当前位置:文档之家› 国网-电动汽车非车载充电机通用要求

国网-电动汽车非车载充电机通用要求

国网-电动汽车非车载充电机通用要求
国网-电动汽车非车载充电机通用要求

电动汽车直流快速充电机使用说明书

EVQC31-120A500V-D1-G001电动汽 车直流快速充电机 使 用 说 明 书

目录 1 概述........................................... 错误!未指定书签。 1.1 ....................................................... 适用范围错1.2 ....................................................... 型号说明错1.3 ....................................................... 产品概述错1.3.1 ..................................................... 产品构成错1.3.2 ..................................................... 产品原理错1.4 ....................................................... 使用环境错1.5 ....................................................... 性能参数错1.6 ................................................... 外形结构尺寸错1.7 ..................................................... 充电机接口错1.7.1 ..................................................... 接口定义错1.7.2 ..................................................... 接口要求错 1.7.3 ................................................. 触头布置方式错 2 功能特点....................................... 错误!未指定书签。 2.1 ....................................................... 基本功能错2.2 ................................................... 安全保护功能错2.3 ................................................... 计量消费功能错2.4 ....................................................... 通讯功能错2.5 ....................................................... 定位功能错2.6 ................................................... 语音提示功能错2.7 ................................................... 历史记录功能错 2.8 ....................................................... 环控功能错 3 操作使用说明................................... 错误!未指定书签。 3.1 ................................................... 充电操作流程错3.1.1 ........................................... 充电卡支付操作流程错3.1.2 ........................................... 二维码支付操作流程错3.1.3 ....................................... 手机验证码支付操作流程错3.1.4 ......................................... 账号密码支付操作流程错3.2 ................................................... 充电信息查询错3.3 ................................................. 充电状态指示灯错3.4 ....................................................... 其他操作错3. 4.1 ........................................... 下载手机客户端APP 错3.4.2 ................................................. 获取设备信息错3.4.3 ................................................... 充电卡查询错3.4.4 ................................................... 充电卡解锁错3.5 ................................................... 使用注意事项错

电动汽车整车充电机使用说明手册

电动汽车整车充电机 使用说明书 许继电动汽车充电站事业部 1.概述 电动汽车整车充电机可以用来为纯电动汽车充电,蓄电池不用从车上拆卸下来,充电快捷方便。充电机可与电动车上的电池进行通讯,按照电池的信息,自动、快速、安全地完成充电,无需人在旁边看守和手动操作。 充电机主要由交直流功率变换和直流输出控制两部分组成,按组合形式分为一体式和分体式两种。 一体式充电机指交直流功率变换和直流输出控制两部分组合为一体的形式,适用于室外安装使用。 分体式充电机指交直流功率变换和直流输出控制两部分分立为两个单体的形式,它们之间通过电缆连接组成一套完整的充电机。分体式充电机中完成交直流功率变换的部分称为整流器柜,一般采用标准机柜形式提供,适用于室内安装;分体式充电机中完成直流输出控制的部分称为直流充电桩,提供用户交互界面和直流输出接口,在室外安装使用。 2.使用环境条件 1)工作温度:-10℃~+40℃(室内);-20℃~+50℃(室外)。 2)相对湿度:5%~95%。 3)海拔高度:≤2000米。 特殊地区使用时,根据当地的环境条件确定。如西北与东北地区的室外工作温度满足-30℃~+50℃。

3.规格型号 充电机系统由充电功率模块、充电监控模块和保护开关、接触器、用户终端设备等组成,其型号规格定义如下。 ZCD10-□/□ 标称输出电压(单位:V,指最高输出电压) 额定输出电流(单位:A) 产品系列号 智能充电机 产品系列号定义如下: 11――指充电机由ZCD11系列充电模块和ZCDK-11监控模块构成; 12――指充电机由ZCD12系列充电模块和ZCDK-12监控模块构成。 4.技术参数 1)输入电压:三相五线;电压范围380VAC±20%;频率50HZ±2% 2)输入功率因数:≥0.94。 3)输入谐波电流总畸变率:≤27%。 4)额定输出功率:N×10kW(N=1、2、3......)。 5)输出电压范围:100~200V;200~400V;250~500V;350~700V。 6)输出电压误差:不超过±1%。 7)输出电流误差:在设定的输出直流电流≥30A时,不超过±1%;在设定的输出直流电流 <30A时,不超过±0.3A。 8)输出稳流精度:不超过±1%。 9)输出稳压精度:不超过±0.5%。 10)输出纹波系数:≤0.5%。 11)均流不平衡度:不超过±5%。

