物理量有关:施加的作用力、从转轴到施力点的位移矢量、两个矢量之间的夹角。力矩以矢量方程表示为 。 力矩的大小为 。 力矩的概念,起源于阿基米德对杠杆的研究。 力矩的定义:力矩等于作用于杠杆的作用力乘以支点到力的垂直距离。假设作用力施加于位置为的粒子。选择原点为参考点,力矩以方程定义为 。 力矩大小为 ; 其中,是两个矢量与之间的夹角。 力矩大小也可以表示为 ; 其中,是作用力对于的垂直分量。 任何与粒子的位置矢量平行的作用力不会产生力矩。 从叉积的性质,可以推论,力矩垂直于位置矢量和作用力。力矩的 方向与旋转轴平行,由右手定则决定。 使1牛顿米的力矩,作用1 全转,需要恰巧焦耳的能量: 。 其中,是能量,是移动的角度,单位是弧度。 力矩有大小方向是矢量,与动量等道理一样,只是一个力学名称。

角动量在物理学中是与物体到原点的位移和动量相关的物理量,在经典力学中表示为到原点的位移和动量的叉积,通常写做。角动量是矢量。 其中,表示质点到原点的位移,表示角动量。表示动量。而又可写为: 其中表示杆状系统的转动惯量,ω是角速度矢量。 在不受非零合外力矩作用时,角动量是守恒的。需要注意的是,由于成立的 条件不同,角动量是否守恒与动量是否守恒没有直接的联系。 角动量在量子力学中与角度是一对共轭物理量。 需要特别说明的是:动量, 也就是说动量的方向和速度的方向一致. 角动量守恒定律是指系统所受合外力矩为零时系统的角动量保持不 变。当方程式右边力矩为零时,可知角动量不随时间变化。 需要搞懂有心力也就是向心力的作用不能产生力矩。

动量与角动量习题解答(终审稿)

动量与角动量习题解答公司内部档案编码:[OPPTR-OPPT28-OPPTL98-

第三章 动量与动量守恒定律习题 一 选择题 1. 两大小和质量均相同的小球,一为弹性球,另一为非弹性球,它们从同一高度落下与地面碰撞时,则有: ( ) A. 地面给予两球的冲量相同; B. 地面给予弹性球的冲量较大; C. 地面给予非弹性球的冲量较大; A. 无法确定反冲量谁大谁小。 解:答案是B 。 简要提示:)(12v v -=m I 2. 质量为m 的铁锤竖直向下打在桩上而静止,设打击时间为?t ,打击前锤的速率为v ,则打击时铁锤受到的合外力大小应为:( ) A . mg t m +?v B .mg C . mg t m -?v D .t m ?v 解:答案是D 。

简要提示:v m t F =?? 3. 质量为20 g 的子弹沿x 轴正向以 500 m s –1 的速率射 入一木块后,与木块一起仍沿x 轴正向以50 m s –1 的速率前 进,在此过程中木块所受冲量的大小为:( ) A . 9 N·s B .–9 N·s C. 10 N·s D.–10 N·s 解:答案是A 。 简要提示:子弹和木块组成的系统的动量守恒,所以木块受到的冲量与子弹受到的冲量大小相等,方向相反。根据动量定理,子弹受到的冲量为: s N 9)(12?-=-=v v m I 所以木块受到的冲量为9 N·s 。 4. 将一长木板安上轮子放在光滑平面上,两质量不同的人 选择题4

从板的两端以相对于板相同的速率相向行走,则板的运动状况是: ( ) A. 静止不动; B. 朝质量大的人的一端移动; C. 朝质量小的人的一端移动; D. 无法确定。 解:答案是B 。 简要提示:取m 1的运动方向为正方向,板的运动速度为v ,由系统的动量守恒: 0021='+'+'+v v)-v ()v (v m m m ,得:v v 0 211 2m m m m m ++-= ' 如果m 2> m 1,则v ′> 0; 如果m 1> m 2,则v ′< 0。 5. 体重、身高相同的甲乙两人,分别用双手握住跨过无摩擦轻滑轮的绳子各一端.他们从同一高度由初速为零向上爬,经过一定时间,甲相对绳子的速率是乙相对绳子速率的两倍,则到达顶点的情况是 ( ) A. 甲先到达; B. 乙先到达; C. 同时到达; D. 谁先到达不能确定.

