当前位置:文档之家› SiC_TiAl界面固相反应研究

SiC_TiAl界面固相反应研究

SiC_TiAl界面固相反应研究
SiC_TiAl界面固相反应研究

扩散与固相反应

扩散与固相反应 7-1试分析碳原子在面心立方和体心立方铁八面体空隙间跳跃情况, 并以D = Y 2 r 形式 写出其扩散系数(设点阵常数为a )。(式中r 为跃迁自由程;丫为几何因子;r 为跃迁频率。) 7-2设有一种由等直径的 A 、B 原子组成的置换型固溶体。该固溶体具有简单立方的晶 体结构, 点阵常数 A = 0.3nm ,且A 原子在固溶体中分布成直线变化,在 0.12mm 距离内原 子百分数由0.15增至0.63。又设A 原子跃迁频率 r= 10-6s 1 ,试求每秒内通过单位截面的 A 原子数? 7-3制造晶体管的方法之一是将杂质原子扩散进入半导体材料如硅中。 假如硅片厚度是 0.1cm ,在其中每107 个硅原子中含有一个磷原子,而在表面上是涂有每 107 个硅原子中有 400个磷原子,计算浓度梯度(a )每cm 上原子百分数,(b )每cm 上单位体积的原子百分 数。硅 晶格常数为 0.5431 nm 。 7-4已知MgO 多晶材料中Mg 2+ 离子本征扩散系数(DQ 和非本征扩散系数(D ex )由 下式给出 486000 2 D in = 0.249exp ( ) cm ; s RT 5 254500、 2 ■■ D ex =1.2 10 exp ( ) cm . s RT (a ) 分别求出 25C 和 1000C 时,Mg 2+ 的(D in )和(D ex )。 (b ) 试求在Mg 2+ 的InD ?1/T 图中,由非本征扩散转变为本征扩散的转折点温度? 7-5从7-4题所给出的D in 和D ex 式中求MgO 晶体的肖特基缺陷形成焓。若欲使 Mg 2+ 在MgO 中的 扩散直至 MgO 熔点2800 C 时仍是非本征扩散,试求三价杂质离子应有什么样 的浓度? 7-6若认为晶界的扩散通道宽度一般为 0.5nm ,试证明原子通过晶界扩散和晶格扩散的 扩散系数。 Q gb = _ Q v 7-7设体积扩散与晶界扩散活化能间关系为 2 (Qg b 、Q v 分别为晶界扩散与体 积扩散激活能),试画出lnD ?1/T 曲线,并分析在哪个温度范围内, 晶界扩散超过体积扩散 ? 7-8在一种柯肯达尔扩散中,假定(a )晶体为简单立方结构;(b )单位体积内原子数 为一常数1023 ; (c ) A 原子的跃迁频率为1010s -1 , B 原子跃迁频率为109s -1 ; (d )点阵常数 a = 0.25nm ; (e )浓度梯度为10个/cm ; (f )截面面积为0.25cm 。试求A 、B 原子通过标志 界面的扩散通量以 及标志界面移动速度。 7-9纯固相反应在热力学上有何特点?为什么固相反应有气体或液体参加时, 范特荷夫 规则就不适用了? 7-10假定从氧化铝和二氧化硅粉料形成莫来石为扩散控制过程,如何证明这一点?又 假如激活 能为210kJ/mol ,并在1400 C 下1h (小时)内反应过程完成 10%,问在1500 C 下 质量之比为 10-9 (〒) 自。其中 d 为晶粒平均直径; D gb 、D v 分别为晶界扩散系数和晶格

第七章扩散与固相反应

第七章扩散与固相反应 一、名词解释 1.扩散;2.扩散系数与扩散通量;3.本征扩散与非本征扩散; 4.自扩散与互扩散;5.无序扩散与晶格扩散;6.稳定扩散与不稳定扩散: 7.反常扩散(逆扩散);8.固相反应 二、填空与选择 1.晶体中质点的扩散迁移方式有、、、和。2.当扩散系数的热力学因子为时,称为逆扩散。此类扩散的特征为,其扩散结果为使或。3.扩散推动力是。晶体中原子或离子的迁移机构主要分为两种:和。4.恒定源条件下,820℃时钢经1小时的渗碳,可得到一定厚度的表面碳层,同样条件下,要得到两倍厚度的渗碳层需小时. 5.本征扩散是由而引起的质点迁移,本征扩散的活化能由和 两部分组成,扩散系数与温度的关系式为。 6.菲克第一定律适用于,其数学表达式为;菲克第二定律适用于,其数学表达式为。 7.在离子型材料中,影响扩散的缺陷来自两个方面:(1)肖特基缺陷和弗仑克尔缺陷(热缺陷),(2)掺杂点缺陷。由热缺陷所引起的扩散称,而掺杂点缺陷引起的扩散称为。(自扩散、互扩散、无序扩散、非本征扩散) 8.在通过玻璃转变区域时,急冷的玻璃中网络变体的扩散系数,一般相同组成但充分退火的玻璃中的扩散系数。(高于、低于、等于) 9.在UO2晶体中,O2-的扩散是按机制进行的。(空位、间隙、掺杂点缺陷)10.杨德尔方程是基于模型的固相方程,金斯特林格方程是基于模型的固相方程。 三、浓度差会引起扩散,扩散是否总是从高浓度处向低浓度处进行?为什么? 四、试分析离子晶体中,阴离子扩散系数-般都小于阳离子扩散系数的原因。 五、试从结构和能量的观点解释为什么D表面>D晶面>D晶内。 六、碳、氮氢在体心立方铁中扩散的激活能分别为84、75和13kJ/mol,试对此差异进行分析和解释。 七、欲使Ca2+在CaO中的扩散直至CaO的熔点(2600℃)都是非本征扩散,要求三价杂质离子有什么样的浓度?试对你在计算中所作的各种特性值的估计作充分说明(已知CaO 肖特基缺陷形成能为6eV)。 八、已知氢和镍在面心立方铁中的扩散系数为:

酶促反应的影响因素影响

酶促反应的影响因素影响 实验八酶促反应的影响因素 一、目的要求 1(了解温度、pH、激活剂、抑制剂对酶促反应速度的影响。 2(学习检定温度、pH、激活剂、抑制剂影响酶促反应速度的方法。 二、实验原理 在酶促反应中,酶的催化活性与环境温度、 pH有密切关系,通常各种酶只有在一定的温度、pH范围内才表现它的活性,一种酶表现其活性最高时的温度、 pH 值称为该酶的最适温度、最适pH。 在酶促反应中,酶的激活剂和抑制剂可加速或抑制酶的活性,如氯化钠在低浓度时为唾液淀粉酶的激活剂,而硫酸铜则是它的抑制剂。 本实验利用淀粉水解过程中不同阶段的产物与碘有不同的颜色反应,定性观察唾液淀粉酶在酶促反应中各种因素对其活性的影响。 淀粉(遇碘呈蓝色)?紫色糊精(遇碘呈紫色)?红色糊精(遇碘呈红色)?无色糊精(遇碘不呈色)?麦芽糖(遇碘不呈色)?葡萄糖(遇碘不呈色)。 所以淀粉被唾液淀粉酶水解的程度,可由水解混合物遇碘呈现的颜色来判断,以此反映淀粉酶的活性,由此检定温度、pH、激活剂、抑制剂对酶促反应的影响。 三、实验器材 试管和试管架、恒温水浴、冰浴、吸量管(1 mL6支、2 mL4支、5 mL4支)、滴管、量筒、玻棒、白瓷板、秒表、烧杯、棕色瓶。 四、实验试剂

1(新鲜唾液稀释液(唾液淀粉酶液):每位同学进实验室自己制备,先用蒸馏水漱口,以清除食物残渣,再含一口蒸馏水,0.5 min后使其流入量筒并稀释至200倍(稀释倍数可因人而异)混匀备用。 2(1%淀粉溶液A(含0.3%NaCl):将1 g可溶性淀粉及0.3 g氯化钠混悬于5 mL 蒸馏水中,搅动后,缓慢倒入沸腾的60 mL蒸馏水中,搅动煮沸1 min,冷却至室温,加水至100 mL,置冰箱中保存。 3(1%淀粉溶液B(不含NaCl) 4(碘液:称取2 g碘化钾溶于5 mL蒸馏水中,再加入1 g碘,待碘完全溶解后,加蒸馏水295 mL,混匀贮于棕色瓶中。 5(1%NaCl溶液 6(1%CuSO溶液 4 7(缓冲溶液系统按下表混合配制。 0.2 mol/L磷酸氢二钠溶液 0.1 mol/L柠檬酸溶液 pH 体积/ mL 体积/ mL 5.0 5.15 4.85 5.8 6.05 3.95 6.8 7.72 2.28 8.0 9.72 0.28 五、操作步骤 1(温度对酶促反应的影响 取3支试管编号,按下表进行操作: 反应温淀粉酶酶液处理温1%淀粉溶试管pH6.8缓冲溶度/ 液体积度/ 液A体积/ 观察结果号液体积/ mL ?,10 / mL ?,5 min mL min 1 1 0 2 1 0

扩散与固相反应

扩散与固相反应 7-1 试分析碳原子在面心立方和体心立方铁八面体空隙间跳跃情况,并以D =γr 2Γ形式写出其扩散系数(设点阵常数为a )。(式中r 为跃迁自由程;γ为几何因子;Γ为跃迁频率。) 7-2 设有一种由等直径的A 、B 原子组成的置换型固溶体。该固溶体具有简单立方的晶体结构,点阵常数A =0.3nm ,且A 原子在固溶体中分布成直线变化,在0.12mm 距离内原子百分数由0.15增至0.63。又设A 原子跃迁频率Γ=10-6s -1,试求每秒内通过单位截面的A 原子数? 7-3 制造晶体管的方法之一是将杂质原子扩散进入半导体材料如硅中。假如硅片厚度是0.1cm ,在其中每107个硅原子中含有一个磷原子,而在表面上是涂有每107个硅原子中有400个磷原子,计算浓度梯度(a )每cm 上原子百分数,(b )每cm 上单位体积的原子百分数。硅晶格常数为0.5431nm 。 7-4 已知MgO 多晶材料中Mg 2+离子本征扩散系数(D in )和非本征扩散系数(D ex )由下式给出 252486000 0249exp() cm 254500 1210exp() cm ..in ex D RT D RT -=- =?- (a ) 分别求出25℃和1000℃时,Mg 2+的(D in )和(D ex )。 (b ) 试求在Mg 2+的ln D ~1/T 图中,由非本征扩散转变为本征扩散的转折点温度? 7-5 从7-4题所给出的D in 和D ex 式中求MgO 晶体的肖特基缺陷形成焓。若欲使Mg 2+ 在MgO 中的扩散直至MgO 熔点2800℃时仍是非本征扩散,试求三价杂质离子应有什么样的浓度? 7-6 若认为晶界的扩散通道宽度一般为0.5nm ,试证明原子通过晶界扩散和晶格扩散的 质量之比为 9 10()()gb v D d D -。其中d 为晶粒平均直径;D gb 、D v 分别为晶界扩散系数和晶格扩散系数。 7-7 设体积扩散与晶界扩散活化能间关系为 1 2gb v Q Q = (Qg b 、Q v 分别为晶界扩散与体 积扩散激活能),试画出ln D ~1/T 曲线,并分析在哪个温度范围内,晶界扩散超过体积扩散? 7-8 在一种柯肯达尔扩散中,假定(a )晶体为简单立方结构;(b )单位体积内原子数为一常数1023;(c ) A 原子的跃迁频率为1010s -1,B 原子跃迁频率为109s -1;(d )点阵常数a =0.25nm ;(e )浓度梯度为10个/cm ;(f )截面面积为0.25cm 2。试求A 、B 原子通过标志界面的扩散通量以及标志界面移动速度。 7-9 纯固相反应在热力学上有何特点?为什么固相反应有气体或液体参加时,范特荷夫规则就不适用了? 7-10 假定从氧化铝和二氧化硅粉料形成莫来石为扩散控制过程,如何证明这一点?又假如激活能为210kJ/mol ,并在1400℃下1h (小时)内反应过程完成10%,问在1500℃下

