当前位置:文档之家› 中国太阳能年辐射量分布图

中国太阳能年辐射量分布图

全国各地太阳能总辐射量

全国各地太阳能总辐射量 全国各地太阳能总辐射量与年平均日照当量 太阳能年辐射量标准光照下 地区类别地区年日照时数年平均日照 22时间,时, MJ/m?年 kWh/m?年 宁夏北部、甘肃北部、 一新疆南部、青海西部、6680-8400 1855-2333 3200-3300 5.08-6.3 西藏西部 河北西北部、山西北 部、内蒙古南部、宁 夏南部、甘肃中部、二 5852-6680 1625-1855 3000-3200 4.45-5.08 青海东部、西藏东南 部、新疆南部 山东、河南、河北 东南部、山西南部、 新疆北部、吉林、辽 宁、云南、陕西北部、三 5016-5852 1393-1625 2200-3000 3.8-4.45 甘肃东南部、广东南 部、福建南部、江苏 北部、安徽北部、台 湾西南部 湖南、湖北、广西、 江西、浙江、福建北

部、广东北部、陕西四 4190-5016 1163-1393 1400-2200 3.1-3.8 南部、江苏南部、安 徽南部、黑龙江、台 湾东北部 五四川、贵州 3344-4190 928-1163 1000-1400 2.5-3.1 、δ、ω、αs、γs值附录B 江苏省部分地区的, 太阳高度太阳方位地理纬度太阳赤纬太阳时角城市名角角(o) ,δ(o) ω(o) α(o) γs(o) s 南京 32.04 -23.43 0 34.53 0 江宁 31.95 -23.43 0 34.62 0 南六合 32.36 -23.43 0 34.21 0 京江浦 32.07 -23.43 0 34.5 0 市溧水 31.65 -23.43 0 34.92 0 高淳 31.32 -23.43 0 35.25 0 苏州 31.32 -23.43 0 35.25 0 张家港 31.86 -23.43 0 34.71 0 常熟 31.64 -23.43 0 34.93 0 苏 州太仓 31.45 -23.43 0 35.12 0 市昆山 31.39 -23.43 0 35.18 0 吴县 31.32 -23.43 0 35.25 0 吴江 31.16 -23.43 0 35.41 0 无锡 31.59 -23.43 0 34.98 0 无 锡江阴 31.91 -23.43 0 34.66 0 市宜兴 31.36 -23.43 0 35.21 0 常州 31.79 -23.43 0 34.78 0 常武进 31.78 -23.43 0 34.79 0 州金坛 31.74 -23.43 0 34.83 0 市溧阳 31.43 -23.43 0 35.14 0 镇江 32.2 -23.43 0 34.37 0 丹徒 32.2 -23.43 0 34.37 0 镇

太阳能辐射量分类

太阳能资源分四类(最新): 我国太阳能资源分布是不均衡的,按辐射强度划分,大致可以划分为四类地区,其中: 一类地区大于6700MJ/m2,>159.5千卡/cm2 二类地区是5400-6700MJ/m2, 128.6-159.5千卡/cm2 三类地区4200-5400MJ/m2, 100-128.6千卡/cm2 四类地区小于4200MJ/ m2。 <100千卡/cm2 我国主要城市年平均日照时数,也可以划分成四类地区。 一类地区平均日照时数在2500小时以上,一类地区有乌鲁木齐、拉萨、西宁、银川、呼和浩特、沈阳等, 二类地区平均日照时数在2000-2500小时之间,二类地区有北京、天津、石家庄、济南、南昌、太原、长春、哈尔滨、兰州等, 三类地区平均日照时数在1000-2000小时,三类地区有上海、南京、杭州、合肥、福州、郑州、长沙、南宁、广州、昆明、海口, 四类地区平均日照时数1000小时以下,四类地区有重庆、成都、贵阳。 【我国太阳能资源】旧版本 在我国,西藏西部太阳能资源最丰富,最高达2333 KWh/㎡(日辐射量6.4KWh/㎡),居世界第二位,仅次于撒哈拉大沙漠。 根据各地接受太阳总辐射量的多少,可将全国划分为五类地区。 一类地区 为我国太阳能资源最丰富的地区,年太阳辐射总量6680~8400 MJ/㎡,相当于日辐射量5.1~6.4KWh/㎡。这些地区包括宁夏北部、甘肃北部、新疆东部、青海西部和西藏西部等地。尤以西藏西部最为丰富,最高达2333 KWh/㎡(日辐射量6.4KWh/㎡),居世界第二位,仅次于撒哈拉大沙漠。 二类地区 为我国太阳能资源较丰富地区,年太阳辐射总量为5850-6680 MJ/m2,相当于日辐射量4.5~5.1KWh/㎡。这些地区包括河北西北部、山西北部、内蒙古南部、宁夏南部、甘肃中部、青海东部、西藏东南部和新疆南部等地。

太阳能辐射能量的换算

太阳能辐射能量的换算 ?太阳能辐射能量不同单位之间的换算 ?1卡(cal)=4.1868焦(J)=1.16278毫瓦时(mWh) ?1千瓦时(KWh)=3.6兆焦(MJ) ?1千瓦时/米平方(KWh/m2)=3.6兆焦/米平方(MJ/m2) =0.36千焦/厘米平方(KJ/cm2) ?100毫瓦时/厘米平方(mWh/cm2)=85.98卡/厘米平方 (cal/cm2) ?1兆焦/米平方(MJ/m2)=23.889卡/厘米平方 (cal/cm2)=27.8毫瓦时/厘米平方(mWh/cm2) ?太阳能辐射能量与峰值日照时数之间的换算 ?辐射能量换算成峰值日照系数:

