当前位置:文档之家› 用有限元强度折减法求边坡稳定安全系数

用有限元强度折减法求边坡稳定安全系数

用有限元强度折减法求边坡稳定安全系数
用有限元强度折减法求边坡稳定安全系数

求解边坡稳定安全系数两种方法的比较

求解边坡稳定安全系数两种方法的比较 摘要:目前,边坡稳定性分析主要有刚体极限平衡法和有限元强度折减法,本文就理论基础、安全系数的定义及优缺点对以上两种方法进行了简要评述。基于极限平衡法的发展起来的各种方法物理意义简单,便于计算,但是需要许多假设。有限元强度折减法不需要假设,可以直接搜索临界滑动面并求出相应的安全系数,同时考虑了岩土体的弹塑性和边坡的破坏失稳过程。通过对两种方法的认识比较,给岩土边坡工作者设计施工提供一定的参考价值。 关键词:边坡稳定性;极限平衡法;有限元法;安全系数 引言 边坡稳定分析是一个非常复杂的问题,从20世纪50年代以来,许多专家学者致力于这一研究,因此边坡稳定分析的内容十分丰富。总体上来说,边坡稳定分析方法可分为两大类:定性分析方法和定量分析方法。定性分析方法主要是通过工程地质勘探,可以综合考虑影响边坡稳定性的多种因素,对边坡岩土体的性质及演化史、影响边坡稳定性的主要因素、可能的变形破坏方式及失稳的力学机制等进行分析,从而给出边坡稳定性评价的定性说明和解释。然而,人们更关心的是如何定量表示边坡的稳定性,即边坡稳定性分析的计算方法,定量方法将影响边坡稳定的各种因素都作为确定的量来考虑,通常以计算稳定安全系数为基础。边坡稳定分析的定量方法有很多种,如条分法、数值分析方法、可靠度方法和模糊数学方法等[1-3]。 目前,边坡稳定分析方法中,人们较为熟知且广泛应用的有条分法和有限元方法。条分法在边坡稳定分析中最早使用,因其力学模型概念清楚、简单实用,故广泛应用于实际工程中,已经逐渐成为边坡稳定分析的成熟方法。随着计算机技术的发展,数值分析方法在工程领域应用越来越成熟,有限元方法考虑了土体的非线性应力-应变关系,同时弥补了条分法的不足,近年来有限元方法得到了极大的发展。[4-6] 刚体极限平衡法 刚体极限平衡法是人们提出的最早的一类方法,是边坡分析的经典方法,只需要少许力学参数就能提供便于设计应用的稳定性指标即安全系数。安全系数的定义为作用于岩土体中潜在破坏面上块体沿破坏面的抗剪力与该块体沿破坏面的剪切力之比。具体实现起来是将有滑动面切成若干竖条或者斜条,在分析条块受力的基础上建立整个滑动土体的力或力矩平衡方程,并以此为基础确定边坡的稳定安全系数。条分法是建立在摩尔-库仑强度准则、静力平衡条件和滑动面搜索基础上的。[7-9] 摩尔-库仑强度准则

边坡稳定及参数选取

第四章堤防边坡失稳的除险加固 汛期堤防边坡失稳包括临水坡的滑坡和崩岸与背水坡的滑坡,这些险情严重地威胁着堤防的安全,必须对其进行彻底的有效的治理。 堤防边坡失稳的原因是多方面的,在除险加固前必须对引起失稳的原因进行仔细地分析判断,找出原因,有针对性的采用相应的除险加固措施。加固工作必须以《堤防工程设计规范》为依据,精心设计和施工。加固后堤防必须达到设计标准。本章就边坡失稳除险加固的有关技术问题做一系统的介绍,主要内容包括边坡失稳的成因与分类,滑坡的安全复核,边坡除险加固技术和崩岸除险加固技术。 第一节边坡失稳的成因与类型 一、边坡失稳的成因 堤防建成后,在运用中可能会遇到各种各样的情况,如汛期河湖水位涨、落、冲刷;台风季节风浪的袭击;暴雨时的浸水以及生物洞等等均会使堤防边坡失稳。现分述如下: 1.渗流原因 在汛期,当河水位上涨到一定高度时,且持续时间又较长,堤身(在浸润线以下部分)将呈浸水的饱和状态,土体完全饱和后,抗剪强度降低,堤身的自重增加,相应的下滑力增大。另外,渗流产生的渗透力,进一步增加了滑动体的滑动力。综上所述,在渗流作用下堤身滑动体重量增加,抗剪强度降低和渗透力增加等均是导致滑坡产生的重要原因。 (二)水流冲刷浸袭原因 水流冲刷浸袭岸坡主要发生在临水坡。 如在河流凹岸部分,往往主流逼岸。受环流冲刷特别是急流顶冲的作用,岸坡淘刷通常较为严重。一旦岸脚防护设施抵抗不住水流的冲刷力,护脚将被破坏,使岸脚的坡度逐渐变陡,直至失去平衡引起岸坡失稳破坏,即为通常所说的崩岸险

情。这种破坏多发生在河道弯曲河势复杂的凹岸堤段。在汛期的涨水过程中或枯水期都有发生。 另外,当水位退至滩地地面高程以下并且堤身内渗水又不能及时排出时,将产生反向渗透力。再加上浸水饱和堤身自重增加和强度降低,往往会发生坍塌。如不及时处理,坍塌会逐步向堤防坡脚逼近,直到坡脚,引起岸坡失稳滑坡。这种滑坡均发生在临水坡。 (三)堤防地基问题引起的滑坡 堤防地基主要有两个问题,其一是地基的天然强度不够,其二是当截水设施失效时,由于大量渗水形成管涌而引起的堤防坍塌破坏。本节只介绍第一个问题,第二个问题详见第三章。 造成堤防地基强度不够的原因是:①堤防设计时选用的计算强度指标与实际强度不符。出现这种情况的原因有:没有进行堤防地基的土质调查,凭经验做堤;钻探过于简单,没有探查到堤防地基中软弱夹层或者探查深度不够等等。②在软粘土地基上筑堤,由于施工速率过快,使其地基强度降低。据大量工程经验,由于筑堤(填土)速度过快,使地基强度降低的幅度可达10~20%左右。由上述可明显看出,由于地基问题而引起的岸坡滑动通常是深层滑坡,破坏一般均发生在施工期或竣工时。 (四)其它原因 堤身的填筑质量未达设计要求;新、老堤界面处理不当;暴雨时,雨水沿堤身裂缝渗入堤身内部,使堤身强度降低以及在堤脚下挖塘等人为因素,均有可能引起滑坡。 上述各项原因,其中任何一种或二种原因,甚至多种原因组合都能引起堤防滑坡。