第六章 扩散与固相反应应

第六章 扩散与固相反应应 固体中质点(原子或质子)的扩散特点:固体质点之间作用力强,开始扩散温度较低,但低于其熔点;晶体中质点以一定方式堆积,质点迁移必须越过势垒,扩散速率较低迁移自由程约为晶格常数大小;晶体中质点扩散有各向异性。 菲克第一定律:在扩散过程中,单位时间内通过单位横截面积的质点数目(或 称扩散流量密度)J 正比于扩散质点的浓度梯度? C : ???? ? ???+??+??-=?-=z c k y c j x c i D c D J (6-1) 式中D 为扩散系数(m 2/s 或cm 2/s );负号表示粒子从浓度高处向浓度低处扩散,即逆浓度梯度的方向扩散。 菲克第一定律是质点扩散定量描述的基本方程,它可直接用于求解扩散质点浓度分布不随时间变化的稳定扩散问题。 菲克第二定律:适用于求解扩散质点浓度分布随时间变化的不稳定扩散问题。 ???? ????+??+??=??222222z c y c x c D t c (6-2) ??? ? ???=Dt x erfc c t x c 2),(0 (6-3) (6-3)式为第二定律的数学解,erfc(x/2Dt )是余误差函数。在处理实际问题时,若实验中测得c(x,t),即可求得扩散深度x 与时间的近似关系。 Dt K Dt c t x c erfc x =???? ??=-01 ),( (6-4) 式(6-4)表明,x 与t 2 1成正比,在一定浓度c 时,增加1倍扩散深度则需延长4倍扩散时间。 扩散系数:从质点的无序迁移推导出扩散系数的表达式,阐述物理意义;从热力学理论导出一般热力学关系式: D i =RTB i (1+?㏑i γ/?㏑i N ) (6-5) D i 为i 质点本征扩散系数;B i 为I 质点平均速率或淌度;为i 质点活度系数;N i 为i 质点浓度。式中(1+?㏑i γ/?㏑i N )称为扩散系数的热力学因子。 当体系为理想混合时i γ=1,此时D i=D i #=RTB i 。D i #为自扩散系数。 当体系为非理想混合时,有两种情况: (1)当(1+?㏑i γ/?㏑i N )>0,D i >0为正扩散。在这种情况下物质流将由高浓度

酶及影响酶促反应的因素

生物一轮复习导学提纲(12) 必修一:酶及影响酶促反应的因素 班级______ 学号______ 姓名___________ 1.回答下列有关酶的问题: ⑴与无机催化剂相比,酶具有________性、________性,并且需要____________的条件。 ⑵酶的专一性是指每一种酶只能催化_____________________化合物的化学反应。 ⑶一种叫RNaseP的酶,它是由20%的蛋白质和80%的RNA组成。科学家将这种酶的蛋白质除去,同时提高镁离子的浓度,留下来的RNA仍具有与该酶相同的催化活性。这一事实说明____ ___________________________。 ⑷酶催化作用实质是_______________________________________。 ⑸酶促反应的速率通常用单位时间内________________或__________________来表示。 ⑹酶的基本组成单位是_____________________________,细胞中酶的合成场所有____________ ______________________________。 2.活化能是指底物分子从初态转变到活化态所需 的能量。右图为酶促反应过程中活化能的改变, 据图可得出哪些结论。 3.下为影响酶活性的因素图解,据图分析: ⑴甲为酶的活性受温度影响示意图: ①经高温处理过的细菌,在温度降至最适温度时,能否继续存活?为什么? ②经冷冻处理过的细菌,在温度升至最适温度时,能否继续存活?为什么? ③通过该曲线的分析,你能得出什么结论? ⑵乙为胰蛋白酶的活性受pH影响的示意图:

固相反应

固相反应 1.若由MgO和Al 2O 3 球形颗粒之间的反应生成MgAl 2 O 4 是通过产物层的扩散进行 的: (1) 画出其反应的几何图形并推导出反应初期的速度方程。 (2) 若1300℃时D Al3+>D Mg2+ -2 :基本不动,那么哪一种离子的扩散控制着 MgAl 2O 4 的生成?为什么? 2.镍(Ni)在0.1大气压的氧气中氧化,测得其重量增量(μg/cm2)如下表: 3.由Al 2O 3 和SiO 2 粉末反应生成莫来石,过程由扩散控制,扩散活化能为 50千卡/摩尔,1400℃下,一小时完成10%,求1500℃下,一小时和四小时各完成多少?(应用扬德方程计算) 4.粒径为1μ球状Al 2O 3 由过量的MgO微粒包围,观察尖晶石的形成,在 恒定温度下,第一个小时有20%的Al 2O 3 起了反应,计算完全反应的时间。 (1) 用扬德方程计算 (2) 用金斯特林格方程计算 (3) 比较扬德方程、金斯特林格方程优缺点及适用条件。 5.当测量氧化铝-水化物的分解速率时,发现在等温反应期间,重量损失随时间线性增加到50%左右,超过50%时重量损失的速率就小于线性规律。速率随温度指数增加,这是一个由扩散控制的反应还是由界面一级控制的反应?当温度从451℃增至493℃时,速率增大到10倍,计算此过程的活化能(利用表9-1及图22进行分析) 6.由Al 2O 3 和SiO 2 粉末形成莫来石反应,由扩散控制并符合扬德方程,实 验在温度保持不变的条件下,当反应进行1小时的时候,测知已有15%的反应物起反应而作用掉了。 (1) 将在多少时间内全部反应物都生成产物? (2) 为了加速莫来石的生产应采取什么有效措施? 7.试分析影响固相反应的主要因素。 8.如果要合成镁铝尖晶石,可供选择的原料为MgCO 3、Mg(OH) 2 、MgO、 Al 2O 3 3H 2 O、γ-Al 2 O 3 、α-Al 2 O 3 。从提高反应速率的角度出发,选择什么原料较好? 请说明原因。