大学物理动量与角动量练习题与答案

第三章 动量与角动量 一、选择题 [ A ] 1.(基础训练2)一质量为m 0的斜面原来静止于水平光滑平面上,将一质量为m 的木块轻轻放于斜面上,如图3-11.如果此后木块能静止于斜面上,则斜面将 (A) 保持静止. (B) 向右加速运动. (C) 向右匀速运动. (D) 向左加速运动. 提示:假设斜面以V 向右运动。由水平方向动量守恒得 0(cos )0m V m V v θ+-= ,而0v =,得0V = [C ]2.(基础训练3)如图3-12所示,圆锥摆的摆球质量为m ,速率为v ,圆半径为R ,当摆球在轨道上运动半周时,摆球所受重力冲量的大小为 (A) 2mv . (B) 22)/()2(v v R mg m π+ (C) v /Rmg π. (D) 0. 提示:2T mg I G ?=? , v R T π2= [ B ]3. (自测提高2)质量为20 g 的子弹,以400 m/s 的速率沿图3-15入一原来静止的质量为980 g 的摆球中,摆线长度不可伸缩.子弹射入后开 始与摆球一起运动的速率为 (A) 2 m/s . (B) 4 m/s . (C) 7 m/s . (D) 8 m/s . 提示:对摆线顶部所在点角动量守恒。 2sin 30()mv l M m lV ?=+;其中m 为子弹质量,M 为摆球质量,l 为 摆线长度。 [D ]4.(自测提高4)用一根细线吊一重物,重物质量为5 kg ,重物下面再系一根同样的细线,细线只能经受70 N 的拉力.现在突然向下拉一下下面的线.设力最大值为50 N ,则 (A)下面的线先断. (B)上面的线先断. (C)两根线一起断. (D)两根线都不断. 提示:下面的细线能承受的拉力大于所施加的最大力,所以下面的细线不断。 对重物用动量定理: 0' ' ' =--? ?? ++dt T mgdt dt T t t t t t 下上 ' t 为下拉力作用时间,由于' t t >>,因此,上面的细线也不断。 二、填空题 5.(基础训练8)静水中停泊着两只质量皆为0m 的小船.第一只船在左边,其上站一质量为m 的人,该人以水平向右速度v ? 从第一只船上跳到其右边的第二只船上,然后又以同 样的速率v 水平向左地跳回到第一只船上.此后 (1) 第一只船运动的速度为v ? 1= 02m v m m - +v 。 (2) 第二只船运动的速度为v ? 2=0 2m v m v 。(水的阻力不计,所有速度都 m m 0 图3-11 ?30v ?2 图3-15 θ m v ? R

第六章自旋与全同粒子

第六章:自旋与全同粒子 [1]在x σ ?表象中,求x σ?的本征态 (解) 设泡利算符2 σ,x σ,的共同本征函数组是: ()z s x 2 1 和()z s x 2 1 - (1) 或者简单地记作α和β,因为这两个波函数并不是x σ ?的本征函数,但它们构成一个完整系,所以任何自旋态都能用这两个本征函数的线性式表示(叠加原理),x σ ?的本征函数可表示: β αχ21c c += (2) 21,c c 待定常数,又设x σ ?的本征值λ,则x σ?的本征方程式是: λχχσ =x ? (3) 将(2)代入(3): ()()βαλβασ 2121?c c c c x +=+ (4) 根据本章问题6(P .264),x σ ?对z σ?表象基矢的运算法则是: βασ =x ? αβσ=x ? 此外又假设x σ?的本征矢(2)是归一花的,将(5)代入(4): βλαλαβ2111c c c c +=+ 比较βα,的系数(这二者线性不相关),再加的归一化条件,有: ) 6()6() 6(12221 1 221c b a c c c c c c ------------------------------------??? ??=+==λλ 前二式得12 =λ,即1=λ,或1-=λ 当时1=λ,代入(6a )得21c c =,再代入(6c),得: δi e c 2 11= δi e c 2 12=

