当前位置:文档之家› Estimates of flavoured scalar production in B - decays

Estimates of flavoured scalar production in B - decays

如何写先进个人事迹

如何写先进个人事迹 篇一:如何写先进事迹材料 如何写先进事迹材料 一般有两种情况:一是先进个人,如先进工作者、优秀党员、劳动模范等;一是先进集体或先进单位,如先进党支部、先进车间或科室,抗洪抢险先进集体等。无论是先进个人还是先进集体,他们的先进事迹,内容各不相同,因此要整理材料,不可能固定一个模式。一般来说,可大体从以下方面进行整理。 (1)要拟定恰当的标题。先进事迹材料的标题,有两部分内容必不可少,一是要写明先进个人姓名和先进集体的名称,使人一眼便看出是哪个人或哪个集体、哪个单位的先进事迹。二是要概括标明先进事迹的主要内容或材料的用途。例如《王鬃同志端正党风的先进事迹》、《关于评选张鬃同志为全国新长征突击手的材料》、《关于评选鬃处党支部为省直机关先进党支部的材料》等。 (2)正文。正文的开头,要写明先进个人的简要情况,包括:姓名、性别、年龄、工作单位、职务、是否党团员等。此外,还要写明有关单位准备授予他(她)什么荣誉称号,或给予哪种形式的奖励。对先进集体、先进单位,要根据其先进事迹的主要内容,寥寥数语即应写明,不须用更多的文字。 然后,要写先进人物或先进集体的主要事迹。这部分内容是全篇材料

的主体,要下功夫写好,关键是要写得既具体,又不繁琐;既概括,又不抽象;既生动形象,又很实在。总之,就是要写得很有说服力,让人一看便可得出够得上先进的结论。比如,写一位端正党风先进人物的事迹材料,就应当着重写这位同志在发扬党的优良传统和作风方面都有哪些突出的先进事迹,在同不正之风作斗争中有哪些突出的表现。又如,写一位搞改革的先进人物的事迹材料,就应当着力写这位同志是从哪些方面进行改革的,已经取得了哪些突出的成果,特别是改革前后的.经济效益或社会效益都有了哪些明显的变化。在写这些先进事迹时,无论是先进个人还是先进集体的,都应选取那些具有代表性的具体事实来说明。必要时还可运用一些数字,以增强先进事迹材料的说服力。 为了使先进事迹的内容眉目清晰、更加条理化,在文字表述上还可分成若干自然段来写,特别是对那些涉及较多方面的先进事迹材料,采取这种写法尤为必要。如果将各方面内容材料都混在一起,是不易写明的。在分段写时,最好在每段之前根据内容标出小标题,或以明确的观点加以概括,使标题或观点与内容浑然一体。 最后,是先进事迹材料的署名。一般说,整理先进个人和先进集体的材料,都是以本级组织或上级组织的名义;是代表组织意见的。因此,材料整理完后,应经有关领导同志审定,以相应一级组织正式署名上报。这类材料不宜以个人名义署名。 写作典型经验材料-般包括以下几部分: (1)标题。有多种写法,通常是把典型经验高度集中地概括出来,一

流热仿真课后作业

第一章 1、计算流体动力学的基本任务是什么? 答:计算流体动力学,简称CFD,是通过计算机数值计算和图像显示,对包含流体流动和热传导等相关物理现象的系统所做的分析。CFD可以看作是在流动基本方程(质量守恒方程、动量守恒方程、能量守恒方程)控制下对流动的数值模拟。通过这种模拟我们可以得到极其复杂问题的流场内各个位置上的基本物理量(如速度、压力、温度、浓度)的分布,以及这些物理量随时间的变化,确定漩涡分布的特性、空化特性及脱流区等。 2、什么叫控制方程?常用的控制方程有哪几个?各用在什么场合? 答:(1)流体流动要受物理守恒定律的支配,基本的守恒定律包括:质量守恒定律、动量守恒定律、能量守恒定律。如果流动包含了不同组分的混合成相互作用系统,还要遵守组分守恒定律,而控制方程是这些守恒组分守恒定律,而控制方程是这些守恒定律的数学描述。 (2)①质量守恒方程:任何流动问题都必须满足;②动量守恒方程:任何流动系统都必须满足;③能量守恒方程:包含有热交换的流动系统必须满足。 3、试写出变径圆管内液体流动的控制方程及其边界条件(假定没有热交换),并写出用CFD来分析时的求解过程。注意说明控制方程如何使用。 第二章 1、什么叫离散化?意义是什么? 2、常用的离散化方法有哪些?各有何特点? 3、简述有限体积法的基本思想,说明其使用的网格有何特点? 4、简述瞬态问题与稳态问题之控制方程的区别,说明在时间域上离散控制方程的基本思想及方法?

