当前位置:文档之家› 多个独立坐标系的统一方法

多个独立坐标系的统一方法

多个独立坐标系的统一方法
多个独立坐标系的统一方法

多个独立坐标系的统一方法

摘要:现在测绘界各方人士对线路多个独立坐标系的统一方法及其应用也有很多独特的见解,而且也得出了好多相应的转换方法,本文对四参数法、椭球膨胀法和子午线收敛角法展开详细论述。

关键词:四参数法;独立坐标系;统一方法

1、四参数法平面坐标系统相互转换的数学模型

将一个平面坐标系统转换为另一个平面坐标系统时,称前者为原始坐标系, 记为( x , y ) ; 后者为目标坐标系, 记为( X , Y) 。那么坐标转换公式为

(1) : X = Δx + (1 + k) (cosαx + sinαy)

Y = Δy + (1 + k) ( - sinαx + cosαy)

式中, (Δx ,Δy) 为平移因子,α为旋转因子, k 为尺度因子。

令:Δx = a Δy = b (1 + k) cosα = c(1 + k) sinα = d

那么式(2)可简写为: X = a + cx + dy Y = b - dx + cy

式中存在2个平移参数X0、Y0,1个旋转参数a,1个尺度变化参数k。至少需要4个方程才可以解算出模型中的4个参数,而每个控制点用X、Y来表示,因此两个坐标系之间必须至少联测2个控制点,列误差方程,利用最小二乘法求解,求得4个参数,进而将其他所有的点换算到一个统一的坐标系下。

由于转换参数精度取决于两个因素:一是两套已知坐标本身的精度。二是确定转换参数的法方程系数阵的逆阵,即取决于公共点的几何分布。对于一个小区域,各公共点分布相对于地球半径和地球本身来说,是很靠近的。因此该方法要求公共点的分布范围较大、较广,一般适合于国家区域或较大区域的坐标转换。但点位相对较少,还远未达到为各地工程网提供服务的程度。

理论上说,只要地方坐标足够精确,公共点分布合理,而且分布范围要足够大,这种求解方法能够很好地获得转换精度。但是这些所谓的“公共点”其实它们是野外实测得来的,野外实测时,测量仪器、测量人员、测量环境等等都会影响测定公共点位的精度,所以还是不能从根本上解决问题。而且选取的公共点一般也就是相隔4、5百米左右,而一个独立坐标系所覆盖的实地长度都达到几十公里甚至几百公里,用4、5百米的距离来控制几十公里甚至几百公里,显然其精度就很难达到很精密。并且当一条公路或铁路需要建立多个独立坐标系时,某一控制点的精度不仅影响它所临近的两个独立坐标系的转换,而且还会影响后面坐标系的转换,且离该公共点越远的坐标系,其影响转换的幅度越大,也就是说呈连锁反应。如果我们将问题模型化,通过在数学模型上找出不同坐标系之间的转

RTK测量中独立坐标系的建立

R T K测量中独立坐标系的建立 RTK测量中独立坐标系的建立 摘要:介绍GPS-RTK测量中WGS-84大地坐标系与独立坐标系转换的方法及南方测绘工程之星数据处理中坐标转换的方法,同时结合工程实例予以验证。 关键词:GPS-RTK测量;WGS-84大地坐标系;独立坐标系;坐标转换 1 引言 在水利工程测量中,多数情况下工程所处位置地形复杂,交通不便,通视条件较差,采用以经纬仪、全站仪测量为代表的常规测量常常效率低下。随着GPS-RTK测量系统的使用,由于它具有观测速度快,定位精度高,经济效益高等特点,现在我院多数水利工程测量都是采用RTK测量技术来完成。对于GPS-RTK系统来说,由于它采用的是WGS-84固心坐标系,而在实际工程应用中,由于顾及长度变形、高程异常等影响而采用独立坐标系,这就需要将RTK测量采集的数据在两坐标系中进行转换。 2 国家坐标系及独立坐标系的建立 2.1 国家坐标系的建立 在我国,由于历史原因先后采用不同的参考椭球体和大地起算数据而形成多个国家坐标系,主要国家坐标系有1954北京坐标系、1980西安坐标系、2000国家坐标系和WGS-84坐标系。前两个是参心坐标系,后两个是固心坐标系。由于他们采用不同的椭球体参数,所以地面上同一个点在不同的坐标系中有不同的坐标值。 国家坐标系的主要作用是在全国建立一个统一的平面和高程基准,为发展国民经济、空间技术及国防建设提供技术支撑,也为防灾、减灾、环境监测及当代地球科学研究提供基础资料。 2.2 独立坐标系的建立

在工程应用中,由于起算数据收集困难、测区远离中央子午线及满足特殊要求等诸多原因,如在水利工程测量中,常要测定或放样水工建筑物的精确位置,要计算料场的土石方贮量和水库的库容。规范要求投影长度变形不大于一定的值(如《工程测量规范》为2.5cm/km,《水利水电工程测量规范(规范设计阶段)》为5.0cm/km)。如果采用国家坐标系统在许多情况下(如高海拔地区、离中央子午线较远地方等)不能满足这一要求,这就要求建立地方独立坐标系。 在常规测量中,这种独立坐标系只是一种高斯平面直角坐标系,而在采用GPS-RTK采集数据时,独立坐标系就是一种不同于国家坐标系的参心坐标系。 跟国家坐标系一样,建立独立坐标要确定的主要元素有:坐标系的起算数据、中央子午线、参考椭球体参数及投影面高程等。对于起算数据,可以采用国家坐标系的坐标和方位角或任意假设坐标和方位角。在RTK测量中,我们常采用基线的某一端点的单点定位解作为起点,然后以另一点定向,用测距仪测出基线边长,经改正后算出基线端点的坐标;中央子午线常采用测区中央的子午线;投影面常采用测区的平均高程面。参考椭球体一般是基于原来的参考椭球体做某种改动,使改变后的参考椭球面与投影面拟合最好,投影变形可以减到最小,也便于与国家坐标系统进行换算。 3 坐标系的转换 GPS-RTK接收机采集的坐标数据是基于WGS-84椭球下的大地坐标,而我们经常使用的独立坐标系是基于某种局部椭球体下的平面直角坐标,这两种坐标是不同坐标基准下的两种表现形式。利用WGS-84下的大地坐标来推求独立坐标系中的平面直角坐标,必然要求得两坐标系之间转换参数。求取转换参数的基本思路是利用两坐标系中必要个数的公共点,根据相应的椭球参数及中央子午线采用最小二乘法严密平差解算转换参数,具体操作是由转换模型把不同坐标基准下的坐标转换为同基准下的不同坐标形式,再进行同基准下不同坐标形式的转换,从而得到所要的独立坐标系中的平面直角坐标。转换的难点是WGS-84椭球与独立坐标系局部椭球的变换。 3.1 常用的坐标转换方法