δ 是任意的相位因子。 当时1-=λ,代入(6a )得 21c c -= 代入(6c),得: δi e c 2 11= δi e c 2 12- = 最后得x σ ?的本征函数: )(21βαδ+= i e x 对应本征值1 )(2 2βαδ-= i e x 对应本征值-1 以上是利用寻常的波函数表示法,但在2 ??σσ x 共同表象中,采用z s 作自变量时,既是坐标表象,同时又是角动量表象。可用矩阵表示算符和本征矢。 ??????=01α ?? ? ???=10β ??????=21c c χ (7) x σ ?的矩阵已证明是 ?? ? ???=0110?x σ 因此x σ ?的矩阵式本征方程式是: ?? ????=?????????? ??21211010c c c c λ (8) 其余步骤与坐标表象的方法相同,x σ ?本征矢的矩阵形式是: ??????=1121δi e x ?? ? ???-=1122δi e x [2]在z σ表象中,求n ?σ的本征态,)cos ,sin sin ,cos (sin θ?θ?θn 是) ,(?θ方向的单位矢。 (解) 方法类似前题,设n ?σ算符的本征矢是: βα21c c x += (1)

力矩和角动量定理

定义1 向量的向量积 设a和b为两个向量,a与b之间的夹角为θ(0 ≤ θ ≤ π),则存在向量c,满足 (1)向量c的模|c| = |a||b|sinθ; (2)向量c与向量a和b分别垂直,c的方向与a和b的方向按照由a转向b的右手螺旋法则确定(图1.1)。 这样规定的向量c定义为向量a和b的向量积(也称叉积或外积),记为 c = a × b 注意,对于两个向量a和b,与a和b的数量积a ? b不同,a和b的向量积a × b也是一个向量,如果向量a和b不平行,则a × b与向量a和b构成的平面垂直,即a × b与a和b都垂直。 向量a和b的向量积a × b满足以下运算性质: (1)反交换律:a × b = ? b × a;图1.1 向量的向量积 (2)分配律:(a + b) × c = a × c + b × c; (3)数乘结合律:(λa) × b = a ×(λb) = λ(a × b)(λ为任意实数)。 根据向量积的定义和运算性质,容易得到(这里0表示零向量): (1)a × a = 0; (2)设a和b为两个非零向量,则有a × b = 0 ? a∥b。 设i,j,k为空间直角坐标系中的基向量(单位向量),则有 (1)i ? i = j ? j = k ? k = 1,i ? j = j ? k = k ? i = 0; (2)i × i = j × j = k × k = 0; (3)i × j = k,j × k = i,k × i = j,图1.2 基向量之间的关系 j × i = ? k,k × j = ? i,i × k = ? j。 向量积可以根据运算性质计算,设向量a和b在空间直角坐标系中的形式分别为a = axi + ayj + azk = (ax,ay,az),b = bxi + byj + bzk = (bx,by,bz),则(运算过程略) a × b = (axi + ayj + azk) × (bxi + byj + bzk) = (aybz ? azby)i + (azbx ? axbz)j + (axby ? aybx)k = (aybz ? azby,azbx ? axbz,axby ? aybx) 向量积也可以用三阶行列式展开成二阶行列式进行形式上的计算:a × b ==i ?j +k

动量和角动量

0一叶一世界 第四章 动量和角动量 §4.1 动量守恒定律 一、冲量和动量 1.冲量 定义:力的时间积累。 dt F I d =或? =21 t t dt F I 2.动量 定义:v m P = 单位:kg.m/s 千克.米/秒 二、动量定律 1.质点动量定理 内容:质点所受的合外力的冲量等于质点动量的改变量。 冲量的方向与动量改变量的方向相同。 在直角坐标系下的表示 平均冲力:1 22 1 t t dt F F t t -= ? 1 212 t t P P --= 2.质点系动量定理 系统所受合外力的冲量等于系统总动量的改变量。 三、动量守恒定律 条件:若系统所受的合外力0=合F ,则: 结论:= ∑i i i v m 恒量