(安全生产)边坡稳定采用土体指标不同时安全系数的对比

防洪堤稳定性的研究 周建1,余嘉澍2 (1.浙江大学岩土工程研究所;2.浙江省水利水电勘测设计院) 摘要:首先对防洪堤浸润线以上土体进行了不同浸泡时间的浸泡试验,试验结果表明,土体的凝聚力随浸泡时间的增长大幅度下降,浸泡5d后土体的凝聚力将下降71.8%,但浸泡不改变土体摩擦角的大小。通过等效超固结比(循环前后土体平均有效应力的比值)的概念,研究了动水作用下土体强度的循环弱化,为综合考虑动水循环荷载及浸泡作用对防洪堤稳定的影响,用简化毕肖普法对防洪堤稳定进行了计算,结果表明只考虑波浪(潮汐)作用,防洪堤的安全系数降低幅度不大,但同时考虑浸泡作用,特别是长时间浸泡后,防洪堤的安全系数降低最大可达20%。 关键词:浸泡试验;波浪作用;强度降低;稳定分析 作者简介:周建(1970-),女,湖北浠水人,浙江大学岩土工程研究所副教授、博士,主要从事软粘土动力学特性、软土地基处理等方面研究。 1 概述 目前在计算分析防洪堤沉降和稳定时,未能考虑波浪(潮汐)等动水荷载作用下地基土体特性的变化情况。动水作用与静水作用截然不同,除了荷载本身类型不同外,最主要的差别是在周期动荷载作用下,土体会产生软化,这种软化将使防洪堤地基土体和堤身材料的强度降低,导致防洪堤产生较大的沉降,影响其稳定性;此外洪水期间防洪堤正常水位以上土体受洪水浸泡,其土体强度也将明显下降,所以在进行防洪堤稳定分析时必须考虑这些因素的作用,下面将结合临海城防工程对这些问题进行一些探讨。 临海城防江北防洪堤土堤段(BD1+332~BD1+936.878)位于灵江一桥至灵江二桥段,地势开阔。土堤顶宽6m,高约7m,内外边坡分别为1:2.5~1:3,结合环境美化,按原状地形增设平台,其中外坡自平台至坡脚采用细石混凝土灌砌块石护坡并另设混凝土大方脚固基。堤身内土料自外至内大体分为3个区填筑,中部心墙采用粘性土回填并分层夯实,渗透系数K<1×10-5cm/s。 根据地质勘探,土堤段地基土体自上而下可分为如下工程地质层:Ⅰ层:杂 层:填土(rQ)。以碎石和建筑垃圾为主,厚度0~2.4m,容重γ=19.5kN/m3。Ⅱ 2 粉质粘土、粉土互层(al-mQ )。灰黄色~灰色,饱和,中等压缩性,厚度0~3.4m, 4 层:淤泥质粘土、容重γ=18.3kN/m3。粉质粘土,软塑~可塑;粉土,稍密。Ⅲ 2 粉土互层(mQ )。青灰色,饱和,高压缩性,局部粉土含量较高,厚度0~6.5, 4 层:淤泥夹砂、容重γ=18.0kN/m3。淤泥质粘土,软塑~流塑;粉土,稍密。Ⅲ 3 砾石(al-mQ )。青灰色,饱和,该层土性混杂,砂、砾石含量及分布极为不均, 4 局部含量较高,砾石直径一般2~8cm,个别可达15~20cm以上。厚度0~7.65m,容重γ=18.5kN/m3。淤泥,流塑,高压缩性。

强度折减法的原理

二 抗剪强度折减系数法的理论 2.1抗剪强度折减系数法的概念 抗剪强度折减系数(SSRF :Shear Strength Reduction Factor)定义为:在外荷载保持不变的情况下,边坡内土体所发挥的最大抗剪强度与外荷载在边坡内所产生的实际剪应力之比。这里定义的抗剪强度折减系数,与极限平衡分析中所定义的土坡稳定安全系数在本质上是一致的。 2.2抗剪强度折减系数法的具体内容 所谓抗剪强度折减技术就是将土体的抗剪强度指标C 和φ,用一个折减系数s F ,如式 (1)和(2) 所示的形式进行折减,然后用折减后的虚拟抗剪强度指标F C 和F φ,取代原来的抗剪强度指标C 和φ,如式(3)所示。 s F F C C /= (式1) )/)((tan tan 1s F F φφ-= (式2) F F fF C φστtan += (式3) 式中:F C 是折减后土体虚拟的粘聚力;F φ是折减后土体虚拟的内摩擦角;fF τ是折减后的抗剪强度。 折减系数s F 的初始值取得足够小,以保证开始时是一个近乎弹性的问题。然后不断增加s F 的值,折减后的抗剪强度指标逐步减小,直到某一个折减抗剪强度下整个土坡发生失稳,那么在发生整体失稳之前的那个折减系数值,即土体的实际抗剪强度指标与发生虚拟破坏时折减强度指标的比值,就是这个土坡的稳定安全系数。 2.3抗剪强度折减系数法的优点 结合有限差分法的抗剪强度折减系数法较传统的方法具有如下优点: (1)能够对具有复杂地貌、地质的边坡进行计算; (2)考虑了土体的本构关系,以及变形对应力的影响; (3)能够模拟土坡的边坡过程及其滑移面形状(通常由剪应变增量或者位移增量确定滑移面的形状和位置); (4)能够模拟土体与支护结构(超前支护、土钉、面层等)的共同作用;