陆佩文无机材料科学基础习题测验

第七章 扩散与固相反应 1、名词解释: 非稳定扩散:扩散过程中任一点浓度随时间变化; 稳定扩散:扩散质点浓度分布不随时间变化。 无序扩散:无化学位梯度、浓度梯度、无外场推动力,由热起伏引起的扩散。 质点的扩散是无序的、随机的。 本征扩散:主要出现了肖特基和弗兰克尔点缺陷,由此点缺陷引起的扩散为 本征扩散(空位来源于晶体结构中本征热缺陷而引起的质点迁 移); 非本征扩散:空位来源于掺杂而引起的质点迁移。 正扩散和逆扩散: 正扩散:当热力学因子时,物质由高浓度处流向低浓度处,扩散结果使溶质 趋于均匀化,D i >0。 逆扩散:当热力学因子 时,物质由低浓度处流向高浓度处,扩散结果使溶质 偏聚或分相,D i <0。 2、简述固体内粒子的迁移方式有几种? 答 易位,环转位,空位扩散,间隙扩散,推填式。 3、说明影响扩散的因素? 化学键:共价键方向性限制不利间隙扩散,空位扩散为主。金属键离子键以 空位扩散为主,间隙离子较小时以间隙扩散为主。 缺陷:缺陷部位会成为质点扩散的快速通道,有利扩散。 温度:D=D 0exp (-Q/RT )Q 不变,温度升高扩散系数增大有利扩散。Q 越大 温度变化对扩散系数越敏感。 杂质:杂质与介质形成化合物降低扩散速度;杂质与空位缔合有利扩散;杂 质含量大本征扩散和非本征扩散的温度转折点升高。 扩散物质的性质:扩散质点和介质的性质差异大利于扩散; 扩散介质的结构:结构紧密不利扩散。 4、在KCl 晶体中掺入10-5mo1%CaCl 2,低温时KCl 中的K +离子扩散以非本征 扩散为主,试回答在多高温度以上,K +离子扩散以热缺陷控制的本征扩散为主?(KCl 的肖特基缺陷形成能ΔH s =251kJ/mol ,R=8.314J/mo1·K ) 解:在KCl 晶体中掺入10-5mo1%CaCl 2,缺陷方程为: 2' 22KCl K K cl CaCl Ca V Cl ? ? ???→++ 则掺杂引起的空位浓度为'710K V -??=??

扩散与固相反应word版

第十章扩散与固相反应 扩散的基本概念 当物质内有浓度梯度、应力梯度、化学梯度和其它梯度存在的条件下,由于热运动而导致原子(分子)的定向迁移,从宏观上表现出物质的定向输送,这个输送过程称为扩散。扩散是一种传质过程。 从不同的角度对扩散进行分类 1、按浓度均匀程度分: 有浓度差的空间扩散叫互扩散;没有浓度差的扩散叫自扩散 2、按扩散方向分: 由高浓度区向低浓度区的扩散叫顺扩散,又称下坡扩散; 由低浓度区向高浓度区的扩散叫逆扩散,又称上坡扩散。 3、按原子的扩散方向分: 在晶粒内部进行的扩散称为体扩散;在表面进行的扩散称为表面扩散;沿晶界进行的扩散称为晶界扩散。表面扩散和晶界扩散的扩散速度比体扩散要快得多,一般称前两种情况为短路扩散。此外还有沿位错线的扩散,沿层错面的扩散等。扩散的基本特点: 1、气体和液体传质特点

主要传质是通过对流来实现,而在固体中,扩散是主要传质过程;两者的本质都是粒子不规则的布朗运动(热运动)。 2、固体扩散的特点: A.固体质点之间作用力较强,开始扩散温度较高,远低于熔点; B.固体是凝聚体,质点以一定方式堆积,质点迁移必须越过势垒,扩散速率较低,迁移自由程约为晶格常数大小;晶体中质点扩散有各向异性。 扩散的意义 无机非金属材料制备工艺中很多重要的物理化学过程都与扩散有关系。例如,固溶体的形成、离子晶体的导电性、材料的热处理、相变过程、氧化、固相反应、烧结、金属陶瓷材料的封接、金属材料的涂搪与耐火材料的侵蚀。因此研究固体中扩散的基本规律的认识材料的性质、制备和生产具有一定性能的固体材料均有十分重大的意义。 第一节宏观动力学方程 一、稳定扩散和不稳定扩散 稳定扩散:扩散物质在扩散层内各处的浓度不随时间而变化,即dc/dt=0

实验报告—固相反应

南昌大学实验报告 (样本) 学生姓名:×××学号: 5702106*** 专业班级:无机材料062班 实验类型:■演示□验证□综合□设计□创新实验日期:2008-11-20实验成绩: 实验五固相反应 一.实验目的与内容 固相反应是材料制备中一个重要的高温动力学过程,固体之间能否进行反应、反应完成的程度、反应过程的控制等直接影响材料的显微结构,并最终决定材料的性质,因此,研究固体之间反应的机理及动力学规律,对传统和新型无机非金属材料的生产有重要的意义。 1.本实验的目的: 掌握TG法的原理,采用TG法研究固相反应的方法。通过Na2CO3-SiO2系统的反应验证固相反应的动力学规律—金斯特林格方程。通过作图计算出反应的速度常数和反应的表观活化能。 2.实验原理 固体材料在高温下加热时,因其中的某些组分分解逸出或固体与周围介质中的某些物质作用使固体物系的重量发生变化,如盐类的分解、含水矿物的脱水、有机质的燃烧等会使物系重量减轻,高温氧化、反应烧结等则会使物系重量增加。 现代热重分析仪常与微分装置联用,可同时得到TG-DTG曲线。通过测量物系质量随温度或时间的变化来揭示或间接揭示固体物系反应的机理或反应动力学规律。 固体物质中的质点,在高于绝对零度的温度下总是在其平衡位置附近作谐振动。温度升高时,振幅增大。当温度足够高时,晶格中的质点就会脱离晶格平衡位置,与周围其它质点产生换位作用,在单元系统中表现为烧结,在二元或多元系统则可能有新的化合物出现。这种没有液相或气相参与,由固体物质之间直接作用所发生的反应称为纯固相反应。实际生产过程中所发生的固相反应,往往有液相或气相参与,这就是所谓的广义固相反应,即由固体反应物出发,在高温下经过一系列物理化学变化而生成固体产物的过程。 固相反应属于非均相反应,描述其动力学规律的方程,通常采用转化率G(已反应的反应物量与反应物原始重量的比值)与反应时间t之间的积分或微分关系来表示。 测量固相反应速率,可以通过TG法(适应于反应中有重量变化的系统)、量气法(适应于有气