关于电动车充电器应该知道的几大知识

关于电动车充电器应该知道的几大知识 一、电动车充电器简介: 电动车充电器是指专门为电动自行车的电瓶配置的一个充电设备!充电器的分类:用有、无工频变压器区分,可分为两大类。常用的开关电源式充电器又分半桥式和单激式两大类,单激类又分为正激式和反激式两类。 二、如何选择电动车充电器: 对于电动车充电问题,目前最使电动车用户感到头痛的几大问题为:“续航里程明显缩短”“充电时易起火爆炸”“充电器故障率居高不下”等。 高标科技建议消费者在选购电动车充电器的时候,一定要选择品牌名气大、口碑好、市场占有率高的产品,市场上不少劣质的充电器非常容易产生过充、欠充、失水、硫化等现象,对消费者的人身和财产安全是非常大的隐患。这些产品在功能设计上实在欠缺太多,选择那些大品牌的充电器产品的理由是,这些高品质的产品都设计了很多充电保护功能,比如:正负脉冲充电技术、智能定时保护功能、温度自动补偿功能、电网瞬间冲击保护、超强防潮防腐蚀性、限压充电预防失水、过流防护电池极化、过载保护杜绝故障、矩形脉冲延长寿命、横流充电续航更久等,这样就大大增加了充电的安全与效率。

消费者在购买了大品牌的充电器后依然不能放松警惕,在日常生活中要经常对电动车充电器进行检查,并且也要市场注意检查电动车电池,很多时候电池的老化问题也会给人车带来安全问题。使用过程中把握好电动车电池充电的时间,养成良好的充电习惯。 三、电动车充电器工作原理: 220v交流电经T0双向滤波抑制干扰,D1整流为脉动直流,再经C11滤波形成稳定的300V左右的直流电。U1 为TL3842脉宽调制集成电路。其5脚为电源负极,7脚为电源正极,6脚为脉冲输出直接驱动场效应管Q1(K1358) 3脚为最大电流限制,调整R25(2.5欧姆)的阻值可以调整充电器的最大电流。 2脚为电压反馈,可以调节充电器的输出电压。4脚外接振荡电阻R1,和振荡电容C1。T1为高频脉冲变压器,其作用有三个: 第一是把高压脉冲降压为低压脉冲。 第二是起到隔离高压的作用,以防触电。 第三是为uc3842提供工作电源。D4为高频整流管(16A60V)C10为低压滤波电容,D5为12V稳压二极管, U3(TL431)为精密基准电压源,配合U2(光耦合器4N35) 起到自动调节充电器电压的作用。调整w2(微调电阻)可以细调充电器的电压。D10是电源指示灯。D6为充电指示灯。 R27是电流取样电阻(0.1欧姆,5w)改变W1的阻值可以调整充电器转浮充的拐点电流 (200-300 mA)通电开始时,C11上有300v左右电压。此电压一路经T1加载到Q1。 第二路经R5,C8,C3, 达到U1的第7脚。强迫U1启动。U1的6脚输出方波脉冲,Q1工作,电流经R25到地。同时T1副线圈产生感应电压,经D3,R12给U1提供可靠电源。T1输出线圈的电压经D4,C10整流滤波得到稳定的电压。此电压一路经D7(D7起到防止电池的电流倒灌给充电器的作用)给电池充电。 第二路经R14,D5,C9, 为LM358(双运算放大器,1脚为电源地,8脚为电源正)及其外围电路提供12V工作电源。D9为LM358提供基准电压,经R26,R4分压达到LM358的第二脚和第5脚。正常充电时,R27上端有0.15-0.18V左右电压,此电压经R17加到LM358第三脚,从1脚送出高电压。此电压一路经R18,

最新电动汽车传导式充电接口(QCT841—2010)

本标准规定了电动汽车传导式充电接口的术语与定义、技术参数、充电模式、分类及功能定义、结构尺寸、性能要求、试验方法和检验规则。2010-11-22发布,2011-03-01 本标准的附录A和附录B为资料性附录,附录C为规范性附录。 本标准由全国汽车标准化技术委员会提出并归口。 本标准起草单位:天津清源电动车辆有限责任公司、中国电力科学研究院、中国汽车技术研究中心、深圳市比亚迪汽车有限公司、奇瑞汽车股份有限公司、安费诺精密连接器(深圳)有限公司、苏州工业园区多思达科技有限公司、北京交通大学、北京理工大学、河南天海电器有限公司。 本标准主要起草人:赵春明、吴志新、贾俊国、孟祥峰、张建华、李庆、李磊、周光荣、王震坡、姜久春、尹家彤、辛明华、方运舟、刘桂彬、武斌、吴尚洁、左海清。 电动汽车传导式充电接口 Electric vehicle conductive Charge coupler 1 范围 本标准规定了电动汽车传导式充电接口的术语与定义、技术参数、充电模式、分类及功能定义、结构尺寸、性能要求、试验方法和检验规则。 本标准规定了两种充电接口,一种是为车载充电机提供交流电能的接口,另一种是为电动汽车提供直流电能的接口。 本标准适用于电动汽车用的交流额定电压为220V和直流额定电压不超过750V 的充电电缆和电动汽车连接侧的传导式充电接口,充电电缆与非车载充电设备或交流供电设备之间的传导式充电接口可参照执行。 2 规范性引用文件 下列文件中的条款,通过在本标准中引用而成为本标准的部分条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然

