当前位置:文档之家› 液压英文文献翻译

液压英文文献翻译

液压英文文献翻译
液压英文文献翻译

液压系统

1绪论

液压站又称液压泵站,是独立的液压装置。

它按逐级要求供油。并控制液压油流的方向、压力和流量,适用于主机与液压装置可分离的各种液压机械上。

用户购后只要将液压站与主机上的执行机构(油缸或油马达)用油管相连,液压机械即可实现各种规定的动作和工作循环。

液压站是由泵装置、集成块或阀组合、油箱、电气盒组合而成。各部件功能为:泵装置--上装有电机和油泵,是液压站的动力源,将机械能转化为液压油的压力能。

集成块--由液压阀及通道体组装而成。对液压油实行方向、压力和流量调节。

阀组合--板式阀装在立板上,板后管连接,与集成块功能相同。

油箱--板焊的半封闭容器,上还装有滤油网、空气滤清器等,用来储油、油的冷却及过滤。

电气盒--分两种型式。一种设置外接引线的端子板;一种配置了全套控制电器。

液压站的工作原理:电机带动油泵转动,泵从油箱中吸油供油,将机械能转化为液压站的压力能,液压油通过集成块(或阀组合)实现了方向、压力、流量调节后经外接管路并至液压机械的油缸或油马达中,从而控制液动机方向的变换、力量的大小及速度的快慢,推动各种液压机械做功。

1.1发展历程

我国液压(含液力,下同)、气动和密封件工业发展历程,大致可分为三个阶段,即:20世纪50年代初到60年代初为起步阶段;60~70年代为专业化生产体系成长阶段;80~90年代为快速发展阶段。其中,液压工业于50年代初从机床行业生产仿苏的磨床、拉床、仿形车床等液压传动起步,液压元件由机床厂的液压车间生产,自产自用。进入60年代后,液压技术的应用从机床逐渐推广到农业机械和工程机械等领域,原来附属于主机厂的液压车间有的独立出来,成为液压件专业生产厂。到了60年代末、70年代初,随着生产机械化的发展,特别是在为第二汽车制造厂等提供高效、自动化设备的带动下,液压元件制造业出现了迅速发展的局面,一批中小企业也成为液压件专业制造厂。1968年中国液压元件年产量已接近20万件;1973年在机床、农机、工程机械等行业,生产液压件的专业厂已发展到100余家,年产量超过100万件,一个独立的液压件制造业已初步形成。这时,液压件产品已从仿苏产品发展为引进技术与自行设计相结合的产品,压力向中、高压发展,并开发了

电液伺服阀及系统,液压应用领域进一步扩大。气动工业的起步比液压稍晚几年,到1967年开始建立气动元件专业厂,气动元件才作为商品生产和销售。含橡塑密封、机械密封和柔性石墨密封的密封件工业,50年代初从生产普通O型圈、油封等挤压橡塑密封和石棉密封制品起步,到60年代初,开始研制生产机械密封和柔性石墨密封等制品。70年代,在原燃化部、一机部、农机部所属系统内,一批专业生产厂相继成立,并正式形成行业,为密封件工业的发展成长奠定了基础。

进入80年代,在国家改革开放的方针指引下,随着机械工业的发展,基础件滞后于主机的矛盾日益突出,并引起各有关部门的重视。为此,原一机部于1982年组建了通用基础件工业局,将原有分散在机床、农业机械、工程机械等行业归口的液压、气动和密封件专业厂,统一划归通用基础件局管理,从而使该行业在规划、投资、引进技术和科研开发等方面得到基础件局的指导和支持。从此进入了快速发展期,先后引进了60余项国外先进技术,其中液压40余项、气动7项,经消化吸收和技术改造,现均已批量生产,并成为行业的主导产品。近年来,行业加大了技术改造力度,1991~1998年国家、地方和企业自筹资金总投入共约20多亿元,其中液压16亿多元。经过技术改造和技术攻关,一批主要企业技术水平进一步提高,工艺装备得到很大改善,为形成高起点、专业化、批量生产打下了良好基础。近几年,在国家多种所有制共同发展的方针指引下,不同所有制的中小企业迅猛崛起,呈现出勃勃生机。随着国家进一步开放,三资企业迅速发展,对提高行业水平和扩大出口起着重要作用。目前我国已和美国、日本、德国等国著名厂商合资或由外国厂商独资建立了柱塞泵/马达、行星减速机、转向器、液压控制阀、液压系统、静液压传动装置、液压件铸造、气动控制阀、气缸、气源处理三联件、机械密封、橡塑密封等类产品生产企业50多家,引进外资2亿多美元。