扩散与固相反应

第十章扩散与固相反应 1.描述在金属固体中发生扩散时,原子是如何运动的。指出扩散的条件。 2.有一球壳,内半径为r1,外半径为r2。在T温度保温,有物质从球壳内 向球壳外扩散,当扩散达到平衡后,球壳内表面扩散物质的浓度为C1,外表面的浓度为C2,并测得在单位时间内从球壳内向球壳外扩散的物质总量为Q。设扩散系数为常数。求: A,扩散系数。 B,r=(r1+r2)/2处的浓度。 3.指出第一定律、第二定律中的不同适用的场合。 4.钢可以在870℃渗碳也可以在930℃渗碳,问:A)计算钢在870℃和930℃ 渗碳时,碳在钢(奥氏体)中的扩散系数。已知D0=2.0×10-5m2s-1,Q=144×103J/mol。B)在870℃渗碳要用多长时间才能获得930℃渗碳10小时的渗层深度?(渗层深度:在浓度-距离曲线中,某一浓度所对应的离表面的距离。) 5.简述置换原子和间隙原子的扩散机制。 6.何谓柯肯达尔效应,简述柯肯达尔效应的意义。 7.简述晶体结构对扩散的影响。 8.若由MgO和Al2O3球形颗粒之间的反应生成MgAl2O4是通过产物层的 扩散进行的: 9.(1) 画出其反应的几何图形并推导出反应初期的速度方程。

10.(2) 若1300℃时DAl3+>DMg2+,O2-基本不动,那么哪一种离子的扩散 控制着MgAl2O4的生成?为什么? 11.镍(Ni)在0.1大气压的氧气中氧化,测得其重量增量(μg/cm2)如 下表: (1)导出合适的反应速度方程;(2) 计算其活化能。 12.由Al2O3和SiO2粉末反应生成莫来石,过程由扩散控制,扩散活化能为 50千卡/摩尔,1400℃下,一小时完成10%,求1500℃下,一小时和四小时各完成多少?(应用扬德方程计算) 13.粒径为1μ球状Al2O3由过量的MgO微粒包围,观察尖晶石的形成,在 恒定温度下,第一个小时有20%的Al2O3起了反应,计算完全反应的时间。 (1) 用扬德方程计算 (2) 用金斯特林格方程计算 (3) 比较扬德方程、金斯特林格方程优缺点及适用条件。 14.当测量氧化铝-水化物的分解速率时,发现在等温反应期间,重量损失随 时间线性增加到50%左右,超过50%时重量损失的速率就小于线性规

固相反应动力学

实验20 固相反应动力学 一、实验目的 验证固相反应理论,通过本实验达到进一步了解固相反应机理。通过测定BaCO3-SiO2系统中给定组成的固相反应速度常数,熟悉测定固相反应速度的仪器及方法。 二、实验内容 1.原理 固态物质中的质点(分子、原子或离子)是不断振动的(除绝对零度外),随着温度升高,振幅增大,当达到一定温度时(各种物质不同),由于存在热起伏,使某些质点具有了一定的能量,以至于可以跳离其原来的位置,而产生质点的迁移。这一过程对于单元系统来说就是烧结的开始。这一过程在无气相和液相时也能进行,这就是狭义的固相反应。从广义上讲,所谓固相反应就是有固体物质参加的反应。 固相反应全部过程可分为扩散过程、反应过程及晶核形成过程这三个部分。其中进行得最慢的一个过程控制着整个过程的进行。许多固相反应是由扩散过程控制的,在这种情况下,等温固相反应动力学有三种可能性: 1. 1.新形成的反应产物层阻碍扩散作用:此时反应速度与产物层的厚度y成反比: dy/dt=K/y (1) 2. 2.新形成的反应产物层与扩散作用无关: dy/dt=K (2) 3..新形成的反应产物层能促进扩散作用: dy/dt=Ky (3) 实际上大部分固相反应属于第一种类型.由(1)式积分得: y2=Kt (4) 由于实际测量反应产物层厚度比较困难,因此,通常用反应产物百分数x来表示反应程度.设颗粒为球形且反应物与产物的比重相等,则可推得如下方程: [1-3 100 100x ]2=Kt 对于BaCO3-SiO2系统,可以用测量反应时放出得气体体积或系统重量损失(重量法)来计算反应产物百分数。但因重量法灵敏度差,故常采用量气法。 量气法一般都在负压下(-40mmHg)进行,这样实验结果准确度高。本实验为便于控制和操作,在常压下进行。 2. 实验装置 实验装置如图20-1所示。 3. 实验步骤 (1) 在分析天平上称0.4~0.5克样品于白金小筒内,塌实,接上悬丝,然后置于炉内反应管中,挂于小钩上。 (2) 检查仪器密封情况,不漏气方可进行实验。采用提高(或降低)水准瓶,使之产生一个水位差(压力差)的方法来检查漏气情况。 (3) 检查线路后,接通电源,按10℃/min的升温速度升温至800℃,并保温10分钟,旋三通开关使反应管与量气筒接通(到指定温度前,反应管放空),记下量气筒的起始读数。(4) 作好准备工作后,将悬丝脱开,使白金小量筒落到反应管中,同时按动秒表记录时间。第一分钟内每20秒记录一次量气管上的读数。注意读数时应将水准瓶与量气管中的液面保持在同一水平上(为什么?),一分钟以后,每分钟读一次,10分钟后二分钟读一次,20分钟后每5分钟读一次,至60分钟实验结束。 注意整个实验中应严格控制温度,波动范围为<5℃。