纯电动汽车充电器设计【毕业作品】

BI YE SHE JI (20 届) 纯电动汽车充电器设计 所在学院 专业班级自动化 学生姓名学号 指导教师职称 完成日期年月 III

摘要 随着世界上能源问题与环境问题越来越突出,电动汽车有着零排放和高效的特点,因此受到越来越高的重视,但是纯电动汽车的充电问题依然是制约电动汽车快速发展的瓶颈。本文是在对大量的资料分析,电池特性及其发展现状的研究基础上,设计了可供纯电动汽车锂电池组充电使用的快速智能充电器。文中对锂电池的充电是采用先横流后恒压最后再浮充的三段式的充电方法。 本文首先介绍了课题的背影及意义和电池的充电方法。之后设计了主电路的拓扑,主电路部分主要包括功率因数校正电路及DC-DC变换电路,并对主电路的参数与器件进行了选择与设计。而后对控制电路进行了设计,控制电路主要是基于DSP来实现对充电器的控制,DSP依据估算的电池SOC值划分三阶段充电,而恒流恒压主要通过PID调节实现。同时本文还设计了电压,电流,温度等的检测电路,为防止过流过压及温度过高还设计了保护电路。最后设计了充电器的软件部分,着重介绍了SOC算法及基于SOC的三阶段充电控制流程。关键字:纯电动汽车,DSP,PFC,充电器 III

Abstract With the world's energy problems and environmental issues become more and more prominent, electric vehicles have zero emissions and efficient features and therefore subject to more and more attention, but the pure electric vehicle charging problem still is the bottleneck in the fast development of electric vehicles. This paper designs available pure electric vehicle lithium batteries used in the rapid smart charger on the basis of a lot of data analysis, present situation and characteristics of the battery. In the paper, charging of lithium battery is using the first cross-flow, constant pressure last float three-stage charging method. This paper first Introduction back and significance of the subject and battery charging methods, After design the topological of the main circuity, the main part of the main circuit, including power factor correction circuit and DC-DC converter circuit, and the selection and design for the parameters and devices of the main circuits. Then the paper design the control circuit, the control circuit to implement the feedback control of the charger is based on DSP, the DSP based on the estimated SOC of battery is divided into three stages charging, and the realization of constant current constant voltage base on PID regulator. The article also designed the detection circuit of the voltage, current, temperature, etc., in order to prevent overcurrent, overvoltage and temperature the paper has also designed a protection circuit. Last design the software portion of the charger, highlighting the SOC algorithm and the SOC-based three-stage charge control process。 Keywords: pure electric vehicles, DSP, PFC , charger III