5、分析比较中心差分格式、一阶迎风格式、混合格式、指数格式、二阶迎风格式、QUICK格式各自的特点及使用场合? 第四章 1、湍流流动的特征是什么? 答:Reynolds数值大于临界值,流动呈现无序的混乱状态。这时,即使边界条件保持不变,流动也是不稳定的,速度等流动特性都随机变化。 2、三维湍流数值模拟的方法分类? 答:直接数值模拟方法、非直接数值模拟方法。 3、标准k—ε模型方程的解法及适用性? 4、Realizable K—ε模型的适用模型? 答:Realizable K—ε模型已被有效地用于各种不同类型的流动模拟,包括旋转均匀剪切流、包含有射流、混合流的自由流动、管道内流动、边界层流动、以及带有分离的流动等。 5、LES方法的基本思想如何?它与DNS方法有怎样的联系和区别?它的控制方程组与时均化方法的控制方程有什么异同? 答:(1)LES方法的主要思想是:用瞬时的N-S方程直接模拟湍流中的大尺度涡,不直接模拟小尺度涡,而小涡对大涡的影响通过近似的模型来考虑。 (2)LES和DNS是湍流数值模拟常用的方法,DNS是直接用瞬时的N-S方程对湍流进行计算,最大好处是无需对湍流流动作任何简化或近似,理论上可以得到相对精确的计算结果,是直接数值模拟方法,而LES是非直接数值模拟方法,同时,DNS对内存空间及计算速度的要求高于LES。 (3)LES方法的控制方程组不考虑脉动对湍流运用的影响,将湍流运动看作是时间上的平均流动而DNS考察脉动的影响,把湍流运动看作是时间平均流动和

关于时间管理的英语作文 manage time

How to manage time Time treats everyone fairly that we all have 24 hours per day. Some of us are capable to make good use of time while some find it hard to do so. Knowing how to manage them is essential in our life. Take myself as an example. When I was still a senior high student, I was fully occupied with my studies. Therefore, I hardly had spare time to have fun or develop my hobbies. But things were changed after I entered university. I got more free time than ever before. But ironically, I found it difficult to adjust this kind of brand-new school life and there was no such thing called time management on my mind. It was not until the second year that I realized I had wasted my whole year doing nothing. I could have taken up a Spanish course. I could have read ten books about the stories of successful people. I could have applied for a part-time job to earn some working experiences. B ut I didn’t spend my time on any of them. I felt guilty whenever I looked back to the moments that I just sat around doing nothing. It’s said that better late than never. At least I had the consciousness that I should stop wasting my time. Making up my mind is the first step for me to learn to manage my time. Next, I wrote a timetable, setting some targets that I had to finish each day. For instance, on Monday, I must read two pieces of news and review all the lessons that I have learnt on that day. By the way, the daily plan that I made was flexible. If there’s something unexpected that I had to finish first, I would reduce the time for resting or delay my target to the next day. Also, I would try to achieve those targets ahead of time that I planed so that I could reserve some more time to relax or do something out of my plan. At the beginning, it’s kind of difficult to s tick to the plan. But as time went by, having a plan for time in advance became a part of my life. At the same time, I gradually became a well-organized person. Now I’ve grasped the time management skill and I’m able to use my time efficiently.

英语演讲稿:未来的工作

英语演讲稿:未来的工作 这篇《英语演讲稿范文:未来的工作》,是特地,希望对大家有所帮助! 热门演讲推荐:竞聘演讲稿 | 国旗下演讲稿 | 英语演讲稿 | 师德师风演讲稿 | 年会主持词 | 领导致辞 everybody good afternoon:. first of all thank the teacher gave me a story in my own future ideal job. everyone has a dream job. my dream is to bee a boss, own a pany. in order to achieve my dreams, i need to find a good job, to accumulate some experience and wealth, it is the necessary things of course, in the school good achievement and rich knowledge is also very important. good achievement and rich experience can let me work to make the right choice, have more opportunities and achievements. at the same time, munication is very important, because it determines whether my pany has a good future development. so i need to exercise their municative ability. i need to use all of the free time to learn

