当前位置:文档之家› 虚拟信号发生器和虚拟示波器 - 副本

虚拟信号发生器和虚拟示波器 - 副本

虚拟信号发生器和虚拟示波器 - 副本
虚拟信号发生器和虚拟示波器 - 副本

------虚拟信号发生器与虚拟示波器

摘要

虚拟仪器技术是现在计算机系统和仪器系统相结合的产物,是当今计算机辅助测试领域的一项重要技术。它推动着传统仪器朝着数字化,智能化,模块化,网络化的方向发展。本次设计中,介绍了函数发生器和示波器的原理以及作用,着重介绍了基于LabVIEW8.6的虚拟函数发生器和虚拟示波器的设计与实现过程。虚拟函数发生器能够实现基本的功能,能够产生基本的信号波形,如正弦波、方波、锯齿波等。虚拟示波器能够实现双通示波器的基本功能,如:能够对不同频率的输入信号进行清晰的输出波形显示(单通道输出波形显示或两通道输出波形同时显示);能够选择触发器极性,并能设置触发电位;能进行水平和垂直分度的调节,并能够随时控制波形显示的停止与开启。本次设计,基本达到了设计的要求。

关键词: LabVIEW,函数发生器,双通示波器

目录

1 绪论 (3)

1.1 虚拟仪器简介 (3)

1.1.1虚拟仪器 (3)

1.1.2虚拟仪器的优点 (3)

1.2LabVIEW简介 (4)

2函数发生器 (5)

2.1函数发生器的简介 (5)

2.2函数发生器的原理和功能 (5)

3虚拟函数发生器的设计 (7)

3.1设计目的 (7)

3.2设计方案 (9)

3.2.1前面板的设计 (9)

3.2.2程序框图的设计 (9)

3.3虚拟函数发生器的运行结果及小结 (12)

3.3.1运行结果 (12)

3.3.2小结 (14)

4示波器 (15)

4.1数字示波器的简介 (15)

4.2示波器的工作原理及作用 (15)

5虚拟双通示波器的设计 (16)

5.1设计目的 (16)

5.2设计方案 (17)

5.2.1触发器功能块 (17)

5.2.2通道选择功能块 (17)

5.2.3水平分度调节 (17)

5.2.4幅值分度调节 (18)

5.2.5主体控制 (18)

5.2.6波形显示窗口 (18)

5.3双通道示波器VI控件的设计过程 (18)

5.3.1前面板的创建和设计 (18)

5.3.2程序框图的设计 (19)

5.4虚拟双通示波器的运行结果和小结 (29)

5.4.1虚拟双通示波器的运行结果如图所示 (29)

5.4.2 小结 (30)

6总结 (31)

参考文献 (32)

1 绪论

1.1 虚拟仪器简介

1.1.1虚拟仪器

虚拟仪器技术是现在计算机系统和仪器系统相结合的产物,是当今计算机辅助测试领域的一项重要技术。它推动着传统仪器朝着数字化,智能化,模块化,网络化的方向发展。

虚拟仪器是指通过应用程序将计算机、软件的功能模块和仪器硬件结合起来,用户可以通过友好的图形界面(通常叫做虚拟前面板,简称前面板)来操作这台计算机就像在操作自己定义、自己设计的一台个人仪器一样,从而完成对被测信号的采集、分析、判断、显示、数字存储等。虚拟仪器以透明的方式,通过软件对数据的分析处理、表达以及图形化用户接口,把计算机资源(如微处理器、显示器等)和仪器硬件(如A/D、D/A、数字I/O、定时器、信号调理等)的测试能力和控制能力结合起来。虚拟一起突破了传统仪器以硬件为主体的模式,实际上使用者是在操作具有测试软件的电子计算机进行测量,犹如操作一台虚设的电子仪器。

虚拟仪器技术的实质是充分利用最新的计算机技术来实现和扩展传统仪器的功能。软件是虚拟仪器的关键,当基本硬件确定以后,就可以通过不同的软件实现不同的功能。用户可以根据自己的需要,设计自己的仪器系统,满足多种多样的应用要求。利用计算机丰富的软、硬件资源,可以大大突破传统仪器的数据的分析、处理、表达、传递、存储等方面的限制,达到传统仪器无法比拟的效果。它不仅可以用于电子测量、测试、分析、计量等领域,而且还可以用于进行设备的监控以及工业过程自动化。虚拟仪器还可以广泛用于电力工程、物矿勘探、医疗、振动分析、声学分析、故障诊断及教学科研等多个方面。

1.1.2虚拟仪器的优点

一台性能优良的虚拟仪器不仅可以实现传统仪器的大部分功能,而且在许多方面有传统仪器无法比拟的优点,如使用灵活方便、功能丰富、价格低廉、可一机多用、可重复开发等。与传统仪器相比虚拟仪器主要有以下几个优点:

(1)融合了计算机强大的硬件资源,突破了传统仪器在数据处理、显示、存储等方面的限制,大大增强了传统仪器的功能。而且高性能处理器、高分辨率显示器、大容量硬盘等已成为虚拟仪器的标准配置。

(2)利用计算机丰富的软件资源,一方面,实现了部分仪器硬件的软件话,节省了物质资源,增加了系统的灵活性;一方面,通过软件技术和相应的数值算法、实时、直接的对测量数据进行各种分析和处理;另一方面,通过图形用户界面术,真正做到界面友好,人机交互。

(3)基于计算机总线和模块化仪器总线,使仪器的硬件实现了模块化、系列化,大大缩小了系统的尺寸,可方便的构建模块化仪器。

(4)基于计算机网络技术和接口技术,使VI系统具有方便、灵活的互联能力,广泛支持诸如CAN,Field Bus,PROFIBUS等各种工业总线标准。因此,利用VI 技术可方便的构建自动测试系统,实现测量、控制过程的网络化。

(5)基于计算机的开放式标准体系结构。虚拟仪器的硬、软件都具有开放性、模块化、可重复使用及互换性等特点。因此,用户可以根据自己的需要选择不同厂家的产品,使仪器系统的开发更为灵活、效率更高,缩短了系统组建和维修的时间。

1.2 LabVIEW简介

LabVIEW是一种图形化的编程语言和开发环境。自NI公司于1986年正式推出LabVIEW1.0以来,经过200多年的不断改进和完善,现在已经发展的非常快了。

目前LabVIEW在测控领域的影响越来越大,逐步奠定老人NI在虚拟仪器方面的领导地位。目前,该软件已经广泛应用于航天、航空、通信、电力、汽车、电子半导体、生物医学等众多领域。

LabVIEW吧复杂、繁琐、费时的语言编程简化成“用图标提示的方法选择功能块、用线条将各种功能块连接起来”的编程方式。利用LabVIEW编程就好像在绘制流程图。正是因为LabVIEW面向的是广大普通工程师而非编程专家,因而其已经成为目前应用最快、发展最快、功能最强、最流行的虚拟开发平台。

概括起来,LabVIEW编程语言具有以下特点:

(1)实现了仪器控制与数据采集的完全图形化编程,设计者无需编写任何文

本形式的代码。

(2)提供了大量的面向测控领域的库函数,如面向数据采集的DAQ库函数、内置GPIB、VXI、串口等数据采集驱动程序;面向分析的高级分析库;面向显示的大量仪器面板。

(3)提供了大量与外部代码或应用软件进行连接的机制。

(4)具有强大的网络连接功能,支持常用的网络协议,便于用户开发各种网络测控、远程虚拟仪器系统。

(5)LabVIEW应用程序具有可移植性,适用于多种操作系统

(6)可生成可执行文件,脱离LabVIEW开发环境运行。

2函数发生器

信号发生器是指产生所需参数的电测试信号的仪器。按信号波形可分为正弦信号、函数(波形)信号、脉冲信号和随机信号发生器等四大类。信号发生器又称信号源或振荡器,在生产实践和科技领域中有着广泛的应用。