1一叶一世界 四、碰撞 1、恢复系数 10 201 2v v v v e --= 2、碰撞的分类 完全弹性碰撞 0=e 机械能不损失 完全非弹性碰撞 1=e 机械能损失 完全弹性碰撞 10<

第三章--动量和角动量--作业答案

第三章 动量和角动量 一. 选择题: [ C ]1、[基础训练3] 如图3-12所示,圆锥摆的摆球质量为m ,速率为v ,圆半径为R ,当摆球在轨道上运动半周时,摆球所受重力冲量的大小为 (A) 2mv . (B) 2 2)/()2(v v R mg m π+ (C) v /Rmg π. (D) 0. 【提示】重力为恒力,故: I=ν πνπR mg R mg T mg dt T ? =?=?=??222mg 20 [ C ]2、[基础训练4] 机枪每分钟可射出质量为20 g 的子弹900颗,子弹射出的速率为800 m/s ,则射击时的平均反冲力大小为 (A) 0.267 N . (B) 16 N . (C)240 N . (D) 14400 N . 【提示】 N s s P F 240600/m 800kg 02.0900t =-??=??= ) ( [ B ]3、[自测提高2] 质量为20 g 的子弹,以400 m/s 的速率沿图3-17射入一原来静止的质量为980 g 的摆球中,摆线长度不可伸缩.子弹射入后开始与摆球一起运动的速率为 (A) 2 m/s . (B) 4 m/s . (C) 7 m/s . (D) 8 m/s . 【提示】对摆线顶部所在点角动量守恒。 2sin 30()mv l M m lV ?=+;其中m 为子弹质量,M 为摆球质量,l 为 摆线长度。 [ C ]4、(自测提高3)体重、身高相同的甲乙两人,分别用双手握住跨过无摩擦轻滑轮的绳子各一端.他们从同一高度由初速为零向上爬,经过一定时间,甲相对绳子的速率是乙相对绳子速率的两倍,则到达顶点的情况是 (A)甲先到达. (B)乙先到达. ?30v ? 2 图3-17 m v ? R

第三章 动量和角动量 作业答案

一. 选择题: [ C ]1、[基础训练3] 如图3-12所示,圆锥摆的摆球质量为 m ,速率为v ,圆半径为R ,当摆球在轨道上运动半周时,摆球所受重力冲量的大小为 (A) 2m v . (B) 22)/()2(v v R mg m π+ (C) v /Rmg π. (D) 0. 【提示】重力为恒力,故: I=ν πνπR mg R mg T mg dt T ?=?=? =?? 222mg 20 [ C ]2、[基础训练4] 机枪每分钟可射出质量为20 g 的子弹900颗,子弹射出的速率 为800 m/s ,则射击时的平均反冲力大小为 (A) 0.267 N . (B) 16 N . (C)240 N . (D) 14400 N . 【提示】 N s s P F 240600/m 800kg 02.0900t =-??=??= ) ( [ B ]3、[自测提高2] 质量为20 g 的子弹,以400 m/s 的速率沿图3-17射入一原来静 止的质量为980 g 的摆球中,摆线长度不可伸缩.子弹射入后开始与摆球一起运动的速率为 (A) 2 m/s . (B) 4 m/s . (C) 7 m/s . (D) 8 m/s . 【提示】对摆线顶部所在点角动量守恒。 2sin30()mv l M m lV ?=+;其中m 为子弹质量,M 为摆球质量,l 为 摆线长度。 [ C ]4、(自测提高3)体重、身高相同的甲乙两人,分别用双手握住跨过无摩擦轻滑轮的绳子各一端.他们从同一高度由初速为零向上爬,经过一定时间,甲相对绳子的速率是乙相对绳子速率的两倍,则到达顶点的情况是 (A)甲先到达. (B)乙先到达. (C)同时到达. (D)谁先到达不能确定. 【提示】取甲乙两人作为系统。该系统对滑轮中心点角动量守恒,故甲乙两人相对地面速度大小在任意时刻均相等。从而两人同时到达顶点。 图3-17