基于有限元强度折减法的边坡稳定性分析报告

基于有限元强度折减法的边坡稳定性分析 报告 学院:土木工程与力学学院 专业:结构工程 姓名: 学号: 2016年7月

有限元强度折减法研究进展 摘要:在边坡稳定性分析中,相比于传统的极限平衡法、极限分析法等,有限元强度折减法具有明显的优势。这主要体现在其无须事先假定滑动面的形状和位置,只需通过不断降低边坡岩土体的强度参数,进而使边坡岩土体因抗剪强度不能抵抗剪切应力而发生破坏,并最终得到边坡的最危险滑动面及相应的安全系数。有限元强度折减法兼有数值计算方法和传统极限平衡方法的优点。本文介绍了有限元强度折减法的原理与主要研究现状,并对其中的一些重点问题进行了研究与总结。 关键词:强度折减法;有限元;边坡稳定 1 有限元强度折减法基本原理 所谓强度折减,就是在理想弹塑性有限元计算中将边坡岩土体抗剪切强度参数逐渐降低直到其达到破坏状态为止,程序可以自动根据弹塑性计算结果得到破坏滑动面(塑性应变和位移突变的地带),同时得到边坡的强度储备安全系数ω, 于是有: ==。 '/,tan'tan/ c cω??ω 一般地,强度折减弹塑性有限元数值分析方法考察边坡稳定性的步骤是:首先对于某一给定的强度折减系数,通过逐级加载的弹塑性有限元数值计算确定边坡内的应力场、应变场或位移场,并且对应力、应变或位移的某些分布特征以及有限元计算过程中的某些数学特征进行分析,不断增大折减系数,直至根据对这些特征的分析结果表明边坡己经发生失稳破坏,将此时的折减系数定义为边坡的稳定安全系数。尽管强度折减有限元法在边坡稳定性分析中得到重视与发展,但其计算中需要采用一定的边坡失稳评判标准来确定边坡失稳的临界状态,但是,各种判据的选用至今并没有取得统一。 2 主要研究现状 强度折减概念由Zienkiewicz最早提出并用于边坡的稳定性分析,受限于当时数值计算和计算机水平而未能得到大的发展,直到近十几年来,随着数值计算和计算机技术的迅猛发展,强度折减法也得到了极大的发展,国内外许多学者在这方面做了大量的工作。 Ugai假定土体为理想的弹塑性材料,采用有限元强度折减法较为系统地分别对直立边坡、倾斜边坡、非均质边坡以及存在孔隙水压力的复杂边坡的稳定性进行了分析研究,并指出弹塑性强度折减有限元法具有较强的适应性和可行性。Matsui和San将强度折减技术与采用Duncan-Chang双曲线模型的非线性有限元法相结合,以剪应变作为边坡破坏评判指标,研究了人工填筑边坡和开挖边坡的稳定性,指出填筑边坡应采用总剪应变,而开挖边坡应采用局部剪应变增量作为失稳破坏标准,并将分析结果与极限平衡法进行了对比。Ugai和Leshchinsky 将强度折减技术引入弹塑性有限元法中进行边坡的三维稳定性分析,并与极限平衡法的计算结果进行了较全面的比较研究,指出尽管二者的理论基础、实现手段

边坡稳定性强度折减系数分析 方法在公路边坡工程中的应用

边坡稳定性强度折减系数分析方法在公路边坡工程中的应用 发表时间:2019-12-30T13:19:08.193Z 来源:《基层建设》2019年第27期作者:吴正新1 谷世君2 [导读] 摘要:引用有限元强度折减系数法相关理论,对广东省某高速公路边坡加固方案进行ANSYS分析,并与传统的极限平衡法计算结果对比分析。 1.中交第四航务工程勘察设计院有限公司广州 510230; 2.中国市政工程西北设计研究院有限公司北京 730000 摘要:引用有限元强度折减系数法相关理论,对广东省某高速公路边坡加固方案进行ANSYS分析,并与传统的极限平衡法计算结果对比分析。研究结果表明,基于有限元强度折减系法与按传统方法在矩形荷载作用下的抗滑桩内力分布较为接近,同时在抗滑桩+预应力锚索支挡结构中存在最优的锚固力。有限元强度折减法考虑了边坡和抗滑桩的协调作用以及土体的应力-应变本构关系,同时可以自动搜索滑动面,是一种具有推广意义的高边坡分析方法。 关键词:公路工程高边坡;抗滑桩+预应力锚索;有限元强度折减;极限平衡法;锚固力随着国内经济建设与大规模基础设施建设的进行与国内外科技事业的迅猛发展,我国的边坡加固治理的科学技术水平也不断提高。各种类型的支挡手段也不段涌现并逐步成熟,同时随着计算技术的发展,各种数值分析方法也引入到边坡稳定分析中,它们从不同的角度对边坡的结构和稳定分析提供有效技术支撑,为边坡设计提供了强有力的工具[1-2]。 有限元强度折减系数分析方法在上世纪70年代为英国学者Zienkiewicz提出并应用于边坡稳定评价与分析。但是受制于当时计算机水平,同时缺少功能强大的大型商用程序,阻止了该方法的大规模应用。90年代美国岩土界学者Giriffith对有限元中边坡破坏的力学机理、计算模型以及破坏准则进行了系统的阐述,从而再次引起国内外学的的广泛关注,并将该方法大规模应用于岩石边坡和支挡结构的计算[3]。 有限元强度折减系数数值分析的主要原理是:选取合理的初始折减系数,采用库仑-摩尔准则将坡体原始的粘聚力和内摩擦角进行折减,然后利用有限元进行数值分析,如果在该过程中程序收敛,则表明岩土体处于一个相对稳定的状态,再进行折减系数调整,直到程序恰好处于不收敛状态为止,此时,折减系数也就是边坡稳定安全系数。 1 某公路边坡工程概况 某高速公路K15+250-K15+360段位于广东省境内丘陵区,山体高大,形态复杂,山坡陡峭,山坡自然坡度为20~35°,局部可达45°,设计标高144.84~146.950m,地面标高为180.34~190.50m。该山体表层为坡积、残积粉质粘土,呈黄褐色,硬塑,主要成分为粘粉粒,含碎石。下伏基岩为全、中风化云母石英片岩,风化程度较强烈,全、强风化岩厚度较大,风化裂隙发育且岩体破碎。地下水主要由残坡积层中的上层滞水及基岩裂隙水组成,其补给为大气降水。 边坡开挖部分上部岩性主要为坡积、残积粉质粘土,下部岩性主要为全、中风化云母石英片岩,岩体风化程度高,风化裂隙极发育,产状分别为第一组110°∠50°、第二组170°∠70°,左侧开挖坡面倾向约为188°。经采用赤平投影分析,边坡开挖后坡体上部易变形,下部岩体坡面也存在沿层面出现变形滑动的风险,同时受两组节理影响坡面可能发生楔体破坏,因此应放缓边坡,加强坡面防护。结合方案比选,本段边坡加固方案采用抗滑桩+预应力锚索方案。 图1边坡稳定分析典型断面 2有限元强度折减系数法在道路边坡稳定性评价中的应用 2.1 道路边坡稳定性的分析模型和设计参数输入 在对道路边坡进行整体稳定性评价时,应根据其项目特点选用合理的计算模型和假设条件。在本项目中岩土材料认为是理想的弹塑性体,而抗滑桩按照线弹性材料考虑。对于理想的线弹性模型,土体进入屈服阶段也就意味着破坏,本项目在分析中引入摩尔-库仑准则作为屈服判据。同时引入ANSYS有限元分析软件完成二次模拟,得到道路边坡设计的主要设计参数。 设计采用强度储备安全系数,因而求下滑推力时必须先将岩土强度除以设计中规定的安全系数。本次计算时,取安全系数为1.2,即将岩土体强度参数进行折减1.2倍后的参数作为输入值计算下滑推力及桩的内力,折减后的参数如表1所示。 表1 模型主要输入设计参数 边坡的开挖采用单元“杀死”(E-KILL)的方法来模拟,即将刚度矩阵乘以一个数量级较小的系数,从而其单元荷载、应变以及质量均为0。桩的施工作采用“激活”(E-ALIVE)单元方法来模拟,即将单元的刚度矩阵、应变以及荷载加载至分析模型中恢复至原有数值。再次激活的单元没有相应的应变过程,以实参形式输入的初应变不为单元生死所影响,所有单元需要事先划分好。 ANSYS软件提供的载荷步功能能够很好地模拟边坡的开挖施工过程,本次计算按照以下施工步骤进行计算1.计算边坡未开挖时的初始应力;2.施工抗滑桩,激活桩单元;3.进行开挖,即杀死要开挖的单元,然后施加锚索预应力;④将滑体强度参数折减1.2,从而得出相应条件下的桩内力分布;6.抗滑桩上滑坡推力进行有限元计算后,利用ANSYS软件后处理中提供的路径分析功能将水平应力反映至路径中,即可得到总的水平推力。