电动汽车车载充电机设计与实现

科技信息2013年第5期 SCIENCE&TECHNOLOGYINFORMATION作者简介:瞿章豪(1987—),男,硕士,从事电力电子器件、电动汽车充放电研究。徐正龙(1989—),男,硕士,从事电力电子器件、电动汽车充放电研究。 0引言 随着现代高新技术的发展和当今世界环境、能源两大难题的日益突出,电动汽车以优越的环保和节能特性,成为了汽车工业研究、开发和使用的热点。电动汽车的发展包括电动汽车以及能源供给系统的研究和开发,其中能源供给系统是指充电基础设施,供电、充电和电池系统及能源供给模式。充电系统为电动汽车运行提供能量补给,是电动汽车的重要基础支撑系统,也是电动汽车商业化、产业化过程中的重要环节。因此,电动汽车充电设施作为电动汽车产业链的重要组成部分,在电动汽车产业发展的同时还应该充分考虑充电设施的发展[1]。研究发现,电池充电过程对电池寿命影响很大,也就是说,大多数的蓄电池是“充坏”的。因此,开发出一种性能优良的充电系统对电池的寿命和电动汽车性能具有重大的作用。 1车载充电机硬件电路设计 车载充电机电路模块如图1所示。主要包括三个部分:功率单元、保护及控制单元、辅助管理单元,其中功率单元在控制单元的配合下是把市电转换成蓄电池充电需要的精电;控制模块通过电力电子开关器件控制功率单元的转换过程,通过闭环控制方式精确完成转换功能。辅助模块主要是为控制模块的电力电子器件提供低压供电及实现系统与外界的联系。此三个单元协同作用组成闭环控制系统。下面对此系统按照所分单元进行解析。 图1 车载充电机硬件电路模块图 Figure.1 The hardware circuit module chart of Electric Vehicle ’s charger 1.1 功率单元设计解析 功率单元作为充电能量传递通道,主要包含EMI 抑制模块、整流模块、PFC 校正模块、滤波模块、全桥变换模块、直流输出模块。为防止电网与充电机之间的谐波相互影响,在电网与充电机之间加入由X 电容、Y 电容、共模电感组成的(Electro-Magnetic Interference EMI )抑 制器;为提高转换效率及降低谐波影响,在整流后加入基于BOOST 拓扑的主动式(Power Factor Correction PFC )功率因数校正器;车载充电器为高压输出,在此为提高系统抗电压应力能力,采用全桥DC/DC 拓扑变换电路。为提高输出精度,滤波单元采用π型滤波方式。在控制器作用及其他单元配合下,各模块协同作用,把电网粗电转换成电池充电所需的精电。 1.2保护及控制单元设计解析 控制单元在辅助单元及检测反馈配合下,在此单元主控器内加入智能控制算法提高系统充电能量转换效率。主要包含原边检测及保护模块、过流检测及保护模块、过压/欠压监测及保护模块、DSP 主控模块。保护及检测模块是由电阻组成的检测网络检测功率单元电压信号,通过LM317组成放大网络对检测到的信号放大,再通过光耦将此信号传递到控制端;由电流互感器TAK17-02组成的检测网络检测功率单元电流信号传到控制端。由DSP28335电路及脉冲变压器隔离驱动电路组成的控制器单元根据采集到的功率单元的电流和电压信息,对DC/DC 全桥变换器模块作出相应的充电、保护控制,使充电器能够更加安全、高效、快速的为蓄电池充电,在完成控制能量转换的同时实现保护功能。 1.3辅助管理单元设计解析 辅助单元负责为整个系统本身提供运行能量及信息交付接口。辅助管理单元主要包括CAN 通信模块、辅助电源模块、人机交互模块。CAN 通信通过研究充电器与BMS 之间通信技术,最终实现充电机与BMS 之间的通信,从而实现实时监测电池特性根据电池特性,选择电池最优充电曲线充电,加快充电速度,减少充电等待时间。系统内部需要多种压值的供电电源,因此辅助电源需满足可同时提供多路输出电源,从调整性要求出发,本文辅助电源模块采用以UC3854为主控芯片的(Flyback )反激拓扑电路,考虑对驱动电路提供驱动能量及成本、空间要求,此电路工作于CCM 模式,同时以DSP28335供电输出回路为反馈控制端,以提高系统稳定性。电池在不同的使用周期,其充电接受功率改变,同时为满足系统升级需求,加入人机交互模块,从而加入人工智能提高系统适应性。 2 车载充电机软件设计 2.1 常用充电控制方法问题分析 作为车载充电器中通用的控制方法,控制电路通常采用固定开关频率,改变脉冲宽度的方法。充电器总是工作在同样开关频率下,所需充电功率的大小靠调节脉冲宽度来实现。所需充电功率小,脉冲较窄,充电电流较小;所需充电功率大,脉冲较宽,充电电流较大[2]。在上述控制方法中,所需充电功率大的情况下,充电效率高,但所需充电功率小的情况下充电功率低。车载充电机的损耗主要有两类功率损耗:导通损耗和开关损耗。导通损耗主要由负载电流大小决定,而开关损耗与开关次数成正比,开关次数越少,开关损耗就越低。在所需充电功率小的情况下,用恒频控制方法,此时开关频率与所需充电功率大的频率相同,所以两种情况下的开关损耗相同,此为固定开关频率控制方法 电动汽车车载充电机设计与实现 瞿章豪徐正龙 (重庆邮电大学自动化学院,中国重庆400065) 【摘要】本文设计了一种适用于电动汽车充电的充电系统,为提高充电效率,提出一种针对电池的充电的超前补偿控制算法。文中详细介绍了系统硬件电路组成及算法实现过程。充电实验结果表明,硬件设计结构合理,同时该算法控制的充电过程可以达到更高的充电效率。 【关键词】电动汽车;车载充电机;超前补偿控制;变频控制技术 The Charger's Design and Implementation Based on Electric Vehicle QU Zhang-hao XU Zheng-long (Chongqing University of Posts and Telecommunications ,Chongqing ,400065,China ) 【Abstract 】This paper designs a battery charging system that ’s suitable for electric vehicle,in order to improve the charging efficiency,this paper puts forward a battery charging control algorithm based on the lead compensation.This paper introduces the hardware circuit ’s structure and the algorithm ’s realization process of the system,in detail.The Charging experimental results show that the algorithm controls the charging process can achieve more higher charging efficiency 。 【Key words 】Electric Vehicle;Vehicle ’s charger;Lead compensation control;Variable frequency control technology ○机械与电子○ 133

