当前位置:文档之家› 用纳米压痕法表征薄膜的应力-应变关系

用纳米压痕法表征薄膜的应力-应变关系

用纳米压痕法表征薄膜的应力-应变关系
用纳米压痕法表征薄膜的应力-应变关系

我所认识的应力应变关系

我所认识的应力应变关系 应力应变都是物体受到外界载荷产生的响应。物体由于受到外界载荷后,在物体内部各部分之间要产生互相之间的力的作用,由于受到力的作用就会产生相应的变形;或者由于变形引起相应的力的作用。则一定材料的物体其产生的应力和应变也必然存在一定的关系。 一 应力-应变关系 影响本构关系的因素有很多,例如材料、环境、加载类型(载荷、温度)、加载速度(动载荷、静载荷)等,当然,本构关系有很多类型,包括弹性、塑性、粘弹性、粘塑性、各向同性、各向异性本构关系,那么首先来叙述一下简单情况本构关系,所谓简单情况就是六个应力分量x y xy yz zx σσστττ、、z 、、、只有一个不为零, 六个应变分量x y xy yz zx εεεγγγ、、z 、、、只有一个自由变化,应力应变关系图1-1。 图1-1 应力应变关系图 图中OA 为线弹性阶段,AB 为非线弹性阶段,故OB 为初始弹性阶段,C 点位初始屈服点,()s σ+为初始屈服应力,CBA 为弹性阶段卸载,这一阶段中E σε=, 初始弹性阶段结束之后,应力继续增大,进入塑性阶段,CDE 为强化阶段,应变强化硬化,EF 为颈缩阶段,应变弱化软化。如果在进入塑性阶段卸载后再加载,

例如在D 点卸载至零,应力应变关系自D 点沿'DO 到达'O 点,且'DO ∥OA ,其中'O O 为塑性应变p ε,DG 为弹性应变e ε,总应变为它们之和。此后再继续加载,应力应变关系沿ODEF 变化,D 点为后继屈服点,OD 为后继弹性阶段,()'s σ+为后继屈服应力,值得一提的是初始屈服点只有一个,而后继屈服点有无数个(由加载历史决定)。若在卸除全部载荷后反向加载,弹性阶段'COC ,()()s s σσ+-=,而在强化阶段'DOD ,()()s s σσ+->,称为Bauschinger 效应。 从上述分析得出材料弹塑性行为有一定的特殊性,主要表现在:弹性应力应变关系是线性,且是单值对应关系,而塑性应力应变关系是非线性的非单值对应。 因为通常情况下物体不仅仅处于简单应力状态,那么复杂应力状态下应力应变关系又如何呢?如果我们将材料性质理想化即假设材料是连续的、均匀的、各向同性的,忽略T 、t 的影响,忽略净水压力对塑性变形的影响,可以将应力应变关系归结为不同的类型,包括理想线弹性模型、理想刚塑性模型、线性强化刚塑性模型、理想弹塑性模型、线性强化弹塑性模型、幂强化模型、等向强化模型、随动强化模型。各种材料的应力应变关系图如下图所示: 理想线弹性模型 理想刚塑性模型