?当辐射量的单位为卡/厘米平方时,则: 年峰值日照小时数=辐射量×0.0116(换算系数) 例如: 某地年水平面辐射量139千卡/厘米2(kcal/m2),电池组件倾斜面上的辐射量152.5千卡/厘米2(kcal/cm2),则年峰值日照小时数为:152500卡/厘米2(cal/cm2)×0.0116=1769h,峰值日照时数=1769÷365=4.85h. ?当辐射量的单位为兆焦/米平方(MJ/m2)时,则: 年峰值日照小时数=辐射量÷3.6(换算系数) 例如: 某地年水平辐射量为5497.27兆焦/米2(MJ/m2),电池组件倾斜面上的辐射量为348.82兆焦/米2(MJ/m2),则年峰值日照小时数为:6348.82(MJ/m2)÷3.6=1763.56h,峰值日照时数=1763.56÷365=4.83h. ?当辐射量的单位为千瓦时/米2(KWh/m2)时,则: 峰值日照小时数=辐射量÷365 例如:

全国太阳辐射量资料

具体分部情况见下图 资源带号名称指标 Ⅰ资源丰富带≥6700MJ/(m2·a) Ⅱ资源较富带5400~6700MJ/(m2·a)Ⅲ资源一般带4200~5400MJ/(m2·a)Ⅳ资源贫乏带<4200MJ/(m2·a)

附表1我国主要城市的辐射参数表 城市纬度Φ日辐射量 Ht 最佳倾角 Φop 斜面日 辐射量 修正系数 Kop 哈尔滨45.68 12703 Φ+3 15838 1.1400 长春43.90 13572 Φ+1 17127 1.1548 沈阳41.77 13793 Φ+1 16563 1.0671 北京39.80 15261 Φ+4 18035 1.0976 天津39.10 14356 Φ+5 16722 1.0692 呼和浩特40.78 16574 Φ+3 20075 1.1468 太原37.78 15061 Φ+5 17394 1.1005 乌鲁木齐43.78 14464 Φ+12 16594 1.0092 西宁36.75 16777 Φ+1 19617 1.1360 兰州36.05 14966 Φ+8 15842 0.9489 银川38.48 16553 Φ+2 19615 1.1559 西安34.30 12781 Φ+14 12952 0.9275 上海31.17 12760 Φ+3 13691 0.9900 南京32.00 13099 Φ+5 14207 1.0249 合肥31.85 12525 Φ+9 13299 0.9988 杭州30.23 11668 Φ+3 12372 0.9362 南昌28.67 13094 Φ+2 13714 0.8640 福州26.08 12001 Φ+4 12451 0.8978 济南36.68 14043 Φ+6 15994 1.0630 郑州34.72 13332 Φ+7 14558 1.0476 武汉30.63 13201 Φ+7 13707 0.9036 长沙28.20 11377 Φ+6 11589 0.8028 广州23.13 12110 Φ-7 12702 0.8850 海口20.03 13835 Φ+12 13510 0.8761 南宁22.82 12515 Φ+5 12734 0.8231 成都30.67 10392 Φ+2 10304 0.7553 贵阳26.58 10327 Φ+8 10235 0.8135 昆明25.02 14194 Φ-8 15333 0.9216 拉萨29.70 21301 Φ-8 24151 1.0964

全国各地太阳能总辐射量与年平均日照当量

全国各地太阳能总辐射量与年平均日照当量 地区类别地区 太阳能年辐射量 年日照时数 标准光照下 年平均日照 时间(时)MJ/m2·年 kWh/m2· 年 一宁夏北部、甘肃北部、 新疆南部、青海西部、 西藏西部 6680-84 00 1855-233 3 3200-3300 二河北西北部、山西北 部、内蒙古南部、宁 夏南部、甘肃中部、 青海东部、西藏东南 部、新疆南部 5852-66 80 1625-185 5 3000-3200 三山东、河南、河北 东南部、山西南部、 新疆北部、吉林、辽 宁、云南、陕西北部、 甘肃东南部、广东南 部、福建南部、江苏 北部、安徽北部、台 湾西南部 5016-58 52 1393-162 5 2200-3000

四湖南、湖北、广西、 江西、浙江、福建北 部、广东北部、陕西 南部、江苏南部、安 徽南部、黑龙江、台 湾东北部 4190-50 16 1163-139 3 1400-2200 五四川、贵州 3344-41 90 928-1163 1000-1400 附录B 江苏省部分地区的?、δ、ω、αs、γs值 城市名地理纬度 ?(o) 太阳赤纬 δ(o) 太阳时角 ω(o) 太阳高度 角 αs(o) 太阳方位 角 γs(o) 南京市南京0 0 江宁0 0 六合0 0 江浦0 0 溧水0 0 高淳0 0 苏州市 苏州0 0 张家港0 0 常熟0 0 太仓0 0 昆山0 0 吴县0 0 吴江0 0 无锡市无锡0 0 江阴0 0 宜兴0 0 常州市常州0 0 武进0 0 金坛0 0 溧阳0 0 镇镇江0 0

江市丹徒0 0 扬中0 0 丹阳32 0 0 句容0 0 扬州市扬州0 0 江都0 0 刑江0 0 仪征0 0 高邮0 0 宝应0 0 泰州市泰州0 0 晋江0 0 泰兴0 0 姜堰0 0 兴 化 0 0 南通市南通0 0 通州0 0 启东0 0 海门0 0 海安0 34 0 如皋0 0 如东0 0 徐州市徐州0 0 奉县0 0 沛县0 0 赣榆0 0 东海0 0 新沂0 0 邳县0 0 睢宁0 0 铜山0 0 淮安市淮安0 0 楚州0 0 洪泽0 0 盱眙33 0 0 涟水0 0 金湖0 0 盐城市盐城0 0 滨海0 0 阜宁0 0