最新小学生个人读书事迹简介怎么写800字

小学生个人读书事迹简介怎么写800字 书,是人类进步的阶梯,苏联作家高尔基的一句话道出了书的重要。书可谓是众多名人的“宠儿”。历来,名人说出关于书的名言数不胜数。今天小编在这给大家整理了小学生个人读书事迹,接下来随着小编一起来看看吧! 小学生个人读书事迹1 “万般皆下品,惟有读书高”、“书中自有颜如玉,书中自有黄金屋”,古往今来,读书的好处为人们所重视,有人“学而优则仕”,有人“满腹经纶”走上“传道授业解惑也”的道路……但是,从长远的角度看,笔者认为读书的好处在于增加了我们做事的成功率,改善了生活的质量。 三国时期的大将吕蒙,行伍出身,不重视文化的学习,行文时,常常要他人捉刀。经过主君孙权的劝导,吕蒙懂得了读书的重要性,从此手不释卷,成为了一代儒将,连东吴的智囊鲁肃都对他“刮目相待”。后来的事实证明,荆州之战的胜利,擒获“武圣”关羽,离不开吕蒙的“运筹帷幄,决胜千里”,而他的韬略离不开平时的读书。由此可见,一个人行事的成功率高低,与他的对读书,对知识的重视程度是密切相关的。 的物理学家牛顿曾近说过,“如果我比别人看得更远,那是因为我站在巨人的肩上”,鲜花和掌声面前,一代伟人没有迷失方向,自始至终对读书保持着热枕。牛顿的话语告诉我们,渊博的知识能让我们站在更高、更理性的角度来看问题,从而少犯错误,少走弯路。

读书的好处是显而易见的,但是,在社会发展日新月异的今天,依然不乏对读书,对知识缺乏认知的人,《今日说法》中我们反复看到农民工没有和用人单位签订劳动合同,最终讨薪无果;屠户不知道往牛肉里掺“巴西疯牛肉”是犯法的;某父母坚持“棍棒底下出孝子”,结果伤害了孩子的身心,也将自己送进了班房……对书本,对知识的零解读让他们付出了惨痛的代价,当他们奔波在讨薪的路上,当他们面对高墙电网时,幸福,从何谈起?高质量的生活,从何谈起? 读书,让我们体会到“锄禾日当午,汗滴禾下土”的艰辛;读书,让我们感知到“四海无闲田,农夫犹饿死”的无奈;读书,让我们感悟到“为报倾城随太守,西北望射天狼”的豪情壮志。 读书的好处在于提高了生活的质量,它填补了我们人生中的空白,让我们不至于在大好的年华里无所事事,从书本中,我们学会提炼出有用的信息,汲取成长所需的营养。所以,我们要认真读书,充分认识到读书对改善生活的重要意义,只有这样,才是一种负责任的生活态度。 小学生个人读书事迹2 所谓读一本好书就是交一个良师益友,但我认为读一本好书就是一次大冒险,大探究。一次体会书的过程,真的很有意思,咯咯的笑声,总是从书香里散发;沉思的目光也总是从书本里透露。是书给了我启示,是书填补了我无聊的夜空,也是书带我遨游整个古今中外。所以人活着就不能没有书,只要爱书你就是一个爱生活的人,只要爱书你就是一个大写的人,只要爱书你就是一个懂得珍惜与否的人。可真所谓

第三章,湍流模型

第三章,湍流模型 第一节, 前言 湍流流动模型很多,但大致可以归纳为以下三类: 第一类是湍流输运系数模型,是Boussinesq 于1877年针对二维流动提出的,将速度脉动的二阶关联量表示成平均速度梯度与湍流粘性系数的乘积。即: 2 1 21 x u u u t ??=-μρ 3-1 推广到三维问题,若用笛卡儿张量表示,即有: ij i j j i t j i k x u x u u u δρμρ32 -??? ? ????+ ??=''- 3-2 模型的任务就是给出计算湍流粘性系数t μ的方法。根据建立模型所需要的微分方程的数目,可以分为零方程模型(代数方程模型),单方程模型和双方程模型。 第二类是抛弃了湍流输运系数的概念,直接建立湍流应力和其它二阶关联量的输运方程。 第三类是大涡模拟。前两类是以湍流的统计结构为基础,对所有涡旋进行统计平均。大涡模拟把湍流分成大尺度湍流和小尺度湍流,通过求解三维经过修正的Navier-Stokes 方程,得到大涡旋的运动特性,而对小涡旋运动还采用上述的模型。 实际求解中,选用什么模型要根据具体问题的特点来决定。选择的一般原则是精度要高,应用简单,节省计算时间,同时也具有通用性。 FLUENT 提供的湍流模型包括:单方程(Spalart-Allmaras )模型、双方程模型(标准κ-ε模型、重整化群κ-ε模型、可实现(Realizable)κ-ε模型)及雷诺应力模型和大涡模拟。 湍流模型种类示意图 第二节,平均量输运方程 包含更多 物理机理 每次迭代 计算量增加 提的模型选 RANS-based models