常用电动车充电器根据电路结构可大致分为两种

常用电动车充电器根据电路结构可大致分为两种。第一种是以 uc3842具驱动场效应管的单管子开关电源,配合LM358双 运放来实现三阶段充电方式。 常用电动车充电器根据电路结构可大致分为两种。第一种是以uc3842驱动场效应管的单管开关电源,配合LM358双运放来实现三阶段充电方式。220v交流电经T0双向滤波抑制干扰,D1整流为脉动直流,再经C11滤波形成稳定的300V左右的直流电。U1 为TL3842脉宽调制集成电路。其5脚为电源负极,7脚为电源正极,6脚为脉冲输出直接驱动场效应管 Q1(K1358) 3脚为最大电流限制,调整R25(2.5欧姆)的阻值可以调整充电器的最大电流。2脚为电压反馈,可以调节充电器的输出电压。4脚外接振荡电阻R1,和振荡电容C1。T1为高频脉冲变压器,其作用有三个。第一是把高压脉冲将压为低压脉冲。第二是起到隔离高压的作用,以防触电。第三是为uc3842提供工作电源。D4为高频整流管(16A60V),C10为低压滤波电容,D5为12V稳压二极管,U3(TL431)为精密基准电压源,配合 U2(光耦合器4N35) 起到自动调节充电器电压的作用。调整w2(微调电阻)可以细调充电器的电压。D10是电源指示灯。D6为充电指示灯。 R27是电流取样电阻(0.1欧姆,5w)改变W1的阻值可以调整充电器转浮充的拐点电流(200-300 mA)。 充电器常见的故障有三大类。1:高压故障 2;低压故障 3:高压,低压均有故障。高压故障的主要现象是指示灯不亮,其特征有保险丝熔断,

整流二极管D1击穿,电容C11鼓包或炸裂。Q1击穿,R25开路。U1的7脚对地短路。R5开路,U1无启动电压。更换以上元件即可修复。若U1的7脚有11V以上电压,8脚有5V电压,说明U1基本正常。应重点检测Q1和T1的引脚是否有虚焊。若连续击穿Q1,且Q1不发烫,一般是D2,C4失效,若是Q1击穿且发烫,一般是低压部分有漏电或短路,过大或UC3842的6脚输出脉冲波形不正常,Q1的开关损耗和发热量大增,导致Q1过热烧毁。高压故障的其他现象有指示灯闪烁,输出电压偏低且不稳定,一般是T1 的引脚有虚焊,或者D3,R12开路,TL3842及其外围电路无工作电源。另有一种罕见的高压故障是输出电压偏高到120V以上,一般是U2失效,R13开路所致或U3击穿使U1的2脚电压拉低,6脚送出超宽脉冲。此时不能长时间通电,否则将严重烧毁低压电路。 低压故障大部分是充电器与电池正负极接反,导致R27烧断,LM358击穿。其现象是红灯一直亮,绿灯不亮,输出电压低,或者输出电压接近0V,更换以上元件即可修复。另外W2因抖动,输出电压漂移,若输出电压偏高,电池会过充,严重失水,发烫,最终导致热失控,充爆电池。若输出电压偏低,会导致电池欠充。 高低压电路均有故障时,通电前应首先全面检测所有的二极管,三极管,光耦合器4N35,场效应管,电解电容,集成电路,R25,R5,R12,R27,尤其是D4(16A60V,快恢复二极管),C10(63V,470UF)。避免盲目通电使故障范围进一步扩大。有一部分充电器输出端具有防反接,防短路等特殊功能。其实就是输出端多加一个继电器,在反接,短路的情况下继电器不

电动汽车四种充电方式简述

四种电动汽车充电方式的区别 车载充电 常规充电即是采用随车配备的便携式充电设备进行充电,可使用家用电源或专用的充电桩电源。充电电流较小一般在16-32A左右,电流可直流或者两相交流电和三相交流电,因此视乎电池组容量大小充电时间为5至8小时。 常规充电模式缺点非常明显,充电时间较长,但其对充电的要求并不高,充电器和安装成本较低;可充分利用电力低谷时段进行充电,降低充电成本;更为重要的优点是可对电池深度充电,提升电池充放电效率,延长电池寿命。因充电时间较长,可大大满足白天运作,晚上休息的车辆 地面充电(快速充电) 顾名思义为能快速充满电的充电方法,通过非车载充电机采用大电流给电池直接充电,使电池在短时间内可充至80%左右的电量,因此也称为应急充电。快速充电模式的代表为特斯拉超级充电站。快速充电模式的电流和电压一般在150~400A和200~750V,充电功率大于50kW。此种方式多为直流供电方式,地面的充电机功率大,输出电流和电压变化范围宽。 快速充电的充电速度非常高,其充电时间接近内燃机注入燃油的时间。可是其充电方法是采用脉冲快速充电。脉冲快速充电的最大优点为充电时间大为缩短;且可增加适当电池容量,提高启动性能。可是脉冲充电电流较大充电设备安装要求和成本非常高。并且快速充电的电流电压较高,短时间内对电池的冲击较大,容易令电池的活性物质脱落和电池发热,因此对电池保护散热方面要求有所更高的要求,并不是每款车型都可快速充电。无论电池再完美,长期快速充电终究影响电池的使用寿命。 快速充电模式实质上为应急充电模式,其目的是短时间内给电动汽车充电。总体使用层面来说,并不建议常使用快速充电模式进行充电。而且快速充电模式仅部分车型支持。 机械充电 除了常规的直接给车辆充电外,还可以采用更换动力电池的方式给电池充电。即在动力电池电量耗尽时,用充满电的电池组更换电量过低的电池组。将电池组从车上更换下来的方式有:纯手动形式、半自动形式和机械人更换三种模式。