挡土墙验算安全系数取值问题

挡土墙验算安全系数取值问题标准化文件发布号:(9312-EUATWW-MWUB-WUNN-INNUL-DQQTY-

各规范中关于挡墙稳定验算安全系数的规定 1、建筑支挡: 《GB 50330-2002 建筑边坡工程技术规范》规定: 边坡工程稳定性验算时,其稳定性系数应不小于下表规定的稳定安全系数的要求,否则应对边坡进行处理。 适当提高。 重力式挡土墙抗滑稳定性安全系数不得小于。 重力式挡土墙抗倾覆稳定性安全系数不得小于。 重力式挡土墙的土质地基稳定性可采用圆滑滑动法验算,岩质地基稳定性可采用平面滑动法验算。 2、水利支挡: 《CJJ 50-1992 城市防洪工程设计规范》规定: 堤(岸)坡抗滑稳定安全系数,应符合下表的规定。 建于非岩基上的混凝土或圬工砌体防洪建筑物与非岩基接触面的水平抗滑时稳定安全系数,应符合下表的规定。 建于岩基上的混凝土或圬工砌体防洪建筑物与岩基接触的抗滑稳定安全系数,应符合下表的规定。 防洪建筑物抗倾覆稳定安全系数应符合下表的规定。

《GB 50286-1998 堤防工程设计规范》规范: 土堤的抗滑稳定安全系数不应小于下表的规定。 滨海软弱堤基上的土堤的抗滑稳定安全系数,当难以达到规定数值时,经过论证,并报行业主管部门批准后,可以适当降低。 防洪墙抗滑稳定安全系数,不应小于下表的规定。 防洪墙抗倾覆稳定安全系数不应小于下表的规定。 《SL 379-2007 水工挡土墙设计规范》规定: 沿挡墙基底面的抗滑稳定安全系数不应小于下表规定的允许值。 况。 当土质地基上的挡土墙沿软弱土体整体滑动时,按瑞典圆弧法或折线滑动法计算的抗滑稳定安全系数不应小于上表规定的允许值。 岩石地基上挡土墙沿软弱结构面整体滑动,当按公式计算的稳定安全系数允许值,可根据工程实践经验按上表中相应规定的允许值降低采用。 对于加筋式挡土墙,不论其基本,基本荷载组合条件下的抗滑稳定安全系数不应小于,特殊荷载组合条件下的抗滑稳定安全系数不应小于。 土质地基上挡土墙的抗倾覆稳定安全系数不应小于下表规定的允许值。

边坡稳定性计算说明

边坡稳定性计算 一、编制依据 为保证挖方施工安全,施工现场做到“安全、文明”,满足施工进度要求,以下列法律、法规、标准、规范、规程、相关文件为强制性前提,进行边坡稳定性计算。 1、现有施工图设计; 2、《公路桥涵施工技术规范》(JTJ041-2000); 3、《路桥施工计算手册》(人民交通出版社); 4、《土力学与地基基础》; 二、工程概况及地质情况 岢岚至临县高速公路是《山西省高速公路网规划》“3纵11横11环”中西纵高速公路的重要组成部分,也是山西省西部把第四横(保德-五台长城岭)和第五横(平定杨树庄—佳县)高速公路窜连起来的重要路段。 项目区路线走廊带地形起伏极大,总体地势为东北高西南低,地貌主体为隆起的基岩中山与黄土梁峁,部分区域为海拔较低的河流沟谷及冲沟,。受构造活动和水流侵蚀作用的影响,本区地形切割剧烈,河谷发育,沟壑纵横,依据地貌成因类型及其显示特征,将本区划分为黄土丘陵区、侵蚀堆积河川宽谷区、山岭区、黄土覆盖中低山区四个地貌单元,岩性主要为第四系冲、坡积及风积粉土及粉质粘土等。 三、计算 本项目地形复杂,涵洞、桩基及路基施工作业面比较多。根据挖方路段在全线的分布情,选择有代表性路段进行分析计算。由于项目地质挖方为风积粉土及粉质粘土,是典型的黄土地貌。根据施工图纸给出的计算参数,对于黄土挖方路段,拟定边坡参数γ=19g/cm3,C=40 Kpa,φ=29°,采用瑞典条分法进行计算,稳定安全系数达到1.2以上。 3.1 瑞典条分法原理 如图所示边坡,瑞典条分法假定可能滑动面是一圆弧AD,不考虑条块两侧的作用力,即假设Ei和Xi的合力等于Ei+1和Xi+1的合力,同时它们的作用线

有限元强度折减系数法计算土坡稳定安全系数.