雷诺平均就是把Navier-Stokes 方程中的瞬时变量分解成平均量和脉动量两部分。对于速度,有: i i i u u u '+= 3-3 其中,i u 和i u '分别是平均速度和脉动速度(i=1,2,3) 类似地,对于压力等其它标量,我们也有: φφφ'+= 3-4 其中,φ表示标量,如压力、能量、组分浓度等。 把上面的表达式代入瞬时的连续与动量方程,并取平均(去掉平均速度i u 上的横线),我们可以把连续与动量方程写成如下的笛卡儿坐标系下的张量形式: 0)(=?? +??i i u x t ρρ 3-5 () j i j l l ij i j j i j i i u u x x u x u x u x x p Dt Du -?? +???????????? ????-??+????+??-=ρδμρ32 3-6 上面两个方程称为雷诺平均的Navier-Stokes (RANS )方程。他们和瞬时Navier-Stokes 方程有相同的形式,只是速度或其它求解变量变成了时间平均量。额外多出来的项j i u u ''-ρ是雷诺应力,表示湍流的影响。如果要求解该方程,必须模拟该项以封闭方程。 如果密度是变化的流动过程如燃烧问题,我们可以用法夫雷(Favre )平均。这样才可以求解有密度变化的流动问题。法夫雷平均就是出了压力和密度本身以外,所有变量都用密度加权平均。变量的密度加权平均定义为: ρρ/~ Φ=Φ 3-7 符号~表示密度加权平均;对应于密度加权平均值的脉动值用Φ''表示,即有: Φ''+Φ=Φ~ 。很显然,这种脉动值的简单平均值不为零,但它的密度加权平均值等于零,即: 0≠Φ'', 0=Φ''ρ Boussinesq 近似与雷诺应力输运模型 为了封闭方程,必须对额外项雷诺应力j i u u -ρ进行模拟。一个通常的方法是应用Boussinesq 假设,认为雷诺应力与平均速度梯度成正比,即: ij i i t i j j i t j i x u k x u x u u u δμρμρ)(32 ??+-??? ? ????+??=''- 3-8 Boussinesq 假设被用于Spalart-Allmaras 单方程模型和ε-k 双方程模型。Boussinesq 近似 的好处是与求解湍流粘性系数有关的计算时间比较少,例如在Spalart-Allmaras 单方程模型中,只多求解一个表示湍流粘性的输运方程;在ε-k 双方程模型中,只需多求解湍动能k 和耗散率ε两个方程,湍流粘性系数用湍动能k 和耗散率ε的函数。Boussinesq 假设的缺点是认为湍流粘性系数t μ是各向同性标量,对一些复杂流动该条件并不是严格成立,所以具有其应用限制性。

关于坚持的英语演讲稿

关于坚持的英语演讲稿 Results are not important, but they can persist for many years as a commemoration of. Many years ago, as a result of habits and overeating formed one of obesity, as well as indicators of overall physical disorders, so that affects my work and life. In friends to encourage and supervise, the participated in the team Now considered to have been more than three years, neither the fine rain, regardless of winter heat, a day out with 5:00 time. The beginning, have been discouraged, suffering, and disappointment, but in the end of the urging of friends, to re-get up, stand on the playground. 成绩并不重要,但可以作为坚持多年晨跑的一个纪念。多年前,由于庸懒习惯和暴饮暴食,形成了一身的肥胖,以及体检指标的全盘失常,以致于影响到了我的工作和生活。在好友的鼓励和督促下,参加了晨跑队伍。现在算来,已经三年多了,无论天晴下雨,不管寒冬酷暑,每天五点准时起来出门晨跑。开始时,也曾气馁过、痛苦过、失望过,但最后都在好友们的催促下,重新爬起来,站到了操场上。 In fact, I did not build big, nor strong muscles, not a sport-born people. Over the past few years to adhere to it, because I have a team behind, the strength of a strongteam here, very grateful to our team, for a long time, we encourage each other, and with sweat, enjoying common health happy. For example, Friends of the several run in order to maintain order and unable to attend the 10,000 meters race, and they are always concerned about the brothers and promptly inform the place and time, gives us confidence and courage. At the same time, also came on their own inner desire and pursuit for a good health, who wrote many of their own log in order to refuel for their own, and inspiring. 其实我没有高大身材,也没健壮肌肉,天生不属于运动型的人。几年来能够坚持下来,因为我的背后有一个团队,有着强大团队的力量,在这里,非常感谢我们的晨跑队,长期以来,我们相互鼓励着,一起流汗,共同享受着健康带来的快