应力与应变关系

一、应力与应变 1、应力 在连续介质力学里,应力定义为单位面积所承受的作用力。 通常的术语“应力”实际上是一个叫做“应力张量” (stress tensor)的二阶张量。 概略地说,应力描述了连续介质内部之间通过力(而且是通过近距离接触作用力)进行相互作用的强度。 具体说,如果我们把连续介质用一张假想的光滑曲面把它一分为二,那么被分开的这两部分就会透过这张曲面相互施加作用力。 很显然,即使在保持连续介质的物理状态不变的前提下,这种作用力也会因为假想曲面的不同而不同,所以,必须用一个不依赖于假想曲面的物理量来描述连续介质内部的相互作用的状态。 对于连续介质来说,担当此任的就是应力张量,简称为应力。 2、应变 应变在力学中定义为一微小材料元素承受应力时所产生的单位长度变形量。因此是一个无量纲的物理量。 在直杆模型中,除了长度方向由长度改变量除以原长而得“线形变”,另外,还定义了压缩时以截面边长(或直径)改变量除以原边长(或直径)而得的“横向应变”。 对大多数材料,横向应变的绝对值约为线应变的绝对值的三分之一至四分之一,二者之比的绝对值称作“泊松系数”。 3、本构关系 应力与应变的关系我们叫本构关系(物理方程)。E σε=(应力=弹性模量*应变) 4、许用应力(allowable stress ) 机械设计或工程结构设计中允许零件或构件承受的最大应力值。要判定零件或构件受载后的工作应力过高或过低,需要预先确定一个衡量的标准,这个标准就是许用应力。 凡是零件或构件中的工作应力不超过许用应力时,这个零件或构件在运转中是安全的,否则就是不安全的。 许用应力等于考虑各种影响因素后经适当修正的材料的失效应力除以安全系数。 失效应力为:静强度设计中用屈服极限(yield limit )或强度极限(strength limit );疲劳强度设计中用疲劳极限(fatigue limit )。 5、许用应力、失效应力及安全系数之间关系 塑性材料(大多数结构钢和铝合金)以屈服极限为基准,除以安全系数后得许用应力,即[]()/ 1.5~2.5s n n σσ==。(许用应力=屈服极限/安全系数) 脆性材料(铸铁和高强钢)以强度极限为基准,除以安全系数后得许用应力, 即[]()/2~5b n n σσ==。(许用应力=强度极限/安全系数) 表3机床静力学分析结果总结

应力应变关系

1.应力 物体由于外因(受力、湿度、温度场变化等)而变形时,在物体内各部分之间产生相互作用的内力,以抵抗这种外因的作用,并试图使物体从变形后的位置恢复到变形前的位置。 在所考察的截面某一点单位面积上的内力称为应力。同截面垂直的称为正应力或法向应力,同截面相切的称为剪应力或切应力。 应力仪或者应变仪是来测定物体由于内应力的仪器。一般通过采集应变片的信号,而转化为电信号进行分析和测量。 方法是:将应变片贴在被测定物上,使其随着被测定物的应变一起伸缩,这样里面的金属箔材就随着应变伸长或缩短。很多金属在机械性地伸长或缩短时其电阻会随之变化。应变片就是应用这个原理,通过测量电阻的变化而对应变进行测定。一般应变片的敏感栅使用的是铜铬合金,其电阻变化率为常数,与应变成正比例关系。 通过惠斯通电桥,便可以将这种电阻的比例关系转化为电压。然后不同的仪器,可以将这种电压的变化转化成可以测量的数据。 对于应力仪或者应变仪,关键的指标有:测试精度,采样速度,测试可以支持的通道数,动态范围,支持的应变片型号等。并且,应力仪所配套的软件也至关重要,需要能够实时显示,实时分析,实时记录等各种功能,高端的软件还具有各种信号处理能力。另外,有一些仪器是通过光谱,膜片等原理设计的。 应力的单位:应力的单位是Pa,简称帕(这是为了纪念法国科学家帕斯卡Blaise· pascal而命名的),即牛顿/平方米(N/ ㎡)。 2.应变 物体在受到外力作用下会产生一定的变形,变形的程度称应变。应变有正应变(线应变),切应变(角应变)及体应变。正应变公式为 ,式中l是变形的前长度,Δl是其变形后的伸长量。 应变单位:应变是形变量与原来尺寸的比值,用ε表示,即ε=ΔL/L,无量纲,常用百分数表示。 3.弹性模量 一般地讲,对弹性体施加一个外界作用,弹性体会发生形状的改变(称为“应变”),“弹性模量”的一般定义是:应力除以应变。 材料在弹性变形阶段,其应力和应变成正比例关系(即符合胡克定律),其比例系数称为弹性模量。又称杨氏模量,弹性材料的一种最重要、最具特征的力学性质,是物体弹性变形难易程度的表征,用E表示。定义为理想材料有小

各向异性弹性体的应力和应变关系

各向异性弹性体的应力和应变关系

————————————————————————————————作者: ————————————————————————————————日期:

下面从广义胡克定理公式出发,用应变能的概念建立常见的各向异性弹性体的应力和应变关系。 1.完全各向异性弹性体 根据格林公式和广义胡克定律,有 ;对于上式,如果对切应变γxy求偏导数,有。 同理,有;对 于上式,如果对正应变εx求偏导数,有。 因此,C14=C41。对于其它的弹性常数可以作同样的分析,则Cmn=Cnm 上述结论证明完全各向异性弹性体只有21个弹性常数。其本构方程为 2.具有一个弹性对称面的各向异性弹性体 如果弹性体内每一点都存在这样一个平面,和该面对称的方向具有相同的弹性性质,则称该平面为物体的弹性对称面。 垂直于弹性对称面的方向称为物体的弹性主方向。