太阳能板的安装角度计算方式

太阳能板的安装角度计算方式 由于太阳能是一种清洁的能源,它的应用正在世界范围内快速地增长。利用太阳光发电就是一种使用太阳能的方式,可是目前建设一个太阳能发电系统的成本还是较高的,从我国现阶段的太阳能发电成本来看,其花费在太阳电池组件的费用大约为60~70%,因此,为了更加充分有效地利用太阳能,如何选取太阳电池方阵的方位角与倾斜角是一个十分重要的问题。 1.方位角 太阳电池方阵的方位角是方阵的垂直面与正南方向的夹角(向东偏设定为负角度,向西偏设定为正角度)。一般情况下,方阵朝向正南(即方阵垂直面与正南的夹角为0°)时,太阳电池发电量是最大的。在偏离正南(北半球)30°度时,方阵的发电量将减少约10%~15%;在偏离正南(北半球)60°时,方阵的发电量将减少约20%~30%。但是,在晴朗的夏天,太阳辐射能量的最大时刻是在中午稍后,因此方阵的方位稍微向西偏一些时,在午后时刻可获得最大发电功率。在不同的季节,太阳电池方阵的方位稍微向东或西一些都有获得发电量最大的时候。方阵设置场所受到许多条件的制约,例如,在地面上设置时土地的方位角、在屋顶上设置时屋顶的方位角,或者是为了躲避太阳阴影时的方位角,以及布置规划、发电效率、设计规划、建设目的等许多因素都有关系。如果要将方位角调整到在一天中负荷的峰值时刻与发电峰值时刻一致时,请参考下述的公式。至于并网发电的场合,希望综合考虑以上各方面的情况来选定方位角。方位角=(一天中负荷的峰值时刻(24小时制)-12)×15+(经度-116)10月9日北京的太阳电池方阵处于不同方位角时,日射量与时间推移的关系曲线。在不同的季节,各个方位的日射量峰值产生时刻是不一样的。 2.倾斜角 倾斜角是太阳电池方阵平面与水平地面的夹角,并希望此夹角是方阵一年中发电量为最大时的最佳倾斜角度。一年中的最佳倾斜角与当地的地理纬度有关,当纬度较高时,相应的倾斜角也大。但是,和方位角一样,在设计中也要考虑到屋顶的倾斜角及积雪滑落的倾斜角(斜率大于50%-60%)等方面的限制条件。对于积雪滑落的倾斜角,即使在积雪期发电量少而年总发电量也存在增加的情况,因此,特别是在并网发电的系统中,并不一定优先考虑积雪的滑落,此外,还要进一步考虑其它因素。对于正南(方位角为0°度),倾斜角从水平(倾斜角为0°度)开始逐渐向最佳的倾斜角过渡时,其日射量不断增加直到最大值,然后再增加倾斜角其日射量不断减少。特别是在倾斜角大于50°~60°以后,日射量急剧下降,直至到最后的垂直放置时,发电量下降到最小。方阵从垂直放置到10°~20°的倾斜放置都有实际的例子。对于方位角不为0°度的情况,斜面日射量的值普遍偏低,最大日射量的值是在与水平面接近的倾斜角度附近。以上所述为方位角、倾斜角与发电量之间的关系,对于具体设计某一个方阵的方位角和倾斜角还应综合地进一步同实际情况结合起来考虑。 3.阴影对发电量的影响一般情况下,我们在计算发电量时,是在方阵面完全没有阴影的前提下得到的。因此,如果太阳电池不能被日光直接照到时,那么只有散射光用来发电,此时的发电量比无阴影的要减少约10%~20%。针对这种情况,我们要对理论计算值进行校正。通常,在方阵周围有建筑物及山峰等物体时,太阳出来后,建筑物及山的周围会存在阴影,因此在选择敷设方阵的地方时应尽量避开阴影。如果实在无法躲开,也应从太阳电池的接线方法上进行解决,使阴影对发电量的影响降低到最低程度。另外,如果方阵是前后放置时,后面的方阵与前面的方阵之间距离接近后,前边方阵的阴影会对后边方阵的发电量产生影响。有一个高为L1的竹竿,其南北方向的阴影长度为L2,太阳高度(仰角)为A,在方位角为B时,假设阴影的倍率为R,则: R =L2/L1 =ctgA×cosB 此式应按冬至那一天进行计算,

新能源专业太阳能试卷与答案100分

新能源专业-太阳能试卷 一、单选题【本题型共10道题】 1.光伏发电站并网运行时,向电网馈送的直流电流分量不应超过其交流额定值的()。 A.0.5% B.1% C.1.5% D.2% 用户答案:[A] 得分:1.00 2.光伏发电聚光光伏系统中,点聚焦聚光应采用()跟踪系统。 A.单轴 B.双轴 C.主动控制方式 D.被动控制方式 用户答案:[A] 得分:0.00 3.使用金属边框的光伏组件,边框和支架应结合良好,两者之间接触电阻应不大于()。 A.4Ω B.6Ω C.8Ω D.10Ω

用户答案:[D] 得分:0.00 4.水平单轴跟踪系统宜安装在以下哪类地区。() A.低纬度地区 B.中纬度地区 C.高纬度地区 D.中.高纬度地区 用户答案:[A] 得分:1.00 5.光伏组件串的最大功率工作电压变化范围应在()的最大功率跟踪电压范围内。 A.光伏组件 B.电池板 C.逆变器 D.二极管 用户答案:[C] 得分:1.00 6.我国太阳能资源年太阳辐射总量5850-6680MJ/m2,相当于日辐射量4.5~5.1KWh/㎡的地区,属于()类地区。 A.I B.II C.III D.IV 用户答案:[B] 得分:1.00 7.光伏方阵内光伏组件串的最低点距地面的距离不宜低于()。