电动车充电器原理及常见故障

电动车充电器原理及常见故障 由于电动车充电器的输入电路工作在高电压、太电流的状态下,因此,故障率最高。如高压大电流整流三极管、滤波电容、开关功率管等;其次较易损坏的就是输出整流部分的整流二极管、保护二极管、滤波电容、限流电阻等,再就是脉宽调制控制器的反馈部分和保护电路部分。 在这里,高标提供专业的故障维修指导,以方便消费者在日常生活中能够及时处理一些常见的充电器故障,提早预防可能出现的安全隐患。 一、电动车充电器常见故障: 1:电源不启动:插电源,大电容有300V电压、拔掉电源再次测量大电容2端还是300V电压不下降。给电容放电后,将启动电阻换掉即可。启动电阻在电源输入部分,阻值150K,功率2W。 2: 电源不启动:插电,大电容2端有300V电压,拔掉电源,大电容电压慢慢下降,将电路板全部检查是否有脱焊的现象,补焊完成后,将3842换成新的,通电试机即可, 3:闪灯:先将电路板补焊一遍,再次试机,如果还是闪灯,请检查输出端取样电阻。0.1欧。3W功率。接在输出线的负极端,将此电阻换新即可。 4:输出电压高,通电,电压高于70多V,充电不转灯,先将电路板补焊一遍,再次试机,如果还是电压高,请更换光电耦合器、再次试机、还是输出高,

更换431基准稳压器,再次试机。 5:吱吱叫,发热,充电不足:通电测量大电容电压,只要低于300V,一般电容失效,更换即可。 6:严重发热,请将风扇换新即可。 7:输出电压不稳定,先将电路板补焊一遍,后试机,然后将输出端电容63V470UF电容换新试机即可。 8:充电不转灯,用检测仪测试各项数据,然后将358或者324换新试机。 9:充电不稳定,有时候能充,有时候不能冲,用测试仪检测各项数据,然后将输入输出电源线,全部换新,补焊线路板试机。 10:通电烧保险:先检测功率管击穿没有,没有的话将4个整流二极管全部换新,试机。 11:通电无输出,通电试机,大电容2端有300V电压,且慢慢下降,首先检测输出端大二极管击穿没有,补焊,再次试机。 12:通电亮2个红灯:通电试机,空载电压是否正常,然后将358或324换新试机。 13:通电无输出,能正常启动,指示灯正常,先将输出线换新,对于有继电器的充电器直接短路继电器试机。 14:通电闪灯,请补焊变压器各引脚,然后试机,如果依旧,请检查431、光电耦合器、输出部分各二极管是否短路,变压器磁芯是否松动,电源输入部分10欧小电阻是否开路,或代换3842再次试机。 15:充电不转灯,先用测试仪检测各项数据,一般充新电池电压不高于59.5,充半年左右电池不高于58.8,为正常,高于此电压可能不转灯。 16:输出电压低:补焊线路板。试机,然后将输入输出大电容换新再次试机17:输出低,发烫,如果输出电压低于40多V,且功率管,变压器发烫,一般为变压器有问题, 18:启动困难,有时候能起到有时候不能启动,补焊线路板,后试机,如果依旧请将输入部分小电容换新再次试机。 19:烧3842,3842换新后试机插电听到一声喀的一声响,这是测量大电容2端电压300V慢慢将,说明3842 又击穿了,先补焊线路板,检查变压器引脚是

电动汽车充电机接口解析

电动汽车交流充电接口解析 刘健萍 2016/6/29 目前国际上比较流行充电标准有4个 2010 SAE J1772标准 北美地区使用2010 SAE J1772标准,该标准于2010年1月发布,是最早实施的充电接口标准,被美国及日本广泛使用。 CHAdeMO标准 日本CHAdeMO协会于2010年3月成立,成员单位大多数来自日本,主旨为推进快速充电接口规格在日本的统一,因此CHAdeMO标准主要被日本汽车厂商所采用。在日本,按照CHAdeMO标准安装的快速充电器有1154座投入使用。在美国CHAdeMO的充电站也占尽先机,来自美国能源部的最新数据显示,美国现有1344个CHAdeMO快速充电站,比特斯拉的超级充电桩多。 2005 IEC 62196标准 欧洲使用2005 IEC 62196标准。IEC 62196标准于2012年1月发布,是一个主要被欧洲国家汽车厂商所采用的交流充电标准。SAE J1772的5芯交流充电接口在IEC 62196-2标准中被定义为type 1接口。IEC 62196-2的type 2接口主要指7芯接口。 GB/T 20234标准 中国使用标准GB/T 20234。第一版2012年3月实施,2015年底有进行了一次修订,该标准目前这是我国国标推荐标准,但解决了国内不同地区、不同电网公司之间充电接口不统一的问题。虽然GB 的交流充电接口借鉴IEC 62196type 2,但为了设置差异性,将IEC 62196 type 2的接口的公端和母端做了调换。GB的直流充电借鉴CHAdeMO标准采用CAN通讯方式,但接头布局做了大的整改。