2.1函数发生器的简介

能够产生多种波形的信号发生器,如产生三角波、锯齿波、矩形波(含方波)、正弦波的信号发生器称为函数信号发生器

2.2函数发生器的原理和功能

函数信号发生器可产生正弦波、三角波、方波等基本波形,也可产生各种连续的扫频信号、函数信号、脉冲信号等,另外它还具有测频功能,是电子工程、电子实验室、电子产品生产线以及科研所需要的理想设备。如图1所示,仪器的前面板划分为几大功能区,下面介绍其主要功能。

⑴输出频率调节

面板左上角为频率显示窗口,显示输出信号的频率值,频率的单位分两档,分别为“kHz”和“Hz”。频率显示窗口下为“频率选择”功能区,设有频段指示和频段选择按键以及频率细调旋钮。例如频段范围选择“×100”档,表示频率的变化范围在100赫兹左右(并非窗口数值乘以100倍),此时只能调出100赫兹左右的频率值。注意需要不同的频率时,先要按旋钮下的方形频段选择按键,选择正确的频段,再调频率细调旋钮,则可调出需要的频率。

图 1 信号发生器面板图

⑵输出电压调节

输出电压调节区包括电压显示窗口和它右下方的“函数信号输出”功能区,该区包括波形选择、输出衰减以及电压幅度调节旋钮。电压窗口显示的电压值为峰峰值,电压单位分两档,伏和豪伏。按下面的波形选择键可在三种波形中任选一种输出。按输出衰减键可设定输出电压的衰减倍率。旋转电压幅度调节旋钮,可调节窗口的输出电压值。

⑶扫频调节

“扫频调节”区位于面板右上角,“扫频宽度”旋钮有两个功能,一是调节输出信号的频率调制宽度;二是在测量外部低频信号的频率时,如果信号中有高频分量影响频率测量时,可将此旋钮逆时针旋到底,打开滤波器(指示灯亮),此时输入信号中100kHz以上的频率分量被抑制。

“扫频速率”旋钮的功能为调节扫频信号的扫频速率,如果扫频电压来自外部,并且输入电压太大影响扫频速率时,可将该旋钮逆时针旋到底(指示灯亮),此时输入信号被衰减20dB。

⑷工作模式选择

工作模式选择区位于电压显示窗口下方,包括一个选择按键和五种工作模式选择指示。“信号输出”:输出单一频率的函数信号;“对数扫频”:用对数扫频方式输出函数信号;“线性扫频”:用线性扫频方式输出函数信号;“外部扫频”:用外部扫频方式输出函数信号;“外部计数”:测量外部信号频率,此时测频系统

作为频率计使用。

3虚拟函数发生器的设计

3.1设计目的

利用虚拟仪器设计一个能完成 SG1651A型信号发生器功能基本相同的虚拟函数发生器。SG1651A型信号发生器是一台具有高度稳定性、多功能凳特点的函数信号发生器。能直接产生正弦波、三角波、方波、斜波、脉冲波,波形对称可调并具有反向输出。频率可做内部频率显示,也可外测1Hz~10.0MHz的信号频率,电压用LED显示。面板说明如图2

图2 SG1651A函数发生器面板图

面板标志名称作用

1 电源电源开关按下开关,电源接通,电源指示灯亮

2

波形波形选择1、输出波形选择

2、与1

3、19配合使用可得到正负相锯齿波和脉冲波

3 频率频率选择开关频率选择开关与“9”配合选择工作频率外测频率时选择闸门时间

4 Hz 频率单位指示频率单位,灯亮有效

5 KHz 频率单位指示频率单位,灯亮有效

6 闸门闸门显示此灯闪烁,说明频率计正在工作

7 溢出频率溢出显示当频率超过5个LED所显示范围时灯亮

8 频率LED 所有内部产生频率或外测时的频率均由此5个LED显示

9 频率调节频率调节与“3”配合选择工作频率

10 直流/拉

直流偏置调节

输出

拉出此旋钮可设定任何波形的直流工作

点,顺时针方向为正,逆时针方向为负

11 压控输入压控信号输入外接电压控制频率输入端

12 TTL输出TTL输出输出波形为TTL脉冲,可做同步信号

13 幅度调节

反向/拉

斜波倒置开关

幅度调节旋钮

1、与“19”配合使用,拉出时波形反向

2、调节输出幅度大小

14 50Ω输出信号输出主信号波形由此输出,阻抗为50Ω

15 衰减输出衰减按下按键可产生-20dB/-40dB衰减

16 VmVp-p 电压LED

17

外测

-20dB

外接输入衰减

-20dB

1、频率计内测和外测频率(按下)信号选

2、外测频率信号衰减选择,按下是信号衰

减20dB

18 外测输入计数器外信号

输入端

外测频率时,信号由此输出

19 50 Hz输

50 Hz固定信

号输出

50 Hz固定频率正弦波由此输出

20 AC220V 电源插座50 Hz 220V交流电源由此输出

21 FUSE:

0.5A

电源保险丝盒安装电源保险丝

22 标准输出

10MHz

标频输出10MHz标频信号由此输出

表1 序号对应功能表

3.2设计方案

设计中主要利用条件结构对其编程,主要有信号产生的模块,能够产生正弦波、方波、三角波、锯齿波、任意波等。可以调节扫描频率、信号频率、扫描宽度、波形幅度、方波占空比等。能够输出波形,相位等。

3.2.1前面板的设计

前面板主要有波形显示以及输入波形的频率、幅度等参数的调节,以及输出的相位等输出显示。前面板如图3所示

图3 虚拟函数发生器的前面板

3.2.2程序框图的设计

程序框图的设计采用条件结构:其整体的程序框图如图4所示

图4 虚拟函数发生器的程序框图

(1)七段显示子vi的设计

七段显示子vi是利用七个布尔方形指示灯做成的,当输入0~9之间的任意一个数字时将会显示对应的数字,其前面板如图5所示。器程序框图如图6所示。

图 5七段码显示的前面板图6 七段码显示的程序框图

(2)函数发生程序框图

采用基本信号生成函数模块,利用条件结构产生正弦波、方波、锯齿波、三角波以及任意波,器程序框图如图所示

图7 函数发生程序框图1 图8 函数发生程序框图2

图9函数发生程序框图3 图10 函数发生程序框图4

图11 函数发生程序框图5 图12函数发生程序框图6 3.3虚拟函数发生器的运行结果及小结

3.3.1运行结果

运行结果如图所示

图 13没有波形产生的界面

图14 产生正弦波

图15 产生方波

图16 产生三角波

图17 产生锯齿波

3.3.2小结

该信号发生器是基于LabVIEW的虚拟信号发生器,通过子程序的设计以及条

件结构的应用,我更好的掌握了LabVIEW模块的作用和使用方法,并且更好的掌握论文LabVIEW的编程方法和技巧。该函数发生器能够基本达到试验要求,能够产生正弦波、方波、锯齿波、三角波和任意波,基本能满足要求。但是由于能力有限,没有做到TTL电平信号的产生以及衰减作用。但我会在接下来的日子更加完善该函数发生器,使其功能更加完善,更加接近真实信号发生器。

4示波器

示波器能够显示各种电信号的波形,一切可以转化为电压的电学量和非电学量及它们随时间作周期性变化的过程都可以用示波器来观测,示波器是一种用途十分广泛的测量和显示仪器。目前大量使用的示波器有两种:模拟示波器和数字示波器。模拟示波器发展较早,技术已经非常成熟。随着数字技术的飞速发展,数字示波器拥有了许多模拟示波器不具备的优点:能长时间保存信号;测量精度高;具有很强的信号处理能力;具有输入输出功能,可以与计算机或其它外设相连实现更复杂的数据运算或分析;具有先进的触发功能等等。而且随着相关技术的进一步发展,其使用范围将更加广泛。

这里我们主要介绍数字示波器。

4.1数字示波器的简介

数字存储示波器是新一代的示波器,它把输入的模拟信号转换成数字信号,采用液晶显示屏,像计算机一样,它内部编有很多程序和命令,所以它不仅能显示信号,而且能对信号进行各种各样的处理,如存储比较、数学运算等,数字示波器比模拟示波器更先进,功能更强大,使用更方便。数字示波器由信号放大电路、高速模——数转换器、中央处理器、存储器和液晶显示器(包括驱动电路)组成。