(完整版)平面直角坐标系规律题(带答案)

1. 2. 3. 平面直角坐标系规律题 如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图 中方向排列,如(1, 0), (2 , 0), ( 2, 1) , (1 , 1), (1 , 2), (2 , 2) ??…根据这个规律,第2016个点的坐标为什么? 如图,一个质点在第一象限及x轴、y轴上运动,一秒钟后,它从原点运动 到(0,1),然后接着按图中箭头所示方向运动[即(0,0)T( 0,1) T( 1,1) T( 1,0) T…],且每秒运动一个单位长度,那么第2016秒后质点所在位置的坐标是( 如图,在平面直角坐标系上有点 A (1, 0),点A第一次跳动 至点A1( -1 ,1),第四次向右跳动5个单位至点A4( 3,2 ),???, 依此规 律跳动下去,点A第100次跳动至点A100的坐标是 .第2016次呢? ) 6 5 % 5 -4 -3-2 -1 ° 1 2 3 4 5'玄 如图,在平面直角坐标系上有个点P ( 1 , 0),点P第1次向上跳动1个单位至点P1 (1, 1),紧接着第2次向左跳动2个单位至点P2 (-1 , 1 ),第3次向上跳动1个单位,第4次向 J A ----------------------------- 右跳动3个单位,第5次又向上跳动1个单位,第6次向左跳动4个单 位,……,依此规律跳动下去,点P第100次跳动至点P100的坐标是()。电------------- 第2016个点的坐标是( ) 4 -------------- 4. 5、如图,在平面直角坐标系中,一动点从原点0出发,按向上、向右、向 下、向右的方向依次不断地移动,每次移动一个单位,得到点A1(0, 1),A2(1, 1),A3(1, 0),A4(2, 0),…,那么点A4n +1(n是自然数)的坐标为_________

RTK测量中如何建立独立坐标系的

RTK测量中独立坐标系的建立 向垂规 (红河州水利水电勘察设计研究院) 摘要:介绍GPS-RTK测量中WGS-84大地坐标系与独立坐标系转换的方法及南方测绘工程之星数据处理中坐标转换的方法,同时结合工程实例予以验证。关键词:GPS-RTK测量;WGS-84大地坐标系;独立坐标系;坐标转换 1 引言 在水利工程测量中,多数情况下工程所处位置地形复杂,交通不便,通视条件较差,采用以经纬仪、全站仪测量为代表的常规测量常常效率低下。随着GPS-RTK测量系统的使用,由于它具有观测速度快,定位精度高,经济效益高等特点,现在我院多数水利工程测量都是采用RTK测量技术来完成。对于GPS-RTK系统来说,由于它采用的是WGS-84固心坐标系,而在实际工程应用中,由于顾及长度变形、高程异常等影响而采用独立坐标系,这就需要将RTK 测量采集的数据在两坐标系中进行转换。 2 国家坐标系及独立坐标系的建立 2.1 国家坐标系的建立 在我国,由于历史原因先后采用不同的参考椭球体和大地起算数据而形成多个国家坐标系,主要国家坐标系有1954北京坐标系、1980西安坐标系、2000国家坐标系和WGS-84坐标系。前两个是参心坐标系,后两个是固心坐标系。由于他们采用不同的椭球体参数,所以地面上同一个点在不同的坐标系中有不同的坐标值。 国家坐标系的主要作用是在全国建立一个统一的平面和高程基准,为发展国民经济、空间技术及国防建设提供技术支撑,也为防灾、减灾、环境监测及当代地球科学研究提供基础资料。 2.2 独立坐标系的建立

在工程应用中,由于起算数据收集困难、测区远离中央子午线及满足特殊要求等诸多原因,如在水利工程测量中,常要测定或放样水工建筑物的精确位置,要计算料场的土石方贮量和水库的库容。规范要求投影长度变形不大于一定的值(如《工程测量规范》为2.5cm/km,《水利水电工程测量规范(规范设计阶段)》为5.0cm/km)。如果采用国家坐标系统在许多情况下(如高海拔地区、离中央子午线较远地方等)不能满足这一要求,这就要求建立地方独立坐标系。 在常规测量中,这种独立坐标系只是一种高斯平面直角坐标系,而在采用GPS-RTK采集数据时,独立坐标系就是一种不同于国家坐标系的参心坐标系。 跟国家坐标系一样,建立独立坐标要确定的主要元素有:坐标系的起算数据、中央子午线、参考椭球体参数及投影面高程等。对于起算数据,可以采用国家坐标系的坐标和方位角或任意假设坐标和方位角。在RTK测量中,我们常采用基线的某一端点的单点定位解作为起点,然后以另一点定向,用测距仪测出基线边长,经改正后算出基线端点的坐标;中央子午线常采用测区中央的子午线;投影面常采用测区的平均高程面。参考椭球体一般是基于原来的参考椭球体做某种改动,使改变后的参考椭球面与投影面拟合最好,投影变形可以减到最小,也便于与国家坐标系统进行换算。 3 坐标系的转换 GPS-RTK接收机采集的坐标数据是基于WGS-84椭球下的大地坐标,而我们经常使用的独立坐标系是基于某种局部椭球体下的平面直角坐标,这两种坐标是不同坐标基准下的两种表现形式。利用WGS-84下的大地坐标来推求独立坐标系中的平面直角坐标,必然要求得两坐标系之间转换参数。求取转换参数的基本思路是利用两坐标系中必要个数的公共点,根据相应的椭球参数及中央子午线采用最小二乘法严密平差解算转换参数,具体操作是由转换模型把不同坐标基准下的坐标转换为同基准下的不同坐标形式,再进行同基准下不同坐标形式的转换,