湍流流动的近壁处理详解

壁面对湍流有明显影响。在很靠近壁面的地方,粘性阻尼减少了切向速度脉动,壁面也阻止了法向的速度脉动。离开壁面稍微远点的地方,由于平均速度梯度的增加,湍动能产生迅速变大,因而湍流增强。因此近壁的处理明显影响数值模拟的结果,因为壁面是涡量和湍流的主要来源。 实验研究表明,近壁区域可以分为三层,最近壁面的地方被称为粘性底层,流动是层流状态,分子粘性对于动量、热量和质量输运起到决定作用。外区域成为完全湍流层,湍流起决定作用。在完全湍流与层流底层之间底区域为混合区域(Blending region),该区域内分子粘性与湍流都起着相当的作用。近壁区域划分见图4-1。 图4-1,边界层结构 第一节,壁面函数与近壁模型 近壁处理方法有两类:第一类是不求解层流底层和混合区,采用半经验公式(壁面函数)来求解层流底层与完全湍流之间的区域。采用壁面函数的方法可以避免改进模型就可以直接模拟壁面存在对湍流的影响。第二类是改进湍流模型,粘性影响的近壁区域,包括层流底层都可以求解。 对于多数高雷诺数流动问题,采用壁面函数的方法可以节约计算资源。这是因为在近壁区域,求解的变量变化梯度较大,改进模型的方法计算量比较大。由于可以减少计算量并具有一定的精度,壁面函数得到了比较多的应用。对于许多的工程实际流动问题,采用壁面函数处理近壁区域是很好的选择。 如果我们研究的问题是低雷诺数的流动问题,那么采用壁面函数方法处理近壁区域就不合适了,而且壁面函数处理的前提假设条件也不满足。这就需要一个合适的模型,可以一直求解到壁面。FLUENT提供了壁面函数和近壁模型两种方法,以便供用户根据自己的计算问题选择。

4.1.1壁面函数 FLUENT 提供的壁面函数包括:1,标准壁面函数;2,非平衡壁面函数两类。标准壁面函数是采用Launder and Spalding [L93]的近壁处理方法。该方法在很多工程实际流动中有较好的模拟效果。 4.1.1.1 标准壁面函数 根据平均速度壁面法则,有: **1 ln()U Ey k = 4-1 其中,1/41/2 * /p p w U C k U μτρ ≡ ,1/41/2 * p p C k y y μρμ≡,并且 k =0.42,是V on Karman 常数;E =9.81,是实验常数;p U 是P 点的流体平均速度;p k 是P 点的湍动能;p y 是P 点到壁面的距离;μ是流体的动力粘性系数。 通常,在*30~60y >区域,平均速度满足对数率分布。在FLUENT 程序中,这一条件改变为*11.225y >。 当网格出来*11.225y <的区域时候,FLUENT 中采用层流应力应变关系,即:**U y =。这里需要指出的是FLUENT 中采用针对平均速度和温度的壁面法则中,采用了*y ,而不是y +(/u y τρμ≡)。对于平衡湍流边界层流动问题,这两个量几乎相等。 根据雷诺相似,我们可以根据平均速度的对数分布,同样给出平均温度的类似分布。FLUENT 提供的平均温度壁面法则有两种:1,导热占据主要地位的热导子层的线性率分布;2,湍流影响超过导热影响的湍流区域的对数分布。 温度边界层中的热导子层厚度与动量边界层中的层流底层厚度通常都不相同,并且随流体介质种类变化而变化。例如,高普朗特数流体(油)的热导子层厚度比其粘性底层厚度小很多;对于低普朗特数的流体(液态金属)相反,热导子层厚度比粘性底层厚度大很多。 1/41/2 * ()w p p P T T c C k T q μρ-≡ '' 4-2 =()1/41/2 *2*1/41/222 1Pr Pr 21Pr ln()1Pr Pr Pr 2p p t p t p t c C k y U q Ey P k C k U U q μμρρ?+?''? ????++???? ??????+-??''?? ** **()()T T y y y y <> 4-3

