当前位置:文档之家› 基于MATLAB的眼图仿真《通信原理》

基于MATLAB的眼图仿真《通信原理》

基于MATLAB的眼图仿真《通信原理》
基于MATLAB的眼图仿真《通信原理》

基于MATLAB的眼图仿真

——及其与通信实验箱之结果的比较

电子信息科学与技术03-2班贺长兴

指导老师赵睿

摘要

通信实验往往可以从硬件和软件两方面着手设计,并加以横向比较,从而达到更深刻地理解和领会通信理论原理的目的。本设计选取眼图为研究对象。可靠性是通信系统的重要指标之一,而眼图是定性衡量传输系统可靠性能——码间串扰大小及受信道噪声的影响等——的方法,简单直观;除了用通信实验箱实现眼图的观察外,软件仿真具有前者所不具备的优点,本设计以MATLAB为主要工具实现了眼图的仿真模拟。

硬件方面使用北京掌宇金仪科教仪器设备有限公司生产的TIMS-301 F系列实验系统,只需较少的模块就能完成眼图的实现,缺点是灵活性不够;MATLAB由初始的矩阵实验室发展成一款具有广泛用途的科学实验软件,在通信系统仿真方面是有效而便捷的。MATLAB本身内置功能强大的函数库和讲解详细的帮助文档,前者使得眼图的仿真更加高效。

眼图仿真考虑了以下几方面因素的影响:调制数字信号的方式、传输系统(滤波)、信道噪声及其大小等等;给出了MATLAB语言编程和Simulink动态建模两种眼图的实现方式,通过仿真有效的验证了眼图判断噪声大小、系统性能的有效性,并尝试了通过眼图调整通信系统的抗干扰能力。

关键字:通信系统,眼图,仿真,MATLAB

Simulation of Eye Diagram Based on Matlab

——& Comparison with the rusult of TIMS

Electronics Information Science &Technology 03-2 He Chang-xing

Supervisor Zhao Rui

Abstract

Experiment in communication system can often be coducted on hardware as well as by sofeware, and by d rawing comparison with each other,the principles of the theories in communication system could be understood more deeply and properly . The Eye Diagram was chosed to be studied in this design. The reliability is one of the most important indexes in evaluating the performance of a communication system. Eye Diagram is such a tool to observe the performance of communication systems. By using an Eye Diagram, the magnitude of the noise and the Intersymbole Interference (ISI) could be diagnosed by and large.

Two methods were employed to achieve the Eye Diagram. One was the TIMS-301F teaching & experimental system, which is simple but inflexible; the other was using the language of MA TLAB which contains programming by matlab and establishing drammic models of communication system in Simulink. Comparison was drawn between the two.

Many factors were considered in the simulation of Eye Diagram, such as the way which a digital signal was modulated before transmiting, the transmit system, noise of the channel, the filter and so on. Some phenomenons can be observed and some principles be tested, beside, it also tries to improve/adjust the communication system with the help of the Eye Diagram.

Key Words: Communication System, Eye Diagram, Simulation, MATLAB

目录

1 绪论 (1)

1.1引言 (1)

1.2通信系统及其性能指标 (2)

1.3码间干扰及无失真传输 (4)

1.4眼图及其模型 (5)

2 眼图的硬件实现 (7)

2.1TIMS系统简介 (7)

2.2眼图的观察及结果 (8)

3 眼图的MATLAB仿真 (12)

3.1MA TLAB简介 (12)

3.2眼图的仿真及结果 (14)

4 两种结果的比较及结论 (32)

5 附录 (33)

致谢 (35)

参考文献 (36)

1 绪论

1.1引言

21世纪将是一个信息高速膨胀的信息社会,社会生产力水平的大力发展要求社会成员间的合作更加紧密和高效,通信系统的设计与优化因此显得越来越重要;通常,通信系统的性能指标涉及有效性、可靠性、适应性、标准性等等,但从研究消息传输角度考虑,通信的可靠性和有效性是主要的矛盾所在,可靠性主要指消息的“质量“问题 ;对于数字通信系统,具体来说,就是传输速率和差错率,差错率就是从可靠性的角度具体化的一个概念。

通信系统的优劣需要一个性能评价机制,眼图就是一个简单有效的定性衡量方法,通过眼图还可以对接收滤波器的特性加以调整,以减小码间串扰和改善系统的传输性能。由于眼图实现所需的设备较少(硬件只需一台示波器),观察容易,因此广泛应用于各种通信系统尤其是数字通信系统的性能的评定。从眼图上还可以大致估计系统的防噪声能力或信道受到噪声污染的情况。

当然,眼图并不是唯一评价方式,甚至也不是最全的评价方式,信号星座图从另一些方面反映了系统[2]。在通信系统仿真中,眼图和信号星座图一起成为模型仿真后处理的一部分[3]。

通信原理往往比较抽象,理论如果能在实验中得到验证,必然可以加深对理论的理解,而本实验从硬件和软件两方面对照,实现眼图的观察,相信会更好的了解眼图,同时综合软硬件的优势,克服各自的缺陷,不失为一种良好的学习方式。

1.2 通信系统及其性能指标

传递信息所需的一切技术设备的总和称为通信系统,其一般模型如下图所示[4]:

图 1.1 通信系统的一般模型

Fig. 1.1 MODEL Of COMMUNICA TION SYSTEM

通信系统按信道中所传输的信号的类型(模拟信号还是数字信号)又可分为模拟通信系统和数字通信系统,由于计算机的迅速发展,加之数字通信抗干扰能力强、易于实现集成化、便于多路复用、可将传输与交换结合起来、便于应用计算机技术等等优点,数字通信已逐渐超越模拟通信而占据主体地位。数字通信系统的模型是在通信系统的一般模型中将模拟信源经过抽样、量化,及便于传输而进行的编码等等步骤实现信号的离散化,接收设备相应的需要解码、滤波等等处理;如果在发送端进行了调制,还需在收信端解调信号。

由图2.1所示一般模型可知,干扰主要在传输媒介(信道)处引入,故有必要考察一下信道的模型。信道可分为有线信道和无线信道;明线、对称电缆、同轴电缆、光纤等属于有线信道,地波传播、短波电离层反射、人造卫星及各种散射信道等都是无线信道。通常我们将模型中的干扰视为加性的(一般以()

n t表示),而不是乘性的;至于乘性干扰,一般认为由发送和接收设备引入,往往会带来信号非线性失真。若以()

H w表示发送和接收设备共同构成的系统的传递函数,由信号与系统

的知识,信道的模型可概括如下:

图 1.2 信道模型

Fig. 1.2 MODEL Of COMMUNICA TION CHANNEL

对于在计算机上仿真来说,不能像硬件实验一样真实的模拟各种物理信道,但可以将各种信道产生的效果杂合成()n t ,用MA TLAB 中的相关函数来仿真,用来统指与所传信号相异的信号,包括外部噪声(自然噪声、认为噪声)和信道内部各种电子器件的内部噪声,它们总的以随机信号的形式出现。通常认为这样的噪声为高斯白噪声,即其分布服从正态分布,频谱包含任意频率分量,为常数。信噪比用来衡量噪声平均功率相对信号平均功率的大小。以上模型将加性干扰归入()n t 中,而乘性干扰在()H w 中得到反映。

有效性和可靠性是衡量通信系统的两个主要性能指标。有效性指系统传输消息的效率,总是希望以最合理、最经济的方法来传输最大数量的消息;可靠性指系统传输消息可靠程度,即质量问题,决定于系统抗干扰的性能,即通信系统的抗干扰性。有效性和可靠性是相互矛盾的,只能依据实际要求求得相对的统一,比如,在满足一定可靠性指标下,尽量提高系统的有效性,使消息传输更快,但是不能无限(相对而言)地提高有效性而不降低系统可靠性能。

对于模拟通信来说,有效性用有效传输带宽来衡量,衡量可靠性用输出信噪比;而对于数字通信,其有效性体现在一个信道通过的信息速率上,可以有以下三种表示方法:

(1)码元传输速率RB :系统每秒钟传送的码元(脉冲)数目,

(2)信息传输速率Rb :系统每秒钟传送的二进制码元数目,

(3)消息传输速率Rm :单位时间所传输的消息数目。

可靠性常用差错率来表示:包括误码率R P 和误信率(误比特率)b P ,分别为传输错误的码元(比特)

数占传输码元(比特)总数的概率。

1.3 码间干扰及无失真传输

由信号与系统的知识知道,(波形)无失真传输的理想情况是传输函数()H w 满足两大条件:

1. 幅度响应()H w 通带内为常数,带外为零;

2. 通带内相位响应()w φ为频率的线性函数,即群延迟为常数

根据频谱分析原理:频带受限,则时域无限;因此满足上述两大无失真条件的信号其波形在时域上是无限延伸的,这就势必会引起各码元之间的相互窜扰。但在数字传输中情况有点不一样;由于码元波形是按一定间隔发送的,其信息携带在幅度上,接收端再生判决如能准确恢复出幅度信息,则原始信码就能无误地得到传送,故数字传输中只需特定时刻波形幅值无失真传送,而不必整个波形不变。奈奎斯特(Nyquist )第一、第二和第三准则分别研究了抽样值无失真、转换点无失真和脉冲波形面积保持不变三种情形,更加详细的信息可以参见文献[14-16]。

其中抽样值无失真准则要求系统的总传输特性()H w 满足下式:

2()i i H w T T π+=∑

w T π

式中T 表示码元传输周期;上式表明:系统的传输函数()H

w 移位2i

T π(i 为整数)后再叠加,其值在w T π

≤内表现为常数(不必严格为T ),则系统满足无码间干扰传输要求。显然理想低通滤波

器满足此要求,但在物理实际中这样的滤波器是不能实现的,因为它的频谱具有无限陡峭的过渡带以及全零的区域,这与佩利—维纳准则相悖。

实际中广泛应用的是以T π

为中心,具有奇对称升余弦过渡带的一类无串扰波形,通常称之为升

余弦滚降信号,其时域表达式为:

222sin cos()

()14t T t T h t t T t T ππαπα=?-

在时域,()h t 除抽样点t=0幅值不为零外,其余所有样点上均为零,不会带来样点幅值失真。实际中抽样的时刻不可能完全没有误差,抽样脉宽也不严格为零,因此,为了减小抽样定时脉冲误差所带来的影响,滚降系数(roll-off factor)α不能太小,一般不小于0.2。

1.4 眼图及其模型

眼图是指利用实验的方法估计和改善(通过调整)传输系统性能时的在示波器上观察到的图形[5],因其类似人的眼睛而称为“眼图”。得到眼图的方法是:将接受波形输入示波器的垂直放大器,把产生水平扫描的锯齿波周期与码元定时同步,由于荧光屏的余辉作用,若干码元重叠形成眼图。软件产生眼图的方法本文用MA TLAB仿真。

从眼图我们可以观察到很多东西,比如噪声的大小,用来传输序列的信道的带宽,但是眼图并不适合观察连续的数据流[6]。

眼图显示了数字基带信号波形可能取得的所有瞬时值。在完全随机输入的情况下,由于各个码元波形叠加,会在眼图中形成若干眼孔,眼孔的张开度能充分说明传输信号的质量。眼孔在水平轴上的交叉点称为水平聚集点,两个聚焦点的距离称为眼图的水平张开距离,眼孔的最大垂直距离称为眼图的垂直张开度,又称眼图的幅度。在理想(即无噪声和码间串扰)的情况下,眼图垂直聚焦十分清晰,水平聚焦收敛于同一过零点;当出现噪声和码间干扰时,眼图的上升沿、下降沿变粗变模糊并形成带状,水平聚焦点扩散晃动(扩散晃动的宽度称为抖动),水平和垂直张开度相继减小。根据实践经验,当信噪比在25~30dB时,眼图的清晰度是令人满意的[7]。

为了说明眼图和系统性能的关系,将眼图简化成理想的模式,如下图:

注:(a)无失真基带信号波形及眼图(b)有失真(码间干扰)的波形及眼图(c)理想化眼图模型

图 1.3 眼图模型

Fig. 1.3 MODEL Of EYE DIAGRAM

图2.3(a)(b)两图大致说明了眼图的形成原理及眼图与码间干扰的关系。从(c)小图的理想眼图以及下图的眼图实例[8]:

图 1.4 眼图模型2

Fig. 1.4 MODEL 2 Of EYE DIAGRAM

可以看出眼图反映着系统与传输的许多东西,现综合以上两图归纳出眼图模型的参数:

1.眼图幅度L:眼图得高低电平峰峰值,即眼图张开的大小,反映着系统抗干扰能力的强弱。

δ=??,有上过冲和下过冲。上下过冲在眼图上表现为眼皮的厚度[2]d;

2.过冲δ:/100%

L L

一般而言,眼皮越厚,则噪声和码间干扰(ISI)越严重

3.抖动J:数字信号跳变沿对其理想位置的偏离,反映过零点失真的大小。

4.上升时间

t:从标称幅度(L)的20%上升的80%所用的时间。另一个相似的参数是曲线

r

上升的斜率,它们反映着系统对定时误差的敏感度,上升时间快慢还一定程度上说明了系

统的带宽大小。

2 眼图的硬件实现

2.1 TIMS系统简介

TIMS是Telecommunications Istructional Modeling System(通信教学实验系统)的首字母缩略写法,针对通讯和信号处理课程而设计的实验教学系统。它由不同的插入式和固定式模块组成。TIMS 提供一个开放式教学环境,可同时做传统电子电路的特性与数字信号处理技术的比较。TIMS系统完全自给自足,唯一的额外设备是一台示波器 [9]。

TIMS系统核心由硬件组件和手册所组成,共有两种硬件组件,第一种硬件组件是TIMS-301F的系统单元,有固定式模块(机架下层)和12组模块插槽(机架上层)。第二种硬件组件是13组插入式基本模块。固定式模块使用率最高因而内建在系统里,插入式模块是根据所要做的实验来选择,并插入大系统机架里使用。插入式和固定式模块前面板的规划都是面板左边为输入,右边为输出。所有输入和输出都以颜色来表示信号形态:黄色代表模拟信号,红色代表数字信号。

固定式模块包括8个模块:

1.主震荡器(Master Signals):同步正交载波,取样和信息信号。

2.缓冲放大器(Buffer Amplifier):含两组可变的独立放大器。

3.频率和信号计数器(Frequency/Event Counter):多功能8位数计频器和信号计数器。

4.可变直流电压输出(V ariable DC):可调范围正负2V DC 输出。

5.示波器选择器(Scope Selector):切换选择欲显示的信号,于示波器上显示。

6.音频放大器(Headphone Amplifier):同时也是3kHz低通滤波器。

7.TIMS干线输出(Trunks Output)。

8.电源供给(Power Supply)。

基本模块是基础的组件,包括有:

1. TIMS-147加法器(Adder)

2. TIMS-148音频振荡器(Audio Oscillator)

3. TIMS-149双模拟开关(Dual Analog Switch)

4. TIMS-150乘法器(Multiplier)

5. TIMS-151移相器(Phase Shifter)

6. TIMS-152正交分相器(Quadrature Phase Shifter)

7. TIMS-153 序列产生器(Sequence Generator)

8. TIMS-154 可调低通滤波器(Tuneable LPF)

9. TIMS-155双脉冲产生器(Twin Pulse Generator)

10. TIMS-156共享模块(Utilities)

11. TIMS-157 电压控制振荡器(VCO)

12. TIMS-158 60kHz低通滤波器(60kHz LPF)

眼图实验需要用到的模块很少:基本的为序列产生器(Sequence Generator)和可调低通滤波器(Tuneable LPF),可选择的基本模块为音频振荡器(Audio Oscillator)以定时,为了使实验更复杂一点还可选择基带滤波器(Baseband Filters)和PICO虚拟仪器(V irtual Instrument),但由于后面两个模块没有,另外缺少噪声发生器(Noise Generator),所以硬件的眼图实验只选了前三个模块,以及外接的一台普通的数字示波器(oscilloscope);本实验的重点在软件仿真。下面详细介绍以上三个模块:

●TIMS-148音频振荡器(Audio Oscillator)——具有500Hz到10kHz频率可调范围的正弦

波源,提供三组输出:两组正交正弦波和一组TTL准位信号。

●TIMS-153 序列产生器(Sequence Generator)——使用外接时钟脉冲信号,序列产生器输出

两组独立的伪随机序列X和Y,有模拟与TTL准位两种信号模式,可由开关选择位随机序列长度,同步信号输出(SYNC output)与序列信号的开始是一致的,并可供重置信号输入。

●TIMS-154可调低通滤波器(Tuneable LPF)——低通滤波器的截至频率可由前面板旋钮改

变。滤波器有两种频率范围:WIDE(2kHz至10kHz)和NORMAL(900Hz至5kHz)。增益(GAIN)旋钮调整滤波器的幅值大小,最小可接近0。

2.2 眼图的观察及结果

实验中将音频振荡器、序列产生器、可调低通滤波器如下图连接[10]:

图2.1 眼图的连接电路

Fig.2.1 Eyes Plan to Connect Circuit

CH1和CH2接示波器,通过调节示波器的水平扫描的锯齿波周期与码元定时同步观察实验结果。实验中通过调节数据传输速率(data rate )而保持可调低通滤波器(LPF )带宽不变,以及调节LPF 的带宽保持数据传输速率不变分别观察眼图的形状。

眼图在示波器上的形状如下所示:

(a ) (b)

(c) (d)

(e) (f)

图2.2 眼图观察结果

Fig.2.2 Pictures Of Eye Diagram

图(d)显示了调整时钟速率与低通滤波器带宽后的输入序列(上半图黄色区)和相应输出序列的眼图(下半图蓝色区),单独的眼图见图(f);(e)是放大后的眼图,从该图可以看出码间干扰很小,带宽比较窄,只滤出了频率比较低的部分,高频率部分被滤除掉。通过实验发现:

A.保持数据传输率不变,降低LPF的带宽,将不能形成清晰的眼图,图形波动不定。

B.保持数据传输率不变,提高LPF的带宽,眼图逐渐清晰,如图(d);当再往上调,眼图出现

上下过冲,随着带宽的进一步增加,将出现图(a)所示图形,输出波形与输入波形及其接近,但在跳变处,上下波动的现象始终存在,这就是所谓的吉布斯(Gibbs)现象。

C.保持LPF的带宽不变,将音频振荡器的频率调节旋钮从最低慢慢调高,则示波器显示的波

形开始如B所述,出现吉布斯现象,接着上下过冲明显出现,再慢慢融合,逐渐出现清晰

的眼图,最后,当速率很高时,出现如A所述图形,不能形成眼图,说明码间干扰极其严

重。

(b) (c)两小图是形成眼图(e)的瞬间照片,输出波形较输入信号有些延迟,但群延迟为常数

不会产生相位失真,并且码间干扰很小,所以眼图很清晰(幅度较大,从而系统抗干扰能力较强),眼皮厚度接近原输入信号,上下过冲很不明显。

运用通信原理及相关知识是不难解释以上现象的。当数据传输率不变,LPF带宽很窄时,所得波形频率很低,周期很大,在原有的水平扫描周期下看起来是一些随意波动的正弦波;随着LPF的带宽拓展,所得波形频率升高,周期变小,当与水平扫描周期基本一致时,则可形成清晰的圆弧形眼皮的眼图,直至带宽达到最大,通过的频率越来越丰富,逐渐接近原方波,出现小图(a)的形状,但在跳变处将出现起伏振荡,其峰起值约趋于总跳变值的9%,此现象称为Gibbs现象。反之,保持LPF带宽不变,逐渐提高数据传输率,其效果等价于逐渐降低LPF的带宽,故此出现与前者相反的

现象。所以,要想观察到清晰圆滑的眼图,必须使数据传输速率和低通滤波器的带宽相适应,二者可以同时调节,也可单调其一,至于超出模块的取值范围则不在此列。

3 眼图的MATLAB仿真

3.1 MATLAB简介

MATLAB语言起源于矩阵运算,如今已经发展成为一种高度集成的计算机语言,在当今科学界(尤其是自动控制领域)最有影响力、也最有活力。它提供了强大的科学运算、灵活的程序设计流程、高质量的图形可视化与界面设计、便捷的与其他程序和语言的接口[11]。MATLAB 将高性能的数值计算和可视化集成在一起,并提供了大量的内置函数,从而被广泛地应用于科学计算、控制系统、信息处理等领域的分析、仿真和设计工作,而且利用MATLAB产品的开放式结构,可以非常容易地对MATLAB 的功能进行扩充,相对于传统的C、C++或者FORTRAN语言,MATLAB提供了高效快速解决各种科学计算问题的方法[12]。MATLAB是一种十分高效的语言,可以将使用者从繁琐的顶层编程中解放出来,从而把有限的时间和精力放在更有意义的解决实际问题中来。

值得一提的是,MA TLAB中的Simulink工具箱可以实现可视化建模和多工作环境间文件互用和数据交换。Simulink是用来建模、分析和仿真各种动态系统的交互环境,包括连续系统,离散系统和混合系统;支持连续、离散及两者混合的线性和非线性系统,也支持多种采样速率的多速率系统;Simulink为用户提供了用方框图进行建模的图形接口,它与传统的仿真软件包用差分方程和微分方程建模相比, 更直观、方便和灵活。用户可以在MA TLAB和Simulink两种环境下对自己的模型进行仿真、分析和修改[13]。Simulink提供了采用鼠标拖放的方法建立系统框图模型的图形交互平台。通过Simulink提供的丰富的功能块,可以迅速地创建动态系统模型。同时S imulink还集成了Stateflow,用来建模、仿真复杂事件驱动系统的逻辑行为。另外,Simulink也是实时代码生成工具Real-Time Workshop的支持平台。

用于实现通信仿真的通信工具包(Communication Toolbox ,也叫Commlib ,通信工具箱) 是Matlab语言中的一个科学性工具包,提供通信领域中计算、研究模拟发展、系统设计和分析的功能,可以在Matlab 环境下独立使用,也可以配合Simulink使用(效果更好)。

Fig.3.1 Simulink Library Browser

图3.2 MATLAB的工具箱

Fig.3.2 Toolboxes Of MTALAB

3.2 眼图的仿真及结果

眼图的仿真主要依据是数字通信系统的模型,如图2.1和图2.2可知,主要有以下几步:数字信源(调制)信道(噪声)滤波器眼图。

具体的实现过程是这样的:数字信源用randint函数产生M进制的随机输入,接着对该数字信源采取QAM、PSK或PAM等三种调制,调制的或未经调制的信号通过高斯信道,再通过一个滤波器(通常为升余弦滤波器),最后将输出的信号输入“示波器”进行眼图的观察。很显然,眼图可以在许多地

方得到,在与眼图的所有相关联的传输路径中,任何参数的变化,都有可能

...改变眼图的形状,但通过MA TLAB的交互实验仿真,不难得出影响眼图的主要的因素,从而得出眼图的主要判断点在哪。这里主要考虑随机噪声、调制、信道和接收滤波器对传输质量的影响,影响的结果通过眼图的好坏

来判断。

这四个参量中,随机噪声和信道是使得眼图变坏,理论上可以通过调制来提高信号抗干扰的能力,利用接收滤波器减小码间干扰和滤除部分噪声。

(一)随机噪声。随机噪声的来源有自然界中的各种电磁噪声和设备本身产生的热噪声、散粒噪声,它们的特点是不能预测,此种干扰对信号的传输有着怎样的影响呢?自然也是不能预测的,但显然是不利于传输的。在程序中用rand(1)*rand()模拟随机噪声,前者为噪声的系数(幅度),是间于0至1随机数。为了利于对比,先给出二进制信源的眼图,再加入噪声:

图 3.3 信源的眼图

Fig.3.3 Eye Diagram with No Noise & No Channel & No Modulation & No Filter 经过噪声信号污染后,眼图如下:

图3.4信源受污染后的眼图

Fig.3.4 Eye Diagram with Noise Effected

左右两图是同一种传输方式下的眼图,之所以眼图有如此大的不同,与噪声信号的系数k=rand(1)有很大关系:左图中k= 0.0635,接近0,右图中k= 0.8931,接近1;很明显,系数之后的噪声rand()也是有关系的,但保持系数不变,眼图的样子基本不变(这里就不提供仿真结果图片了),可见,系数的影响在二进制的传输中是决定作用的。

(二)信道。这里用白噪声信道;其中很重要的一个参数是信噪比(signal-to-noise ratio,单位为dB(数)=20log(S/N),S:信号功率,N:噪声功率)。眼图如下:

图 3.5 通过高斯信道的不同信噪比下的眼图

Fig.3.5 Eye Diagram through A WGN Of different SNR

以上分别选取了snr=20、10和无穷小,对应S/N为101的眼图,可见当信号与噪声功率相当时,眼图已经明显恶化。

(完整版)MATLAB常用函数大全

一、MATLAB常用的基本数学函数 abs(x):纯量的绝对值或向量的长度 angle(z):复数z的相角(Phase angle) sqrt(x):开平方 real(z):复数z的实部 imag(z):复数z的虚部 conj(z):复数z的共轭复数 round(x):四舍五入至最近整数 fix(x):无论正负,舍去小数至最近整数 floor(x):地板函数,即舍去正小数至最近整数ceil(x):天花板函数,即加入正小数至最近整数rat(x):将实数x化为分数表示 rats(x):将实数x化为多项分数展开 sign(x):符号函数(Signum function)。 当x<0时,sign(x)=-1; 当x=0时,sign(x)=0; 当x>0时,sign(x)=1。 rem(x,y):求x除以y的馀数 gcd(x,y):整数x和y的最大公因数 lcm(x,y):整数x和y的最小公倍数 exp(x):自然指数 pow2(x):2的指数 log(x):以e为底的对数,即自然对数或 log2(x):以2为底的对数 log10(x):以10为底的对数 二、MATLAB常用的三角函数 sin(x):正弦函数 cos(x):余弦函数

tan(x):正切函数 asin(x):反正弦函数 acos(x):反馀弦函数 atan(x):反正切函数 atan2(x,y):四象限的反正切函数 sinh(x):超越正弦函数 cosh(x):超越馀弦函数 tanh(x):超越正切函数 asinh(x):反超越正弦函数 acosh(x):反超越馀弦函数 atanh(x):反超越正切函数 三、适用於向量的常用函数有: min(x): 向量x的元素的最小值 max(x): 向量x的元素的最大值 mean(x): 向量x的元素的平均值 median(x): 向量x的元素的中位数 std(x): 向量x的元素的标准差 diff(x): 向量x的相邻元素的差 sort(x): 对向量x的元素进行排序(Sorting)length(x): 向量x的元素个数 norm(x): 向量x的欧氏(Euclidean)长度sum(x): 向量x的元素总和 prod(x): 向量x的元素总乘积 cumsum(x): 向量x的累计元素总和cumprod(x): 向量x的累计元素总乘积 dot(x, y): 向量x和y的内积 cross(x, y): 向量x和y的外积 四、MATLAB的永久常数

基于MATLAB的GMSK调制与解调课设报告

基于Matlab的GMSK调制与解调 1.课程设计目的 (1)加深对GMSK基本理论知识的理解。 (2)培养独立开展科研的能力和编程能力。 (3)通过SIMULINK对BT=0.3的GMSK调制系统进行仿真。 2.课程设计要求 (1)观察基带信号和解调信号波形。 (2)观察已调信号频谱图。 (3)分析调制性能和BT参数的关系。 3.相关知识 3.1GMSK调制 调制原理图如图2.2,图中滤波器是高斯低通滤波器,它的输出直接对VCO 进行调制,以保持已调包络恒定和相位连续。 非归零数字序 高斯低通滤 波器频率调制器 (VCO) GMSK已 调信号 图3.1GMSK调制原理图 为了使输出频谱密集,前段滤波器必须具有以下待性: 1.窄带和尖锐的截止特性,以抑制FM调制器输入信号中的高频分量; 2.脉冲响应过冲量小,以防止FM调制器瞬时频偏过大; 3.保持滤波器输出脉冲响应曲线下的面积对应丁pi/2的相移。以使调制指数为1/2。前置滤波器以高斯型最能满足上述条件,这也是高斯滤波器最小移频键控(GMSK)的由来。

GMSK 信号数据 3.2GMSK 解调 GMSK 本是MSK 的一种,而MSK 又是是FSK 的一种,因此,GMSK 检波也可以采用FSK 检波器,即包络检波及同步检波。而GMSK 还可以采用时延检波,但每种检波器的误码率不同。 GMSK 非相干解调原理图如图2.3,图中是采用FM 鉴频器(斜率鉴频器或相位鉴频器)再加判别电路,实现GMSK 数据的解调输出。 图3.2GMSK 解调原理图 4.课程设计分析 4.1信号发生模块 因为GMSK 信号只需满足非归零数字信号即可,本设计中选用(Bernoulli Binary Generator)来产生一个二进制序列作为输入信号。 图4.1GMSK 信号产生器 该模块的参数设计这只主要包括以下几个。其中probability of a zero 设置为0.5表示产生的二进制序列中0出现的概率为0.5;Initial seed 为61表示随机数种子为61;sample time 为1/1000表示抽样时间即每个符号的持续时为0.001s。当仿真时间固定时,可以通过改变sample time 参数来改变码元个数。例如仿真时间为10s,若sample time 为1/1000,则码元个数为10000。 带通滤 波器限幅器判决器鉴频器GMSK 信号 输出

(完整版)matlab函数大全(非常实用)

信源函数 randerr 产生比特误差样本 randint 产生均匀分布的随机整数矩阵 randsrc 根据给定的数字表产生随机矩阵 wgn 产生高斯白噪声 信号分析函数 biterr 计算比特误差数和比特误差率 eyediagram 绘制眼图 scatterplot 绘制分布图 symerr 计算符号误差数和符号误差率 信源编码 compand mu律/A律压缩/扩张 dpcmdeco DPCM(差分脉冲编码调制)解码dpcmenco DPCM编码 dpcmopt 优化DPCM参数 lloyds Lloyd法则优化量化器参数 quantiz 给出量化后的级和输出值 误差控制编码 bchpoly 给出二进制BCH码的性能参数和产生多项式convenc 产生卷积码 cyclgen 产生循环码的奇偶校验阵和生成矩阵cyclpoly 产生循环码的生成多项式 decode 分组码解码器 encode 分组码编码器 gen2par 将奇偶校验阵和生成矩阵互相转换gfweight 计算线性分组码的最小距离 hammgen 产生汉明码的奇偶校验阵和生成矩阵rsdecof 对Reed-Solomon编码的ASCII文件解码rsencof 用Reed-Solomon码对ASCII文件编码rspoly 给出Reed-Solomon码的生成多项式syndtable 产生伴随解码表 vitdec 用Viterbi法则解卷积码 (误差控制编码的低级函数) bchdeco BCH解码器 bchenco BCH编码器 rsdeco Reed-Solomon解码器 rsdecode 用指数形式进行Reed-Solomon解码 rsenco Reed-Solomon编码器 rsencode 用指数形式进行Reed-Solomon编码 调制与解调