空间直角坐标系坐标转换方法

坐标转换方法 空间直角坐标系如果其原点不动,绕着某一个轴旋转而构成的新的坐标系,这个过程就叫做坐标旋转。在旧坐标系中的坐标与在旋转后新坐标系中的坐标有一定的转换关系,这种转换关系可以用转换矩阵来表示。 如图5.7,直角坐标系XYZ,P点的坐标为(x, y, z),其相应的在XY 平面,XZ平面,YZ平面分别为M(x, y,0),Q(x,0, z)和N(0, y, z)。 图5.7直角坐标系XYZ 设?表示第j 轴的旋转角度,R j (?) 表示绕第j 轴的旋转,其正方向是沿坐标轴向原点看去的逆时针方向。很明显当j 轴为旋转轴时,它对应的坐标中的j 分量是不变的。由于直角坐标系是对称的,下面我们以绕Z轴旋转为例推导其旋转变换矩阵,其它两个轴推导和它是一样的。 设图5.7的坐标绕Z轴逆时针旋转θ角度,新坐标为X 'Y'Z',如图5.8所示: 图5.8 坐标绕Z 轴逆时针旋转θ角度 由于坐标中的z 分量不变,我们可以简化地在XY 平面进行分分析,如图

5.9所示: 图5.9坐标绕Z 轴逆时针旋转θ 角度的XY 平面示意图 点 M X 和点M X ' 分别是M 点在X 轴和X '轴的投影。如图5.9 cos cos() sin sin() X X X X x OM OM MOM OM y MM OM MOM OM ?θ?θ==∠=-??==∠=-? (5-1) cos cos sin sin X X X X x OM OM MOM OM y MM OM MOM OM ? ?'''''==∠=??'==∠=? (5-2) 把(5-1)式按照三角函数展开得: cos cos sin sin sin cos cos sin x OM OM y OM OM ?θ?θ ?θ?θ=+??=+? (5-3) 把(5-2)式代入(5-3)式得: cos sin sin cos x x y y x y θθ θθ''=+??''=-+? (5-4) 坐标中的z 分量不变,即z = z'这样整个三维坐标变换就可以写成(用新坐标表 示旧坐标) cos sin sin cos x x y y x y z z θθ θθ''=+? ?''=-+??' =? (5-5) 把式(5-5)用一个坐标旋转变换矩阵R Z (θ) 表示可以写成:

平面直角坐标系找规律解析

平面直角坐标系找规律题型解析 1、如图,正方形ABCD 的顶点分别为A(1,1) B(1,-1) C(-1,-1) D(-1,1),y 轴上有一点P(0,2)。作点P 关于点A 的对称点p1,作p1关于点B 的对称点p2,作点p2关于点C 的对称点p3,作p3关于点D 的对称点p4,作点p4关于点A 的对称点p5,作p5关于点B 的对称点p6┅,按如此操作下去,则点p2011的坐标是多少? 解法1:对称点P1、P2、P3、P4每4个点,图形为一个循环周期。 设每个周期均由点P1,P2,P3,P4组成。 第1周期点的坐标为:P1(2,0),P2(0,-2),P3(-2,0),P4(0,2) 第2周期点的坐标为:P1(2,0),P2(0,-2),P3(-2,0),P4(0,2) 第3周期点的坐标为:P1(2,0),P2(0,-2),P3(-2,0),P4(0,2) 第n 周期点的坐标为:P1(2,0),P2(0,-2),P3(-2,0),P4(0,2) 2011÷4=502…3,所以点P2011的坐标与P3坐标相同,为(-2,0) 解法2:根据题意,P1(2,0) P2(0,-2) P3(-2,0) P4(0,2)。 根据p1-pn 每四个一循环的规律,可以得出: P4n (0,2),P4n+1(2,0),P4n+2(0,-2),P4n+3(-2,0)。 2011÷4=502…3,所以点P2011的坐标与P3坐标相同,为(-2,0) 总结:此题是循环问题,关键是找出每几个一循环,及循环的起始点。此题是每四个点一循环,起始点是p 点。 2、在平面直角坐标系中,一蚂蚁从原点O 出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位.其行走路线如下图所示. (1)填写下列各点的坐标:A4( , ),A8( , ),A10( , ),A12( ); (2)写出点A 4n 的坐标(n 是正整数); (3)按此移动规律,若点Am 在x 轴上,请用含n 的代数式表示m (n 是正整数) (4)指出蚂蚁从点A 2011到点A 2012的移动方向. (5)指出蚂蚁从点A 100到点A 101的移动方向.(6)指出A 106,A 201的的坐标及方向。 解法:(1)由图可知,A4,A12,A8都在x 轴上, ∵小蚂蚁每次移动1个单位, ∴OA4=2,OA8=4,OA12=6, ∴A4(2,0),A8(4,0),A12(6,0);同理可得出:A10(5,1) (2)根据(1)OA4n=4n÷2=2n,∴点A4n 的坐标(2n ,0); (3)∵只有下标为4的倍数或比4n 小1的数在x 轴上, ∴点Am 在x 轴上,用含n 的代数式表示为:m=4n 或m=4n-1; (4)∵2011÷4=502…3, ∴从点A2011到点A2012的移动方向与从点A3到A4的方向一致,为向右. (5)点A100中的n 正好是4的倍数,所以点A100和A101的坐标分别是A100(50,0)和A101(50,1),所以蚂蚁从点A100到A101的移动方向是从下向上。 (6)方法1:点A1、A2、A3、A4每4个点,图形为一个循环周期。 设每个周期均由点A1,A2,A3,A4组成。 第1周期点的坐标为:A1(0,1), A2(1,1), A3(1,0), A4(2,0) 第2周期点的坐标为:A1(2,1), A2(3,1), A3(3,0), A4(4,0) 第3周期点的坐标为:A1(4,1), A2(5,1), A3(5,0), A4(6,0) O 1 A 1 A 2 A 3 A4 A5 A6 A7 A8 A9 A 10 A 11 A 12 x y