第七章 扩散与固相反应

第七章 扩散与固相反应 例 题 7-1 试分析碳原子在面心立方和体心立方铁八面体空隙间跳跃情况,并以D =γr 2Γ形式写出其扩散系数(设点阵常数为a )。(式中r 为跃迁自由程;γ为几何因子;Γ为跃迁频率。) 解:在面心立方晶体中,八面体空隙中心在晶胞体心及棱边中心。相邻空隙连线均为[110]晶向,空隙 间距为。因而碳原子通过在平行的[110]晶面之间跳动完成扩散。若取[110]为X 轴、]101[为Y 轴、[001] 为Z 轴,则碳原子沿这三个轴正反方向跳动的机会相等。因此碳原子在平行[110]晶面之间跳动的几率即几何因子γ=1/6。 在体心立方晶体中,八面体空隙中心在晶胞面心及核边中心,相邻空隙间距为a /2。其连线为[110]晶向,可以认为碳原子通过在平行的[200]晶面之间来完成扩散,取[100]、[010]、[001]为X 、Y 、Z 轴。碳原子沿这三个轴正反方向跳动机会均等,因而碳原子在平行的[200]晶面间跳动的几率γ=1/6。 在面心立方铁中2261= =r γ 代入 2 D r γ=Γ 12)2(6122ΓΓa a D =??=面心 在体心立方铁中16γ=2r a = 24)2(6122ΓΓa a D =??=体心 7-2 设有一种由等直径的A 、B 原子组成的置换型固溶体。该固溶体具有简单立方的晶体结构,点阵常数a =0.3nm ,且A 原子在固溶体中分布成直线变化,在0.12mm 距离内原子百分数由0.15增至0.63。又设A 原子跃迁频率Γ=10-6s -1,试求每秒内通过单位截面的A 原子数? 解:已知1 6s 101--?=Γ,16γ=;nm 30.==a r ;求扩散通量J 。 s cm 105110)1030(612226372---?=???==..r D Γγ 每cm 3固溶体内所含原子数为 322 3 7cm 1073)10 30(1个?=?-.. 2224 2224212015063 3710148100012 1510148102210s cm ........dc dx J D dc dx ----= ??=-?=-=???=? 7-3 制造晶体管的方法之一是将杂质原子扩散进入半导体材料如硅中。假如硅片厚度是0.1cm ,在其中每107个硅原子中含有一个磷原子,而在表面上是涂有每107个硅原子中有400个磷原子,计算浓度梯度(a )每cm 上原子百分数,(b )每cm 上单位体积的原子百分数。硅晶格常数为0.5431nm 。 解:由菲克第一定律计算在内部和表面上的原子的百分组成,C i 和C s 分别为内部和表面磷浓度。

扩散与固相反应

扩散与固相反应 7-1 试分析碳原子在面心立方和体心立方铁八面体空隙间跳跃情况, 并以 D = γ2rΓ形式 写出其扩散系数 (设点阵常数为 a )。(式中 r 为跃迁自由程; γ为几何因子; Γ为跃迁频率。 ) 7-2 设有一种由等直径的 A 、B 原子组成的置换型固溶体。该固溶体具有简单立方的晶 体结构,点阵常数 A = 0.3nm ,且 A 原子在固溶体中分布成直线变化,在 0.12mm 距离内原 子百分数由 0.15 增至 0.63。又设 A 原子跃迁频率 Γ=10-6 s -1 ,试求每秒内通过单位截面的 A 原子数? 7-3 制造晶体管的方法之一是将杂质原子扩散进入半导体材料如硅中。 假如硅片厚度是 0.1cm ,在其中每 107 个硅原子中含有一个磷原子,而在表面上是涂有每 107 个硅原子中有 400个磷原子,计算浓度梯度( a )每cm 上原子百分数, (b )每 cm 上单位体积的原子百分 数。硅晶格常数为 0.5431nm 。 7-4 已知 MgO 多晶材料中 Mg 2+离子本征扩散系数( D in )和非本征扩散系数( D ex )由 下式给出 486000 2 D in 0.249exp ( ) cm 2 s in RT 5 254500 2 D ex 1.2 10 5exp ( ) cm 2 s RT (a ) 分别求出 25℃和 1000℃时,Mg 2+的(D in )和( D ex )。 (b ) 试求在 Mg 2+ 的 lnD ~1/T 图中,由非本征扩散转变为本征扩散的转折点温度? 7-5 从 7-4 题所给出的 D in 和 D ex 式中求 MgO 晶体的肖特基缺陷形成焓。若欲使 Mg 2+ 在 MgO 中的扩散直至 MgO 熔点 2800℃时仍是非本征扩散,试求三价杂质离子应有什么样 的浓度? 7-6 若认为晶界的扩散通道宽度一般为 0.5nm ,试证明原子通过晶界扩散和晶格扩散的 扩散系数。 Q gb Q v 7-7 设体积扩散与晶界扩散活化能间关系为 2 (Qg b 、Q v 分别为晶界扩散与体 积 扩散激活能) ,试画出 lnD ~1/T 曲线,并分析在哪个温度范围内, 晶界扩散超过体积扩散 ? 质量之比为 10 9 (10 d ) (D D g v b )。其中 d 为晶粒平均直径; D gb 、D v 分别为晶界扩散系数和晶格