若设yz为弹性对称面,则x轴为弹性主方向。 以下根据完全各向异性弹性体本构方程,推导具有一个弹性对称面的各向异性弹性体的本构方程。 将x轴绕动z轴转动π 角度,成为新的Ox'y'z'坐标系。 新旧坐标系之间的关系为 x y z x'l =-1m1=0n1=0 1 y'l =-1m2=0n2=0 2 z'l3=-1m3=0n3=0 根据弹性对称性质。关于x轴对称的应力和应变分量在坐标系变换时保持不变,而关于x轴反对称的应力和应变分量在坐标系变换时取负值。所以σx'=σx,σy'=σy,σz'=σz,τx'y' =τxy,τy'z'=τyz,τz'x' =τzx εx'=εx,εy' =εy,εz' =εz,γx'y' =γxy,γy'z'=γyz,γz'x' =γzx 根据弹性主方向性质,作这一坐标变换时,本构关系将保持不变。 根据完全各向异性弹性体的本构方程,将上述关系式 代入广义胡克定理,可得 将上式与广义胡克定理相比较,要使变换后的应力和应变关系保持不变,则必有 C14=C16=C24=C26=C34=C36=C54=C56=0 这样,对于具有一个弹性对称面的弹性体,其弹性常数由21个将减少为13个。具有一个弹性对称面的弹性体的应力应变关系为

应力应变关系

应力应变关系 我所认识的应力应变关系 一在前面两章的分别学习了关于应力与应变的学习,第三章的本构关系讲述了应力与应变的关系从而构成了弹塑性力学的本构关系。 在单向应力状态下,理想的弹塑性材料的应力应变关系及其简单满足胡克定律即 ,E ,,XX 在三维应力状态下需要9个分量,即应力应变需要9个分量,于是可以把单向应力应变关系推广到三维应力状态,及推广到广义的胡克定律 本式应该是91个应变分量单由于切应力互等定理,此时后面的三个应力与式中的切应力想等即现在剩余36个应变分量。 (1)具有一个弹性对称面的线弹性体的应力应变公式如下

(2)正交各向异性弹性体的弹塑性体公式如下 (3)各向同性弹性体的本构方程 各向同性弹性体在弹性状态下,主应力方向与主应变方向重合容易证明。在主应变空间里,由于应变主轴与应力主轴重合,各向同性弹性体体内任意一点的应力和应变之间满足: ,,,,,,,CCCxxyz111213 ,,,,,,,CCCyxyz212223 ,,,,,,,CCCzxyz313233 (2-3) ,,,,,,yyxzxz对的影响与对以及对的影响是相同的,即有 ,CCC==,CC=CC=,y112233x12132123z;和对的影响相同,即,同理有和CC=3132等,则可统一写为: CCCa==,112233 CCCCCCb=====,122113312332 (2-4) 所以在主应变空间里,各向同性弹性体独立的弹性常数只有2个。在任意的坐标系中,同样可以证明弹性体独立的弹性参数只有2个。 广义胡可定律如下式 ,,xy1,,,,,,,,,,,[()]xy,xxyz,2GE,,,,1,yz, ,,,[()],,,,,,,,yzyyxz 2GE,,

我所认识的应力应变关系讲解

我所认识的应力应变关系 应力应变都是物体受到外界载荷产生的响应。物体由于受到外界载荷后,在 物体内部各部分之间要产生互相之间的力的作用,由于受到力的作用就会产生相 应的变形;或者由于变形引起相应的力的作用。则一定材料的物体其产生的应力 和应变也必然存在一定的关系。 一应力-应变关系 影响本构关系的因素有很多,例如材料、环境、加载类型(载荷、温度) 、 加载速度(动载荷、静载荷)等,当然,本构关系有很多类型,包括弹性、塑性、 粘弹性、粘塑性、各向同性、各向异性本构关系,那么首先来叙述一下简单情况 图中0A 为线弹性阶段,AB 为非线弹性阶段,故0B 为初始弹性阶段,C 点位 初始屈服点, J ?为初始屈服应力,CBA 为弹性阶段卸载,这一阶段中二=E ;, 初始弹性阶段结束之后,应力继续增大,进入塑性阶段, CDE 为强化阶段,应变 强化硬化,EF 为颈缩阶段,应变弱化软化。如果在进入塑性阶段卸载后再加载, 本构关系,所谓简单情况就是六个应力分量 J 、y 、z 、?邓* zx 只有一个不为零, 六个应变分量 1-