4.2示波器的工作原理及作用

图18为数字存储示波器的面板图,它包括几大功能区和若干常用功能键,每个功能区都在一个方框内,每个功能区又包括几个按键和旋钮,每个按键都有自己的菜单,菜单里有各种选择。下面就其中的主要功能分别给以介绍。

⑴垂直系统(VERTICAL)

垂直系统的功能为调节信号(波形)在竖直方向的幅度和位置。ch1和ch2

为两个波道的选择按键,上面两个旋钮分别为两个波道的竖直幅度调节,下面两个旋钮分别为两个波道的波形竖直位移调节,中间的MATH 键为数学运算,在它的菜单里选择操作,可对两个波道的波形进行加、减、乘、除运算。REF键为存储比较,可将当前波形存储,与后面的波形进行比较。

图18 数字存储示波器的面板图

⑵水平系统(HORIZONTAL)

水平系统的功能为调节波形在水平方向的幅度和位置。最左边的旋钮为扫描时间调节,中间的按键为水平设置,在它的菜单里可以进行视窗大小的设定和波形局部的放大。最右边的旋钮为波形的水平位移。

⑶触发系统(TRIGGER)

触发系统的功能为确定示波器开始采集数据和显示波形的时间。正确设置触发系统,示波器就能将不稳定的显示结果或空白显示屏转换为有意义的波形。在触发控制区有一个旋钮、三个按键。

“LEVEL”旋钮:触发电平,设定触发点对应的信号电压,以便进行采样。

“SET TO 50%”:设置触发电平为待测信号幅值的垂直中点。

“FORCE”按钮:强制产生一触发信号,主要应用于触发方式中的正常和单次模式。

“TRIG MENU”按钮:显示“触发菜单”,可通过该菜单选择触发信号的来源(哪一个波道),以及触发信号的类型(上升沿或下降沿)。

5虚拟双通示波器的设计

5.1设计目的

利用LabVIEW模拟实现简单数字双通道示波器的各种功能,如:能够对不同频率的输入信号进行清晰的输出波形显示(单通道输出波形显示或两通道输出波形同时显示);能够选择触发器极性并能设置触发电位;能进行水平和垂直分度的调节,并能够随时控制波形显示的停止与开启。

5.2设计方案

在该课程设计中,我们采用的是模块化程序设计,总程序包括了触发控制功能块、水平和垂直分度调节的定位控制功能块、通道选择功能块、程序控制功能块和波形显示功能块等各个功能模块,具体程序编写时使用了层叠式分支结构,分支选择结构、while循环结构等常用的编程逻辑结构以及常见的数据结构,如簇、数组等和各种数据处理函数;同时还用到了波形生成控件VI(如正弦波和方波)布尔逻辑控件VI、旋钮控件VI、垂直滑动杆控件VI等多个LabVIEW控件,并为了具体功能的实现自己创建了多个波形处理子VI。

5.2.1触发器功能块

触发器主要设定滤波器的触发源、触发极性和触发电位。该触发器功能模块包括触发源性质,通道B(CH B)触发、通道A(CH A)触发或外触发(EXT)。如果触发原是外触发,滤波器的触发源通过该示波器的内置其他功能来实现,此时,触发源的触发极性选择和触发电位调节旋钮就不可用。触发极性逻辑开关选择设定触发器为正触发(POS)或负触发(NEG),表明触发器的触发沿由何种性质的触发信号产生。通过调节触发电位旋钮,可以调节触发器的触发电位高低(22

)。

V V

通过调节触发电位旋钮,可以调节触发器的触发电位高低。

5.2.2通道选择功能块

通道选择功能块通过调节选择,可以表明示波器显示哪一路通道信号,可以选择的通道信号为通16 A、通道B以及通道A和通道B两路信号同时显示。常见的一般示波器都可以进行单通道信号显示或两路通道信号同时显示。通道选择以及示波器中的信号显示同样是一般示波器的主要功能之一。

5.2.3水平分度调节

水平分度大小调节功能块可以调节示波器显示窗口的波形在水平方向,即豸方向的水平分度的大小,进而可以改变波形图窗口能够显示的完整波形的数目。本章所创建的简单双通道示波器可以实现3个水平分度大小的调节。—ˉ般的示

波器能够在一定范围内,对水平方向的分度大小进行连续调节。这部分功能是一般常见示波器的主要功能之一。本章创建的这部分功能只是对常见示波器水平调节功能的简单演示。感兴趣的读者可以根据LabVIEW提供的函数功能,对这部分调节功能进行完善,使之能够连续调节。

5.2.4幅值分度调节

同水平分度大小调节功能一样,幅值分度调节功能可以对示波器波形显示窗口的分度大小进行调节,根据不同的输入波形大小,调节示波器的分度大小,从而能够显示完整的输入信号的波形。常见的一般示波器能够对幅值的分度大小进行连续调节,从而能够对输入波形进行比较完整的显示。本章在创建简单双通道示波器时对这部分功能进行了简单的实现,可以对3个大小不同的分度进行调节。同样,感兴趣的读者可以对这部分功能进行进一步的扩充和完善。

5.2.5主体控制

这功能是创建的简单双通道示波器程序的主体控制部分,能够对本章创建的简单双通道示波器的信息内容和主要功能进行说明和提示。同时也可以对本章所创建的简单双通道示波器终止运行过程进行控制。

5.2.6波形显示窗口

波形显示窗口是简单双通道示波器进行波形显示的主界面。一般的示波器都通过波形显示窗口对输入示波器的两路信号进行显示。在双通道示波器的调节过程中,对所有调节功能进行调节测试,观察相应的波形变化情况时,也可以通过这部分波形显示部分进行显示。创建简单双通道示波器时采用LabVIEW 8.6提供的波形图Ⅵ控件,对输入波形图控件的信号可以进行比较简单的显示。

5.3双通道示波器VI控件的设计过程

5.3.1前面板的创建和设计

前面板主要显示虚拟示波器的界面,界面要做的简介美观。这里前界面的主要创建设计为:创建波形图显示控件,用于示波器的波形显示;创建示波器的LOGO图标部分;创建触发器面板,完成基本触发选项的布局,包括触发源、触发极性和出发电位;创建通道选择面板,可以对示波器可以显示的通道波形进行选择;穿件定位面板,可以对示波器的水平分度和幅值分度进行调节;创建程序控制面板,对示波器空间的程序功能进行控制和调节。前面板界面如图19所示:

图 19 双通示波器的前面板界面5.3.2程序框图的设计

虚拟双通示波器的程序框图如图20所示

图20 虚拟示波器的程序框图

(1)触发源功能块选择

触发源功能块选择的作用主要是利用触发源开关的选择和通道选择开关完成对示波器显示波形的触发源的选择问题,程序框图如图所示

触发源“source”开关和通道选择开关“通道选择”通过“与”逻辑操作后作为分支选择结构的选择项,若选择结果为真,此时触发通道B,将逻辑选择数值“0”作为触发源“source”,触发极性“slope”和触发电位“level”属性节点的设置数值,代开后两者的功能。如果选择情况为假,即采用外触发“EXT”,此时将逻辑选择数值“2”作为逻辑数值输入触发器面板3个空间的属性节点后,是的触发极性和触发电位取消作用。

图 21 触发源功能块设置1

图 22 触发源功能块设置2

(2)触发电平vi的创建

触发电平vi的主要功能是根据输入的信号,与触发电平的数值进行比较厚输出产生触发的数组的序号index。触发电平vi的前面板如图23所示。在前面

多功能信号发生器设计报告.doc

重庆大学城市科技学院电气学院EDA课程设计报告 题目:多功能信号发生器 专业:电子信息工程 班级:2006级03班 小组:第12组 学号及姓名:20060075蒋春 20060071冯志磊 20060070冯浩真 指导教师:戴琦琦 设计日期:2009-6-19