有限元强度折减系数法计算土坡稳定安全系数 摘要:有限元强度折减系数法在边坡稳定分析中的应用正逐渐受到人们的重视。本文较为全面地分析了土体屈服准则的种类、有限元法自身计算精度以及H(坡高)、β(坡角)、C(粘聚力)、Φ(摩擦角)对折减系数法计算精度的影响,并给出了提高计算精度的具体措施。通过对106个算例的比较分析,表明折减系数法所得稳定安全系数比简化Bishop法平均高出约5.7%,且离散度极小,这不仅验证了文中所提措施的有效性,也说明了将折减系数法用于分析土质边坡稳定问题是可行的。关键词:强度折减系数边坡稳定屈服准则误差分析自弗伦纽期于1927年提出圆弧滑动法以来,至今已出现数十种土坡稳定分析方法,有极限平衡法、极限分析法、有限元法等。不少研究表明,各种方法所得稳定安全系数都比较接近,可以说,这些方法已经达到了相当高的精度。近年来,由于计算机技术的长足发展,基于有限元的折减系数法在边坡稳定分析中的应用备受重视。与极限平衡法相比,它不需要任何假设,便能够自动地求得任意形状的临界滑移面以及对应的最小安全系数,同时它还可以真实的反映坡体失稳及塑性区的开展过程。到目前为止,已有很多学者对折减系数法进行了较为深入的研究[1,2,3],并在一些算例中得到了与极限平衡法十分接近的结果。但总体说来,此法仍未在工程界得到确认和推广,究其原因在于影响该法计算精度的因素很多,除了有限元法引入的误差外,还依赖于所选用的屈服准则。此论文的目的有两点:(1)力图全面分析屈服条件和有限元法本身对折减系数法计算精度的影响,并提出应选用何种屈服准则以及提高有限元法计算精度的具体措施;(2)结合工程实例,分析对边坡稳定安全系数影响最大的4个主要参数(H坡高、β坡角、C粘聚力、Φ摩擦角)对折减系数法计算精度的影响。从以往的计算结果来看,严格法(Spencer)所得稳定安全系数比简化Bishop法平均高出约2%~3%,而通过106个算例的比较分析,表明:折减系数法所得稳定安全系数比简化Bishop法平均高出约5.7%,且误差离散度极小,可以认为是正确的解答[4]。这有力地说明了将有限元折减系数法用于分析土坡稳定问题是可行的,但必须合理地选用屈服条件以及严格地控制有限元法的计算精度,同时也表明:有限元折减系数法所得安全系数稍微偏高,其原因有待进一步研究。 1 折减系数法的基本原理 Bishop等将土坡稳定安全系数F定义为沿整个滑移面的抗剪强度与实际抗剪强度之比,工程中广为采用的各种极限平衡条分法便是以此来定义坡体稳定安全系数。有限元强度折减系数法的基本思想与此一致,两者均可称之为强度储备安全度。因后者无法直接用公式计算安全系数,而需根据某种破坏判据来判定系统是否进入极限平衡状态,这样不可避免地会带来一定的人为误差。尽管如此,仍发展了一些切实可行的平衡判据,如:限定求解迭代次数,当超过限值仍未收敛则认为破坏发生;或限定节点不平衡力与外荷载的比值大小;或利用可视化技术,当广义剪应变等值线自坡角与坡顶贯通则定义坡体破坏[3]。文中平衡判据取:当节点不平衡力与外荷载的比值大于10-3时便认为坡体破坏。有限元折减系数法的基本原理是将土体参数 C、Φ值同时除以一个折减系数 Ftrial,得到一组新的C′、Φ′值,然后作为新的材料参数带入有限元进行试算,当计算正好收敛时,也即Ftrial再稍大一些(数量级一般为10-3),计算便不收敛,对应的Ftrial被称为坡体的最小安全系数,此时土体达到临界状态,发生剪切破坏,具体计算步骤可参考文献[2],文中如无特别说明,计算结果均指达到临界状态时的折减

边坡强度折减法

基本原理: 强度折减法中边坡稳定的安全系数定义为:使边坡刚好达到临界破坏状态时,对岩、土体的抗剪强度进行折减的程度,即定义安全系数为岩土体的实际抗剪强度与临界破坏时的折减后剪切强度的比值。强度折减法的要点是公式1、2来调整岩土体的强度指标C 和φ(式中,F C 为折减后的粘结力,F φ为折减后的摩擦角,trial F 为折减系数),然后对边坡稳定性进行数值分析,不断地增加折减系数。反复计算,直至其达到临界破坏,此时得到的折减系数即为安全系数S F 。公式如下: trial F F C C /= (1) t a n =F φ-1)/)((tan trial F φ(2) 实现过程: 目前尚无统一的边坡失稳判据,现行的边坡失稳判据主要有以下几种: 1 以数值计算的收敛性作为失稳判据 2 以特征部位位移的突变性作为失稳判据 3 以塑性区的贯通性作为失稳判据 在FLAC3D 中求解安全系数时,单次安全系数的计算过程主要采用的是第一种失稳判据。假设数值计算模型所有非空区域都采用摩尔-库伦本构模型,便可使用命令Solve fos 来求解安全系数:首先,通过给粘结力设定一个大值来改变内部应力,以找到体系达到力平衡的典型时步r N ;接着,对于给定的安全系数s F ,执行r N 时步,如果体系不平衡力与典型内力比率R 小于10-3,则认为体系达到力平衡。如

果不平衡力比率R大于10-3,再执行r N时步,直至R小于10-3退出当前计算,开始新一轮折减计算过程。除上述以力不平衡比率小于10-3作为终止条件外,FLAC3D还采用: 1 前后典型时步运算结束时的不平衡力比率R差值小于10% 2 强度折减后的计算过程已运行了6个典型时步r N作为计算终止条件 计算过程中,只要满足上述三个标准中的任何一个,便退出当前计算。这样做的目的只要是为了控制整个强度折减法循环计算过程中的求解时间。 可以从这几个方面判断:边坡沿滑动面产生滑动、软弱面处产生的沿X方向的位移是否最大、剪切应变增量云图、安全系数、剪切应变增量云图、变形矢量图及速度矢量图、水平位移、竖直位移、垂直应力、最大不平衡力、在坡顶边缘和坡脚处设置监测点(水平应力竖直应力位移)。 FLAC是快速拉格朗日差分分析(Fast grangian Analysis of Continua)的简写。它是以岩石力学理论为基础,以介质物理力学参数和地质构造特性为计算依据,建立在客观反映原型和动态演化过程仿真力学效应基础上的一种新型数值方法。虽然其基本原理类同于离散元法,但却可与有限元一样适用于多种材料模式与边界条件非规则区域的连续问题求解。而且计算中利用的“混合离散化”技术可针对不同介质特