【课外阅读】影响酶活力的因素1

影响酶活力的因素 米契里斯(Michaelis)和门坦(Menten)根据中间产物学说推导出酶促反应速度方程式,即米-门公式(具体参考《环境工程微生物学》第四章微生物的生理)。由米门公式可知:酶促反应速度受酶浓度和底物浓度的影响,也受温度、pH、激活剂和抑制剂的影响。 (1)酶浓度对酶促反应速度的影响 从米门公式和酶浓度与酶促反应速度的关系图解可以看出:酶促反应速度与酶分子的浓度成正比。当底物分子浓度足够时,酶分子越多,底物转化的速度越快。但事实上,当酶浓度很高时,并不保持这种关系,曲线逐渐趋向平缓。根据分析,这可能是高浓度的底物夹带夹带有许多的抑制剂所致。 (2)底物浓度对酶促反应速度的影响 在生化反应中,若酶的浓度为定值,底物的起始浓度较低时,酶促反应速度与底物浓度成正比,即随底物浓度的增加而增加。当所有的酶与底物结合生成中间产物后,即使在增加底物浓度,中间产物浓度也不会增加,酶促反应速度也不增加。 还可以得出,在底物浓度相同条件下,酶促反应速度与酶的初始浓度成正比。酶的初始浓度大,其酶促反应速度就大。 在实际测定中,即使酶浓度足够高,随底物浓度的升高,酶促反应速度并没有因此增加,甚至受到抑制。其原因是:高浓度底物降低了水的有效浓度,降低了分子扩散性,从而降低了酶促反应速度。过量的底物聚集在酶分子上,生成无活性的中间产物,不能释放出酶分子,从而也会降低反应速度。 (3)温度对酶促反应速度的影响 各种酶在最适温度范围内,酶活性最强,酶促反应速度最大。在适宜的温度范围内,温度每升高10℃,酶促反应速度可以相应提高1~2倍。不同生物体内酶的最适温度不同。如,动物组织中各种酶的最适温度为37~40℃;微生物体内各种酶的最适温度为25~60℃,但也有例外,如黑曲糖化酶的最适温度为62~64℃;巨大芽孢杆菌、短乳酸杆菌、产气杆菌等体内的葡萄糖异构酶的最适温度为80℃;枯草杆菌的液化型淀粉酶的最适温度为85~94℃。可见,一些芽孢杆菌的酶的热稳定性较高。过高或过低的温度都会降低酶的催化效率,即降低酶促反应速度。 最适温度在60℃以下的酶,当温度达到60~80℃时,大部分酶被破坏,发生不可逆变性;当温度接近100℃时,酶的催化作用完全丧失。 (4)pH对酶促反应速度的影响 酶在最适pH范围内表现出活性,大于或小于最适pH,都会降低酶活性。主要表现在两个方面:①改变底物分子和酶分子的带电状态,从而影响酶和底物的结合; ②过高或过低的pH都会影响酶的稳定性,进而使酶遭受不可逆破坏。 (5)激活剂对酶促反应速度的影响 能激活酶的物质称为酶的激活剂。激活剂种类很多,有①无机阳离子,如钠离子、钾离子、铜离子、钙离子等;②无机阴离子,如氯离子、溴离子、碘离子、硫酸盐离子磷酸盐离子等;③有机化合物,如维生素C、半胱氨酸、还原性谷胱甘肽等。许多

实验27__扩散与固相反应实验(张)

实验28 热重分析技术在固相反应研究中的应用 一、实验目的 固相反应是材料制备中一个重要的高温动力学过程,固体之间能否进行反应、反应完成的程度、反应过程的控制等直接影响材料的显微结构,并最终决定材料的性质,因此,研究固体之间反应的机理及动力学规律,对传统和新型无机非金属材料的生产有重要的意义。 本实验的目的: 1.掌握TG法的原理,熟悉采用TG法研究固相反应的方法。 2.通过CaCO3-SiO2系统的反应验证固相反应的动力学规律─杨德方程。 3.通过作图计算出反应的速度常数和反应的表观活化能。 二、实验原理 许多固体材料在在高温下加热时,因其中的某些组分分解逸出或固体与周围介质中的某些物质作用使固体物系的重量发生变化,如盐类的分解、含水矿物的脱水、有机质的燃烧等会使物系重量减轻,高温氧化、反应烧结等则会使物系重量增加。热重分析法(Thermogravimetric Analysis.简称TG) 及微商热重法(derivative thermogravimetry,简称DTG 法)是在程序控制温度下,测量物质质量与温度关系的一种技术。微商热重法所记录的是TG曲线对温度或时间的一阶导数,所得的曲线称为DTG曲线。现在的热重分析仪常与微分装置联用,可同时得到TG- DTG曲线。通过测量物系质量随温度或时间的变化可以间接地揭示固体物系反应的机理和/或反应动力学规律。 2.1 TG的基本原理与仪器 进行热重分析的基本仪器为热天平。热天平一般包括天平、炉子、程序控温系统、记录系统等部分。此外还配有通入气氛或真空装置。典型的热天平示意图如图1。 图1 热天平原理图 热重分析法通常可分为两大类:静态法和动态法。静态法是等压质量变化的测定,是指一物质的挥发性产物在恒定分压下,物质平衡与温度T的函数关系。以失重为纵坐标,温

影响酶促反应的因素

生物医药工程系《生物化学实验》预习报告姓名学号专业生物科学班级日期 实验名称影响酶促反应的因素 实验目的 1.了解温度、pH、激活剂、抑制剂对酶促反应速度的影响。 2.学习检定温度、pH、激活剂、抑制剂影响酶促反应速度的方法。 实验原理 在酶促反应中,酶的催化活性与环境温度、 pH有密切关系,通常各种酶只有在一定的温度、pH范围内才表现它的活性,一种酶表现其活性最高时的温度、 pH值称为该酶的最适温度、最适pH。 在酶促反应中,酶的激活剂和抑制剂可加速或抑制酶的活性,如氯化钠在低浓度时为唾液淀粉酶的激活剂,而硫酸铜则是它的抑制剂。 本实验利用淀粉水解过程中不同阶段的产物与碘有不同的颜色反应,定性观察唾液淀粉酶在酶促反应中各种因素对其活性的影响。 淀粉(遇碘呈蓝色)→紫色糊精(遇碘呈紫色)→红色糊精(遇碘呈红色)→无色糊精 (遇碘不呈色)→麦芽糖(遇碘不呈色)→葡萄糖(遇碘不呈色)。 所以淀粉被唾液淀粉酶水解的程度,可由水解混合物遇碘呈现的颜色来判断,以此反映淀粉酶的活性,由此检定温度、pH、激活剂、抑制剂对酶促反应的影响。 仪器及材料(型号、规格、数量 等)1、唾液(吃食前的) 2、试管1.5cm×15cm(×13) 3、吸量管1.0 mL(×12)、2.0 mL(×5)、白瓷板6孔。 实验试剂(配制方法、数量多少、 用途)1、0.1%的淀粉液:称取可溶性淀粉0.1g,先用少量水加热调成糊状,再加热水稀释至100ml。 2、0.1%的蔗糖溶液:0.1g蔗糖溶于100ml蒸馏水。 3、本尼迪特试剂:称取85g柠檬酸钠及50g无水碳酸钠,溶解于400ml 蒸馏水中。另溶解边搅,如有沉淀可过滤。此混合液可长期使用。 4、1%的淀粉溶液:将1g可溶性淀粉与少量冷蒸馏水混合成薄浆状物,然后缓缓倾入沸蒸馏水中,边加边搅,最后以沸蒸馏水稀释至100ml。 5、0.2mol/L NaHPO4溶液:称取35.6gNa2HPO4·2H2O溶解,最后定容至1000mL。 6、0.2mol/LNaH2PO4溶液:称取27.6gNaH2PO4·H2O溶解,最后定容至1000mL。 7、1%氯化钠溶液:1gNaCl溶于100ml蒸馏水。 8、1%硫酸铜溶液:1gCuSO4溶于100ml蒸馏水。 9、1%硫酸钠溶液:1gNa2SO4溶于100ml蒸馏水。 10、碘化钾—碘溶液:于2%碘化钾溶液中加入碘至淡黄色2%的KL溶液配制:称取KI 2g溶于100ml蒸馏水中

第7章扩散与固相应用.