国家坐标系与地方独立坐标系坐标转换方法与计算

国家坐标系与地方独立坐标系坐标转换方法与计算 作者姓名:岳雪荣 学号: 20142202001 系(院)、专业:建筑工程学院、测绘工程14-1 2016 年 6 月 6 日

国家坐标系与地方独立坐标系坐标转换方法与计算 (建筑工程学院14测绘工程专业) 摘要 随着我国经济的发展的突飞猛进,对测量精度要求的建设也越来越高,就是以便满足实际运行要求。但在一些城市或大型工程建设中可能刚好在两个投影带的交界处,布设控制网时如果按照标准的3度或者1.5度带投影,投影变形会非常大,给施工作业带来不便,此时需要建立地方独立坐标系。认识国家坐标系的转换和地方独立坐标系统有一定的现实意义,如何实现两者的换算,一直是关注的工程建设中的热点问题。因此,完成工程测量领域国家坐标定位成果与地方独立坐标成果的转换问题,以适应城市化和实际工程的需要。 关键词:国家坐标;独立坐标;坐标转换

目录 1绪论 1.1背景和意义 1.2主要内容 1.3解决思路和方法 2 建立独立坐标系的方法3 2.1常用坐标系统的方法介绍 2.2确定独立坐标系的三大要素9 2.3减少长度变形的方法10 2.4建立独立坐标系的意义12 3 国家坐标系与地方坐标系的坐标转换13 3.1常用坐标系的坐标转换模型13 3.2投影面与中央子午线及椭球参数的确定14 3.3国家坐标与地方坐标的转换思路15 4算例分析17 结论20 参考文献错误!未定义书签。

1绪论 1.1背景和意义 随着社会的经济快速发展,尤其是近十多年来空间测量技术突飞猛进,得到了长足的发展,其精度也大幅提高。从测量的发展史来看,从简单到复杂,从人工操作到测量自动化、一体化,从常规精度测量到高精度测量,促使大地坐标系有参心坐标系到大地坐标系的转化和应用。大地测量工作已有传统的二维平面坐标向三位立体空间坐标转化,逐步形成四维空间坐标系统。 在测绘中,地方独立坐标系和国家坐标系为平面坐标系的两种坐标系统。对于工程测量和城市建设过程,建设区域不可能都有合适的投影子午线,势必可能有所差异,这样一来作业区域的高程和坐标或者是工程关键区域的高程和坐标能够与国家大地基准的参考椭球有较大的出入,在这种情况下,根据不同的投影区国家坐标系统,可能就会出现投影变形导致严重错误。建立地方独立坐标系统来降低高程归化影响和是归化投影变形,误差控制在一个小范围的数据计算和实际大致相符,不需要任何修改,从而可以满足工程建设和实际应用。 就当前而言,测量工作重要的触及应用三种常用的大地坐标系统,即为地方独立坐标系,地心坐标系,参心坐标系 [1]。地心坐标系:以地球质心为根据建立的坐标系,包括CGCS2000国家大地坐标系,GPS平差后的WGS-84坐标系等。参心坐标系:参心坐标系是以参考椭球为基准的大地坐标系,包括54北京坐标系和80西安坐标系等。独立坐标系:以自己情况而定的独立坐标,采用新椭球,投影到高斯平面上,计算参数,在结合相关数据解算得到,如城市建设坐标系。它们统称为地固坐标系统。有机结合在一起对于整个坐标系统来说具有很大的应用价值,解决了实际生活中各种的工程测量问题,如土地申报工程,矿产调查工程,全国土地调查工程等等。根据现在的经济建设情况,我们应该结合实际,展开建立国家大地坐标与地方独立坐标的研究工作是非常必要的。这一点也是目前需要解决的问题。 为了更方面的需求和发展,也使得更好地创建国家坐标系与地方独立坐标系的关系。在这里引入了”GPS坐标”这个概念。在这里我们用以工程测量,成为大型工程建设控制网和城建控制网的主要手段。基以GPS坐标系建立的精度高的独立坐标系,将方便于GPS较高精确的、高效的获取城建坐标和高程需求,有利于GPS与GIS的有机结合,进一步提升城市的综合能力,加速城市的现代化建设,对工程建设具有巨大的辅助作用[2]。根据GPS坐标系建立的地方独立坐标系是未来的希望。

工程独立坐标系统建立研究整理

工程独立坐标系统建立研究 一、工程独立坐标系统建立目的 在工程测量中,为了便于施工,图面量测长度应尽可能接近地面实测长度,各种行业规范均对长度投影变形有具体的规定,如公路测量规范规定,长度投影变形小于2.5cm/km,大型构筑物长度投影变形小于1cm/km。 我们所使用的控制起算点均为国家大地测量控制点,其长度投影面为参考椭球面,其边长投影面高程为0M(不考虑高程异常)。 如果施工范围的海拔较高,或离开中央子午线较远,国家坐标系将不能满足行业规范对长度变形的要求。 因此,在建立首级工程控制网时,需要建立满足工程测量要求的相对独立的坐标系统,并将国家控制点坐标进行改算,转换为符合长度投影要求的独立坐标系统坐标,方可作为起算点使用。 二、坐标系统分析 1、高程面投影关系图 上图AB两点距离投影至参考椭球面后为ab,投影公式为: RA为AB方向法截线曲率半径, Hm为A、B两点平均高程,hm为测区高程异常。 由上式可知,Dab小于DAB 。 根据计算长度为1KM边长,投影面每增加 100M,长度减少1.57cm。、高斯投影横切圆柱图2.