A.100mm B.200mm C.300mm D.500mm 用户答案:[C] 得分:1.00 8.光伏电站站址所在地区,参考气象站应具有连续()以上的太阳辐射长期观测记录。 A.2年 B.5年 C.10年 D.15年 用户答案:[C] 得分:1.00 9.光伏发电站发电母线电压应根据接入电网的要求和光伏发电站的安装容量,经技术经济比较后确定,光伏发电站安装总容量大于1MWp,且不大于30MWp时,宜采用()电压等级。 A.0.4kV-10kV B.10kV-35kV C.35kV D.110kV 用户答案:[B] 得分:1.00 10.在我国太阳能资源年太阳辐射总量6680~8400MJ/㎡,相当于日辐射量5.1~6.4KWh/㎡的地区,属于()类地区。

太阳直接辐射计算

太阳直接辐射计算导则 1范围 本标准给出了太阳直接辐射计算的基本原则,不同条件下的计算方法和适用范围,以及对计算结果的检验要求。 本标准适用于水平面直接辐射和法向直接辐射的计算。 2规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅注日期的版本适用于本文件。 凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB/T 33698 —2017 太阳能资源测量直接辐射 GB/T 34325 —2017 太阳能资源数据准确性评判方法 3术语和定义 下列术语和定义适用于本文件。 3.1 直接辐射direct radiati on 从日面及其周围一小立体角内发出的辐射。 [GB/T 31163 —2014,定义5.11] 注:一般来说,直接辐射是由视场角约为5。的仪器测定的,而日面本身的视场角仅约为0.5 °,因此,它包括日面周围的部分散射辐射,即环日辐射。 3.2 法向直接辐射direct no rmal radiati on 与太阳光线垂直的平面上接收到的直接辐射。 注:从数值上而言,直接辐射与法向直接辐射是相同的;两者的区别在于,直接辐射是从太阳岀射的角度而定义,法向直接辐射则是从地表入射的角度而定义。 [GB/T 31163 —2014,定义5.12] 3.3 水平面直接辐射direct horizo ntal radiation 水平面上接收到的直接辐射。 [GB/T 31163 —2014,定义5.13] 3.4 散射辐射diffuse radiati on ;scatteri ng radiati on

太阳辐射被空气分子、云和空气中的各种微粒分散成无方向性的、但不改变其单色组成的辐射。 [GB/T 31163 —2014,定义5.14] 3.5 [ 水平面] 总辐射global [horizontal] radiation 水平面从上方2 n立体角(半球)范围内接收到的直接辐射和散射辐射之和。注:改写GB/T 31163 —2014,定义 5.15 。 3.6 地外太阳辐射extraterrestrial solar radiation 地球大气层外的太阳辐射。 [GB/T 31163 —2014,定义5.3] 3.7 辐照度irradiance 物体在单位时间、单位面积上接收到的辐射能。注:单位为瓦每平方米(W/m2)。 [GB/T 31163 —2014,定义6.3] 3.8 辐照量irradiation 曝辐量radiance exposure 在给定时间段内辐照度的积分总量。注1:单位为兆焦每平方米(MJ/m2)或千瓦时每平方米(kWh/m2)。 注2: 1 kWh/m2=3.6 MJ/m 2; 1MJ/ni ?0.28 kWh/m2。注3:改写GB/T 31163—2014,定义 6.5 。 3.9 法向直接辐照度direct normal irradiance 与太阳光线垂直的平面上单位时间、单位面积上接收到的直接辐射能。注:单位为瓦每平方米(W/m2)。 3.10 法向直接辐照量direct normal irradiation 在给定时间段内法向直接辐照度的积分总量。 注:单位为兆焦每平方米(Mj/m)或千瓦时每平方米(kwh/m)。 3.11 水平面直接辐照度direct horizontal irradiance 水平面上单位时间、单位面积上接收到的直接辐射能。 注:单位为瓦每平方米(W/m2)。 3.12 水平面直接辐照量direct horizontal irradiation 在给定时间段内水平面直接辐照度的积分总量。

太阳能辐射能量的换算

太阳能辐射能量的换算 太阳能辐射能量不同单位之间的换算 1卡(cal)=4.1868焦(J)=1.16278毫瓦时(mWh) 1千瓦时(KWh)=3.6兆焦(MJ) 1千瓦时/平方米(KWh/m2)=3.6兆焦/平方米(MJ/m2)=0.36千焦/平方厘米(KJ/cm2) 100毫瓦时/平方厘米(mWh/cm2)=85.98卡/平方厘米(cal/cm2) 1兆焦/米平方(MJ/m2)=23.889卡/平方厘米 (cal/cm2)=27.8毫瓦时/平方厘米 (mWh/cm2) 太阳能辐射能量与峰值日照时数之间的换算 辐射能量换算成峰值日照系数: 当辐射量的单位为卡/平方厘米时,则: 年峰值日照小时数=辐射量×0.0116(换算系数) 例如: 某地年水平面辐射量139千卡/厘米2(kcal/m2),电池组件倾斜面上的辐射量152.5千卡/厘米2(kcal/cm2),则年峰值日照小时数为:152500卡/厘米