例如在D点卸载至零,应力应变关系自D点沿DO'到达O'点,且DO' II OA其中 00'为塑性应变;p,DG为弹性应变;e,总应变为它们之和。此后再继续加载,应力应变关系沿ODEF变化,D点为后继屈服点,0D为后继弹性阶段,Cs'.为后继屈服应力,值得一提的是初始屈服点只有一个,而后继屈服点有无数个(由加载历史决定)。若在卸除全部载荷后反向加载,弹性阶段COC',、二s . - ;「s_,而在强化阶段DOD',匚_,称为Bauschinger效应。 从上述分析得出材料弹塑性行为有一定的特殊性,主要表现在:弹性应力应变关系是线性,且是单值对应关系,而塑性应力应变关系是非线性的非单值对应。 因为通常情况下物体不仅仅处于简单应力状态,那么复杂应力状态下应力应变关系又如何呢?如果我们将材料性质理想化即假设材料是连续的、均匀的、各向同性的,忽略T、t的影响,忽略净水压力对塑性变形的影响,可以将应力应变关系归结为不同的类型,包括理想线弹性模型、理想刚塑性模型、线性强化刚塑性模型、理想弹塑性模型、线性强化弹塑性模型、幕强化模型、等向强化模型、随动强化模型。各种材料的应力应变关系图如下图所示:

第四章应力应变关系

4 应力应变关系 4.1弹性变形时应力和应变的关系 当材料所受应力小于其线弹性极限时,材料应力应变间的关系服从广义Hooke 定律,即 1()1() 1() 111222x x y z y y x z z z x y xy xy yz yz zx zx E E E G G G εσνσνσεσνσνσεσνσνσετετετ?=--?? ?=--???=--???===? ,, (4.1) 式中,E 为拉压弹性模量,G 为剪切模量,ν为泊松比,对于各向同性材料,三个常数之间满足() 21E G ν=+关系。 由上式可得 11212()()33m x y z x y z m E E νν εεεεσσσσ--=++= ++= (4.2) 于是 11 ()'2x m x m x E G νεεσσσ+-= -= 或 1112''22x m x x m G G E ν εεσσσ-=+ =+ 类似地可以得到 1112''22y m y y m G G E ν εεσσσ-=+ =+ 1112''22z m z z m G G E ν εεσσσ-=+=+ 于是,方程(4.1)可写成如下形式 121 2'00'0000'x xy xz x xy xz m v yx y yz yx y yz m G E m zx zy z zx zy z εγγσττσγεγτστσσγγεττσ-?????? ? ? ?=+ ? ? ? ? ? ????? ?? 即 '1122ij ij m ij ij m G E ν εεεσδσ-'=+= + (4.3)

显然,弹性变形包括体积改变的变形和形状改变的变形。前者与球应力分量成正比,即 12m m E νεσ-= (4.4) 后者与偏差应力分量成正比,即 ''12''12''1211 1222x x m x G y y m y G z z m z G xy xy yz yz zx zx G G G εεεσεεεσεεεσετετετ? =-=?=-=??=-=??=== ? ,, 或简写为 2ij ij G σε''= (4.5) 此即为广义Hooke 定律。 4.2塑性变形时应力和应变的关系 弹性力学是以应力与应变成线性关系的广义Hooke 定律为其基础的;而在塑性力学的范围内,一般来说,应力与应变间的关系是非线性的,同时这种非线性的特征,又与所研究的具体材料和塑性应变有关。 塑性变形过程中的应力应变关系十分复杂,相关的理论较多,但可将它们分为两大类,即增量理论和全量理论。 4.2.1增量理论 在弹性极限范围内,弹性全量应变与当时的应力状态有确定的一一对应关系,而与加载的历程无关。但由于塑性变形的不可恢复性,塑性全量应变与当时的应力状态不是单值关系,而与加载的历史有关。图4.1所示低碳钢拉伸实验的结果表明:在应力超过弹性极限条件下卸载时,其应力应变基本呈平行于弹性线的线性关系,直到材料反向时的屈服极限's σ,这就是材料的卸载规律(图4.1a )。因此,当材料发生塑性 图4.1 单向拉伸随加载历史变化的应力应变关系