1.2目前状况

1.21基本概况

经过40多年的努力,我国液压、气动和密封件行业已形成了一个门类比较齐全,有一定生产能力和技术水平的工业体系。据1995年全国第三次工业普查统计,我国液压、气动和密封件工业乡及乡以上年销售收入在100万元以上的国营、村办、私营、合作经营、个体、“三资”等企业共有1300余家,其中液压约700家,气动和密封件各约300余家。按1996年国际同行业统计,我国液压行业总产值23.48亿元,占世界第6位;气动行业总产值4.19亿元,占世界第10位。

1.22当前供需概况

通过技术引进,自主开发和技术改造,高压柱塞泵、齿轮泵、叶片泵、通用液

压阀门、油缸、无油润滑气动件和各类密封件第一大批产品的技术水平有了明显的提高,并可稳定的批量生产,为各类主机提高产品水平提供了保证。另外,在液压气动元件和系统的CAD、污染控制、比例伺服技术等方面也取得一定成果,并已用于生产。目前,液压、气动和密封件产品总计约有3000个品种、23000多个规格。其中,液压有1200个品种、10000多个规格(含液力产品60个品种、500个规格);气动有1350个品种、8000多个规格;橡塑密封有350个品种、5000多个规格,已基本能适应各类主机产品的一般需要,为重大成套装备的品种配套率也可达60%以上,并开始有少量出口。

1998年国产液压件产量480万件,销售额约28亿元(其中机械系统约占70%);气动件产量360万件,销售额约5.5亿元(其中机械系统约占60%);密封件产量约8亿件,销售额约10亿元(其中机械系统约占50%)。据中国液压气动密封件工业协会1998年年报统计,液压产品产销率为97 .5%(液力为101%),气动为95.9%,密封为98.7%。这充分反映了产销基本衔接。

我国液压、气动和密封工业虽取得了很大的进步,但与主机发展需求,以及和世界先进水平相比,还存在不少差距,主要反映在产品品种、性能和可靠性等方面。以液压产品为例,产品品种只有国外的1/3,寿命为国外的1/2。为了满足重点主机、进口主机以及重大技术装备的需要,每年都有大量的液压、气动和密封产品进口。据海关统计及有关资料分析,1998年液压、气动和密封件产品的进口额约2亿美元,其中液压约1.4亿美元,气动近0.3亿美元,密封约0.3亿美元,比1997年稍有下降。按金额计,目前进口产品的国内市场占有率约为30%。1998年国内市场液压件需求总量约600万件,销售总额近40亿元;气动件需求总量约500万件,销售总额7亿多元;密封件需求总量约11亿件,销售总额约13亿元。

1.3今后发展走势

1.31影响发展的主要因素

(1)企业产品开发能力不强,技术开发的水平和速度不能完全满足先进主机产品、重大技术装备和进口设备的配套和维修需要;

(2)不少企业的制造工艺、装备水平和管理水平都较落后,加上质量意识不强,导致产品性能水平低、质量不稳定、可靠性差,服务不及时,缺乏使用户满意和信赖的名牌产品;

(3)行业内生产专业化程度低,力量分散,低水平重复严重,地区和企业之间产品趋同,盲目竞争,相互压价,使企业效益下降,资金缺乏、周转困难,产品开发和技术改造投入不足,严重地制约了行业整体水平的提高以及竞争实力的增强;

(4)国内市场国际化程度日益提高,国外公司纷纷进入中国市场参与竞争,加上国内私营、合作经营、个体、三资等企业的崛起,给国有企业造成愈来愈大的冲击。

1.32发展走势

随着社会主义市场经济的不断深化,液压、气动和密封产品的市场供求关系发生较大变化,长期来以“短缺”为特征的卖方市场已基本成为以“结构性过剩”为特征的买方市场所取代。从总体能力看,已处于供大于求的态势,特别是一般低档次液压、气动和密封件,普遍供过于求;而主机急需的技术含量高的高参数、高附加值的高档产品,又不能满足市场需要,只能依赖于进口。在我国加入WTO后,其冲击有可能更大。因此,“十五”期间行业产值的增长,决不能依赖于量的增长,而应针对行业自身的结构性矛盾,加大力度,调整产业结构和产品结构,也就是应依靠质的提高,促进产品技术升级,以适应和拉动市场需求,求得更大的发展。

2 液压在动力滑台上的应用

2.1 动力滑台介绍

利用有束缚力的曲线图和状态空间分析法对组合机床滑台的滑动影响和运动平稳性问题进行分析与研究,从而建立了滑台的液压驱动系统一自调背压调速系统的动态数学模型。通过计算机数字仿真系统,分析了滑台产生滑动影响和运动不平稳的原因及主要影响因素。从那些中可以得出那样的结论,如果能合理地设计液压缸和自调背压调压阀的结构尺寸.