Matlab通信系统仿真实验报告

Matlab通信原理仿真 学号: 2142402 姓名:圣斌

实验一Matlab 基本语法与信号系统分析 一、实验目的: 1、掌握MATLAB的基本绘图方法; 2、实现绘制复指数信号的时域波形。 二、实验设备与软件环境: 1、实验设备:计算机 2、软件环境:MATLAB R2009a 三、实验内容: 1、MATLAB为用户提供了结果可视化功能,只要在命令行窗口输入相应的命令,结果就会用图形直接表示出来。 MATLAB程序如下: x = -pi::pi; y1 = sin(x); y2 = cos(x); %准备绘图数据 figure(1); %打开图形窗口 subplot(2,1,1); %确定第一幅图绘图窗口 plot(x,y1); %以x,y1绘图 title('plot(x,y1)'); %为第一幅图取名为’plot(x,y1)’ grid on; %为第一幅图绘制网格线 subplot(2,1,2) %确定第二幅图绘图窗口 plot(x,y2); %以x,y2绘图 xlabel('time'),ylabel('y') %第二幅图横坐标为’time’,纵坐标为’y’运行结果如下图: 2、上例中的图形使用的是默认的颜色和线型,MATLAB中提供了多种颜色和线型,并且可以绘制出脉冲图、误差条形图等多种形式图: MATLAB程序如下: x=-pi:.1:pi; y1=sin (x); y2=cos (x); figure (1); %subplot (2,1,1); plot (x,y1); title ('plot (x,y1)'); grid on %subplot (2,1,2); plot (x,y2);

信号与系统的MATLAB仿真

成绩
课程设计说明书(计算书、论文)
题 目 信号与系统的 MATLAB 仿真
课 程 名 称 院 (系)
信号与系统 电子通信工程学院
专 业 班 级 学 生 姓 名 学 号
设 计 地 点 指 导 教 师
设计起止时间:

月 日





1.
课程设计应达到的目的
(1)熟悉 Matlab 软件的运行环境 (2)掌握采用 Matlab 软件程序实现信号与系统分析的方法 (3)掌握正确的编程过程和仿真分析 (4)总结对比软件仿真与硬件实验的区别及特点 2.课程设计题目及要求 《信号与系统》课程设计选题主要是要体现本课程的主要教学 内容中的重点部分,同时要求选题能过反映出信号仿真的代表性, 系统分析的应用性, 灵活性, 并且能与原本理论教学中繁琐的数学 计算相比较, 体现出软件计算的方便快捷性, 本课程设计主要包括 四个小设计部分,分别是: (1)信号的产生与简单运算:产生一个方波周期为 4π ,t[0 50]。
(2)?求解微分方程:y"(t)+3y'(t)+2y(t)=2e-2 ε(t)求 yzs; ?求卷积:e-2 ε (t)*e-3 ε (t)
t t
t
(3)求 H (s) ?
2s 2 ? 1 s 3 ? 4s 2 ? 6s ? 9
?求零、极点 ?并绘图 ?冲激响应

(4)求解差分方程:y(n)-y(n-1)-2y(n-2)=f(n) ?f(n)=( 1 )nε (n)
3
?f(n)=δ (n)
3.课程设计思路 利用信号与系统中的 matlab 常用命令集求解微分方程,并利用结 果和绘图命令绘图。
4.课程设计原理 设计原理 (1)设计一个简单程序能实现方波信号的生成。 利用Matlab软件的信号处理工具箱(Signal Processing Toolbox)中的专用函数产生 信号并绘出波形。
(2) ?对于求方程的零状态响应,即是求解常微分方程。Matlab 解常微分方程式的语法是 dsolve('equation','condition'),其中equation代表常微分方程式即 y'=g(x,y), 且须以Dy代表一 微分项y'',condition则为初始条件。 ?利用MATLAB中conv命令求解卷积。 阶微分项y' D2y代表二阶

matlab 函数大全

matlab 函数大全 信源函数 randerr 产生比特误差样本 randint 产生均匀分布的随机整数矩阵 randsrc 根据给定的数字表产生随机矩阵 wgn 产生高斯白噪声 信号分析函数 biterr 计算比特误差数和比特误差率 eyediagram 绘制眼图 scatterplot 绘制分布图 symerr 计算符号误差数和符号误差率 信源编码 compand mu律/A律压缩/扩张 dpcmdeco DPCM(差分脉冲编码调制)解码dpcmenco DPCM编码 dpcmopt 优化DPCM参数 lloyds Lloyd法则优化量化器参数 quantiz 给出量化后的级和输出值 误差控制编码 bchpoly 给出二进制BCH码的性能参数和产生多项式convenc 产生卷积码 cyclgen 产生循环码的奇偶校验阵和生成矩阵cyclpoly 产生循环码的生成多项式 decode 分组码解码器 encode 分组码编码器 gen2par 将奇偶校验阵和生成矩阵互相转换gfweight 计算线性分组码的最小距离 hammgen 产生汉明码的奇偶校验阵和生成矩阵rsdecof 对Reed-Solomon编码的ASCII文件解码rsencof 用Reed-Solomon码对ASCII文件编码rspoly 给出Reed-Solomon码的生成多项式

syndtable 产生伴随解码表 vitdec 用Viterbi法则解卷积码 (误差控制编码的低级函数) bchdeco BCH解码器 bchenco BCH编码器 rsdeco Reed-Solomon解码器 rsdecode 用指数形式进行Reed-Solomon解码 rsenco Reed-Solomon编码器 rsencode 用指数形式进行Reed-Solomon编码 调制与解调 ademod 模拟通带解调器 ademodce 模拟基带解调器 amod 模拟通带调制器 amodce 模拟基带调制器 apkconst 绘制圆形的复合ASK-PSK星座图 ddemod 数字通带解调器 ddemodce 数字基带解调器 demodmap 解调后的模拟信号星座图反映射到数字信号dmod 数字通带调制器 dmodce 数字基带调制器 modmap 把数字信号映射到模拟信号星座图(以供调制)qaskdeco 从方形的QASK星座图反映射到数字信号qaskenco 把数字信号映射到方形的QASK星座图 专用滤波器 hank2sys 把一个Hankel矩阵转换成一个线性系统模型hilbiir 设计一个希尔伯特变换IIR滤波器 rcosflt 升余弦滤波器 rcosine 设计一个升余弦滤波器 (专用滤波器的低级函数) rcosfir 设计一个升余弦FIR滤波器 rcosiir 设计一个升余弦IIR滤波器

基于matlab的通信信道及眼图的仿真 通信原理课程设计

通信原理课程设计 基于matlab的通信信道及眼图的仿真 作者: 摘要 由于多径效应和移动台运动等影响因素,使得移动信道对传输信号在时间、频率和角度上造成了色散,即时间色散、频率色散、角度色散等等,因此多径信道的特性对通信质量有着重要的影响,而多径信道的包络统计特性则是我们研究的焦点。根据不同无线环境,接收信号包络一般服从几种典型分布,如瑞利分布、莱斯分布等。因此我们对瑞利信道、莱斯信道进行了仿真并针对服从瑞利分布的多径信道进行模拟仿真。由于眼图是实验室中常用的一种评价基带传输系统的一种定性而方便的方法,“眼睛”的张开程度可以作为基带传输系统性能的一种度量,它不但反映串扰的大小,而且也可以反映信道噪声的影响。为此,我们在matlab上进行了仿真,加深对眼图的理解。 关键词:瑞利信道莱斯信道多径效应眼图 一、瑞利信道 在移动通信系统中,发射端和接收端都可能处于不停的运动状态之中,这种相对运动将产生多普勒频移。在多径信道中,发射端发出的信号通过多条路径到达接收端,这些路径具有不同的延迟和接收强度,它们之间的相互作用就形成了衰落。MATLAB中的多径瑞利衰落信道模块可以用于上述条件下的信道仿真。 多径瑞利衰落信道模块用于多径瑞利衰落信道的基带仿真,该模块的输入信号为复信号,可以为离散信号或基于帧结构的列向量信号。无线系统中接收机与发射机之间的相对运动将引起信号频率的多普勒频移,多普勒频移值由下式决定: 其中v是发射端与接收端的相对速度,θ是相对速度与二者连线的夹角,λ是信号的波长。