截至2015年底,全国已建成充换电站3600座,公共充电桩4.9万个,较上年增加1.8万个,同比增速58%。作为实现电动汽车传导充电的基本要素,电动汽车充电用接口及通信协议技术,是保证电动汽车与充电基础设施互联互通的技术基础。本文将介绍中国充电接口接通信协议技术. 电动汽车充电时,连接电动汽车和电动汽车供电设备的组件, 除电缆外, 还包括供电接口, 车辆接口, 缆上控制盒等部件. 如下图所示. 电动汽车充电连接装置示意图 交流充电接口 适用于电动汽车传导充电用的交流充电接口, 额定电压不超多440V(AC), 频率50Hz, 额定电流不超过32A(AC). 交流充电接口的额定值表如下. 交流充电接口的额定值 车辆接口和充电模式3的供电接口分别包含7个触头, 其电气参数值及功能定义如下表 触头电气参数值及功能定义 车辆接口和供电接口的触头布置方式下图所示

电动汽车车载充电机测试解决方案

电动汽车车载充电机测试解决方案 随着现代技术的发展和世界资源、环境难题的突出,电动汽车以其环保、节能、高效的优点已经成为汽车工业研究领域的热点主题。当然电动汽车在发展的同时,对应的电力供给系统的研究和生产也是必不可少的,车载充电机技术的成熟和发展,对于电动汽车的普及起到了至关重要的作用,目前,电动汽车由于高成本,应用难度大等原因其市场价值并未完全发挥,因此能对汽车充电机提供完整可靠方案的供应商并不多,艾德克斯作为在新能源领域领先的测试测量方案供应商,提供的测试方案不仅能够完全满足不同型号的车载充电机测试的需求,还配备了软件来控制充电机和测试方案,具有其他厂商的测试方案所不具备的重要功能。 一、车载充电机工作原理 动力汽车最核心的动力来源是动力电池,目前应用最多的是锂离子电池,它是一个由多个单体电池封装成的电池组组成。因此车载充电机既要考虑锂电池充电的实际需求,又要考虑车载电瓶的恶劣环境;所以车载充电机的方案必须满足耐高压,高可靠,高效率(见图一)。 充电机主要的应用是给电动汽车上的动力电池充电,按是否安装在车上,充电机可分为车载式(随车型)和固定式。固定式充电机一般为固定在充电站内的大型充电机,主要以大功率和快速充电为主。而车载充电机安装在车辆内部,其优势就是可以在车库,路边或者住宅等任何有交流电源供电的地方随时充电,功率相对较小。 车载充电机系统主要采用电压、电流反馈的方法来达到恒流、恒压充电的目的,同时要对充电过程的各种参数进行控制和监测。充电机的电路由主充电路和辅助电路组成。主充电路采用的是全桥逆变电路,另一方面为了对电压、电流、温度进行实时检测,同时报告电池的漏电、热管理、报警、剩余容量等一系列状态,车载动力电池需要有电池管理系统进行辅助管控。

市场上最常用的两款电动车充电器电路原理及维修

市场上最常用的两款电动车充电器电路原理及维修2007/05/20 09:42 常用电动车充电器根据电路结构可大致分为两种。 第一种是以uc3842驱动场效应管的单管开关电源,配合LM358双运放来实现三阶段充电方式。其电原理图和元件参数见图表1

图表1 工作原理:220v交流电经T0双向滤波抑制干扰,D1整流为脉动直流,再经C11滤波形成稳定的300V左右的直流电。U1 为TL3842脉宽调制集成电路。其5脚为电源负极,7脚为电源正极,6脚为脉冲输出直接驱动场效应管Q1(K1358) 3脚为最大电流限制,调整R25(2.5欧姆)的阻值可以调整充电器的最大电流。2脚为电压反馈,可以调节充电器的输出电压。4脚外接振荡电阻R1,和振荡电容C1。T1为高频脉冲变压器,其作用有三个。第一是把高压脉冲将压为低压脉冲。第二是起到隔离高压的作用,以防触电。第三是为uc3842提供工作电源。D4为高频整流管(16A60V)C10为低压滤波电容,D5为12V稳压二极管,U3(TL431)为精密基准电压源,配合U2(光耦合器4N35) 起到自动调节充电器电压的作用。调整w2(微调电阻)可以细调充电器的电压。D10是电源指示灯。D6为充电指示灯。R27是电流取样电阻(0.1欧姆,5w)改变W1的阻值可以调整充电器转浮充的拐点电流(200-300 mA)通电开始时,C11上有300v左右电压。此电压一路经T1加载到Q1。第二路经R5,C8,C3, 达到U1的第7脚。强迫U1启动。U1的6脚输出方波脉冲,Q1工作,电流经R25到地。同时T1副线圈产生感应电压,经D3,R12给U1提供可靠电源。T1输出线圈的电压经D4,C10整流滤波得到稳定的电压。此电压一路经D7(D7起到防止电池的电流倒灌给充电器的作用)给电池充