真实应力和真实应变定义塑性

在ABAQUS 中必须用真实应力和真实应变定义塑性.ABAQUS 需要这些值并对应地在输入文件中解释这些数据。 然而,大多数实验数据常常是用名义应力和名义应变值给出的。这时,必须应用公式将塑性材料的名义应力(变)转为真实应力(变)。 考虑塑性变形的不可压缩性,真实应力与名义应力间的关系为: 00l A lA =, 当前面积与原始面积的关系为: 将A 的定义代入到真实应力的定义式中,得到: 其中0 l l 也可以写为1nom ε+。 这样就给出了真实应力和名义应力、名义应变之间的关系: 真实应变和名义应变间的关系很少用到,名义应变推导如下: 上式各加1,然后求自然对数,就得到了二者的关系: ABAQUS 中的*PLASTIC 选项定义了大部分金属的后屈服特性。ABAQUS 用连接给定数据点的一系列直线来逼近材料光滑的应力-应变曲线。可以用任意多的数据点来逼近实际的材料性质;所以,有可能非常逼真地模拟材料的真实性质。在*PLASTIC 选项中的数据将材料的真实屈服应力定义为真实塑性应变的函数。选项的第一个数据定义材料的初始屈服应力,因此,塑性应变值应该为零。 在用来定义塑性性能的材料实验数据中,提供的应变不仅包含材料的塑性应变,而是包括材料的总体应变。所以必须将总体应变分解为弹性和塑性应变分量。弹性应变等于真实应力与杨氏模量的比值,从总体应变中减去弹性应变,就得到了塑性应变,其关系为: 其中pl ε是真实塑性应变,t ε是总体真实应变,el ε是真实弹性应变。 总体应变分解为弹性与塑性应变分量 实验数据转换为ABAQUS 输入数据的示例 下图中的应力应变曲线可以作为一个例子,用来示范如何将定义材料塑性特性的实验特性的实验数据转换为ABAQUS 适用的输入格式。名义应力-应变曲线上的6个点将成为*PLASTIC 选项中的数据。 第一步是用公式将名义应力和名义应变转化为真实应力和应变。一旦得到这些值,就可以用公式不确定与屈服应力相关联的塑性应变。下面给出转换后的数据。在小应变时,真实应变和名义应变间的差别很小,而在大应变时,二者间的就会有明显的差别;因此,如果模拟的应变比较大,就一定要向abaqus 提供正确的应力-应变数据。定义这种材料的输入数据格式在图中给出。 (二). 对于受力的大小,受力的方式,还有本构方程参数的选择对于模型是否收敛影响很大. 泊松比的影响:材料的泊松比的大小对于网格的扰动影响很大,在foam 中,由于其泊松比是0,所以它对于单元的扰动不是很大。所以在考虑到经常出现单元节点被翻转过来的现象,可以调整泊松比的大小。 REMESH :对于creep 的,特别是材料呈现非线性的状态下,变形很大,就有必要对其进行重新划分网格,用map solution 来对其旧网格进行映射。这就要决定何时进行重新划分网格,这个就要看应变的增长幅度了,通过观察网格外形的变化曲线来决定是否要进行重新划分区域。 接触表面的remesh 时,网格类型,单元数目等必须和原有的mesh 保持一致,这个对于

应力应变关系

我所认识的应力应变关系 一 在前面两章的分别学习了关于应力与应变的学习,第三章的本 构关系讲述了应力与应变的关系从而构成了弹塑性力学的本构关系。 在单向应力状态下,理想的弹塑性材料的应力应变关系及其简单满足胡克定律即 εσ X X E = 在三维应力状态下需要9个分量,即应力应变需要9个分量,于是可以把单向应力应变关系推广到三维应力状态,及推广到广义的胡克定律 本式应该是91个应变分量 单由于切应力互等定理,此时后面的三个应力与式中的切应力想等即现在剩余36个应变分量。 (1)具有一个弹性对称面的线弹性体的应力应变公式如下