第七章扩散与固相反应 §7-1 晶体中扩散的基本特点与宏观动力学方程 一、基本特点 1、固体中明显的质点扩散常开始于较高的温度,但实际上又往往低于固体的熔点; 2、晶体中质点扩散往往具有各向异性,扩散速率远低于流体中的情况。 二、扩散动力学方程 1、稳定扩散和不稳定扩散 在晶体A中如果存在一组分B的浓度差,则该组分将沿着浓度减少的方向扩散,晶体A作为扩散介质存在,而组分B则为扩散物质。 如图,图中dx为扩散介质中垂直于扩散方向x的一薄层,在dx两侧,扩散物质的浓度分别为c1和c2,且c1>c2,扩散物质在扩散介质中浓度分布位置是x 的函数,扩散物质将在浓度梯度的推动下沿x方向扩散。 的浓度分布不随时间变的扩散过程 稳定扩散:若扩散物质在扩散层dx内各处的浓度不随时间而变化,即dc/dt=0。这种扩散称稳定扩散。 不稳定扩散:扩散物质在扩散层dx内的浓度随时间而变化,即dc/dt≠0。这种扩散称为不稳定扩散。 2、菲克定律 (1)菲克第一定律 在扩散体系中,参与扩散质点的浓度因位置而异,且随时间而变化,即浓度是坐标x、y、z和时间t函数,在扩散过程中,单位时间内通过单位横截面积的质点数目(或称扩散流量密度)j之比于扩散质点的浓度梯度△c →→?c?c?cJ=-D?C=-D(i+j+k) ?x?y?z D:扩散系数;其量纲为L2T-1,单位m2/s。 负号表示粒子从浓度高处向浓度低处扩散,即逆浓度梯度的方向扩散,对于一般非立方对称结构晶体,扩散系数D为二阶张量,上式可写为: ?c?c?c-Dxy-Dzz?x?y?z ?c?c?cJy=-Dyx-Dyy-Dyz?x?y?z ?c?c?cJz=-Dzx-Dzy- Dzz?x?y?zJx=-Dxx 对于大部分的玻璃或各向同性的多晶陶瓷材料,可认为扩散系数D将与扩散方向无关而为一标量。 dc Jx=-Ddx Jx----沿x方向的扩散流量密度 dcJdydcJdzyzy---沿Y方向的扩散流量密度 z---沿Z方向的扩散流量密度 适用于:稳定扩散。

扩散与固相反应-电子教案

第七章扩散与固相反应 1.晶体中扩散的基本特点与宏观动力学方程 1.1 扩散的基本概念 当物质内有浓度梯度、应力梯度、化学梯度和其它梯度存在的条件下,由于热运动而导致原子(分子)的定向迁移,从宏观上表现出物质的定向输送,这个输送过程称为扩散。扩散是一种传质过程。 1.2 扩散的基本特点: 1.2.1 气体和液体传质特点 主要传质是通过对流来实现,而在固体中,扩散是主要传质过程;两者的本质都是粒子不规则的布朗运动(热动动)。 1.2.2 固体扩散的特点: A.固体质点之间作用力较强,开始扩散温度较高,远低于熔点; B.固体是凝聚体,质点以一定方式堆积,质点迁移必须越过势垒, 扩散速率较低,迁移自由程约为晶格常数大小;晶体中质点扩散有各向异性。(图7-1)

图7-1 扩散势场示意图 1.2.3 扩散的意义 无机非金属材料制备工艺中很多重要的物理化学过程都与扩散有关系。例如,固溶体的形成、离子晶体的导电性、材料的热处理、相变过程、氧化、固相反应、烧结、金属陶瓷材料的封接、金属材料的涂搪与耐火材料的侵蚀。因此研究固体中扩散的基本规律的认识材料的性质、制备和生产具有一定性能的固体材料均有十分重大的意义。2.扩散的动力学方程 2.1 菲克第一定律(Fick’s First Law) 2.1.1 菲克第一定律的一维推导 若有一根均匀的合金长棒,沿其长度方向存在着某溶质的浓度梯度在棒中取垂直x方向的厚度为△x的薄层,其两侧浓度分别为C2、C1并C2>C1,则薄层中浓度梯度为:

x dx dc C C ?-=1 2 此浓度梯度推动下,溶质原子沿x 方向通过薄层自左向右扩散迁移,溶质浓度C 随位置而变化,在一维情况下可记作c=f(x)。扩散在无限长时间后,整个试棒内溶质浓度为C 。这说明单个原子运动是无规则的,但从宏观统计的角度看,介质中质点的扩散行为都遵循相同的统计规律。于是就提出了菲克第一定律:在扩散体系中,参与扩散质点的浓度因位置而异、且可随时间而变化。公式为: dsdt dx dc D dG -= 式中 dc/dx ——扩散层浓度梯度。C 是溶质单位容积浓度,以g/cm3、l/cm 3、原子数/cm 3。X 是扩散方向上的距离(cm ). D ——比例常数,又称扩散系数。一般固体当温度在20~1500℃范围内,D 值约波动在10-20~10-4cm 2/s 范围内。方程前面的负号表示原子流动方向与浓度梯度方向相反。 J ——扩散通量。即单位时间单位面积上溶质扩散的量。 菲克第一定律的另一种叙述:原子的扩散通量与浓度梯度成正比(J=-Ddc/dx ) 由于扩散有方向性,故J 为矢量, 对于三维有如下公式: )(z c k y c j x c i D J ??+??+??-= 菲克第一定律是质点扩散定量描述的基本方程。它适于稳定扩散(浓度分布不随时间变化),同时又是不稳定扩散(质点浓度分布随时间变化)动力学方程建立的基础。

相关主题
文本预览
相关文档 最新文档