高斯改化图 高斯改化公式: △y为测距边两端点横坐标之差 ym为测距边两端点横坐标平均值 Rm为参考椭球面上测距边中点的平均曲率半径 根据上式可知,S大于D,且测距边距离中央子午线越远,长度变形 越大。 通过高程面投影和高斯改化分析可知,两项改正数符号相反,可以部分相互抵消。 三、相对对立坐标系统的建立 根据坐标系统的分析,我们可以通过改变边长投影高程面和变动中央子午线的方法可以调整高程投影和高斯改正对长度的影响,寻求两项改正后改正数为最小的合适投影参数,从而建立相对独立的坐标系统。在确定高程投影面时应充分考虑工程工程所在地的不同高度的投影 变形,和高斯改化在离开中央子午线不同位置的综合影响。 可以在标有经纬度和公里格网的中小比例尺地形图量取测算点处高 程和相对于设计中央子午线的垂直距离,根据下式计算每公里长度投影变形量: RA为AB方向法截线曲率半径, Hm为A、B两点平均高程,hm为测区高程异常, 。M单位为厘△为边长投影高程面,Hp

地方独立坐标系介绍

1.2大地测量学的作用 ?大地测量学是一切测绘科学技术的基础,在国民经济建设和社会发展中发挥着决定性的基础保证作用。 ?大地测量学在防灾,减灾,救灾及环境监测、评价与保护中发挥着特殊作用。 ?大地测量是发展空间技术和国防建设的重要保障。 ?在地球科学中的地位。 2.3.3 地方独立坐标系 在城市测量和工程测量中,若直接在国家坐标系中建立控制网,有时会使地面长度的投影变形较大,难以满足实际或工程上的需要。为此,往往需要建立地方独立坐标系。 在常规测量中,这种地方独立坐标系一般只是一种高斯平面坐标系,也可以说是一种不同于国家坐标系的参心坐标系[7]。 建立地方独立坐标系,就是要确立坐标系的一些有关的元素,并根据这些元素和地面观测值求定各点在该坐标系中的坐标值。 (1)独立坐标系的中央子午线: 确定地方独立坐标系的中央子午线一般有三种情况: ①尽量取国家坐标系三度带的中央子午线作为它的中央子午线; ②当测区离三度带中央子午线较远时,应取过测区中心的经线或取过某个起算点的经线作为中央子午线; ③若已有的地方独立坐标系没有明确给定中央子午线,则应该根据实际情况进行分析,找出该地方独立坐标系的中央子午线。 (2)起算点坐标[8]: 一般有以下几种情况: ①以某些在国家坐标系中的坐标为起算点坐标,如果中央子午线不同,可以通过 换带计算求得; 参数名称数值 地球椭球扁率f = 1/ 298.257 赤道上的正常重力= 978.032 ×10?2ms? 2 e γ 极点的正常重力= 983.212×10?2ms ?2 p γ 正常重力公式中的系数0.005302, 0.0000058 1 β= β= ? 正常椭球面上的重力位2 20 U = 62636830m s ? 2 地球椭球与坐标系之基本理论 ②直接以某些点在国家坐标系中的坐标为任意带独立坐标系中的起算点坐标; ③将起算点坐标取为某个特定值。例如取为:xk= 0,yk=0。 (3)坐标方位角: ①以两个点在国家坐标系中的坐标方位角为起始方位角;当采用任意带时,一般 是先将这两个点的坐标通过换带计算求得它们的任意带的坐标值,然后反算得到起算方位角; ②测定两点的天文方位角作起算方位角;

平面直角坐标系规律题41840

平面直角坐标系规律题 1、如图,所有正方形的中心均在坐标原点,且各边与x轴或y轴平行.从内到外,它们的边长依次为2,4,6,8,…,顶点依次用A1,A2,A3,A4,…表示,则顶点A55的坐标是() 第1题第6题第9题 2、在平面直角坐标系中,对于平面内任一点(a,b),若规定以下三种变换: 1、f(a,b)=(﹣a,b).如:f(1,3)=(﹣1,3); 2、g(a,b)=(b,a).如:g(1,3)=(3,1); 3、h(a,b)=(﹣a,﹣b).如:h(1,3)=(﹣1,﹣3). 按照以上变换有:f(g(2,﹣3))=f(﹣3,2)=(3,2),那么f(h(5,﹣3))等于() 3、在坐标平面内,有一点P(a,b),若ab=0,则P点的位置在() 4、点P到x轴的距离为3,到y轴的距离为2,则点P的坐标一定为() A、(3,2) B、(2,3) C、(﹣3,﹣2) D、以上都不对 5、若点P(m,4﹣m)是第二象限的点,则m满足() 6、一个质点在第一象限及x轴、y轴上运动,在第一秒钟,它从原点运动到(0,1),然后接着按图中箭头所示方向运动,且每秒移动一个单位,那么第2008秒时质点所在位置的坐标是() 7、已知点P(3,a﹣1)到两坐标轴的距离相等,则a的值为() 8、若,则点P(x,y)的位置是() 9、如图,一个粒子在第一象限运动,在第一秒内,它从原点运动到(0,1),接着它按图所示在x轴、y轴的平行方向来回运动,(即(0,0)→(0,1)→(1,1)→(1,0)→(2,0)→…)且每秒运动一个单位长度,那么2010秒时,这个粒子所处位置为() 10、若点N到x轴的距离是1,到y轴的距离是2,则点N的坐标是() 11、在直角坐标系中,适合条件|x|=5,|x﹣y|=8的点P(x,y)的个数为() 12、在直角坐标系中,一只电子青蛙每次向上或向下或向左或向右跳动一格,现知这只青蛙位于(2,﹣3),则经两次跳动后,它不可能跳到的位置是() 13、观察下列有序数对:(3,﹣1)(﹣5,)(7,﹣)(﹣9,)…根据你发现的规律,第100