Fd的值可以在该模块的多普勒平移项中设置。由于多径信道反映了信号在多条路径中的传输,传输的信号经过不同的路径到达接收端,因此产生了不同的时间延迟。当信号沿着不同路径传输并相互干扰时,就会产生多径衰落现象。在模块的参数设置表中,Delay vector(延迟向量)项中,可以为每条传输路径设置不同的延迟。如果激活模块中的Normalize gain vector to 0 dB overall gain,则表示将所有路径接收信号之和定为0分贝。信号通过的路径的数量和Delay vector(延迟向量)或Gain vector(增益向量)的长度对应。Sample time(采样时间)项为采样周期。离散的Initial seed(初始化种子)参数用于设置随机数的产生。 1.1、Multipath Rayleigh Fading Channel(多径瑞利衰落信道)模块的主要参数 参数名称参数值 Doppler frequency(Hz) 40/60/80 Sample time 1e-6 Delay vector(s) [0 1e-6] Gain vector(dB) [0 -6] Initial seed 12345 使能 Normalize gain vector to 0 dB overall gain Bernoulli Random Binary Generator(伯努利二进制随机数产生器)的主要参数 参数名称参数值 Probability of a zero0.5 Initial seed54321

基于MATLAB的信号与系统仿真及应用

本科毕业(论文) 题 目 (中、英文 ) in The Signal System 分类 号 学号 密级 公开 学校代码 1107044431 TN911.6 基于MATLAB 的信号系统仿真及应用 The Application of MATLAB in The Signal System 工科 作者姓名 指导教师 学科门类 专业名称 电气工程及其自动化 提交论文日期 成绩评定 二零一五年五月

摘要 当前的科学信息技术正在日新月异的高速发展,而通过应用数字信号处理的方法,已成为一个非常重要的技术手段被广泛应用在通信、音频和图像、遥感,视频等领域。为了更好地了解信号与系统的基本理论和掌握其方法,从而更好地理解和掌握数字信号处理的理论知识,因此在实验过程中我们就需要通过MATLAB 计算机辅助设计平台。 本论文主要探究MATALB在信号与系统中的连续信号和离散信号中的应用,主要从连续和离散两方面入手,进一步掌握信号系统中的相关知识。同时引进计算机软件—MATLAB,对信号系统二阶系统的时域和频域分析,通过它在计算机上对程序进行仿真,阐述信号与系统理论应用与实际相联系。以此激发学习兴趣,变被动接受为主动探知,从而提升学习效果,培养主动思维,学以致用的思维习惯,也可以让人们进一步了解MATLAB软件 关键词:采样定理;MATLAB;信号与系统;抽样定理

Abstract Current, the rapid development of science and information technology are changing and through the application of digital signal processing method, has become a very important technology is widely used in communication, audio and video, remote sensing, video, etc. In order to better understand the basic theory of signal and system, and grasp the method, to better understand and master the theoretical knowledge of digital signal processing, so we need in the process of experiment by MATLAB computer aided design platform. This thesis mainly explores MATALB in signal and system, the application of discrete and continuous signals, mainly from the two aspects of the continuous and discrete, further to master relevant knowledge of signal system. Introduction of computer software - MATAB at the same time, the signal system of second order system time domain and frequency domain analysis, through its d on program on computer simulation, signal and system theory associated with the actual application. To stimulate interest in learning, change passive accept to active detection, so as to improve learning effect, active thinking, to practice habits of thinking, also can let people learn more about MATLAB software. Key words:Sampling theorem; MATLAB; Signals and systems; The sampling theorem

MATLAB通信系统仿真实验报告1

MATLAB通信系统仿真实验报告

实验一、MATLAB的基本使用与数学运算 目的:学习MATLAB的基本操作,实现简单的数学运算程序。 内容: 1-1要求在闭区间[0,2π]上产生具有10个等间距采样点的一维数组。试用两种不同的指令实现。 运行代码:x=[0:2*pi/9:2*pi] 运行结果: 1-2用M文件建立大矩阵x x=[0.10.20.30.40.50.60.70.80.9 1.11.21.31.41.51.61.71.81.9 2.12.22.32.42.52.62.72.82.9 3.13.23.33.43.53.63.73.83.9] 代码:x=[0.10.20.30.40.50.60.70.80.9 1.11.21.31.41.51.61.71.81.9 2.12.22.32.42.52.62.72.82.9 3.13.23.33.43.53.63.73.83.9] m_mat 运行结果: 1-3已知A=[5,6;7,8],B=[9,10;11,12],试用MATLAB分别计算 A+B,A*B,A.*B,A^3,A.^3,A/B,A\B. 代码:A=[56;78]B=[910;1112]x1=A+B X2=A-B X3=A*B X4=A.*B X5=A^3 X6=A.^3X7=A/B X8=A\B

运行结果: 1-4任意建立矩阵A,然后找出在[10,20]区间的元素位置。 程序代码及运行结果: 代码:A=[1252221417;111024030;552315865]c=A>=10&A<=20运行结果: 1-5总结:实验过程中,因为对软件太过生疏遇到了些许困难,不过最后通过查书与同学交流都解决了。例如第二题中,将文件保存在了D盘,而导致频频出错,最后发现必须保存在MATLAB文件之下才可以。第四题中,逻辑语言运用到了ij,也出现问题,虽然自己纠正了问题,却也不明白错在哪了,在老师的讲解下知道位置定位上不能用ij而应该用具体的整数。总之第一节实验收获颇多。

matlab信号仿真谐波

综合训练① 实验内容:利用matlab绘制频率自定的正弦信号(连续时间和离散时间),复指数信号(连续时间),并举例实际中哪些物理现象可以用正弦信号,复指数信号来表示。绘制成谐波关系的正弦信号(连续时间和离散时间),分析其周期性和频率之间的关系。实验步骤: 一、绘制谐波关系的正弦信号 分析:由于正弦信号可以表示成两个共轭的复指数信号相减,然后再除去两倍的单位虚数得到,故,我们将正弦信号设置为 X=exp(j*pi*n/4)-exp(-j*pi*n/4))/(2*j) 此信号就相当于 x=sin(pi*n/4) 设计程序如下: n=[0:32]; %设置n的取值 x=(exp(j*pi*n/4)-exp(-j*pi*n/4))/(2*j); %限定离散正弦信号 stem(n,x) %绘制该离散正弦信号 通过Matlab所得图形如下:

分析:同样的连续型的正弦信号同样也可以用类似方式绘制. x=sym('(exp(j*pi*t/T)+exp(-j*pi*t/T))/2');%函数表示正弦信号 x5=subs(x,5,'T'); %设置周期大小ezplot(x5,[0,10]) %绘制图形 所得结果如下:

二、绘制复指数信号 分析:由于复指数信号有实数部分和虚数部分,所以绘制其图形,我们采取了分别绘制的方法,将实数和虚数分别画出。 实验程序如下: t=[0:.01:10]; %产生时间轴的等差点 y=exp((1+j*10)*t); %设置复指数信号 subplot(211),plot(t,real(y)); %绘制实数信号图形 grid subplot(212),plot(t,imag(y)); %绘制虚数部分图形 grid 实验所得结果如下:

基于matlab的模拟信号数字化仿真.