本文中所使用的符号如下:

s1-流源,即调速阀出口流量;

S el—滑台滑动摩擦力

R一滑台等效粘性摩擦系数:

I1—滑台与油缸的质量

12—自调背压阀阀心质量

C1、c2—油缸无杆腔及有杆腔的液容;

C2—自调背压阀弹簧柔度;

R1, R2自调背压阀阻尼孔液阻,

R9—自调背压阀阀口液阻

S e2—自调背压阀弹簧的初始预紧力;

I4, I5—管路的等效液感

C5、C6—管路的等效液容:

R5, R7-管路的等效液阻;

V3, V4—油缸无杆腔及有杆腔内容积;

P3, P4—油缸无杆腔及有杆腔的压力

F—滑台承受负载,

V—滑台运动速度。本文采用功率键合图和状态空间分折法建立系统的运动数学模型,滑台的动态特性可以能得到显著改善。

在组合机床正常工作中,滑台运动速度的大小和它的方向以及所承受负载的变化都将以程度不同地影响其工作性能。特别是在工进过程中。滑台上负载的突然消失引起的前进以及负载的周期性变化而引起的运动不平稳性,都将影响被加工件的表面质量,在严重的情况下会使刀具折断掉。根据大连机床厂要求,作者采用有束缚力的曲线图和状态空间分析法建立组合机床滑台的新型液压驱动系统一自调背压调速系统的动态数学模型。为了改善滑台的动态特性,有必要去分析找出滑台产生前冲和运动不平稳的原因以及主要的影响因素,但那必须通过计算机数字仿真和研究得出最后的结果。

2.2动态数学模型

组合机床滑台的液压驱动系统一自调背压调速系统的工作原理图如图I所示。这个系统是用来完成"工进一停止一快退”的工作循环。当滑台在工进时,三位四通换向阀处于图示右位,油泵的供油压力在滥流阀的有效作用下近似地几乎保持恒定,该油液流经过换向阀和调速阀后进入油缸的无杆腔,以推动滑台向前移动;与此同时,从油缸有杆腔排出的压力油经自调背压阀和换向阀流回油箱了。在这个过程中,两个单向阀和溢流阀的工作状态始终都没有任何变化。对与象组合机床滑台的液压驱动系统一自调背压调速系统这样的复杂非线性的系统,为了便于研究它的动态特性,建立一个仅着重考虑主要影响因素的合理简单的动态数学模型是尤其重要的[1][2]。从理论分析和试验研究的列举中可以得知:该系统的过程时间是远大于调速阀的过程时间的,当油缸无杆腔有效承压面积很大时,调速阀出口流量的瞬时的超调反映为滑台运动速度的变化是很小的[2]。为了更加拓宽和深入研究系统的动态特性,使研究工作能在微型计算机上有效地进行,本文章对原模型[2]做进一步简化处理,假定调速阀在系统的整个通过过程中输出时候恒定的流量,这被看作其为流源。这样,系统的动态模型的结构简图如图2所示,它是由油缸、滑台,自凋背压阀和联接管路等组成。。

功率键合图是一功效流图,它是按着系统的能量传递方式,以实际结构为基础,

用集中参数把子系统之间的作用关系抽象地表示为阻性元R、容性元C和感性元I 的三种作用元。采用这种方法建模物理概念清晰,结合状态空间分析法可以较准确地描述和分析线性系统,该方法在时域中研究复杂非线性系统动态特性的一种有效的方法。

根据自调背压调速系统各元件的主要特性和建模规则[1],得出了图3所示的系统的功率键合图。图中每根键上的半箭头表示功率流向,构成功率的两个变量是力变量(油压P或作用力F)和流变量(流量q或速度v)。O结点表示在系统中属于并联连接,各键上的力变量相等而流变量之和为零;1结点表示在系统中属于串联连接,各键上流变量相等而力变量之和为零。TF表示不同能量形式间的变换器,TF 下标注的字母表示力变量或流变量的转换比值。键上的短横杠表示该键上两变量间的因果关系。全箭头表示控制关系。在三种作用元中容性元和感性元的力变量与流变量之间具有积分或微分关系,因此,根据图3可推导出具有九个状态变量的复杂非线性状态方程。本文对滑台动态特性的研究是从滑台的前冲和运动平稳性两方面入手,用四阶定步长Runge-Kutta法在IBM-PC微型计算机上进行数字仿真,仿真结果分别如图4和图5所示。