多功能信号发生器设计报告 一、设计题目 运用所掌握的VHDL语言,设计一个信号发生器,要求能输出正弦波、方波、三角波、锯齿波,并且能改变其输出频率以及波形幅度,能在示波器上有相应波形显示。 二、课题分析 (1).要能够实现四种波形的输出,就要有四个ROM(64*8bit)存放正弦波、方波、三角波、锯齿波的一个周期的波形数据,并且要有一个地址发生器来给ROM提供地址,ROM给出对应的幅度值。 (2).因为要设计的是个时序电路,所以要实现输出波形能够改变频率,就必须对输入的信号进行分频,以实现整体的频率的改变。 (3).设计要求实现调幅,必须对ROM输出的幅度信息进行处理。最简单易行的方法是对输出的8位的幅度进行左移(每移移位相当于对幅度值行除以二取整的计算),从而达到幅度可以调节的目的。同时为了方便观察,应再引出个未经调幅的信号作为对比。 三、设计的具体实现 1、系统概述 系统应该由五个部分组成:分频器(DVF)、地址发生器(CNT6B)、四个ROM 模块(data_rom_sin、data_rom_sqr、data_rom_tri、data_rom_c)、四输入多路选择器mux、幅度调节单元w。 2、单元电路设计与分析 外部时钟信号经过分频器分频后提供给地址发生器和ROM,四个ROM的输出接在多路选择器上,用于选择哪路信号作为输出信号,被选择的信号经过幅度调节单元的幅度调节后连接到外部的D/A转换器输出模拟信号。 (1)分频器(DVF) 分频器(DVF)的RTL截图

基于Labview虚拟示波器的毕业设计说明

徐州工业职业技术学院 毕业设计(论文)任务书 课题名称基于Labview虚拟示波器的设计课题性质 班级通信111

论文真实性承诺及指导教师声明 学生论文真实性承诺 本人郑重声明:所提交的作品是本人在指导教师的指导下,独立进行研究工作所取得的成果,内容真实可靠,不存在抄袭、造假等学术不端行为。除文中已经注明引用的内容外,本论文不含其他个人或集体已经发表或撰写过的研究成果。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。如被发现论文中存在抄袭、造假等学术不端行为,本人愿承担本声明的法律责任和一切后果。 毕业生签名:日期: 指导教师关于学生论文真实性审核的声明 本人郑重声明:已经对学生论文所涉及的内容进行严格审核,确定其内容均由学生在本人指导下取得,对他人论文及成果的引用已经明确注明,不存在抄袭等学术不端行为。 指导教师签名:日期:

摘要 随着电子计算机技术和软件开发技术的日新月异,电子计算机在数据的实时分析和处理,显示,存贮等方面的优势与传统的仪器相比越来越明显。与此同时,随着计算机性价比的不断提升,传统仪器的价格又长期居高不下,再加上传统仪器的功能单一,发展虚拟仪器已经成为一个不可阻挡的历史潮流。美国NI 公司在这种大环境下,率先发起了对虚拟仪器的研究开发,推出了Labview软件开发平台。 本课题在掌握了虚拟仪器的基本结构及信号处理的相关知识基础之上,设计了一套虚拟示波器。对虚拟仪器的概念,结构,发展趋势进行了相关分析。介绍了与信号处理相关的基础知识,主要是傅里叶变换。虚拟仪器主要由硬件和软件两个部分构成。本文对虚拟示波器的硬件即数据采集卡进行了初略的介绍,对其软件部分进行了详细研究。在此基础上完成了频谱分析模块,存储模块,显示模块,滤波模块,测量模块的设计。 关键词:虚拟仪器虚拟示波器频谱分析数据采集

基于Labview的虚拟信号发生器的设计(毕设)

基于Labview的虚拟信号发生器的设计(毕设)

课题名称基于LabVIEW8.0的虚拟函数信号发生器的设 计 指导教师姓名肖俊生 学生姓名刘增辉 专业自动化 学号 0967106205

基于LabVIEW的虚拟函数信号发生器的设计 摘要 本文实现了基于LabVIEW8.5的虚拟正弦波、方波、三角波、锯齿波以及任意信号波形的信号发生。操作人员可以根据需要,改变波形的频率、幅值、相位、偏移量等参数,并可保存波形的分析参数到指定文件。本论文首先简介了虚拟函数信号发生器的开发平台,及虚拟信号发生器的设计思路,并且给出了基于LabVIEW的虚拟信号发生器的前面板和程序设计流程图,讲述了功能模块的设计步骤,提供了虚拟发生器的前面板。本仪器系统操作简便,设计灵活,具有很强的适应性。 【关键词】:虚拟仪器,LabVIEW,信号发生器 第一章虚拟仪器(Virtual Instrument) 1.1 虚拟仪器概念 虚拟仪器的起源可追溯到20世纪70年代。“虚拟”的含义主要是强调了软件在这类仪器中的作用,体现了虚拟仪器与主要通过硬件实现各种功能的传统仪器的不同。由于虚拟仪器结构形式的多样性和适用领域的广泛性,目前对于虚拟仪器的概念还没有统一的定义。美国国家仪器公司(National Instruments Corporation,NI)认为,虚拟仪器是由计算机硬件资源、模块化仪器硬件和用于数据分析、过程通信及图形用户界面的软件组成的测控系统,是一种计算机操纵的模块化仪器系统。 虚拟仪器主要由通用的计算机资源(例如微处理器、内存、消声器)、应用软件和仪器硬件(例如A/D\、D/A、数字I/O、定时器、信号调理等)等构成。使用者利用应用软件将计算机资源和仪器硬件结合起来,通过友好的图形界面来操作计算机,完成对测试信号的采集、分析、判断、显示和数据处理等功能。虚拟仪器中的硬件主要用于解决信号的调理以及输入、输出问题。而软件主要

基于LabVIEW的虚拟示波器设计

目录 1.设计要求 (1) 1.1主要功能模块 (1) 图1 功能结构框图 (1) 1.1.1 数据采集模块 (1) 1.1.2 波形显示模块 (1) 1.1.3 参数测量模块 (2) 1.1.4 频谱分析模块 (2) 1.1.5 数据存储和回放模块 (2) 1.2 主要控制结构 (2) 1.2.1 测量控制结构 (2) 1.2.2 自动调整扫描率控制结构 (2) 2.虚拟仪器设计方案 (3) 3.虚拟仪器设计步骤 (4) 3.1 DAQ数据采集模块: (5) 3.2 模拟采集模块 (6) 3.3 波形显示模块 (7) 3.4参数测量模块 (8) 3.4.1频谱分析模块 (10) 3.5 数据存储和回放模块 (12) 3.6 波形打印模块 (13) 3.7主要控制结构 (14) 3.7.1测量控制结构 (14) 3.7.2自动调整扫描率控制结构 (15) 4.总结 (16) 5.参考文献 (17) 6.附录: (18)

摘要 摘要:虚拟仪器是现代测量技术和计算机技术相结合的产物,标志着自动测试与电子测试仪器领域技术发展的一个崭新方向.随着信息技术和计算机技术的高速发展,数字信号处理作为一门新兴的学科,其重要性日益在各个领域的应用中体现出来。本文介绍了可以利用LabVIEW完成对信号的输入及获取、信号电压参数及时间频率参数的自动测量、信号的波形显示及存储回放和信号的频谱分析等功能。该示波器主要由数据采集DAQ(Data Acquisition)、接口总线、硬件驱动程序和虚拟数字示波器软件构成。 关键词:虚拟仪器LabVIEW 示波器 Abstract: Virtual instrument is the product of modern measurement technology and the combination of computer technology, marked a new direction of automatic test and electronic measurement instrument technology development. With the rapid development of information technology and computer technology, digital signal processing as a new subject, reflected the growing importance of application in the field of each. This paper introduces the LabVIEW can be used to complete the signal acquisition, signal input and parameters of voltage and time frequency parameter automatic measurement, signal waveform display and storage playback and signal spectrum analysis and other functions. The oscilloscope is composed of data acquisition DAQ (Data Acquisition), interface bus, hardware driver and virtual digital oscilloscope software. Keywords: The virtual instrument LabVIEW oscilloscope