边坡稳定性计算方法11111

一、边坡稳定性计算方法 在边坡稳定计算方法中,通常采用整体的极限平衡方法来进行分析。根据边坡不同破裂面形状而有不同的分析模式。边坡失稳的破裂面形状按土质和成因不同而不同,粗粒土或砂性土的破裂面多呈直线形;细粒土或粘性土的破裂面多为圆弧形;滑坡的滑动面为不规则的折线或圆弧状。这里将主要介绍边坡稳定性分析的基本原理以及在某些边界条件下边坡稳定的计算理论和方法。 (一)直线破裂面法 所谓直线破裂面是指边坡破坏时其破裂面近似平面,在断面近似直线。为了简 化计算这类边坡稳定性分析采用直线破裂面法。能形成直线破裂面的土类包括:均质砂 性土坡;透水的砂、砾、碎石土;主要由内摩擦角控制强度的填土。 图 9 - 1 为一砂性边坡示意图,坡高 H ,坡角β,土的容重为γ,抗 剪度指标为c、φ。如果倾角α的平面AC面为土坡破坏时的滑动面,则可分析 该滑动体的稳定性。 沿边坡长度方向截取一个单位长度作为平面问题分析。 图9-1 砂性边坡受力示意图已知滑体ABC重 W,滑面的倾角为α,显然,滑面 AC上由滑体的重量W= γ(Δ ABC)产生的下滑力T和由土的抗剪强度产生的抗滑力Tˊ分别为: T=W · sina 和 则此时边坡的稳定程度或安全系数可用抗滑力与下滑力来表示,即 为了保证土坡的稳定性,安全系数F s 值一般不小于 1.25 ,特殊情况下可允许减小到 1.15 。对于C=0 的砂性土坡或是指边坡,其安全系数表达式则变为 从上式可以看出,当α =β时,F s 值最小,说明边坡表面一层土最容易滑动,这时

当 F s =1时,β=φ,表明边坡处于极限平衡状态。此时β角称为休止角,也称安息角。 此外,山区顺层滑坡或坡积层沿着基岩面滑动现象一般也属于平面滑动类型。这类滑坡滑动面的深度与长度之比往往很小。当深长比小 于 0.1时,可以把它当作一个无限边坡进行分析。 图 9-2表示一无限边坡示意图,滑动面位置在坡面下H深度处。取一单位长度的滑动土条 进行分析,作用在滑动面上的剪应力为,在极限平衡状态时,破坏面上的 剪应力等于土的抗剪强度,即 得 式中N s =c/ γ H 称为稳定系数。通过稳定因数可以确定α和φ关系。当c=0 时,即无粘性 土。α =φ,与前述分析相同。 二圆弧条法 根据大量的观测表明,粘性土自然山坡、人工填筑或开挖的边坡在破坏时,破裂面的形状多呈近似的圆弧状。粘性土的抗剪强度包括摩擦强度和粘聚强度两个组成部分。由于粘聚力的存在,粘性土边坡不会像无粘性土坡一样沿坡面表面滑动。根据土体极限平衡理论,可以导出均质粘这坡的滑动面为对数螺线曲面,形状近似于圆柱面。因此,在工程设计中常假定滑动面为圆弧面。建立在这一假定上稳定分析方法称为圆弧滑动法和圆弧条分法。 1. 圆弧滑动法 1915 年瑞典彼得森( K.E.Petterson )用圆弧滑动法分析边坡的稳定性,以后该法在各国得到广泛应用,称为瑞典圆弧法。 图 9 - 3 表示一均质的粘性土坡。AC 为可能的滑动面,O为圆心,R 为半径。假定 边坡破坏时,滑体ABC在自重W 作用下,沿AC绕O 点整体转动。滑动面 AC 上的力 系有:促使边坡滑动的滑动力矩 M s =W · d ;抵抗边坡滑动的抗滑力矩,它应该包括由 粘聚力产生的抗滑力矩M r =c ·AC · R ,此外还应有由摩擦力所产生的抗滑力矩,这里 假定φ= 0 。边坡沿AC的安全系数F s 用作用在 AC面上的抗滑力矩和下滑力矩之比表 示,因此有 这就是整体圆弧滑动计算边坡稳定的公式,它只适用于φ= 0 的情况。 图9-3 边坡整体滑动 2. 瑞典条分法 前述圆弧滑动法中没有考虑滑面上摩擦力的作用,这是由于摩擦力在滑面的不同位置其方向和大小都在改变。为了将圆弧滑动法应用于φ> 0 的粘性土,在圆弧法分析粘性土坡稳定性的基础上,瑞典学者 Fellenius 提出了圆弧条分析法,也称瑞典条分法。条会法就是将滑动土体竖向分成若干土条,把土条当成刚塑体,分别求作用于各土条上的力对圆心的滑动力矩和抗滑力矩,然后按式( 9-5 )求土坡的稳定安全系数。 采用分条法计算边坡的安全系数F ,如图 9 - 4 所示,将滑动土体分成若干土条。土条的宽度越小,计算精度越高,为了避免计算过于繁