2(cal/cm2)×0.0116=1769h,峰值日照时数=1769÷ 365=4.85h. 当辐射量的单位为兆焦/米平方(MJ/m2)时,则:年峰值日照小时数=辐射量÷3.6(换算系数) 例如: 某地年水平辐射量为5497.27兆焦/米2(MJ/m2),电池组件倾斜面上的辐射量为348.82兆焦/米2(MJ/m2),则年峰值日照小时数为:6348.82(MJ/m2)÷3.6=1763.56h,峰值日照时数=1763.56÷365=4.83h. 当辐射量的单位为千瓦时/米2(KWh/m2)时,则:峰值日照小时数=辐射量÷365 例如: 北京年水平面辐射量为1547.31千瓦时/米2(KWh/ m2),电池组件倾斜面上的辐射量为1828.55千瓦时/米2 (KWh/m2),则峰值日照小时数为:1828.55(KWh/m2)÷365=5.01h 当辐射量的单位为千焦/厘米2(KJ/c m2)时,则:年峰值日照小时数=辐射量÷0.36(换算系数) 例如:

太阳能倾斜面上辐射量的计算

倾斜面上辐射量的计算 直接辅射 倾斜面上的直射辐照度可利用下式求出: S(β,α)= Sm·cosθ 式中θ是太阳光线对倾斜面的入射角,可由下式得出: cosθ=cosβSinh+Sinβcoshcos(Ψ-α) 式中β是倾斜面与水平面间的夹角,h是太阳高度角,Ψ是太阳的方位角,α是倾斜面的方位角,方位角从正南算起,向西为正,向东为负。对于水平面来说,由于β=0,所以cosθ=Sinh,因此: S(0,0)= Sm·Sinh 设K S=S(β,α)/S(0,0),将前面的公式代入,则有: K S=cosθ/Sinh=cosβ+Sinβ·cos(Ψ-α) /tanh K S称为换算系数。 有了K S值,根据水平面上的辐射值很容易求出倾斜面的辐射值。对于不同时段的曝辐射量,也是如此。只时求算K S时,Ψ、α、h等值要代入相应时段的平均值。 当计算较长时段内的曝辐射量时,如日总量,使用换算系数也很方便,只是这时的K S值应从实测值中得出,而不能用上述几何关系计算出来。对于实用来说,用月平均日总量的K S值最方便,它比个别日子的K S值对云量和透明状况的依赖性更少。其他影响K S的因子是地点的纬度、倾斜面的朝向和月份等。表13给出了不同纬度三种倾斜角度月平均日总量的K S值。 散射辐射 朝向倾斜面上的散射辐照度,困难要大得多。通常的解决办法是假定辐射是各向同性的,即呈均匀分布。这样,散射辐照度E d↓和反射辐照度E r↑可按下列公式计算。 E d↓(β,α)= E d↓(1+ Cosβ)/2 E r↑(β,α)= E r↑(1- Cosβ)/2 式中E d↓和E r↑是水面上的散射和反射辐照度。 不过,用下式根据水平面上的散射辐照度计算倾斜面上的散射辐照度,要比利用各向同性的假设更准确此。 E d↓(β,α)+ E r↑(β,α)=K(E d+ E r)·E d↓ 换算系数K(E d+E r)是在各种太阳高度角和方位角下,用总辐射表对各种倾斜表面上的散射辐照度和反射辐照度进行实测的结果确定的。表14给出了不同混浊情况下不同的K(E d+E r)值。 总辅射在各向同性的前提下,倾斜面上的总辐射可用下式算出: E g↓(β,α)=Ks·Sm+ E d↓(1+ Cosβ)/2+ E r↑(1- Cosβ)/2 不过,对于大多数用户来说,通过换算系数Kg直接从水平面的总辐射求出E g↓(β,α)更方便,即 E g↓(β,α)=Kg·E g↓ 表15 是国外发表的在一些情况下总辐射月平均日总量的Kg值。

太阳能辐射计算公式

一、中国太阳能直接辐射的计算方法 ()1bS a Q S +='(1) () 211111S c S b a Q S ++='(2)⊙ ()n c S b a Q S 2122++='(3) S ′为直接辐射平均月(年)总量;Q 为计算直接辐射的起始数据,可采用天文总辐射S 0,理想大气总辐射,Q i ,晴天总辐射Q 0来表示。a ,b ,a 1,b 1,c 1,a 2,b 2,c 2为系数。n 为云量。S 1为日照百分率。 相关系数的计算公式: ()() ()() ()()∑∑∑∑∑∑∑∑∑=========?? ? ??-?? ? ??--= ----= n i n i i i n i n i i i n i n i n i i i i i n i i i n i i i y y n x x n y x y x n y y x x y y x x r 12 12 12 121 1 1 1 2 21 考虑到大气透明度,则有 ()()n c S b a P P P Q n c S b a P P P Q S i m i 2122cos cos sin sin 1 2122++=++='+海 年海 年δ ?δ?(4) 其中m 为大气质量: δ ?δ?cos cos sin sin 1 sinh 1+== Θm 其中,φ为测站的纬度;δ为赤纬角,取每月15日的赤纬值作为月平均值;时角ω统一取中午12时,则ω=0,cosω=1;年P 为测站的年平均气压,P 海为海平面气压,P 海=1013.25mp ,海年P P 为对大气质量进行的高度订正。 对于a 2的计算: 当测站的海拔H≥3000m 时,a 2=0.456; 当H≤3000m 是,若年平均绝对湿度E ≤10.0mb ,则 F a ?-=00284.0688.02 否则F a ?-=01826.07023.02,其中F 为测站沙尘暴日数与浮尘日数之和。 对于(4)式中,系数之间的关系式为 { 011.1039.02222=+-=+b a c a