基于matlab的模拟信号数字化仿真 作者:李亚琼 学号:1305160425

摘要 本文研究的主要内容模拟信号数字化Matlab软件仿真。若信源输出的是模拟信号,如电话传送的话音信号,模拟摄像机输出的图像信号等,若使其在数字信道中传输,必须在发送端将模拟信号转换成数字信号,即进行A/D变换,在接收端则要进行D/A变换。模拟信号数字化由抽样、量化、编码三部分组成。由于数字信号的传送具有稳定性好,可靠性高,方便传送和传送等诸多优点,使得被广泛应用到各种技术中。不仅如此,Matlab仿真软件是常用的工具之一,可用于通信系统的设计和仿真。在科研教学方面发挥着重要的作用。Matlab有诸多优点,编程简单,操作容易、处理数据迅速等。 本文主要阐述的是模拟信号数字化的理论基础和实现方法。利用Matlab提供的可视化工具建立了数字化系统的仿真模型,详细讲述了抽样、量化、编码的设计,并指出了在仿真建模中要注意的问题。在给定的仿真条件下,运行了仿真程序,得到了预期的仿真结果。 关键词:Matlab、模拟信号数字化、仿真 1.1基本原理 模拟信号的数字传输是指把模拟信号先变换为数字信号后,再进行传输。由于与模拟传输相比,数字传输有着众多优点,因而此技术越来越受到重视。此变化成为A/D变换。A/D变换是把模拟基带信号变换喂数字基带信号,尽管后者的带宽会比前者大得很多,但本质上仍属于基带信号。这种传输可直接采用基带传输,或经过熟悉调制后再做频带传输。A/D变化包括抽样、量化、编码三个步骤,如图。 图1.模拟信号数字化 1.1.1抽样定理 抽样就是把模拟信号在时间上的连续变成离散的抽样值。而能不能用这一系列抽样值重新恢复原信号,就需要抽样定理来解决了。所以说,如果我们要传输模拟信号,可以通过传输抽样定理的抽样值来实现而不是非要传输原本的模拟信号。模拟信号数字化的理论基础就是抽样定理,抽样定理的作用不言而喻。 抽样定理:设时间连续信号) f,其最高截止频率为m f,如果用时间间 (t

(完整word版)使用matlab绘制眼图.docx

使用 matlab 绘制数字基带信号的眼图实验 一、实验目的 1、掌握无码间干扰传输的基本条件和原理,掌握基带升余弦滚降系统的实现方法; 2、通过观察眼图来分析码间干扰对系统性能的影响,并观察在输入相同码率的NRZ 基带信号下,不同滤波器带宽对输出信号码间干扰大小的影响程度; 3、熟悉 MATLAB语言编程。 二、实验原理和电路说明 1、基带传输特性 基带系统的分析模型如图3-1 所示,要获得良好的基带传输系统,就应该 a n t nT s 基带传输a n h t nT s n n抽样判决 H ( ) 图 3-1基带系统的分析模型 抑制码间干扰。设输入的基带信号为a n t nT s, T s为基带信号的码元周期,则经过 n 基带传输系统后的输出码元为a n h t nT s。其中 n h(t )1H ()e j t d(3-1 ) 2 理论上要达到无码间干扰,依照奈奎斯特第一准则,基带传输系统在时域应满足: ,k 0 h( kT s)(3-2) 0,k为其他整数 频域应满足: T s, T s(3-3) H ( ) 0,其他

H ( ) T s T s T s 图 3-2 理想基带传输特性 此时频带利用率为 2Baud / Hz , 这是在抽样值无失真条件下,所能达到的最高频率利用率。 由于理想的低通滤波器不容易实现, 而且时域波形的拖尾衰减太慢, 因此在得不到严格 定时时,码间干扰就可能较大。在一般情况下,只要满足: 2 i H 2 2 , (3-4) H H ( ) H T s i T s T s T s T s 基带信号就可实现无码间干扰传输。这种滤波器克服了拖尾太慢的问题。 从实际的滤波器的实现来考虑,采用具有升余弦频谱特性 H ( ) 时是适宜的。 1 sin T s ( ) , (1 ) (1 ) 2 T s T s T s H ( ) 1, (1 ) 0 (3-5) T s 0, (1 ) T s 这里 称为滚降系数, 1。 所对应的其冲激响应为: sin t cos( t T s ) h(t ) T s (3-6) t 1 4 2t 2 T s 2 T s 此时频带利用率降为 2 / (1 ) Baud/ Hz ,这同样是在抽样值无失真条件下, 所能达到的最 高频率利用率。换言之,若输入码元速率 R s ' 1/ T s ,则该基带传输系统输出码元会产生码

MATLAB产生信号波形的仿真实验

实验一产生信号波形的仿真实验 一、实验目的:熟悉MATLAB软件的使用,并学会信号的表示和以及用MATLAB 来产生信号并实现信号的可视化。 二、实验内容: 对信号进行时域分析,首先需要将信号随时间变化的规律用二维曲线表示出来。对于简单信号可以通过手工绘制其波形,但对于复杂的信号,手工绘制信号波形显得十分困难,且难以绘制精确的曲线。 一种是用向量来表示信号,另一种则是用符合运算的方法来表示信号。用适当的MATLAB语句表示信号后,可以利用MATLAB的绘图命令绘制出直观的信号波形。 1.向量表示法 对于连续时间信号f(t),可以用两个行向量f和t来表示,其中向量t是 形如t=t 1:p:t 2 的MATLAB命令定义的时间范围向量,t 1 为信号起始时间,t 2 为信 号终止时间,p为时间间隔。向量f为连续信号f(t)在向量t所定义的时间点上的样值。 下面分析连续时间信号f(t)=Sa(t)=sin(t)/t,可用如下的两个变量表示: t= -10:0.02:10 f=sin(t)./t 命令运行结果为: t = Columns 1 through 8 -10.0000 -8.5000 -7.0000 -5.5000 -4.0000 -2.5000 -1.0000 0.5000 Columns 9 through 14 2.0000 3.5000 5.0000 6.5000 8.0000 9.5000 f = Columns 1 through 8 -0.0544 0.0939 0.0939 -0.1283 -0.1892 0.2394 0.8415 0.9589 Columns 9 through 14

基带信号眼图实验——matlab仿真

基带信号眼图实验——matlab 仿真

————————————————————————————————作者:————————————————————————————————日期: ?

数字基带信号的眼图实验——matla b仿真 一、实验目的 1、掌握无码间干扰传输的基本条件和原理,掌握基带升余弦滚降系统的实现方法; 2、通过观察眼图来分析码间干扰对系统性能的影响,并观察在输入相同码率的NRZ 基带信号下,不同滤波器带宽对输出信号码间干扰大小的影响程度; 3、熟悉MATL AB 语言编程。 二、实验预习要求 1、复习《数字通信原理》第七章7.1节——奈奎斯特第一准则内容; 2、复习《数字通信原理》第七章7.2节——数字基带信号码型内容; 3、认真阅读本实验内容,熟悉实验步骤。 三、实验原理和电路说明 1、基带传输特性 基带系统的分析模型如图3-1所示,要获得良好的基带传输系统,就应该 () n s n a t nT δ-∑() H ω() n s n a h t nT -∑基带传输抽样判决 图3-1?基带系统的分析模型 抑制码间干扰。设输入的基带信号为()n s n a t nT δ-∑,s T 为基带信号的码元周期,则经过基 带传输系统后的输出码元为 ()n s n a h t nT -∑。其中 1 ()()2j t h t H e d ωωωπ +∞ -∞ = ? ?(3-1) 理论上要达到无码间干扰,依照奈奎斯特第一准则,基带传输系统在时域应满足: 10()0,s k h kT k =?=? ? , 为其他整数 ?? ?(3-2) 频域应满足:

实验四 信号与系统仿真—连续信号在Matlab中的表示

电子信息工程系实验报告 课程名称: 计算机仿真技术 实验项目名称:实验四 信号与系统仿真—连续信号在Matlab 中的表示 实验时间:2011-11-1 班级:电信092 姓名:XXX 学号:910706201 一、实 验 目 的: 学会运用MATLAB 表示常用连续时间信号的方法;观察并熟悉这些信号的波形和特性。 二、实 验 环 境: 硬件:PC 机,PII 以上 CPU ,内存1G ; 软件:Matlab7.1 三、实 验 原 理: 在某一时间区间内,除若干个不连续点外,如果任意时刻都可以给出确定的函数值,则称该信号为连 续时间信号,简称为连续信号。从严格意义上讲,MATLAB 数值计算的方法并不能处理连续时间信号。然而, 可利用连续信号在等时间间隔点的取样值来近似表示连续信号,即当取样时间间隔足够小时,这些离散样 值能够被MATLAB 处理,并且能较好地近似表示连续信号。 MATLAB 提供了大量生成基本信号的函数。比如常用的指数信号、正余弦信号等都是MATLAB 的内部函 数。为了表示连续时间信号,需定义某一时间或自变量的范围和取样时间间隔,然后调用该函数计算这些 点的函数值,最后画出其波形图。 四、实 验 内 容 及 过 程: 1、利用MATLAB 命令画出下列连续信号的波形图。 (1)2cos(3/4)t π+ 为画出2cos(3/4)t π+连续信号的波形图编写如下程序代码: clear ;clc; K=2;w=3;phi=pi/4; t=0:0.01:3; ft = K.*cos(w.*t+phi); plot(t,ft);grid on axis([0,3,-2.2,2.2]); title('余弦信号'); (2)(2)()t e u t -- 先在MATLAB 的工作目录下创建uCT 的M 文件,其MATLAB 源文件为: function f = uCT(t) f = (t>=0); 保存后,就可调用该函数 成 绩: 指导教师(签名):