关于管理的英语演讲

1.How to build a business that lasts100years 0:11Imagine that you are a product designer.And you've designed a product,a new type of product,called the human immune system.You're pitching this product to a skeptical,strictly no-nonsense manager.Let's call him Bob.I think we all know at least one Bob,right?How would that go? 0:34Bob,I've got this incredible idea for a completely new type of personal health product.It's called the human immune system.I can see from your face that you're having some problems with this.Don't worry.I know it's very complicated.I don't want to take you through the gory details,I just want to tell you about some of the amazing features of this product.First of all,it cleverly uses redundancy by having millions of copies of each component--leukocytes,white blood cells--before they're actually needed,to create a massive buffer against the unexpected.And it cleverly leverages diversity by having not just leukocytes but B cells,T cells,natural killer cells,antibodies.The components don't really matter.The point is that together,this diversity of different approaches can cope with more or less anything that evolution has been able to throw up.And the design is completely modular.You have the surface barrier of the human skin,you have the very rapidly reacting innate immune system and then you have the highly targeted adaptive immune system.The point is,that if one system fails,another can take over,creating a virtually foolproof system. 1:54I can see I'm losing you,Bob,but stay with me,because here is the really killer feature.The product is completely adaptive.It's able to actually develop targeted antibodies to threats that it's never even met before.It actually also does this with incredible prudence,detecting and reacting to every tiny threat,and furthermore, remembering every previous threat,in case they are ever encountered again.What I'm pitching you today is actually not a stand-alone product.The product is embedded in the larger system of the human body,and it works in complete harmony with that system,to create this unprecedented level of biological protection.So Bob,just tell me honestly,what do you think of my product? 2:47And Bob may say something like,I sincerely appreciate the effort and passion that have gone into your presentation,blah blah blah-- 2:56(Laughter) 2:58But honestly,it's total nonsense.You seem to be saying that the key selling points of your product are that it is inefficient and complex.Didn't they teach you 80-20?And furthermore,you're saying that this product is siloed.It overreacts, makes things up as it goes along and is actually designed for somebody else's benefit. I'm sorry to break it to you,but I don't think this one is a winner.

关于工作的优秀英语演讲稿

关于工作的优秀英语演讲稿 Different people have various ambitions. Some want to be engineers or doctors in the future. Some want to be scientists or businessmen. Still some wish to be teachers or lawers when they grow up in the days to come. Unlike other people, I prefer to be a farmer. However, it is not easy to be a farmer for Iwill be looked upon by others. Anyway,what I am trying to do is to make great contributions to agriculture. It is well known that farming is the basic of the country. Above all, farming is not only a challenge but also a good opportunity for the young. We can also make a big profit by growing vegetables and food in a scientific way. Besides we can apply what we have learned in school to farming. Thus our countryside will become more and more properous. I believe that any man with knowledge can do whatever they can so long as this job can meet his or her interest. All the working position can provide him with a good chance to become a talent. 1 ————来源网络整理,仅供供参考

个人先进事迹简介

个人先进事迹简介 01 在思想政治方面,xxxx同学积极向上,热爱祖国、热爱中国共产党,拥护中国共产党的领导.利用课余时间和党课机会认真学习政治理论,积极向党组织靠拢. 在学习上,xxxx同学认为只有把学习成绩确实提高才能为将来的实践打下扎实的基础,成为社会有用人才.学习努力、成绩优良. 在生活中,善于与人沟通,乐观向上,乐于助人.有健全的人格意识和良好的心理素质和从容、坦诚、乐观、快乐的生活态度,乐于帮助身边的同学,受到师生的好评. 02 xxx同学认真学习政治理论,积极上进,在校期间获得原院级三好生,和校级三好生,优秀团员称号,并获得三等奖学金. 在学习上遇到不理解的地方也常常向老师请教,还勇于向老师提出质疑.在完成自己学业的同时,能主动帮助其他同学解决学习上的难题,和其他同学共同探讨,共同进步. 在社会实践方面,xxxx同学参与了中国儿童文学精品“悦”读书系,插画绘制工作,xxxx同学在班中担任宣传委员,工作积极主动,认真负责,有较强的组织能力.能够在老师、班主任的指导下独立完成学院、班级布置的各项工作. 03 xxx同学在政治思想方面积极进取,严格要求自己.在学习方面刻苦努力,不断钻研,学习成绩优异,连续两年荣获国家励志奖学金;作