有限元强度折减法和极限平衡法适用性研究

有限元强度折减法和极限平衡法适用性研究 曾红丽 戚明军 陕西省建筑设计研究院有限责任公司 710003 西安 摘要:简述了有限元强度折减法原理和两种极限平衡理论进行边坡稳定性分析的方法,分别利用ANSYS 和SLOPE/W 程序对一均质土坡进行了稳定性分析。建立了同样尺寸的两种计算模型,得出了分别采用有限元强度折减法、Bishop 法和Janbu 法在未考虑地下水的情况下边坡安全系数。将计算结果进行比较分析,表明基于极限平衡理论的分析方法分析得到的结果偏小,而有限元强度折减法由于考虑了土体内部应力应变关系所得结果更切合工程实际。 关键词:有限元强度折减法;极限平衡法;适用性;稳定性 1引言 边坡工程是公路、铁路、水利水电以及矿山工程一个不可或缺的组成部分,因此边坡稳定性问题的研究就成为岩土工程界研究的热点问题。国内外学者,已经取得了大量研究成果。目前,研究边坡稳定性的传统方法主要有:极限平衡法,极限分析法,滑移线场法等。随着计算机技术的发展,有限元强度折减法 在边坡稳定性分析中已经得到了较好的应用[1~5] 。本文通过算例分析,比较分析有限元强度折减法和基于极限平衡理论的方法在边坡工程中适用性的差别。 2有限元强度折减法原理[6] 所谓强度折减,就是在理想弹塑性有限元计算中将边坡岩土体抗剪强度参数逐渐降低直到其达到破坏状态为止,程序可以自动根据弹塑性计算结果得到破坏滑动面,同时得到边坡的强度储备安全系数K ,也称为强度折减系数。 通常,边坡的稳定性安全系数定义为沿滑动面的抗剪强度与滑动面的实际剪力的比值,公式表示为 ??+=dA dA c K τ?σ)tan ( (1) 将式(1)两边同时除以K ,得 ????+=+=dA dA c dA dA K K c τ?στ?σ )'tan '()tan ( 1 (2) 式中,K c c =',)arctan(tan 'K ??=,c 为粘聚力,?为内摩擦角,σ为滑动面上的法向应力,τ为滑动面上的抗剪强度。 通过逐步调整系数K ,得到不同的'c ,'?,将'c ,'?代入有限元程序,反复分析边坡,直到坡体达到临界状态,坡体达到临界状态时的K 值即作为边坡稳定性安全系数。 3极限平衡法 利用极限平衡法对边坡的稳定性进行了分析,该方法的基本特点是,只考虑静力平衡条件和土的Mohr-Coulomb 破坏准则,也就是说,通过分析土体的破坏那一刻的平衡来求得问题的解[7]。极限平衡理论的主要思想是将滑动土体进行条分,由极限状态下土条所受力和力矩的平衡来分析边坡稳定性。它是目前应用最多的一种分析方法。文中所用极限平衡理论的方法有以下几种[8]。 (1)Bishop 法:该方法考虑了土条间的作用力,这是对传统的瑞典条分法的重要改进。该方法忽略各土条之间的切向条间力,认为条间力的合力是水平的,同时假设破坏面是圆弧面,且定义边坡安全系数为沿整个滑动面上的抗剪强度与实际产生的剪应力的比值。该方法的计算结果比较接近实际,常用于土质、软岩质及碎岩边坡的稳定性分析。 (2)Janbu 法:Janbu 提出了同时满足力和力矩平衡的“通用条分法”。这一方法区别于其他方法的一个重要方面,就是通过假定土条侧向力的作用点而不是作用方向来求解安全系数的。采用非圆弧面,按条块滑动平衡确定条间力,按推力线确定法向力的作用点,简化计算条间切向力为零,然后再对稳定系数进行修正。 4算例分析

边坡稳定采用土体指标不同时安全系数的对比

边坡稳定采用土体指标不同时安全系数的对比

防洪堤稳定性的研究 周建1,余嘉澍2 (1.浙江大学岩土工程研究所;2.浙江省水利水电勘测设计院) 摘要:首先对防洪堤浸润线以上土体进行了不同浸泡时间的浸泡试验,试验结果表明,土体的凝聚力随浸泡时间的增长大幅度下降,浸泡5d后土体的凝聚力将下降71.8%,但浸泡不改变土体摩擦角的大小。通过等效超固结比(循环前后土体平均有效应力的比值)的概念,研究了动水作用下土体强度的循环弱化,为综合考虑动水循环荷载及浸泡作用对防洪堤稳定的影响,用简化毕肖普法对防洪堤稳定进行了计算,结果表明只考虑波浪(潮汐)作用,防洪堤的安全系数降低幅度不大,但同时考虑浸泡作用,特别是长时间浸泡后,防洪堤的安全系数降低最大可达20%。 关键词:浸泡试验;波浪作用;强度降低;稳定分析 作者简介:周建(1970-),女,湖北浠水人,浙江大学岩土工程研究所副教授、博士,主要从事软粘土动力学特性、软土地基处理等方面研究。 1 概述 目前在计算分析防洪堤沉降和稳定时,未能考虑波浪(潮汐)等动水荷载作用下地基土体特性的变化情况。动水作用与静水作用截然不同,除了荷载本身类型不同外,最主要的差别是在周期动荷载作用下,土体会产生软化,这种软化将使防洪堤地基土体和堤身材料的强度降低,导致防洪堤产生较大的沉降,影响其稳定性;此外洪水期间防洪堤正常水位以上土体受洪水浸泡,其土体强度也将明显下降,所以在进行防洪堤稳定分析时必须考虑这些因素的作用,下面将结合临海城防工程对这些问题进行一些探讨。 临海城防江北防洪堤土堤段(BD1+332~BD1+936.878)位于灵江一桥至灵江二桥段,地势开阔。土堤顶宽6m,高约7m,内外边坡分别为1:2.5~1:3,结合环境美化,按原状地形增设平台,其中外坡自平台至坡脚采用细石混凝土灌砌块石护坡并另设混凝土大方脚固基。堤身内土料自外至内大体分为3个区填筑,中部心墙采用粘性土回填并分层夯实,渗透系数K<1×10-5cm/s。 根据地质勘探,土堤段地基土体自上而下可分为如下工程地质层:Ⅰ层:杂填土(rQ)。以碎石和建筑垃圾为主,厚度0~2.4m,容重γ=19.5kN/m3。Ⅱ 2 )。灰黄色~灰色,饱和,中等压缩性,厚度0~层:粉质粘土、粉土互层(al-mQ 4 层:淤泥3.4m,容重γ=18.3kN/m3。粉质粘土,软塑~可塑;粉土,稍密。Ⅲ 2 质粘土、粉土互层(mQ )。青灰色,饱和,高压缩性,局部粉土含量较高,厚度 4 层:0~6.5,容重γ=18.0kN/m3。淤泥质粘土,软塑~流塑;粉土,稍密。Ⅲ 3 淤泥夹砂、砾石(al-mQ )。青灰色,饱和,该层土性混杂,砂、砾石含量及分布 4 极为不均,局部含量较高,砾石直径一般2~8cm,个别可达15~20cm以上。厚度0~7.65m,容重γ=18.5kN/m3。淤泥,流塑,高压缩性。