(2)正交各向异性弹性体的弹塑性体公式如下 (3)各向同性弹性体的本构方程 各向同性弹性体在弹性状态下,主应力方向与主应变方向重合容易证明。在主应变空间里,由于应变主轴与应力主轴重合,各向同性弹性体体内任意一点的应力和应变之间满足: 111213x x y z C C C σεεε=++ 212223y x y z C C C σεεε=++ 313233z x y z C C C σεεε=++ (2-3) x ε对x σ的影响与y ε对y σ以及z ε对z σ的影响是相同的,即有 112233 ==C C C ; y ε和z ε对x σ的影响相同,即1213=C C ,同理有2123=C C 和 3132 =C C 等 ,则可统一写为: 112233==C C C a =

122113312332=====C C C C C C b = (2-4) 所以在主应变空间里,各向同性弹性体独立的弹性常数只有2个。在任意的坐标系中,同样可以证明弹性体独立的弹性参数只有2个。 广义胡可定律如下式 1[()]1[()]1[()]x x y z y y x z z z x y E E E εσνσσεσνσσεσνσσ? =-+?? ? =-+?? ? =-+?? 222xy xy yz yz zx zx G G G τγτγτγ?=???=???=?? v 泊松比 2(1) E G ν= +剪切模量 E :弹性模量/杨氏模量 虎克定律 E G σε τγ== 对于应变能函数理解有点浅在此就不多做介绍了。 2 屈服条件 拉伸与压缩时的应力——应变关系曲线 P A l l l στ=-= BC CD DE ?? ??? :屈服阶段 :强化阶段塑性阶段:局部变形阶段

应力和应变关系

第四章应力和应变关系 一. 内容介绍 前两章分别从静力学和运动学的角度推导了静力平衡方程,几何方程和变形协调方程。由于弹性体的静力平衡和几何变形是通过具体物体的材料性质相联系的,因此,必须建立了材料的应力和应变的内在联系。应力和应变是相辅相成的,有应力就有应变;反之,有应变则必有应力。对于每一种材料,在一定的温度下,应力和应变之间有着完全确定的关系。这是材料的固有特性,因此称为物理方程或者本构关系。 对于复杂应力状态,应力应变关系的实验测试是有困难的,因此本章首先通过能量法讨论本构关系的一般形式。分别讨论广义胡克定理;具有一个和两个弹性对称面的本构关系一般表达式;各向同性材料的本构关系等。 本章的任务就是建立弹性变形阶段的应力应变关系。 二. 重点 1. 应变能函数和格林公式; 2. 广义胡克定律的一般表达式; 3. 具有一个和两个弹性对称面的本构关系; 4. 各向同性材料的本构关系; 3. 材料的弹性常数。 知识点 应变能原理 应力应变关系的一般表达式 完全各向异性弹性体 正交各向异性弹性体本构关系 弹性常数 各向同性弹性体应变能

格林公式 广义胡克定理 一个弹性对称面的弹性体本构关系 各向同性弹性体的应力和应变关系 应变表示的各向同性本构关系 §4.1 弹性体的应变能原理 学习思路: 弹性体在外力作用下产生变形,因此外力在变形过程中作功。同时,弹性体内部的能量也要相应的发生变化。借助于能量关系,可以使得弹性力学问题的求解方法和思路简化,因此能量原理是一个有效的分析工具。 本节根据热力学概念推导弹性体的应变能函数表达式,并且建立应变能函数表达的材料本构方程。 根据能量关系,容易得到由于变形而存储于物体内的单位体积的弹性势能,即应变能函数。 探讨应变能的全微分,可以得到格林公式,格林公式是以能量形式表达的本构关系。 如果材料的应力应变关系是线性弹性的,则单位体积的应变能必为应变分量的齐二次函数。因此由齐次函数的欧拉定理,可以得到用应变或者应力表示的应变能函数。 学习要点: 1. 应变能; 2. 格林公式; 3. 应变能原理。 弹性体发生变形时,外力将要做功,内部的能量也要相应的发生变化。本节通过热力学的观点,分析弹性体的功能变化规律。

相关主题
相关文档 最新文档