基于MATLAB的QAM 眼图和星座图

南昌大学信息工程学院 《随机信号分析》课程作业 题目:QAM调制信号的眼图及星座图仿真指导老师:虞贵财 作者:毕圣昭 日期:2011-12-05

QAM调制信号的眼图及星座图仿真 1. 眼图 眼图是在数字通信的工程实践中测试数字传输信道质量的一种应用广泛、简单易行的方法。实际上它的一个扫描周期是数据码元宽度1~2倍并且与之同步的示波器。对于二进制码元,显然1和0的差别越大,接受判别时错判的可能性就越小。由于传输过程中受到频带限制,噪声的叠加使得1和0的差别变小。在接收机的判决点,将“1”和“0”的差别用眼图上“眼睛”张开的大小来表示,十分形象、直观和实用。MATLAB工具箱中有显示眼图和星座图的仪器,下面通过具体的例子说明它们的应用。 图1-1所示是MATLAB Toolbox\Commblks中的部分内容,展示了四进制随机数据通过基带QPSK调制、升余弦滤波(插补)及加性高斯白噪声传输环境后信号的眼图。 图1-1 通过QPSK基带调制升余弦滤波及噪声环境后观察眼图的仿真实验系统 图1-2所示是仿真运行后的两幅眼图,上图是I(同相)信号,下图是Q(正交)信号。 图1-2 通过QPSK基带调制及噪声传输环境后观察到的眼图

2. 星座图 星座图是多元调制技术应用中的一种重要的测量方法。它可以在信号空间展示信号所在的位置,为系统的传输特性分析提供直观的、具体的显示结果。 为了是系统的功率利用率、频带利用率得到充分的利用,在特定的调制方式下,在信号空间中如何排列与分布信号?在传输过程中叠加上噪声以后,信号之间的最小距离是否能保证既定的误码率的要求这些问题的研究用星座图仪十分直观方便。多元调制都可以分解为In-phase(同相)分量及Quadrature(正交)分量。将同相分量用我们习惯的二维空间的X轴表示,正交分量用Y轴表示。信号在X-Y平面(同相-正交平面)的位置就是星座图。MATLAB通信系统的工具箱里有着使用方便、界面美观的星座图仪。 图1-3所示是随机数据通过基带QAM调制及噪声环境传输后,观察星座图的仿真系统。 图1-3 通过基带QAM调制及噪声环境传输后观察星座图的仿真系统图1-4所示是运行仿真后的星座图 图1-4 通过基带QAM调制及噪声环境传输后观察到的星座图

应用 MATLAB实现连续信号的采样与重构仿真

课程设计报告课程名称信号与系统 系别:机电工程系 专业班级:自动化1002班 学号: 1009101022 姓名:乔垒垒 课程题目: LTI连续系统分析仿真 完成日期: 2013年6月10日 指导老师:权宏伟

目录 第一章绪论 (3) 1.1 信号与系统的背景 (3) 1.2 MATLAB软件简介 (3) 第二章连续信号的采样与重构仿真 (4) 2.1、课程设计的目的 (4) 2.2、课程设计的内容及要求 (4) 2.3、课程设计的原理 (5) 2.3.1连续信号的采样定理 (5) 2.3.2信号采样 (6) 2.3.3信号重构 (8) 第三章应用MATLAB仿真 (10) 3.1 MATLAB设计的思路 (10) 3.2 详细设计过程 (10) 3.2.1Sa(t)的临界采样及重构 (10) 3.2.2 Sa(t)的过采样及重构 (12) 3.2.3Sa(t)的欠采样及重构 (14) 2.5设计方案优缺点 (16) 第四章收获和体会 (17) 参考文献 (18)

第一章绪论 1.1 信号与系统的背景 人们之间的交流是通过消息的传播来实现的,信号则是消息的表现形式,消息是信号的具体内容。 《信号与系统》课程是一门实用性较强、涉及面较广的专业基础课,该课程是将学生从电路分析的知识领域引入信号处理与传输领域的关键性课程,对后续专业课起着承上启下的作用. 该课的基本方法和理论大量应用于计算机信息处理的各个领域,特别是通信、数字语音处理、数字图像处理、数字信号分析等领域,应用更为广泛。 近年来,计算机多媒体教序手段的运用逐步普及,大量优秀的科学计算和系统仿真软件不断涌现,为我们实现计算机辅助教学和学生上机实验提供了很好的平台。通过对这些软件的分析和对比,我们选择MATLAB语言作为辅助教学工具,借助MATLAB强大的计算能力和图形表现能力,将《信号与系统》中的概念、方法和相应的结果,以图形的形式直观地展现给我们,大大的方便我们迅速掌握和理解老师上课教的有关信号与系统的知识。 1.2 MATLAB软件简介 MATLAB 是MathWork 公司于1984 年推出的一套面向工程和科学运算的高性能软件。它具有强大的矩阵计算能力和良好的图形可视化功能,为用户提供了非常直观和简洁的程序开发环境,因此被称为第四代计算机语言。MATLAB 强大的图形处理功能及符号运算功能,为我们实现信号的可视化及系统分析提供了强有力的工具。MATLAB 强大的工具箱函数可以分析连续信号、连续系统,同样也可以分析离散信号、离散系统,并可以对信号进行各种分析域计算,如相加、相乘、移位、反折、傅里叶变换、拉氏变换、Z 变换等等多种计算。 此次课程设计是在MATLAB软件下进行LTI连续系统的分析仿真,有助于我对该连续信号的分析和理解。MATLAB 强大的功能为此次求连续信号冲激阶跃响应、系统零输入、零状态响应,及幅频相频等各种信号求解提供很好的视觉效果,对我们有很大的学习帮助。

数字信号处理MATLAB仿真

实验一 数字信号处理的Matlab 仿真 一、实验目的 1、掌握连续信号及其MA TLAB 实现方法; 2、掌握离散信号及其MA TLAB 实现方法 3、掌握离散信号的基本运算方法,以及MA TLAB 实现 4、了解离散傅里叶变换的MA TLAB 实现 5、了解IIR 数字滤波器设计 6、了解FIR 数字滤波器设计1 二、实验设备 计算机,Matlab 软件 三、实验内容 (一)、 连续信号及其MATLAB 实现 1、 单位冲击信号 ()0,0()1,0 t t t dt εεδδε-?=≠??=?>??? 例1.1:t=1/A=50时,单位脉冲序列的MA TLAB 实现程序如下: clear all; t1=-0.5:0.001:0; A=50; A1=1/A; n1=length(t1); u1=zeros(1,n1); t2=0:0.001:A1; t0=0; u2=A*stepfun(t2,t0); t3=A1:0.001:1; n3=length(t3); u3=zeros(1,n3); t=[t1 t2 t3]; u=[u1 u2 u3]; plot(t,u) axis([-0.5 1 0 A+2]) 2、 任意函数 ()()()f t f t d τδττ+∞ -∞=-? 例1.2:用MA TLAB 画出如下表达式的脉冲序列 ()0.4(2)0.8(1) 1.2() 1.5(1) 1.0(2)0.7(3)f n n n n n n n δδδδδδ=-+-+++++++

clear all; t=-2:1:3; N=length(t); x=zeros(1,N); x(1)=0.4; x(2)=0.8 x(3)=1.2; x(4)=1.5; x(5)=1.0; x(6)=0.7; stem(t,x); axis([-2.2 3.2 0 1.7]) 3、 单位阶跃函数 1,0()0,0t u t t ?≥?=?

相关主题
文本预览
相关文档 最新文档