84坐标系向其他的坐标系转化方法

Garmin手持机中WGS84坐标转换成BJ54坐标时要设置哪些参数?如何设置? 答:可以通过用户自定义的方式来实现。方法如下: 1.进入"主菜单页面"的"设置"子页面中,按动方向键选择“单位”按输入键进入坐标设置 的页面,将"位置格式"的选项改为" User UTM Grid "(自定义坐标格式)。 2.在出现的参数输入页面中输入相关的参数,包括中央经线,投影比例(该数值为1), 东西偏差(该数值为500000),南北偏差(该数值为0)。 3.按下屏幕上的"存储"按钮后,再将"地图基准"(有的机器称之为"坐标系统")的选项改 为"User"(自定义坐标系统)。 4.在出现的参数输入页面中输入相关参数,包括DX,DY,DZ,DA和DF。其中DA的数值 为-108,DF的数值为0.0000005。按下屏幕上的"存储"按钮后,机器显示的位置将用北京54坐标来表示了。如果是80坐标,则DA=-3,DF=0。 5.DX,DY,DZ三个参数因地区而异,具体如何求解可以让他们首先与本地测绘部门去咨 询,如果不给的话,可以通过如下方法来求解: 首先知道一个点的已知BJ54坐标(这个他们肯定都有,如果要做工作的话),然后用手持机测此点的坐标(WGS84坐标),通过坐标转换程序,即可求出DX,DY,DZ。需要注意的是,此程序中的y为6位数,也就是要将Bj54坐标中的前两位(带数)去掉。如果不知道BJ54坐标的高程,可以输入与WGS84坐标相同的即可。 通过上述设置后,即可将坐标系进行转换,此时手持机中显示的坐标上行为y,下行为x坐标。 中央子午线计算方法:例如,计算东经85°32'在3度带/6度带的代号N 经度L1与6度带带号N的关系为: L1=6N-3° 则N=Int((L1+3°)/6 + 0.5)=Int((85°32'+3°)/6 +0.5)=Int(15.26)=15 其中,Int()为取整函数 所以,东经85°32'在6度带上的带号为15,则带号为15的6度带的中央子午线为L1=6N-3=87° 经度L2与3度带带号n的关系为: L2=3n 则n=Int(L2/3+0.5)=Int(85°32'/3 +0.5)=Int(29.01)=29 所以,东经85°32'在3度带上的带号为29,则带号为29的3度带的中央子午线为L2=3n=87°

举例浅谈斜坐标系的应用

举例浅谈斜坐标系的应用 少二(1)邱天异 平面上的斜坐标系不同于平面直角坐标系,组成它的两条数轴不一定互相垂直。下面将从两个例子来看斜坐标系的应用。 一:六边形镶嵌 在如图的正六边形组成的平面镶嵌中,假定六边形对边中点连线长度为2。 解: 如图,建立一个坐标系,其中的坐标轴夹30°角。 定义一个点P的坐标为: 过点P作x轴的平行线,与y轴交于点A。 记点A在y轴(y轴看成是数轴)上的对应数值是a; 用类似的方法,做y轴平行线,与x轴交于B,B在x轴上的对应数值是b。 那么,P的坐标记作(a,b)。 如图,过A作两坐标轴平行线,分别交另一坐标轴于P , Q。 易知AP=4,AQ=4 ∴A(-4,4) 易知B在y轴上,OB=2 ∴B(0,2) 往上走一格,横坐标减4,纵坐标加4; 往右上走一格,纵坐标加2。 所以,此人的位置是(-12,16) 如果使用平面直角坐标系解决这个问题,需要了解特殊三角形的三边之比,还需要进行带根号的计算。在这个例子中,我们看到,利用斜坐标系来贴合题目的特征,某些时候可以避免分数、实数计算,大大减小计算的复杂性和难度。

二:目视确定位置 人眼观察物体的原理,是从两个不同方向(左右眼)观察同一个物体,综合所得结果而找到最终实际位置。其实,从一个方向观察一个物体,相当于用平行光作出它的一个投影。我们逆向研究这个问题,抽象后如下: 在前一个问题中,我们考虑了往某一个方向前进1单位时,坐标的增量,例如,往六边形的上方前进一单位的增量是(-4,4),右上方则是(0,2)。我们也发现这个“增量”是可以叠加的,例如往上前进1单位,再往右上前进1单位,总的增量就是(-4,6)。 直接求在OA 、OB 组成的斜坐标系中的“增量”较为困难,尝试逆向求解。 考虑在平面直角坐标系中的“增量”,则读图易知: 往OB 方向前进个单位(从P 到P')的增量是(1,b) 往OA 方向前进个单位(从P 到P'')的增量是(1,a) 那么可以看作P 从原点O 开始,沿OA 走了BP 单位,沿OB 走了AP 单位,到达(c,d)。所以可以列方程求解AP 、BP 。 解:设AP=x ,BP=y ,记k 1=, ,k 2= 。 由题意得 解得 答句略去。 x

平面直角坐标系中的规律问题经典练习题

【题型6】坐标中的规律问题 已知,点A(-2,3)、B(4,3)、C(-1,-3). (1)求A 、B 两点之间的距离. (2)求点C 到x 轴的距离. (3)求△ABC 的面积. (4)观察线段AB 与x 轴的关系,若点D 是线段AB 上一点,则点D 的纵坐标有什么特点? 【变式训练】 1.如图,写出平行四边形ABCD 的顶点A 和顶点B 的坐标,并判断A 与B 、C 与D 的坐标有什么关系. 2.在平面直角坐标系中,一蚂蚁从原点O 出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位.其行走路线如下图所示. (1)填写下列各点的坐标:A 4( , ),A 8( , ),A 12( , ); (2)写出点A 4n 的坐标(n 是正整数) ; (3)蚂蚁从点A 100到点A 101的移动方向是 . 3.在平面直角坐标系中,有若干个横坐标为整数的点,其顺序按图中箭头所示方向排列,如(1,0),(2,0),(2,1),(1,1),(1,2),(2,2),…,那么第23个点的坐标是 . 4.小明在学习了平面直角坐标系后,突发奇想,画出了这样的图形(如图),他把图形与x 轴正半轴的交点依次记作A 1(1,0),A 2(5,0),…,A n ,图形与y 轴正半轴的交点依次记作B 1(0,2),B 2(0,6),…,B n ,图形与x 轴负半轴的交点依次记作C 1(-3,0),C 2(-7,0),…, O 1 A 1 A 2 A 3 A 4 A 5 A 6 A 7 A 8 A 9 A 10 A 11 A 12 x y