2.3滑台前冲

滑台前冲现象是作用在滑台上的负载突然消失(如钻削工作的情况)引起的。在此过程中,滑台的负载F、运动速度V、油缸两腔压力P3和P4的变化可从图4仿真结果看出。当滑台在负载的作用下匀速运动时,油缸无杆腔油液压力较高.油液中聚集了大量的能量。当负载突然消失时,该腔油压随之迅速降低,油液从高压态转入低压态的过程中向系统释放很多能量,致使滑台高速向前冲击。然而,滑台的前冲使油缸有杆腔油液受压引起背压升高,从而消耗掉系统中的一部分能量,对滑台的前冲起到一定的抑制作用。应当看到,在所研究的系统中,自调背压阀的入口压力要受到油缸两腔油压的综合性作用。在负载消失的瞬间,自调背压阀的压力将会迅速地上升,并稳定地处在高于初始背压的数值以上。从图中可见,自调背压调速系统在负载消失瞬间油缸背压力升高的幅度大于传统的调速系统,所以,其油缸有杆腔中油液吸收的能量就多;结果,滑台的前冲量比传统调速系统要小大约20%。可见采用自调背庄调速系统作为驱动系统的滑台在抑制前冲方面具有良好的特性,其中自调背压阀起了很大作用。

2.4滑台的运动平稳性

当作用于滑台上的负载作周期变化时(比如说铣削加工的情况),滑台的运动速度将要产生一定的波动。为于保证加工质量的要求,必须尽可能地减小其速度波动的范围。而从讨论问题的方便性出发来说,假设负载按正弦波的规律变化,从而得到的数字仿真结果如图5所示。由此可见这个系统与传统的调速系统有着相同的变化规律以及非常接近的数值数字。其中的原因是负载的变化幅度不大,油缸两腔的压力也就没有较大变化,从而最终导致自调背压阀的作用不够明显显示。

2.5 改善措施

通过研究的结果表明,以自调背压调速系统作为驱动系统的滑台,其动态特性要比传统的调速系统好的。要减少滑台的前冲量,就必需在负载消失的瞬间时候迅速提高油缸有杆腔的背压力;要提高滑台的运动平稳性就需增加系统的刚性,主要措施在于减小油液的体积。从系统的结构得知,油缸有杆腔与排油管之间有一很大的容积,如图6a所示。它的存在方面延迟和衰减了自调背压阀的作用,另一方面也降低了系统的刚性,它会限制了前冲特性和运动平稳性的进一步改善。因此,改善滑台动态特性可从两个方法进行处理:即改变油缸容积和改变自调背压阀结构尺寸。通过一系统结构性参数的仿真计算以及结果的比较可以得出这样的结果:当把油缸有杆腔与排油管间容积V4同无杆腔与进油管间容积V3之比由原来的5.5改为1时,如图6b所示,同时,把自调背压阀阀芯底端直径由原来的10mm增加为13mm,阻尼三角槽边长从原来的lmm减小到0.7mm时,可使滑台的前冲量减小30%,过渡过程时间明显缩短了,滑台的运动平稳性也将会得到很大的改善。

Hydraulic system

Chapter 1 Introduction

Hydraulic Pump Station also known as the stations are independent h- ydraulic device.

It requested by the oil gradually. And controlling the hydraulic oil flow direction, pressure and flow rate, applied to the mainframe and hy- draulic devices separability of hydraulic machinery.

Users will be provided after the purchase hydraulic station and host of implementing agencies (motor oil or fuel tanks) connected with tubing, Hydraulic machinery can be realized from these movements and the work cycle.

Hydraulic pump station is installed, Manifold or valve combination, t- anks, a combination of electrical boxes.

Functional components :

Pump device -- is equipped with motors and pumps, hydraulic station is the source of power. to mechanical energy into hydraulic oil pressure can be.

Manifold -- from hydraulic valve body and channel assembled. Right direction for implementation of hydraulic oil, pressure and flow control.

Valve portfolio -- plate valve is installed in up board after board conn-

ects with the same functional IC.

Tank -- plate welding semi-closed containers, also loaded with oil filtering network, air filters, used oil, oil filters and cooling.

Electrical boxes -- at the two patterns. A set of external fuse terminal plate; distribution of a full range of electrical control.