中国光资源分布

中国三北地区太阳能资源分布 按接受太阳能辐射量的大小,全国大致上可分为五类地区,如表1.1所示 五类地区分布图见图1.1

内蒙古太阳能资源状况: 内蒙古全区太阳能资源的分布自东部向西南增多,以巴彦淖尔市西

部及阿拉善盟最 多,太阳能总辐射量高达6490~6992兆焦耳/平方米,仅次于青藏高原,处我国的第二位。 一年之中,4~9月辐射总量与日照率都在全年的50%以上。特别是4~6月,东南季风还未推 进到内蒙古境内,所以空气干燥,阴云天气少,日照充足。内蒙古大部分年日照时数都大 于2700小时,其中: 1、巴彦淖尔市西部,日照时数为3100—3300小时。 巴彦淖尔市太阳能资源十分丰富,属我国太阳能资源富集区域。全市各地太阳年总辐 射量为198.8-208.5瓦/平方米之间,由东向西逐步增多。其中,杭锦后旗、五原为200-204 瓦/平方米之间,临河、乌中旗200瓦/平方米。各月总辐射的高值在5、6、7月,其次为8月 、4月和9月,其中5月达到极高值。5、6、7月的太阳高度角为一年中最高的时候,而5月是 降水量最少的月份,此时的云量少,晴天多,日照足,因而辐射强烈;6、7月份随云量和降 水天气的逐渐增多,总辐射量有所下降;8月为降水量多的时期,且日照时数也减少,辐射进一步减弱,其他月份由于太阳高度角低,日照时间短,比5月平均少30小时以上。

青海省位于青藏高原东北部,境内80%以上地区海拨高度3000m。大气层相对稀薄,目 光透过率高,加之气候干旱,降雨量少,无霜期长,云层遮蔽率低,故太阳能辐射资源十 分丰富。其特征为:一是年日照时间长,全省各地年日照时间达2300~3650h,年平均日照 率达60%~80%;二是光辐射强度大,省内各地的辐射总量达586×104~754×104kJ/m2·h。 三是直接辐射比例高。境内西、北部地区一般超过60%,全省直接辐射年平均值为419× 104kJ/m2·h以上。 新疆太阳能资源状况: 新疆水平表面太阳辐照度年总量为5×105~6.5×105 J / (cm2·a),年平均值为5.8 ×105J/(cm2·a),年总辐射量比同纬度地区高10%~15%,比长江中下游高15%~25%,仅次 于青藏高原,居全国第二位。太阳辐射峰值出现在东疆和南疆东部一带,最低值出现在博 州、阿尔泰和天山北麓部分地区,年总辐照度的区域分布大致是由东南向西北不均匀递减 。东南部太阳总辐照度多在 5.8×105J/(cm2·a)以上,西北部均为5.2×105 J/(cm2·a)。

太阳直接辐射计算

太阳直接辐射计算导则 1 围 本标准给出了太阳直接辐射计算的基本原则,不同条件下的计算方法和适用围,以及对计算结果的检验要求。 本标准适用于水平面直接辐射和法向直接辐射的计算。 2 规性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB/T 33698—2017 太阳能资源测量直接辐射 GB/T 34325—2017 太阳能资源数据准确性评判方法 3 术语和定义 下列术语和定义适用于本文件。 3.1 直接辐射 direct radiation 从日面及其周围一小立体角发出的辐射。 [GB/T 31163—2014,定义5.11] 注:一般来说,直接辐射是由视场角约为5°的仪器测定的,而日面本身的视场角仅约为0.5°,因此,它包括日面周围的部分散射辐射,即环日辐射。 3.2 法向直接辐射direct normal radiation 与太线垂直的平面上接收到的直接辐射。 注:从数值上而言,直接辐射与法向直接辐射是相同的;两者的区别在于,直接辐射是从太阳出射的角度而定义,法向直接辐射则是从地表入射的角度而定义。 [GB/T 31163—2014,定义5.12] 3.3 水平面直接辐射direct horizontal radiation 水平面上接收到的直接辐射。 [GB/T 31163—2014,定义5.13] 3.4 散射辐射diffuse radiation;scattering radiation 太阳辐射被空气分子、云和空气中的各种微粒分散成无方向性的、但不改变其单色组成的辐射。 [GB/T 31163—2014,定义5.14] 3.5 [水平面]总辐射global [horizontal] radiation

太阳辐射强度测量

4太阳辐射照度实验(略) 实验设备:辐射电流表、总辐射表、辐射热计 实验原理: 太阳辐射电流表是与太阳总辐射表配套使用的二次仪表,将其测得数据经过换算后,即为太阳辐射的瓦/平方米值。其具有检测精度高,便携式设计,性能稳定,功能丰富等方面特点,是太阳能测试方面的理想工具。该表用来测量光谱范围为0.3-3μm的太阳总辐射,也可用来测量入射到斜面上的太阳辐射,如感应面向下可测量反射辐射,如加配遮光环可测量散射辐射。因此,它可广泛应用于教学、太阳能利用、气象、农业、建筑材料老化及大气污染等部门做太阳辐射能量的测量。 仪器的工作原理基于热电效应。在锰铜—康铜组成的热电堆上涂以炭黑及氧化镁,利用他们对太阳辐射热吸收系数的不同而造成热电堆冷、热端点的温差,形成热电势。用辐射电流表测出其热电流强度,这个电流强度的大小与太阳辐射照度成正比。 辐射热计用于测量工作地点所接受到的单向辐射热强度。 实验方法: (1)在太阳直射辐射不被遮蔽的开阔处,安装好天空辐射表,调节底板上的三个螺钉,使仪器感应面成水平位置。辐射电流表安装在天空辐射表的北面,其距离应使观测者读数时不遮挡天空辐射表。 (2)将天空辐射表的2根导线与辐射电流表的(+)、(-)端连接好,待仪器稳定后即可开始测量。 (3)测量总辐射照度时,把天空辐射表头部的金属罩取下,经40s后即可从电流表上读取数值;测散射辐射照度时,需用专用遮光板遮住太阳直射辐射,然后从电流表上读数;直射辐射照度可从同步测得的总辐射照度中减去散射辐射照度来求得。 (4)把上述辐射电流表上的数值按仪器使用说明书中的公式换算成辐射照度。 设备参数: 辐射电流表 测试范围:0~2000瓦/平方米检测精度:<±1瓦/平方米 显示数值:小于200毫伏(液晶显示) 使用温度:-20~+50℃ 电池供电:DC:9V连续使用大于七天相对湿度:80% 重量:小于600克 总辐射表 灵敏度:7~14mv/kw.m-2 响应时间:<35秒(99%) 余弦响应:不大于±7%(太阳高度10°时) 年稳定度:不大于±2% 温度系数:不大于±2%(-10℃~+40℃) 光谱范围:0.3~3.2μm 信号输出:0~20mv 非线性:±2% 重量:2.5kg 辐射热计 量程:0-2kW/平方米分辨率:0.01kW/平方米标定精度:±5% 实验报告要求:测量记录本地太阳能辐射强度。