C n ,图形与y 轴负半轴的交点依次记作 D 1(0,-4),D 2(0,-8),…,D n .经研究,他发现其中包含了一定的数学规律. 请你根据其中的规律完成下列题目: (1)请分别写出下列各点的坐标:A 3 ,B 3 ,C 3 ,D 3 ; (2)请分别写出下列各点的坐标:A n ,B n ,C n ,D n ; (3)请求出四边形A 5B 5C 5D 5的面积. 6.如图,将边长为1的正三角形OAP 沿x 轴正方向连续翻转2008次,点P 依次落在点1232008P P P P ,,, ,的位置,则点2008P 的横坐标为 . 7.如图,已知A l (1,0)、A 2(1,1)、A 3(-1,1)、A 4(-1,-1)、A 5(2,-1)、….则点A 2007 第3题 第4题 第6题

浅谈2000国家大地坐标系向地方独立坐标系的转换

浅谈2000国家大地坐标系向地方独立坐标系的转换 摘要:大约在十年前,我国的国家级和省级的基础地理信息数据已经初步通过2000国家大地坐标系,然而通过国家坐标系统,在一些离中央子午线较远或者海拔较高的地区无法达到相关要求,这就需要将地方独立坐标系建立起来。本文对2000国家大地坐标系向地方独立坐标系的转化进行分析和研究,以供参考。 关键词:2000国家大地坐标系;地方独立坐标系;转换 1 2000国家大地坐标系与地方独立坐标系的建立 1.1 2000国家大地坐标系的建立 2000国家大地坐标系是全球地心坐标系在我国进行实践的具体体现,其原点 主要是大地和海洋的质量中心,z轴是根据相关规定协议地级方向,x轴表示的是相关规定当中定义的协议赤道和子午面的交点,y轴是依照右手坐标系而建立起 来的,通过2000国家大地坐标系能够加强定位系统的精确性,广泛应用于各个 领域。 1.2地方独立坐标系的建立 在工程测量及城市测绘过程中如果通过国家坐标系来进行控制网的建设,往 往会出现地面长度投影变形量较大等问题,无法达到工程的实际操作需求,所以 一定要建立起与实际情况相适应的地方独立坐标系。地方独立坐标系的建立,主 要是为了让高程归化和投影形变的情况造成的误差缩小,通过地方独立坐标系的 建设可以保证达到所需要的精度,不会由于精度无法达到要求,而对工程建设产 生影响。 2 2000国家大地坐标系与地方独立坐标系转换的理论基础 某市在建设的过程中选取四参数转换模型,对坐标转换参数进行控制,把2000国家大地坐标系的成果向地方独立坐标系的成果进行转化。 2.1重合点选取 在坐标系选用的过程中,两个坐标系都有坐标成果控制点,在选择的过程中,主要原则是覆盖整个转换区域,要求精度较高,而且具有较高的等级,分布均匀。 2.2转换参数计算 首先通过转换模型和重合点的选择,对转换参数进行计算,将残差大于三倍 的误差重合点剔除,对坐标转换参数进行重新计算,直到符合精度要求为止,通 过最小二乘法来对参数进行计算。 2.3精度评定 坐标转换精度一般通过外符合精度来进行评定,根据计算参数转换参数的重 合点残差中误差来对坐标转换精度进行评估,如果残差小于三倍,那么其定位精 度符合要求,在计算的过程中,外部的检核点的误差公式为 3转换方法 坐标转换模型需要与地方控制点和城市数字地图的转化相结合,通常条件下 通过平面四参数模型进行转换,如果重合点比较多,可以通过多元回归模型来进 行控制,如果数字地图和相对独立的平面坐标系统控制点都是三维地心坐标的时候,可以通过Bursa七参数转换模型进行转换。在转换的过程中,需要控制误差 不超过0.05米,并且需要对重合点的选取原则进行明确,首先需要对地方控制点 的高精度控制点和计算点进行择优选择,在一般情况下,在大中城市至少需要保 证使用五个重合点,这些重合点需要均匀的分布,包含在城市的各个区域当中,

地方独立坐标系的建立

地方独立坐标系的建立 2006年第2期地方独立坐标系的建立43 地方独立坐标系的建立 张胜利 (水利部陕西水利电力勘测设计研究院测绘总队陕西西安710002) 摘要坐标系统是所有测量工作的基础,它影响到测量成果的正确性和可靠性,对 于不同的测量工作选择恰当的独立坐标系能保证工程项目顺利实施.本文介绍了建 立独立坐标系的几种方法,并对其优缺点进行分析. 关键词独立坐标系;高斯投影;抵偿高程面;高程归化面 1引言 在工程建设地区布设测量控制网时,其成果不仅要满足大比例尺地形图测图的需要,还要 满足一般工程放样的需要.施工放样时要求控制网中两点的实测长度与由坐标返算的长度应 尽可能相符,而采用国家坐标系其坐标成果大多数情况下是无法满足这些要求的,这是因为国 家坐标系每个投影带都是按一定间隔(6.或3.)划分,其高程归化面为参考椭球面,工程建设所

在地区不可能正好落在国家坐标系某一投影带中央附近,其地面位置也与参考椭球面有一定 距离,这两项将产生高程归化改正和高斯投影变形改正,经过这两项改正后的长度不可能与实 测长度相等. 《工程测量规范》(GB5oo26--93)规定:平面控制网的坐标系统,应满足测区内高程归化改 正和高斯投影变形改正之代数和(即投影长度变形值)不大于2.5cm/km,即相对误差小于1/4 万.当测区的国家坐标系不能满足这一规定时,就要建立地方独立坐标系以减小投影长度变 形产生的影响,将它们的影响控制在微小的范围内,使计算出的长度在实际利用时不需作任何 改算. 2高程归化改正与高斯投影变形改化的计算 地面观测边长的归算可分为高程归化和高斯投影长度改化,其计算公式如下: (1)地面观测边长归算到参考椭球面上的长度归算公式 S—D十,:一—DH=(1) 式中:S——归化到参考椭球圆上的长度; D——地面上的观测长度; ——