为一名学生干部,她总是充满激情的迎接并完成各项工作,荣获优秀团干部称号.在社会实践和志愿者活动中起到模范带头作用. 04 xxxx同学在思想方面,积极要求进步,为人诚实,尊敬师长.严格 要求自己.在大一期间就积极参加了党课初、高级班的学习,拥护中国共产党的领导,并积极向党组织靠拢. 在工作上,作为班中的学习委员,对待工作兢兢业业、尽职尽责 的完成班集体的各项工作任务.并在班级和系里能够起骨干带头作用.热心为同学服务,工作责任心强. 在学习上,学习目的明确、态度端正、刻苦努力,连续两学年在 班级的综合测评排名中获得第1.并荣获院级二等奖学金、三好生、优秀班干部、优秀团员等奖项. 在社会实践方面,积极参加学校和班级组织的各项政治活动,并 在志愿者活动中起到模范带头作用.积极锻炼身体.能够处理好学习与工作的关系,乐于助人,团结班中每一位同学,谦虚好学,受到师生的好评. 05 在思想方面,xxxx同学积极向上,热爱祖国、热爱中国共产党,拥护中国共产党的领导.作为一名共产党员时刻起到积极的带头作用,利用课余时间和党课机会认真学习政治理论. 在工作上,作为班中的团支部书记,xxxx同学积极策划组织各类 团活动,具有良好的组织能力. 在学习上,xxxx同学学习努力、成绩优良、并热心帮助在学习上有困难的同学,连续两年获得二等奖学金. 在生活中,善于与人沟通,乐观向上,乐于助人.有健全的人格意 识和良好的心理素质.