有限元强度折减法

有限元强度折减法 1 背景 1974年,Smith & Hobbs[1]使用有限元方法分析了φu=0条件下的边坡稳定性 并与Taylar[2]的结果进行对比,得到了很好的一致性;1975年,Zienkiewicz等[3]考虑c’、φ’进行有限元边坡稳定性分析,其结果与圆弧滑面解有较好吻合;1980年Griffiths[4]验证了一系列具有不同材料特性和形状的边坡稳定性并通过与 Bishop& Morgenstern[5]的结果进行了对比确定了数据的可靠性;此后也有研究证 实了利用有限元方法进行边坡稳定性分析的可靠性[6,7,8,9];在文献[9]中,引入一些 案例证明了有限元强度折减法的准确性,并证明了有限元强度折减法在分析非均 质边坡时相对于传统方法的优越性。2001年,郑颖人等[10]把有限元强度折减法 引入国内,并对此进行了后续研究[11,12,13,14]。 相较于一些传统的边坡稳定型分析方法,有限元强度折减法有以下几个优点[9]: (1)不必假设滑面的位置和形状,当土体自身强度不足以抵抗剪应力时土体 失稳会自然发生。 (2)由于有限元强度折减法中没有条分的概念,因此也不必假设条间力,在 整体失稳之前土体都处于整体稳定状态。 (3)使用有限元方法能够查看破坏过程。 2 有限元强度系数折减法 1.模型参数 边坡模型主要包括六个参数,分别是:膨胀角ψ、内摩擦角φ’、黏聚力c’、弹性模量E’、泊松比υ’、重度γ。 膨胀角影响土体屈服后的体积变形,若ψ<0,则土体屈服后体积减小,若ψ>0则体积增大,ψ=0则体积不变。ψ=φ的情况被称之为关联流动法则,但是此时ψ值通常高于实验观测值,特别是在侧限条件下会提高土的承载力预测值。边坡稳 定型问题通常是处于无侧限条件下,此时膨胀角的选取不再重要[9],因此文献[9] 选取ψ=0条件下的非关联流动法则,并且通过案例分析可以得出此膨胀角的选 取可以得出准确的安全系数以及滑动面。 c’和φ’指Mohr-Coulomb准则中边坡土体的有效黏聚力和内摩擦角;E’和υ’是土体材料的弹性参数,这两个参数对土体稳定性分析的影响较小;γ是土体的 重度。应用有限元方法进行边坡稳定性分析中最重要的三个参数是c’、φ’、和γ。 2.屈服条件 (1)Mohr-Coulomb准则 Mohr-Coulomb准则用大小主应力表示如式(1)所示: (1) 其中,、分别指土中一点的大小主应力。在主应力空间中,如果不考虑、、之间的大小关系,屈服面是一个不等角六棱锥,在π平面上是一 个等边不等角六边形。 (2)D-P准则

有限元强度折减系数法.

有限元强度折减系数法 分析边坡稳定性 甘桂其 甘肃建筑职业技术学院 730050 摘要:本文阐述了采用有限元强度折减系数法进行边坡稳定性分析时的基本原理、计算程序;并总结了优缺点。 关键词:有限元 折减系数 边坡稳定 1. 研究意义 边坡稳定问题是土力学三大经典问题之一[1] 。从二十世纪二十年代,国外就开始对边坡的稳定性进行了研究。随着计算水平和计算机技术的不断发展,许多方法被运用到边坡稳定分析中,甚至其它学科的一些方法也被运用了进来。本文利用有限元强度折减系数法进行边坡稳定性分析。 2. 有限元法的强度折减系数法 (1)基本原理:首先选取初始折减系数,将岩土体强度参数进行折减,将折减后的参数作为输入,进行有限元计算,若程序收敛,则岩土体仍处于稳定状态,然后再增加折减系数,直到程序恰好不收敛,此时的折减系数即为稳定安全系数。 (2)强度参数折减按下式进行: e c c F = (1) e tan tan F ??= (2) e arctan(tan /)F ??= (3) 式中,c 为粘聚力;? 为内摩擦角;F 为折减系数;c e ,e ?为一组新的粘聚力和内摩擦角。 (3) 安全系数的物理意义 有限元强度折减系数法与毕肖普[2]定义的安全系数有相同的物理意义。 f s F ττ=平均平均 (4) 或 s (tan )d /d i i F c l l σ?τ=+?? (5) 或 f d /d s i i F l l ττ=?? (6)

式中,τ为沿滑面的剪应力,fτ为该点的抗剪强度,d l为滑面微元长度,F s为强度折 减系数。 (4)滑裂面位置的确定 将土坡强度系数折减后,利用非线性有限元分析,此时土坡内将出现一塑性区,塑性应变等值示意图如图1所示。土体发生滑动时,在剪切面附近的塑性应变值,较其两侧部位的大,所以,滑裂面必须通过最大塑性应变的峰值点。图中虚线为通过等值线脊部的连线,即为最危险滑动面。 图1 确定最可能滑裂面 3.计算程序 ANSYS软件[3]是目前工程界应用最为广泛的大型有限元软件[4]。该软件主要包括三个功能:前处理模块,分析计算模块和后处理模块。前处理模块提供了一个强大的实体建模及网格划分工具,用户可以很方便地构造有限元模型;分析计算模块包括结构分析(可进行线性分析、非线性分析和高度非线性分析以及多物理场的耦合分析,可模拟多种物理介质的相互作用,具有灵敏度分析及优化分析能力);后处理模块可将计算结果以彩色等值线显示、梯度显示、矢量显示、粒子流迹显示、立体切片显示、透明及半透明显示(可以看到结构内部)等图形方式显示出来,也可以将计算结果以图表、曲线形式显示或输出。现在将整个程序流程图介绍如图2所示。 4.结束语 有限元法的优点是部分地考虑了边坡岩土体的非均质和不连续性,可以给出岩土体的应力、位移大小与分布,避免了极限平衡分析法中将滑体视为刚体而过于简化的缺点,能使我们近似地从应力应变去分析边坡的变形破坏机制,分析最先、最容易发生屈服破坏的部位和需要首先进行加固的部位等。 同时,就目前来看,它还存在如下不足:土体的本构关系极其复杂,难于进行有限元计算;有限元网格如何划分才能符合实际,并使得计算简便;强度折减法收敛判断与所选求解器、本构关系及计算经验有关;计算精度与初始应力己知程度密切。

相关主题
文本预览
相关文档 最新文档