工程独立坐标系的建立

工程独立坐标系的建立 摘要:在工程建设地区布设测量控制网时,其成果不仅要满足大比例尺地形图测图的需要,还要满足一般工程放样的需要。施工放样时要求控制网中两点的实测长度与由坐标反算的长度应尽可 能相符,而采用国家坐标系其坐标成果大多数情况下是无法满足这些要求的。本文主要阐述了工程独立坐标系的建立方法,通过在乾县和靖边供水工程可研阶段测量中的应用,得出了一些有益的结论和建议。 关键词:国家坐标系,独立坐标系,中央子午线,抵偿高程面abstract: in the engineering construction area layout measure control network, its results not only meets the large scale topographic map surveying the need, but also meet the needs of the general projects layout. when construction lofting requirements in the two control net by the length and the length of the coordinates should as far as possible and is consistent with national coordinate system and the coordinate results in most cases is unable to meet these requirements. this paper mainly expounds the methods to set up the independent coordinate system engineering, through in situations water supply project of qian county and feasibility study stage of the application of the measurement and draw some useful conclusions and suggestions.

CAD设计制图中的坐标系UCS怎样使用

CAD设计制图中的坐标系UCS怎样使用 在CAD设计中我们经常会调整坐标,更换作图平面,在这里就要试用【UCS】工具条了。 无论是AutoCAD软件,还是各系类的浩辰软件,在使用坐标【UCS】时操作方法都是一样的,下面我就以浩辰CAD机械软件,简单说一下CAD设计是【UCS】工具条的使用方法。 1、所有坐标命令,即【UCS】命令 次命令包含了CAD中所有的坐标命令,我们科以看命令行提示 [?/3点(3)/面(F)/删除(D)/对象(E)/原点(O)/前次(P)/还原(R)/保存(S)/视图 (V)/X/Y/Z/Z轴(ZA)/世界(W)]<世界(W)>: 在这里输入相应命令字母,就可以相应的调整坐标了。这些命令对应后续的几个命令,我就不多说了。 2、【世界坐标】命令 此命令的直接点击即可完成,用于坐标系调整后回到起初的状态,也就是无论你经坐标系做何调整后只要点击【世界坐标】它就会回到最初原点和状态。 3、【上一个UCS】命令 顾名思义,点击此命令,回到使用的上一个坐标系。 4、【对象ucs】 点击命令后,选择要定义坐标的对象即可将坐标系定义到我们想定义的位置,如图效果。 5、【视图坐标】 此功能应用较少,功能主要实现的是无论在那个视图坐标调整到xy平面作图。

6、【原点坐标】、【z轴矢量】和【3点】坐标命令 【原点坐标】:此命令以点定义坐标,点击命令后,直接点击某点,坐标系就会跟随移动到此点上。 【z轴矢量】:此命令以线定义坐标,点击命令后,直接点击两点确定一直线,坐标系z轴就会跟随一定到此两点确定的直线上。 【3点】此命令以面定义坐标,点击命令后,先点击一点确定原点,然后分别点击两点确定x轴、y轴,坐标系就会移动到相应的位置平面。 7、坐标旋转 此三个命令在更换作图平面式非常常用,用于坐标系的旋转,可分别根据x轴、y轴、z轴进行相应的坐标系旋转,操作较为简单,不做过多介绍。

浅谈具有高程补偿面的独立坐标系在工程上的应用

浅谈具有高程补偿面的独立坐标系在工程上的应用关键字:长度投影变形高程补偿面独立坐标系GPS基线 0 引言 某工程为石油管线带状地形图测量。为此需做一个带状地形控制网。用于带状地形图的绘制。其目的为以后施工建设提供控制依据,并为线路定测和中线放样提供依据。因测区地形多为山区。地形条件复杂,作业季节为盛夏,山区树林茂密,通视条件极差。为此,平面控制采用GPS测量,高程控制采用水准测量。由于平面控制网不仅要满足测图的需要,还要满足改扩建工程施工测量的要求,在进行GPS工程控制网坐标系的选择时,二者需同时兼顾。测区位于国家坐标系三度带边缘,且和国家控制点联测较为困难。本次工程对GPS工程控制网坐标系的选择和对短边GPS高程测量的精度分析得到结论,对工程控制网的建立有一定的借鉴作用。 1 长度投影变形来源 长度投影变形是在两个过程中产生的,我们知道,通过GPS采集测量数据必须通过高程归化平差,归化到参考椭球面上。在这过程中长度产生了高程归化投影变形。然后是由参考椭球体面上的长度投影到高斯平面上时产生了高斯投影长度变形。这样通过平差解算出的基线长度往往和实地量测长度值不同。这就是长度变形的来源。这时,必须人为加入长度变形改正数,为了避免在日常测绘工作中进行大量而繁琐的长度改正计算,必须对长度投影变形给予必要控制。 2 长度投影变形分析 由于该工程平面控制网不但作为大比例尺侧路的控制基础,还要满足后续改扩建工程施工放样测量的需要。为保证施工放样工作的顺利进行,要求由控制点坐标直接反算的边长与实地量得边长尽量相等,也就是说,由高程归算和高斯投影两项改正而带来的长度变形或者改正数,不得大于施工放样的精度要求。按《工程测量规范》要求,每公里长度改正数不大于2.5cm。 设地面实测边长归算到参考椭球面上的长度变形值为,则: = (1) 式中:为归算边高出参考椭球面的平均高程,S为归算边的长度,R为归算边方向参考椭球的法截线的曲率半径。由(1)式可知:的绝对值与成正比关系。当越大,越大。而与其他参数无关。当S=1km,=160m,=-2.5cm,即测区平均海拔超过160m,长度变形值每公里2.5cm。说明当测区平均海拔超过160m 时,若不采取解决办法。就不满足《工程测量规范》的要求。当为负值时,表明地标实测长度归算到参考椭球面上总是缩短的。

相关主题
文本预览
相关文档 最新文档