函数信号发生器课程设计报告书

信号发生器 一、设计目的 1.进一步掌握模拟电子技术的理论知识,培养工程设计能力 和综合分析问题、解决问题的能力。 2.基本掌握常用电子电路的一般设计方法,提高电子电路的 设计和实验能力。 3.学会运用Multisim10仿真软件对所作出的理论设计进行 仿真测试,并能进一步完善设计。 4.掌握常用元器件的识别和测试,熟悉常用仪表,了解电路 调试的基本方法。 二、设计容与要求 1.设计、组装、调试函数信号发生器 2.输出波形:正弦波、三角波、方波 3.频率围:10Hz-10KHz围可调 4.输出电压:方波V PP<20V, 三角波V PP=6V, 正弦波V PP>1V 三、设计方案仿真结果 1.正弦波—矩形波—三角波电路 原理图:

首先产生正弦波,再由过零比较器产生方波,最后由积分电路产生三角波。正弦波通过RC串并联振荡电路(文氏桥振荡电路)产生,利用集成运放工作在非线性区的特点,由最简单的过零比较器将正弦波转换为方波,然后将方波经过积分运算变换成三角波。 正弦—矩形波—三角波产生电路: 总电路中,R5用来使电路起振;R1和R7用来调节振荡的频率,R6、R9、R8分别用来调节正弦波、方波、三角波的幅值。左边第一个运放与RC串并联电路产生正弦波,中间部分为过零比较器,用来输出方波,最好一个运放与电容组成积分电路,用来输出三角波。

仿真波形: 调频和调幅原理 调频原理:根据RC 振荡电路的频率计算公式 RC f o π21 = 可知,只需改变R 或C 的值即可,本方案中采用两个可变电阻R1和R7同时调节来改变频率。 调幅原理:本方案选用了最简单有效的电阻分压的方式调幅,在输出端通过电阻接地,输出信号的幅值取决于电阻分得的电压多少。其最大幅值为电路的输出电压峰值,最小值为0。 RC 串并联网络的频率特性可以表示为 ) 1(311112 1 2 RC RC j RC j R C j R RC j R f Z Z Z U U F ωωωωω-+=++++=+= = ? ? ? 令,1 RC o =ω则上式可简化为) ( 31 ω ωωωO O j F -+ = ? ,以上频率特性可 分别用幅频特性和相频特性的表达式表示如下:

虚拟信号发生器(labview)

虚拟信号发生器(labview)

4 系统总体的设计及实现 4.1 系统框架和设计流程 4.1.1程序框图的设计流程 用LABVIEW设计虚拟信号发生器的主要步骤是在设计程序框图上,图4.1是设计程序框图的主要流程。 图4.1 程序框图的设计流程 4.1.2系统设计 设计信号发生器的主要任务是设计程序框图和前面板,在设计这两部分中若没有出现数据类型不匹配、控件的属性设置等问题,再跟硬件连接,看是否可以产生各种信号,并且能被数字示波器采集到,并在硬件允许的范围内体现比现有信号发生器更宽泛的信号范围。

4.2 系统具体应用程序 按系统的总体要求,可以分为两部分来设计,一个是基本波形的系统设计,如正弦波,方波,三角波和锯齿波,另一个是基于数字脉冲的PWM波设计。 4.2.1程序框图的具体设计步骤 利用LABVIEW设计一个系统,其中的主要部分是程序框图的设计,以下就是程序框图设计的基本过程。 1)创建虚拟通道,可以根据输出的波形的类型来设置物理通道的性质,并可以设置波形的一些基本参数。图4.2是输出基本波形的通道,图4.3是输出PWM波的通道。 图4.2 基本波形虚拟通道 图4.3 PWM波虚拟通道 2)设置基本波形的缓冲区和采样时钟,缓冲区中则可以对信号的频率、幅值、采样值、波形类型等进行设置,采样时钟设为模拟。本设计中的PWM波是基于计数器产生的,采样时钟则是设置成计数器(隐式)。时钟采样方式均设置为连续采样。图4.4是基本信号的时钟,图4.5则是PWM波的时钟。

图4.4 基本波形信号时钟 图4.5 PWM波信号时钟 3)基本信号发生器需要先设置模拟信号的通道数及采样数,然后运行,PWM 波则是则是在设置好波形参数和时钟后可以直接运行。 图4.6 基本信号波形运行

虚拟示波器的研究与设计

虚拟示波器的研究与设计 任重 江西科技师范学院,江西省光电子与通信重点实验室,江西南昌(330013) E-mail:renzhong81@https://www.doczj.com/doc/b25847096.html, 摘要:本文首先介绍了虚拟仪器技术,高校实验室仪器的现状和解决方法,然后从总体的角度提出了虚拟示波器的设计方案,另外介绍了DAQ卡Kpci-3100,然后比较详细地从功能的角度用LabVIEW语言分别设计了虚拟示波器的功能模块。最后,整个系统经过调试和实验表明,该虚拟示波器具有传统示波器无法比拟的诸多优势。 关键词:虚拟仪器,虚拟示波器,DAQ卡,LabVIEW 中图分类号:TP216+.1 文献标识码:A 1.引言 虚拟仪器是由美国国家仪器公司(National Instrument)首先提出来的,虚拟仪器(Virtual instrument)的核心是:以计算机作为仪器统一的硬件平台,充分利用计算机独具的运算、存储、回放、调用、显示以及文件管理等智能化功能,同时把传统仪器的专业化功能和面板控件软件化,并结合相应的I/O接口设备,这样便构成了一台从外观到功能都完全与传统硬件仪器相同,同时又充分享用了计算机智能资源的全新的仪器系统[1]。 目前,在多数院校的电子学实验教学中,常用的仍然是功能固定的台式仪器,主要有示波器、函数发生器、实验箱和电源等。对于一所高等院校而言,进行电子类实验教学至少需要配备30套设备,每一套近万元,在经费紧张的情况下,很难满足教学的需要。另外,台式机操作复杂,功能单一、调试困难,学生不易掌握其使用方法,测定结果也不精确。而采用虚拟仪器实验系统,可以解决上述问题:(1)虚拟仪器可以由用户自定义其功能,并可以把几种仪器集成在一个系统中,运用不同切换过程,实现同样的教学目的。这样,一台计算机就是一个实验平台。(2)由于虚拟仪器的内容丰富,人机界面好,可以减轻教师的教学负担,加深学生对知识的理解。(3)提高实验效率,降低教学成本,参数输入简便,结果显示明确,实验设备如有更新,只需更新一下软件。(4)借助虚拟技术把仪器与计算机相连接,可以充分利用实验资源。 2.虚拟示波器的总体设计 本虚拟示波器[2]主要由硬件和软件两部分组成。其中硬件是以PC机为基础,加上一块基于PCI总线的多功能数据采集卡;软件是以WIN98/2000/XP为操作系统的基础上的一个应用程序,如:VC++,VB,Dephi,Labwindows/c及LabVIEW[3][4][5]以及仪器驱动程序。虚拟示波器的结构如图1所示。

函数信号发生器设计报告

函数信号发生器设计报告 一、 设计要求 设计制作能产生正弦波、方波、三角波等多种波形信号输出的波形发生器,具体要求: (1) 输出波形工作频率范围为2HZ ~200KHZ ,且连续可调; (2) 输出频率分五档:低频档:2HZ ~20HZ ;中低频档:20HZ ~200HZ ; 中频档:200HZ ~2KHZ ;中高频档:2KHZ ~20KHZ ;高频档:20KHZ ~200KHZ 。 (3) 输出带LED 指示。 二、 设计的作用、目的 1. 掌握函数信号发生器工作原理。 2. 熟悉集成运放的使用。 3. 熟悉Multisim 软件。 三、 设计的具体实现 3.1函数发生器总方案 采用分立元件,设计出能够产生正弦波、方波、三角波信号的各个单元电路,利用Multisim 仿真软件模拟,调试各个参数,完成单元电路的调试后连接起来,在正弦波产生电路中加入开关控制,选择不同档位的元件,达到输出频率可调的目的。 总原理图:

3.2单元电路设计、仿真 Ⅰ、RC桥式正弦波振荡电路 图1:正弦波发生电路 正弦波振荡器是在只有直流供电、不加外加输入信号的条件下产生正弦波信号的电路。 正弦波产生电路的基本结构是:引入正反馈的反馈网络和放大电路。其中:接入正反馈是产生振荡的首要条件,它又被称为相位条件;产生振荡必须满足幅度条件;要保证输出波形为单一频率的正弦波,必须具有选频特性;同时它还应具有稳幅特性。因此,正弦波产生电路一般包括:放大电路、反馈网络、选频网络、稳幅电路四个部分。根据选频电路回路的不同,正弦波振荡器可分为RC正弦波振荡器、LC正弦波振荡器和石英晶体振荡器。其中,RC正弦波振荡器主要用于产生中低频正弦波,振荡频率一般小于1MHz,满足本次设计要求,故选用RC 正弦波振荡器。

YB43020B模拟示波器使用说明

YB43020B模拟示波器 使用说明 YB43020B模拟示波器整体外观如图所示. 主要按键以及旋钮的功能如下: (1) 电源开关:按入此开关,仪器电源接通,指示灯亮。 (2) 聚焦:用以调节示波管电子束的焦点,使显示的光点成为细而清晰的圆点。 (3) 校准信号:此端口输出幅度为0.5V,频率为 1kHz 的方波信号 (4) 垂直位移:用以调节光迹在垂直方向的位置。 (5) 垂直方式:选择垂直系统的工作方式。 CH1:只显示CH1 通道的信号。 CH2:只显示CH2 通道的信号。 交替:用于同时观察两路信号,此时两路 信号交替显示,该方式适合于在扫描速率较快时 使用;断续:两路信号断续工作,适合于在扫描速 率较慢时,同时观察两路信号。 叠加:用于显示两路信号相加的结果,当 CH2 极性开关被按入时,则两信号相减。 CH2 反相:按入此键,CH2 的信号被反相。

(6) 灵敏度选择开关(VOLTS/DIV):选择垂直轴的偏转系数,从 2mV/div~10V/div 分12个档级调整,可根据被测信号的电压幅度选择合适的档级 (7) 微调:用以连续调节垂直轴偏转系数,调节范围≥2.5倍,该旋钮逆时针旋足时为校准位置,此时可根据“VOLTS/DIV”开关度盘位置和屏幕显示幅度读取该信号的电压值。 (8) 耦合方式(AC GND DC)垂直通道的输入耦合方式选择, AC:信号中的直流分量被隔开,用以观察信号的交流成份; DC:信号与仪器通道直接耦合,当需要观察信号的直流分量或被测信号的频率较低时应选用此方式, GND 输入端处于接地状态,用以确定输入端为零电位时光迹所在位置。 (9) 水平位移:用以调节光迹在水平方向的位置。 (10) 电平:用以调节被测信号在变化至某一电平时 触发扫描。 (11) 极性:用以选择被测信号在上升沿或下降沿触 发扫描。 (12) 扫描方式:选择产生扫描的方式。 自动:当无触发信号输入时,屏幕上显示扫描 光迹,一旦有触发信号输入,电路自动转换为触发扫 描状态,调节电平可使波形稳定的显示在屏幕上,此 方式适合观察频率在50Hz 以上的信号。 常态:无信号输入时,屏幕上无光迹显示,有 信号输入时,且触发电平旋钮在合适位置上,电路被 触发扫描,当被测信号频率低于50Hz 时,必须选择 该方式。 锁定:仪器工作在锁定状态后,无需调节电平即可使波形稳定的显示在屏幕上。 单次:用于产生单次扫描,进入单次状态后,按动复位键,电路工作在单

虚拟信号发生器的设计

虚拟信号发生器的设计 (巢湖学院物理与电子科学系王乐07037022) 摘要:虚拟仪器是由一些必要的硬件获取调理信号,并以通用计算机为平台,实现不同测量软件对采集获得信号进行分析处理及显示。它改变了传统电子测量仪器的概念和模式,用户完全可以自己定义仪器的功能和参数,即“软件既是仪器”。计算机技术与网络技术的飞速发展,使得虚拟仪器已经成为现代电子测量仪器发展的趋势。 本文介绍了一种以LabVIEW为开发平台,能够产生正弦波、三角波、方波、锯齿波和任意波测试信号发生器,其平率、幅值、相位、电压偏置等参数可以设置,不但输出波形参数可调、而且可同步显示。本系统通过采用TCP/IP技术来实现远程数据传输功能,当两台计算机设置好端口后,就可以进行数据传输。 与传统仪器相比,本系统具有高效、开放、使用灵活、功能强大、性价比高、可操作性好等明显优点,可用于医疗,工程等精密仪器的测试,具有较强的实用性和开发价值。 关键词:虚拟仪器,Labview,函数信号发生器,网络通信。 The design of virtual signal generator and remotereslization Abstract:The virtual instrument which conditioning signals isgained by some essential hardware.It takes the general-purposecomputer as a platform and the signal is realized through thedifferent measurement software,such as signal’s analyze,processand display etc.The concept and mode of traditional measuringinstruments are changed,the parameters and functions can betransformed by the user,namely,"software is the instrument".Withthe rapid development of computer and network technology,thevirtual instrument has become a developing trend of modernelectronic measuring instruments. In this paper development platform LabVIEW is introduced firstly,then the test signals of Sine,triangle,square sawtooth andarbitrary waveform is described in the virtual signal generator.The functions of signal generator are set,such as frequency,amplitude,phase,voltage bias etc.Not only output parameters canbe adjusted but also the corresponding wave is acquiredsimultaneously in this system. The function of remote datatransmission is performed by TCP/IP technology.Data is transportedwhen the port parameters between two computers areset. Compared with traditional machines,advantages of the virtualinstrument are showed in efficiency,opening,easy using,strongfunction,cost-effective and operation etc.It can be used fortesting of medical and engineering precision instruments. Key words:Virtual instrument,LabVIEW,Function generator,NetworkCommunication 第1章绪论 在有关电参量的测量中,我们需要用到信号源,而信号发生器则为我们提供

虚拟示波器设计

目录 1 前言 (1) 1.1 问题的提出 (1) 1.2 虚拟仪器 (2) 1.2.1 虚拟仪器的起源 (2) 1.2.2 虚拟仪器的概念 (3) 1.2.3 虚拟仪器工作原理 (4) 1.2.4虚拟仪器的优势 (7) 1.2.5虚拟仪器的现状和应用 (8) 2 虚拟示波器设计方案 (9) 3 软件开发环境 (12) 3.1 关于LabVIEW (12) 3.2 LabVIEW的工作原理 (12) 3.3 LabVIEW开发环境 (13) 3.3.1 LabVIEW 8.2 启动界面 (14) 3.3.2 LabVIEW 8.2 前面板和流程图设计窗口 . 14 3.3.3 LabVIEW 8.2的三大选板 (18) 4 虚拟示波器设计 (26) 4.1 虚拟示波器的程序设计 (26) 4.1.1数据采集 (26) 4.1.2数据处理 (27) 4.1.3结果显示 (33) 4.2 前面板设计 (34) 4.3 小结 (35) 结束语 (37) 致谢 (38) 参考文献 (39)