世界太阳能资源分布

世界太阳能资源分布 太阳向宇宙空间发射的辐射功率为3.8x1023kW的辐射值,其中20亿分之一到达地球大气层。到达地球大气层的太阳能,30%被大气层反射,23%被大气层吸收。47%到达地球表面,其功率为800000亿kW,也就是说太阳每秒钟照射到地球上的能量就相当于燃烧500万吨煤释放的热量。 全球人类目前每年能源消费的总和只相当于太阳在40分钟内照射到地球表面的能量。 国际太阳能资源分布 根据国际太阳能热利用区域分类,全世界太阳能辐射强度和日照时间最佳的区域包括北非、中东地区、美国西南部和墨西哥、南欧、澳大利亚、南非、南美洲东、西海岸和中国西部地区等。根据德国航空航天技术中心(DLR)的推荐,不同地区太阳能热发电技术和经济潜能数据及其技术潜能基于太阳年辐照量测量值大于6480MJ/m2,经济潜能基于太阳年辐照量测量值大于7200MJ/m2。 北非地区是世界太阳能辐照最强烈的地区之一。 摩洛哥、阿尔及利亚、突尼斯、利比亚和埃及太阳能热发电潜能很大。阿尔及利亚的太阳年辐照总量9720MJ/m2,技术开发量每年约169440TW·h。摩洛哥的太阳年辐照总量 9360MJ/m2,技术开发量每年约20151TW·h。埃及的太阳年辐照总量10080MJ/m2,技术开发量每年约73656TW·h。太阳年辐照总量大于8280MJ/m2的国家还有突尼斯、利比亚等国。阿尔及利亚有2381.7km2的陆地区域,其沿海地区太阳年辐照总量为6120MJ/m2,高地和撒哈拉地区太阳年辐照总量为6840~9540MJ/m2,全国总土地的82%适用于太阳能热发电站的建设。

世界太阳能资源分布图 南欧的太阳年辐照总量超过7200MJ/m2。 这些国家包括葡萄牙、西班牙、意大利、希腊和土耳其等。西班牙太阳年辐照总量为8100MJ/m2,技术开发量每年约1646TW·h。意大利太阳年辐照总量为7200MJ/m2,技术开发量每年约88TW·h。希腊太阳年辐照总量为6840MJ/m2,技术开发量每年约44TW·h。葡萄牙太阳年辐照总量为7560MJ/m2,技术开发量每年约436TW·h。土耳其的技术开发量每年约400TW·h。西班牙的南方地区是最适合于建设太阳能能热发电站地区之一,该国也是太阳能热发电技术水平最高、太阳能热发电站建设最多的国家之一。 中东几乎所有地区的太阳能辐射能量都非常高。 以色列、约旦和沙特阿拉伯等国的太阳年辐照总量8640MJ/m2。阿联酋的太阳年辐照总量为7920MJ/m2,技术开发量每年约2708TW·h。以色列的太阳年辐照总量为8640MJ/m2,技术开发量每年约318TW·h。伊朗的太阳年辐照总量为7920MJ/m2,技术开发量每年约20PW·h。约旦的太阳年辐照总量约9720MJ/m2,技术开发量每年约6434TW·h。以色列的总陆地区域是20330km2;Negev沙漠覆盖了全国土地的一半,也是太阳能利用的最佳地区之一,以色列的太阳能热利用技术处于世界最高水平之列。我国第1座70KW太阳能塔式热发电站就是利用以色列技术建设的。 美国也是世界太阳能资源最丰富的地区之一。 根据美国239个观测站1961—1990年30年的统计数据,全国一类地区太阳年辐照总量为9198~10512MJ/m2,一类地区包括亚利桑那和新墨西哥州的全部,加利福尼亚、内华达、犹他、科罗拉多和得克莎斯州的南部,占总面积的9.36%。二类地区太阳年辐照总量为7884~9198MJ/m2,除了包括一类地区所列州的其余部分外,还包括犹他、怀俄明、堪萨斯、俄克拉荷马、佛罗里达、佐治亚和南卡罗来纳州等,占总面积的35.67%。三类地区太阳年辐照