粘性流体力学一些概念

无量纲参数 2 02 00Re L V L V L V μρμρ= = ) (/)(00003 000020T T C L V L V T T C V Ec w p w p - =-= ρρ 热传递中流体压缩性的影响,也就是推进功与对流热之比。00 0Pr K C p μ= 表示流体的物性的影响,表征温度场和速度场的相似程度。边界层特征厚度dy u u h e e ?- =0 * )1(ρρδ 边界层的存在而使自由流流线向外推移的距离。 θ δ* =H 能够反映速度剖面的形状,H 值越小, 剖面越饱满。动量积分方程:不可压流二维 f e w e e C u dx du u H dt d ==++2)2(ρτθθ /2 普朗特方程的导出,相似解的概念,布拉休斯解的主要结论 ?????????????+??+??-=??+??+????+??+??-=??+??+??=??+ ??)(1)(1022222222y v x v y p y v v x v u t v y u x u x p y u v x u u t u y v x u νρνρ 将方程无量纲化: ./,/,/,/*2***L tU t u p p U u u L x x ====ρ ν/Re UL =,Re /1*≈δ ,/,/,,**L L y U u v L y u v δδ=?==?= 分析:当Re 趋于很大时,**y p ??是大量,则**y p ??=0,根据量纲分析,去掉小量化为有量纲形式则可得到普朗特边界层方程: ???? ?? ??? =????+??-=??+??+??=??+??01022y p y u x p y u v x u u t u y v x u υρ 相似解的概念:对不同x 截面上的速度剖面u(x,y)都可以通过调整速度u 和坐标y 的尺度因子,使他们重合在一起。外部势流速度Ue(x)作为u 的尺度因子,g(x)作为坐标y 的尺度因子。则无量纲坐标)(x g y ,无量纲速度)(x u u e ,则 对所有不同的x 截面其速度剖面的形状将会相 同。即= )(])(,[111x u x g y x u e ) (] ) (,[222x u x g y x u e 布拉修斯解(零攻角沿平板流动的解)的主要结论: x x Re 721.1* =δx x Re 664.0=θ 591.2/*==θδH 壁面切应力为: x y w U y u Re 1332.0)(2 0∞ ==??=ρμτ 壁面摩擦系数为:x w f u C Re 1664.022 ==∞ρτ 平均为:l l f Df dx C l C Re 1328.110? == 湍流的基本概念及主要特征,湍流脉动与分子随机运动之间的差别湍流是随机的,非定常的,三维的有旋流动,随机背后还存在拟序结构。特征:随机脉动耗散性,有涡性(大涡套小涡)。 湍流脉动:不断成长、分裂和消失的湍流微团;漩涡的裂变造成能量的传递;漩涡运动与边界条件有密切关系,漩涡的最小尺度必大于分子的自由程。分子随机运动:是稳定的个体;碰撞时发生能量交换;平均自由程λ与平均速度 和边界条件无关。层流稳定性的基本思想:在临界雷诺数以下时,流动本身使得流体质点在外力的作用下具有一定的稳定性,能抵抗微弱的扰动并使之消失,因而能保持层流;当雷诺数超过临界值后,流动无法保持稳定,只要存在微弱的扰动便会迅速发展,并逐渐过渡到湍流。平板边界层稳定性研究得到的主要结果:1.雷诺数达到临界雷诺数时流动开始不稳定,成为不稳定点,而转捩点则对应与更高的雷诺数。2.导致不稳定扰动最小波长 δ δλ65.17min ≈=*,可见不稳定波是一种 波长很长的扰动波,约为边界层厚度的6倍。3. 不稳定扰动波传播速度远小于边界层外部势流速度,其最大的扰动波传播速度 4.0/=∞U c r 。当雷诺数相当大时,中性稳定线的上下两股趋于水平轴。判别转捩的试验方法: 升华法(主要依据:湍流的剪切应力大小)热膜法(主要依据:层流和湍流边界层内 气流脉动和换热能力的差别)液晶法(主要依 据:湍流传热和层流传热能力之间的差异)湍流的两种统计理论:1. 湍流平均量的半经验分 析(做法:主要研究各个参数的平均量以及它们之间的相互关系,如平均速度,压力,附面层厚度等。2. 湍流相关函数的统计理论分析(做法;将流体视为连续介质,将各物理量如:流速,压力,温度等脉动值视为连续的随机函数, 并通过各脉动值的相关函数和谱函数来描述湍流结构。)耗散涡、含能涡的尺度耗散涡为小尺 度涡,它的尺度受粘性限制,但必大于分子自由行程。控制小尺度运动的参数包括单位质量的能量消耗量ε和运动粘性系数ν。因此,由 量纲分析,小涡各项尺度为:长度尺度 4/13)(ενη=时间尺度2/1)(εντ=速度尺度4/1)(νε=v 耗散雷诺数 1Re →=νη v d 可知:小尺度涡体的湍流 脉动是粘性主宰的耗散流动,因此这一尺度的 涡叫耗散涡。含能涡为大尺度涡,在各向同性湍流中,可以认为大尺度涡体由它所包含的湍动总能量k ,以及向小尺度传递的能量ε决定。 长度尺度ε2/3k l =时间尺度εk t =速度尺度k u =积分尺度雷诺数1Re →>>=ν ul d 可知在含能尺度范围 内,惯性主宰湍流运动,因此含能尺度范围又 称惯性区。均匀湍流:统计上任何湍流的性质与空间位置无关,或者说,任何湍动量的平均 值及它们的空间导数,在坐标做任何位移下不 变。特征:不论哪个区域,湍流的随机特性是相同的,理论上说,这种湍流在无界的流场中 才可能存在。各向同性湍流:任何统计平均量与方向无关,或者说,任何湍动量在各个方向 都一样,不存在任何特殊地位的方向。任何统计平均湍动量与参考坐标轴的位移、旋转和反 射无关。特征:各向同性湍流,必然是均匀湍 流,因为湍流的任何不均匀性都会带来特殊的方向性。在实际中,只存在局部各向同性湍流 和近似各向同性湍流。各向同性下,雷诺应力 由9个量减为3个量。 了解时均动能方程、湍动能方程中各项的物理意义和特点,及能量平衡时均动能方程: 流体微团内平均动能变化率;外力的作功;平均压 力梯度所作的功; 雷诺应力所作功的扩散;雷诺应力所作的变形功;时均流粘性应力所作功 的扩散;时均流动粘性的耗散,即粘性应力的 变形功。 湍动能方程:

相关主题
文本预览
相关文档 最新文档