1 前言 随着计算机技术、大规模集成电路技术和通信技术的飞速发展,仪器技术领域发生了巨大变化。从最初的模拟仪器发展到现在的数字化仪器、嵌入式系统仪器和智能仪器;新的测试理论、测试方法不断应用于实际;新的测试领域随着学科门类的交叉发展而不断涌现;仪器结构也随着设计思想的更新而不断发展。仪器技术领域的各种创新积累起来使现代测量仪器的功能和作用发生一质的飞跃。尤其是以计算机为核心的设计思想以及仪器系统与计算机软件技术的紧密结合,导致了仪器的概念发生了突破性的变化,出现了一种全新的仪器概念——虚拟仪器(Virtual Instrumentation,VI)。 虚拟仪器实际上是一个按照仪器需求组织的数据采集系统。虚拟仪器研究中涉及的基础理论主要有:计算机数据采集和数字信号处理。 1.1问题的提出 在高等院校电工及电子类课程中,实验是一种重要的教学手段,学生通过做实验,可以加深对所学知识的理解,增强学习的兴趣,提高动手能力,锻炼在实践中发现问题、分析问题和解决问题的能力。 但是,近年来各大高校纷纷扩招,学生人数急剧增加,实验室的设备和规模都难以满足需要,实验室常规设备有的己经老化,有的技术上有些落后,在当前学校经费较少的情况下,如果大量增加常规仪器、仪表的配置,学校财力难以支付。又因为基础实验室是面向所有的工科专业,任务异常繁重,实验室常常只能应付学生按教学大纲要求做一些最简单的验证实验,学生很少有机会去反复熟悉常用仪器仪表的使用,更很少有机会做设计性实验,这对调动学

双通道虚拟信号发生器设计

虚拟仪器课程设计报告 题目:双通道虚拟信号发生器设计 双通道虚拟信号发生器设计 一、课程设计说明: 对于任何测试来说,信号的生成非常重要。例如,当现实世界中的真正信号很难得到时,可以用仿真信号对其进行模拟。常用的测试信号包括:正弦波、三角波、方波、锯齿波、各种噪声信号以及由多种正弦波合成的多频信号。信号发生器在测量中应用非常广泛,它可以产生不同频率的正弦信号、方波、三角波、锯齿波等,

其输出的幅值和直流偏置也可以根据需要进行调节。信号发生器种类繁多,专用信号发生器是专门为某种特殊的测量而研制的,如电视信号发生器、编码脉冲信号发生器等;通用信号发生器按输出波形可分为正弦信号发生器、脉冲信号发生器、函数发生器和噪声发生器等,其中正弦信号发生器最具普遍性和广泛性。 LabVIEW虚拟仪器技术软件开发平台提供了丰富的信号产生函数。通过编写适当的LabVIEW程序,设计与实现一个双通道虚拟信号发生器。 本课题基于虚拟仪器LabVIEW图形化软件开发平台,设计一种双通道虚拟信号发生器,要求所设计的双通道虚拟信号发生器可以产生和显示正弦信号、三角波、方波、锯齿波、公式波及是否加噪声信号。具体指标与要求如下: (一) 正弦信号、三角波、方波、锯齿波信号 1、频率及幅值可调; 2、偏置量及方波的占空比可调; 3、可调整幅值、相位、频率;调整后无须重新启动(但是有组合按键); 4、在产生的信号中可以加入高斯白噪声。 5、可以设置通道选项,可以选一个通道,也可以选两通道。 6、公式波信号:当选择产生公式波信号时,可以通过信号发生器前面板输入 相应的公式,从而得到相应的波形信号。 7、通道1、通道2可以分别产生正弦信号、三角波、方波、锯齿波或公式波信 号。通过设置一个“退出”按钮来退出程序。两个通道产生的信号必须在 同一个示波器(Graph)中显示波形,但彼此互不干扰。每个通道可以对波形 进行单独控制,分别可以选择产生输出正弦信号、方波信号、三角波信号、锯齿波信号或公式波信号。并可以对采样信息,频率,幅值以及相位参数 进行调节控制,方波还可以控制占空比。 8、采样频率和采样数课设置。 9、波形颜色可以控制,可以显示出:红色,黄色,蓝色等三种颜色。这里采 用了事件结构来编写,在下面会介绍的。 二、课程设计目的 通过本次课程设计使学生具备: (1)了解现代仪器科学与技术的发展前沿;(2)学习和掌握虚拟仪器系统组成和工作原理;(3)掌握虚拟仪器LabVIEW图形化软件设计方法与调试技巧;(4)培养学生查阅资料的能力和运用知识能力。 三、课程设计要求

信号发生器课程设计报告

目录 一、课题名称 (2) 二、内容摘要 (2) 三、设计目的 (2) 四、设计内容及要求 (2) 五、系统方案设计 (3) 六、电路设计及原理分析 (4) 七、电路仿真结果 (7) 八、硬件设计及焊接测试 (8) 九、故障的原因分析及解决方案 (11) 十、课程设计总结及心得体会 (12)

一、课题名称:函数信号发生器的设计 二、内容摘要: 函数信号发生器作为一种常用的信号源,是现代测试领域内应用最为广泛的通用仪器之一。在研制、生产、测试和维修各种电子元件、部件以及整机设备时,都要有信号源,由它产生不同频率不同波形的电压、电流信号并加到被测器件或设备上,用其他仪器观察、测量被测仪器的输出响应,以分析确定它们的性能参数。信号发生器是电子测量领域中最基本、应用最广泛的一类电子仪器。它可以产生多种波形信号,如正弦波,三角波,方波等,因而此次课程设计旨在运用模拟电子技术知识来制作一个能同时输出正弦波、方波、三角波的信号发生器。 三、设计目的: 1、进一步掌握模拟电子技术知识的理论知识,培养工程设计能力和综合分析能力、解决问题的能力。 2、基本掌握常用电子电路的一般设计方法,提高电子电路的设计和实验能力。 3、学会运用Multisim仿真软件对所做出来的理论设计进行仿真测试,并能进一步解决出现的基本问题,不断完善设计。 4、掌握常用元器件的识别和测试,熟悉万用表等常用仪表,了解电路调试的基本方法,提高实际电路的分析操作能力。 5、在仿真结果的基础上,实现实际电路。 四、设计内容及要求: 1、要求完成原理设计并通过Multisim软件仿真部分 (1)RC桥式正弦波产生电路,频率分别为300Hz、1KHz、10KHz、500KHz,输出幅值300mV~5V可调、负载1KΩ。 (2)占空比可调的矩形波电路,频率3KHz,占空比可调范围10%~90%,输出幅值3V、负载1KΩ。 (3)占空比可调的三角波电路,频率1KHz,占空比可调范围10%~90%,输出幅值3V、负载1KΩ。 (4)多用信号源产生电路,分别产生正弦波、方波、三角波,频率范围

基于labview的虚拟信号发生器的设计(2010-1...

基于labview的虚拟信号发生器的设计

第1章虚拟信号发生器的结构与组成 1.1虚拟函数信号发生器的前面板 本虚拟信号发生器主要由一块PCI总线的多功能数据采集卡和相应的软件组成。将它们安装在一台运行Windowsxp的PC机上。即构成一台功能强大的函数信号发生器。本虚拟信号发生器的设计参考了SG 1645功率函数信号发生器。 本函数信号发生器的前面板主要由以下几个部分构成:仪器控制按钮,输出频率控制窗口(包括频率显示单位),频率倍成控制,波形选择,频率微调按钮,直流偏置,方波占空比节,输出波形幅度控制按钮。频率微调范围:O.1—1 Hz;直流偏置:一10—10V;方波占空比:0—100%;输出波形幅度:0—10V。此外还增加了许多修饰性的元件如面板上的压控输入、记数输入、同步输出、电压输出等。使用这些修饰性的元件的目的是为了增加仪器的美观性,并尽量与真实仪器的使用界面相一致。 图1-1 函数信号发生器的前面板 1.2虚拟函数信号发生器的硬件构成 本虚拟信号发生器的输入输出的硬件部分为一数据采集卡和具有一定配置要求的PC机,数据的输入输出靠对数据采集卡输出输入口的定义来实现。本设计采用的PCI一1200数据采集卡是一块性价比较好的产品,具备数/模转换的功能。能将产生的数字信号转换成模拟信号且数模转换精度高,而且还具备滤波功能,从而使输出波形光滑。它支持单极和双极性模拟信号输入,信号输入范围分别为一5一+5V和0—10V。提供l6路单端,8路差动模拟输入通道、2路独立的DA输出通道、24线的TTL型数字Ⅳ0、3个l6位的定时计数器等多种功能。硬件接口部分用于数据输入或输出时的通道设置。硬件接口部分程序框图如图1-2所示:

虚拟示波器的设计报告

基于LabVIEW 的虚拟示波器的设计 The Design of Oscillograph 1设计目的与内容 1、掌握利用A/D转换和计算机资源实现示波器的设计方法。 2、设计虚拟示波器。 3、建立NI-DAQmx仿真设备,选择E系列中的NI PCI-6071E数据采集卡的仿真模块,通过DAQmx物理通道识别,产生模拟信号,然后基于LabVIEW开发平台设计实现虚拟示波器。基本可以实现仪器的性能与可靠性,可以方便的对其编程, 实现对数据的采集、实时显示、数字滤波、截波显示、波形存储、波形回显、频谱分析等多种功能。 2虚拟示波器的软件设计 虚拟仪器的软件设计由两部分组成:前面板和流程图。在前面板,输入用输入控件(Control)来实现,程序运行的结果由输出控件(Indicator)来完成。流程图是完成程序功能的图形化源代码,通过它对信号数据的输入和输出进行指定,完成对信号采集及分析处理功能的控制。 2.1虚拟示波器的原理及功能 虚拟示波器是在传统示波器体系结构的基础上,借鉴其功能原理设计的。基本原理为:硬件上利用采集卡采集信号,软件上利用NI提供的DAQmx READ采集信号,然后通过‘波形图’进行实时显示。这就实现了一个最基本的示波器,信号显示后又利用‘写入测量文件’将波形保存为LVM文件。这就实现了基本的“存储”功能,反之通过‘读取测量文件’可以将LVM读取显示,从而完成“回显”功能。由于在硬件上是以PC机以及采集卡为基础的,所以本示波器在采样极限速率,带宽,分辨力等参数上受到限制。而程序响应时间上则依赖于PC的配置以及程序的执行效率。 本次设计的虚拟示波器所包含的功能主要有以下几个方面。 实时显示:通过采集卡采集信号并能对输入信号实时显示在PC机终端上。 数字滤波:采用数字IIR滤波器对信号进行滤波处理并实时显示,同时可以任意设置滤波器的最佳逼近函数类型、滤波器类型、阶次、上下截止频率等参数。 截波显示:即可满足波形的瞬态显示,同时也可以将瞬态波形进行保存。 波形存储:可随时将原始信号或处理后信号以LabVIEW特有的LVM文件格式存储在本地硬盘上,便于日后分析或处理。其中瞬态信号在截波后以BMP图片格式存储在本地硬

基于51单片机的信号发生器设计报告

基于51单片机的信号发生器设计报告 二零一四年十二月十一日

摘要 根据题目要求以及结合实际情况,本文采用一种以AT89C51单片机为核心所构成的波形发生器,可产生方波、三角波、正弦波、锯齿波等多种波形,波形的频率可用程序改变,并可根据需要选择单极性输出或双极性输出,具有线路简单、结构紧凑、性能优越等特点。本设计经过测试,性能和各项指标基本满足题目要求。 关键词:信号发生器 DAC0832芯片 LM358运放 89C51芯片

目录 摘要...................................................................... 目录...................................................................... 第一章绪论................................................................. 1.1单片机概述........................................................... 1.2信号发生器的概述和分类.............................................. 1.3问题重述及要求....................................................... 第二章方案的设计与选择................................................... 2.1方案的比较........................................................... 2.2设计原理 ............................................................. 2.3设计思想 ............................................................. 2.4实际功能 ............................................................. 第三章硬件设计............................................................ 3.1硬件原理框图......................................................... 3.2主控电路 ............................................................. 3.3数、模转换电路....................................................... 3.4按键接口电路......................................................... 3.5时钟电路 ............................................................. 3.6显示电路 ............................................................. 第四章软件设计............................................................ 4.1程序流程图........................................................... 参考文献.................................................................... 附录1 电路原理图 .......................................................... 附录2 源程序............................................................... 附录3 器件清单......................................................

虚拟信号发生器数字信号处理课设

燕山大学 课程设计说明书 题目:虚拟信号发生器的设计 学院(系):电气工程学院 年级专业:自动化仪表 学号: 100103020002 学生姓名:王思琪 指导教师:谢平杜义浩 教师职称:教授讲师

课程名称:“单片机原理及应用——数字信号处理”课程设计基层教学单位:自动化仪表系指导教师:张淑清谢平 说明:1、此表一式四份,系、指导教师、学生各一份,报送院教务科一份。 2、学生那份任务书要求装订到课程设计报告前面。 电气工程学院教务科

目录(信号处理要求) 第一章摘要 (3) 第二章总体设计方案 (4) 第三章 GUIDE预备理论 (5) 第四章信号发生器基本原理 (6) 4.1含变量的波形函数的生成 (6) 4.2 时域向频域的转换 (7) 第五章 GUIDE源程序的设计 (9) 第六章程序显示结果与调试 (14) 第七章心得及总结 (15) 参考文献 (16) 附录 (16)

第一章摘要 信号发生器是指产生所需参数的电测试信号的仪器。按信号波形可分为正弦信号、函数(波形)信号、脉冲信号和随机信号发生器等四大类。信号发生器又称信号源或振荡器,在生产实践和科技领域中有着广泛的应用。各种波形曲线均可以用三角函数方程式来表示。能够产生多种波形,如三角波、锯齿波、矩形波(含方波)、正弦波的电路被称为函数信号发生器。 在有些实验测量中,我们需要用到信号发生器,传统的信号发生器其功能完全靠硬件实现,功能单一,而且费用较高,一个传统实验室很难拥有多类信号发生器,然而基于虚拟仪器技术的信号发生器则能够实现这一要求。此报告论述了一个基于虚拟仪器技术的任意波形发生器模块的实现。

基于LabVIEW的虚拟示波器设计毕业设计

目录 1.设计要求 0 1.1主要功能模块 0 图1 功能结构框图 0 1.1.1 数据采集模块 0 1.1.2 波形显示模块 0 1.1.3 参数测量模块 (1) 1.1.4 频谱分析模块 (1) 1.1.5 数据存储和回放模块 (1) 1.2 主要控制结构 (1) 1.2.1 测量控制结构 (1) 1.2.2 自动调整扫描率控制结构 (1) 2.虚拟仪器设计方案 (2) 3.虚拟仪器设计步骤 (3) 3.1 DAQ数据采集模块: (4) 3.2 模拟采集模块 (5) 3.3 波形显示模块 (6) 3.4参数测量模块 (8) 3.4.1频谱分析模块 (9) 3.5 数据存储和回放模块 (11) 3.6 波形打印模块 (12) 3.7主要控制结构 (13) 3.7.1测量控制结构 (13) 3.7.2自动调整扫描率控制结构 (14) 4.总结 (15) 5.参考文献 (16) 6.附录: (17)

摘要 摘要:虚拟仪器是现代测量技术和计算机技术相结合的产物,标志着自动测试与电子测试仪器领域技术发展的一个崭新方向.随着信息技术和计算机技术的高速发展,数字信号处理作为一门新兴的学科,其重要性日益在各个领域的应用中体现出来。本文介绍了可以利用LabVIEW完成对信号的输入及获取、信号电压参数及时间频率参数的自动测量、信号的波形显示及存储回放和信号的频谱分析等功能。该示波器主要由数据采集DAQ(Data Acquisition)、接口总线、硬件驱动程序和虚拟数字示波器软件构成。 关键词:虚拟仪器LabVIEW 示波器 Abstract: Virtual instrument is the product of modern measurement technology and the combination of computer technology, marked a new direction of automatic test and electronic measurement instrument technology development. With the rapid development of information technology and computer technology, digital signal processing as a new subject, reflected the growing importance of application in the field of each. This paper introduces the LabVIEW can be used to complete the signal acquisition, signal input and parameters of voltage and time frequency parameter automatic measurement, signal waveform display and storage playback and signal spectrum analysis and other functions. The oscilloscope is composed of data acquisition DAQ (Data Acquisition), interface bus, hardware driver and virtual digital oscilloscope software. Keywords: The virtual instrument LabVIEW oscilloscope

相关主题
相关文档 最新文档