一种基于统计的逐时太阳辐射数据计算方法

一种基于统计的逐时太阳辐射数据计算方法 摘要:逐时气象参数是建筑物全年能耗计算机模拟的必要输入参数之一,其中的太阳辐射数据通常难以得到。本文提出了一种基于统计的逐时太阳辐射数据计算方法,在计算出大气层外水平面逐时太阳辐射数据的基础上,利用典型气象年逐时气象参数中的太阳辐射数据,拟合出水平面逐时太阳总辐射量与大气层外水平面逐时太阳总辐射量之间的关系,以及法线方向太阳直射辐射量与水平面太阳总辐射量之间的关系,再结合实际气象年的相关气象数据,从而可以计算得到实际气象年的逐时太阳辐射数据。关键词:气象参数太阳辐射统计 0 前言当前,采用计算机模拟的方法对建筑物的全年能耗进行分析越来越普遍,这种方法既可以在设计阶段,对新建建筑的能耗进行预测,从而指导建筑物能源系统的设计,使之符合国家相关的节能标准。同时,也可以用于已建建筑,对建筑物的能耗进行评价和预测,并为对其进行节能改造的可能性及其效果进行预估。目前,常用于建筑物全年能耗模拟的计算机软件有DOE-2(包括VisualDOE)、EnergyPlus、

eQUEST和DeST等。由于空调系统在整个建筑物的全年能耗中占有相当大的比例,因此,在对建筑物的全年能耗进行计算机模拟的时候,不可避免地要计算空调系统的全年能耗,而空调系统的能耗,与当地的气象条件,特别是温度、湿度和太阳辐射强度紧密相关。通常,在设计阶段进行建筑物能耗预测时,一般采用典型气象年数据;而在对已建建筑进行全年能耗分析的时候,由于已经可以取得建筑物运行的实际能耗数据,通常需要根据实际能耗数据和实际气象年逐时数据对计算机模型进行校准(calibration),以保证模型具有足够的精度,然后再采用标准气象年数据进行计算,并根据计算结果进行评价和比较。这种建模→模型校准→计算及结果评价的方法也是IPMVP 2002 (International Performance and Measurement Verification Protocol)中所推荐的方法。1 基本计算方法根据DOE-2程序的要求,计算空调负荷用的逐时气象参数有湿球温度、干球温度、大气压力、云量、雪、雨、风向、空气绝对含湿量、空气密度、空气焓值、水平面太阳总辐射量、法线方向太阳直射辐射量、云的类型与风速等14项。除了与太阳辐射有关的两项参数外,都可以由当地气象台站公布的逐时气象参数直接取得,或者通过一定的计算和量化取得。与此不同的是,有关太阳辐射的两项参数的取得则比较困难。由于我国的气象台站均不公布逐时太阳辐射数据,因此有些学者采用半正弦模型进行插值,有些采用混合

(整理)太阳能资源的概述和评价

太阳能资源的概述和评价 引言 目前,在能源日渐短缺和环境保护双重压力形势下,,各国政府都十分重视可再生能源的开发利用。在发电领域,资源消耗十分巨大。尤其是在我国,火电占据绝大部分的电能来源。开发使用新的能源迫在眉睫。太阳能光伏发电是解决当前能源危机的重要途径之一。 太阳能并网发电系统通过把太阳能转化为电能,不经过蓄电池储能,直接通过并网逆变器,把电能送上电网。太阳能并网发电代表了太阳能电源的发展方向,是21世纪最具吸引力的能源利用技术 并网发电系统组成包括太阳能电池组件,直交流逆变器,配电室,还有并网发电的防雷系统等等。太阳能并网发电系统优点是生产电能的过程清洁便利,并且太阳能资源丰富可再生。还有就是发电系统的装置可与建筑物完美结合,分布式的建设,进退电网灵活,可以有效改善符合平衡,降低损耗。此外还能起到调峰的作用。它的缺点就是受气候因素影响明显。这就导致了它的应用时间有间隙性和随机性,遇到阴雨天气无法正常发电。还有就是能量密度较低,发一定的电量需要很大的占地面积的接收太阳能的装置。此外太阳能发电装置造价很高,成本是很重要的一个问题。 虽说国内的光伏发电产业还处在发展的初期阶段,但是国家和地方也出台了相关的政策来推进的这一产业的快速发展。国家能源局于2013年11月26日发布有效期为3年的《光伏发电运营监管暂行办法》,规定电网企业应当全额收购其电网覆盖范围内并网光伏电站项目和分布式光伏发电项目的上网电量,明确了能源主管部门及其派出机构对于光伏发电并网运营的各项监管责任,光伏发电项目运营主体和电网企业应当承担的责任,从而推进光伏发电并网有序进行。此外甘肃省,河北省,安徽省等省份也相继出台了扶持光伏产业的相关政策。 中国2011年的光伏装机量高达2.9GW,同比2010年增长了500%。亚太地区仅第四季度就有2.8GW的装机量,全年装机量达到6GW,较前一年增长了165%。2012年中国光伏装机容量约为4.5GW,较之2011年的2.89GW增长55.7%,成为继德国之后的全球第二大光伏装机大国。不过,根据国家电监会的数据,2012年中国新增太阳能装机容量仅为1.19GW。在政策与补助的大力推动下,中国2013年的光伏装机量远多于各界预期,高达13GW。特别是中国西部地区,受利于年底并网即可获得优惠电价的刺激,第四季的光伏并网量暴增,且能量持续。今年全国光伏总装机量上看14GW。中国国家能源局及光伏业界原本估计去年全国光伏装机量约在8~9.5GW上下,但由于国家透过年底并网即可获得每千瓦时一元人民币上网优惠电价的刺激,光伏装机量于去年年末暴增,第四季的装机量超越前九个月的总和。去年新增光伏装机量最高者分别是甘肃省超过 2.6GW、新疆省1.82GW、青海省 1.67GW;而在此强大能量的推动下,国家能源局进一步将2014年的新增光伏装机量目标订在10~14GW,其中包括分布式光伏8GW和大型地面光伏电站6GW。 中国的光伏发电产业正在高速迈进。

相关主题
文本预览
相关文档 最新文档