电动汽车传导式充电接口标准对比

[摘要]:电动汽车的发展正在推动汽车,电力及能源产业的变革。在这一新兴产业中,标准化的进程至关重要,比如关于电动汽车和充电基础设施之间的充电接口标准,就影响了不同车型在不同国家和地区的电网之间如何快速,简便的进行电能的补充。 [编辑简介]:本文介绍了电动汽车传导式充电采用的方式、组合式充电接口(Combined charging)的概念及相关标准。[关键词]:电动汽车传导式充电接口 电动汽车的发展正在推动汽车,电力及能源产业的变革。在这一新兴产业中,标准化的进程至关重要,比如关于电动汽车和充电基础设施之间的充电接口标准,就影响了不同车型在不同国家和地区的电网之间如何快速,简便的进行电能的补充。 目前全球主要采用的传导式充电接口系统有: IEC 62196-1,2:2012年1月发布,主要被欧洲国家所采用的交流充电标准。 IEC 62196-3:目前还在制定过程中,预计2014年制定完成。主要内容是对直流充电接口的定义。 SAE J1772:2010年1月发布,是最早实施的充电接口标准,被美国及日本广泛使用。其5芯的交流充电接口,在IEC 62196-2中被定义为type 1接口。 CHAdeMO:该协会于2010年3月15日成立,成员单位大多数来自日本,主旨为推进快速充电规格在日本的统一,因此主要被日本车厂所采用。 GB/T 20234.1,2,3-2011:2011年12月颁布,2012年3月实施,共三部分组成,形式接近于IEC 62196-1,2,3。虽然目前是国标推荐标准,但解决了中国国内不同地区,不同电网公司,充电接口不统一的问题。 为了更好的对标准进行介绍,下面先列举标准中常用的充电接口术语定义(图1)。

电动车充电器改汽车电瓶充电器

电动车充电器改汽车电瓶充电器 朋友有一12V 60AH 汽车电瓶,让我帮忙做个充电器。本打算用旧ATX 电源改一个,调整取样电阻,把12V 输出改成14.6V ,再加个限流就行了。后来一想,用电动车充电器改应该更简单些,而且效果也好的多,功率100W 左右也够用了。所以找了个坏的电动车充电器,准备改成汽车电瓶充电器。现已改造完成,主要改造内容供大家参考。 我找的这个电动车充电器输入输出电源线都没有了,也没有标签,不知输出电压、电流,而且两个开关管都炸开了。IC 用的是TL494+HA17358,非常熟悉的半桥式开关电源。 一、主变压器改造 主变压器的拆开重绕,是整个改造中难度最大的一步,方法是: 1、确定原电源的输出电压电流,根据输出功率设计新电源的输出电流。 根据R23、R41计算TL494 1脚电压为2.5V ,根据R26、R27计算输出电压为44V 。输出电流按2A 计算,输出功率88W ,改造后的充电器输出功率不应超过88W 。12V 电瓶充电限制电压14.7V , 输出电流=V W 7.1488=6A ,对60AH 的电瓶充电正合适。 2、用电烙铁将变压器磁芯加热,拆开磁芯(磁芯易碎,温度高时更易碎!),完好的拆下磁芯是非常关键的一步,如果磁芯坏了市场上也能买到。 3、半桥式电源主变压器普遍采用三明治绕法,高压绕组分成两部分在最里层和最外层,低压绕组在中间,这样的好处是漏感小。拆掉外层的一次绕组,记清这一绕组的匝数和绕向。接着拆掉所有的二次绕组,只保留最内层的一次绕组,检查内层绝缘材料是否破损,必要时再加一层胶布,注意如果击穿将使次级输出带电,很危险! 4、这个电源变压器的次级主绕组共22匝,辅助绕组在5匝处抽头作为控制部分供电。次级绕组每匝电压2V 左右,改造后也要保证每匝2V 左右,高电压小电流可取稍高些,低电压大电流可取稍低些。 本电源V V 27.14=7.35匝。 原充电器输出电流2A ,每匝2V ,新充电器输出电流6A ,变压器绕组、输出电感和整流元件压降都比原充电器的大,所以主回路取8匝,辅助绕组维持原5匝不变。 5、因为主辅绕组匝数都较少,辅助绕组又没什么电流,可以用很细的导线,所以就没必要采用抽头的绕法了。准备直径0.31的漆包线,绕法是双线并绕5 匝,一定要绕的密实平整,绕好后把一组的头和另一组的尾相接接到原接地端。

相关主题
相关文档 最新文档