专题六:力矩和角动量

专题六:力矩和角动量 例1.如图所示,一个质量均匀分布的直杆搁置在质量均匀的圆环上,杆与圆环相切,系统静止在水平地面上,杆与地面接触点为A ,与环面接触点为B 。已知两个物体的质量线密度均为ρ,直杆与地面的夹角为θ,圆环半径为R ,所有接触点的摩擦力足够大。求: (1)地给圆环的摩擦力; (2)求A 、B 两点静摩擦因数的取值范围。 例2.有一轻质木板AB 长为L ,A 端用铰链固定在竖直墙上,另一端用水平轻绳CB 拉住。板上依次放着A 、B 、C 三个圆柱体,半径均为r ,重均为G ,木板与墙的夹角为θ,如图所示,不计一切摩擦,求BC 绳上的张力。 例3.有一质量为m =50kg 的直杆,竖立在水平地面上,杆与地面间静摩擦因数μ=0.3,杆的上端由固定在地面上的绳索拉住,绳与杆的夹角θ=300,如图所示。 (1)若以水平力F 作用在杆上,作用点到地面的距离h 1=2L /5(L 为杆长),要使杆不滑倒,力F 最大不能超过多少? (2)若将作用点移到h 2=4L /5处时,情况又如何? 例4.如图所示,矩形板N 上有两个光滑的圆柱,还有三个小孔A 、B 、C ,通 过小孔可以用销钉把此板固定在光滑的水平面M 上。一柔性带按图示方式绕过 两圆柱后,两端被施以拉力T'=T =600 N ,且T'∥T ,相距40 cm ;已知AB = 30 cm ,AC =145 cm ,BC =150 cm 。为了保持物块静止, (1)若将两个销钉分别插入A 、B 中,这两个孔将受受怎样的力? (2)将两个销钉插入哪两个孔才最省力?此时所插的销钉受力多大? 例5. 如图所示,质量为 m 的小球 B 放在光滑的水平A B θ

动量角动量

一、选择题 [C]1.(基础训练3)如图3-12所示,圆锥摆的摆球质量为m,速率为 v,圆半径为R,当摆球在轨道上运动半周时,摆球所受重力冲量的大 小为 (A) 2 m v.(B) 2 2) / ( ) 2( v v R mg mπ + (C) v/ Rmg π.(D) 0. [C v沿图3-16中正三角形 ABC的水平光滑轨道运动.质点越过A角时,轨道作用于质点的冲量的大小 为 (B)2m v. m dt=) mv [ B ]3. (自测提高2)质量为20 g的子弹,以400 m/s的速率沿图3-15射入 一原来静止的质量为980 g的摆球中,摆线长度不可伸缩.子弹射入后开始 与摆球一起运动的速率为 (A) 2 m/s.(B) 4 m/s.(C) 7 m/s .(D) 8 m/s. 提示:对摆线顶部所在点角动量守恒。 2 sin30() mv l M m lV ?=+;其中m为子弹质量,M为摆球质量,l为 摆线长度。 [C]4.(附录E考研模拟题2)体重、身高相同的甲乙两人,分别用双手握住跨过无摩擦轻滑轮的绳子各一端.他们从同一高度由初速为零向上爬,经过一定时间,甲相对绳子的速率是乙相对绳子速率的两倍,则到达顶点的情况是 (A)甲先到达.(B)乙先到达. (C)同时到达.(D)谁先到达不能确定. 提示:取轻滑轮中心为坐标原点。 1122 M r m g r m g =?+?=, 1122 =0 r mv r mv ?+?=常矢量(开始时) 二、填空题 5.(基础训练7)设作用在质量为1 kg的物体上的力F=6t+3(SI).如果物体在这一力的作用下,由静止开始沿直线运动,在0到2.0 s的时间间隔内,这个力作用在物体上的冲量大小I=18N s?. 图3-15

相关主题
文本预览
相关文档 最新文档