Hydraulic Station principle : motor driven pump rotation, which pump oil absorption from the oil tank. to mechanical energy into hydraulic pressure to the station, hydraulic oil through Manifold (or valve combinations) realized the direction, pressure, After adjusting flow pipe and external to the cylinder hydraulic machinery or motor oil, so as to control the direction of the motive fluid transformation force the size and speed the pace of promoting the various acting hydraulic machinery.

1.1A development course

China Hydraulic (including hydraulic, the same below), pneumatic and seals industrial development process can be broadly divided into three phases, namely : 20 early 1950s to the early 1960s, the initial stage; 60's and 70 for specialized production system ;80~90's growth stage for the rapid development stage. Which, hydraulic industry in the early 1950s from the machine tool industry production of fake Su-grinder, broaching machine, copying lathe, and other hydraulic drive started, Hydraulic Components from the plant hydraulic machine shop, self-occupied. After entering the 1960s, the application of hydraulic technology from the machine gradually extended to the agricultural machinery and mechanical engineering fields, attached to the original velocity of hydraulic shop some stand out as pieces of hydraulic professional production. To the late 1960s, early 1970s, with the development of mechanized production, especially in the second automobile factory in providing efficient, automated equipment, along with the Hydraulic Components manufacturing has experienced rapid development of the situation, a group of SMEs have become professional hydraulic parts factory. 1968

China's annual output of hydraulic components have nearly 200,000 in 1973, machine tools, agricultural machinery, mechanical engineering industries, the production of hydraulic parts factory has been the professional development of more than 100 and an annual output more than one million. an independent hydraulic manufacturing industry has begun to take shape. Then, hydraulic pieces of fake products from the Soviet Union for the introduction of the product development and technical design combining the products to the pressure, Hypertension, and the development of the electro-hydraulic servo valves and systems, hydraulic application areas further expanded. Aerodynamic than the start of the industrial hydraulic years later, in 1967 began to establish professional pneumatic components factory, Pneumatic Components only as commodity production and sales. Sealed with rubber and plastics, mechanical seals and sealing flexible graphite sealing industry, the early 1950s from the production ordinary O-rings. rubber and plastics extrusion, such as oil seal sealing and seal asbestos products start to the early 1960s, begun production of mechanical seals and flexible graphite sealing products. 1970s, the burning of the former Ministry, a Ministry, the Ministry of Agricultural Mechanization System, a group of professional production plants have been established, and the official establishment of industries to seal industrial development has laid the foundation for growth.

Since the 1980s, in the country's reform and opening up policy guidelines, with the development of the machinery industry, based mainframe pieces behind the conflicts have become increasingly prominent and attracted the attention of the relevant departments. To this end, the Ministry of the original one in 1982, formed the basis of common pieces of Industry, will be scattered in the original machine tools, agricultural machinery, mechanical engineering industries centralized hydraulic, pneumatic and seals specialized factories, placing them under common management infrastructure pieces Bureau, so that the industry in the planning, investment, technology and scientific research and development in areas such as infrastructure pieces Bureau of guidance and support. Since then entered a phase of rapid development, has introduced more than 60 items of advanced technology from abroad, including more than 40 items of hydraulic, pneumatic 7. After digestion and absorption and transformation, now have mass production, and industry-leading products. In recent years, the industry increased the technological transformation efforts, in 1991, Local enterprises and the self-financing total input of about 20 billion yuan, of which more than 1.6 billion yuan Hydraulic. Through technological transformation and technology research, and a number of major enterprises to further improve the level of technology, technique and equipment to be greatly improved. In order to form a higher starting point, specialization, and run production has laid a good foundation. In recent years, many countries in the development of common ownership guidelines, under different ownership SMEs rapid rise showing great vitality. With the further opening up, three-funded enterprises rapid development of industry standards for improving and expanding exports play an important role. Today, China has and the United States, Japan, Germany and other countries famous manufacturers joint ventures or wholly-owned by foreign manufacturers to establish a piston pump / motor, planetary reduction gears, steering gear, hydraulic control valve, hydraulic system, hydrostatic transmission, hydraulic Casting. pneumatic control valve, cylinder, gas processing triple pieces, mechanical seals, rubber and seal products more than 50 production enterprises, attracting foreign investment over 200 million U.S. dollars.

1.2the current situation

1.21Basic Profiles

After 40 years of efforts, China hydraulic, pneumatic and sealing industry has formed a relatively complete categories. a certain level of technical capacity and the industrial

system. According to the 1995 Third National Industrial Census statistics, hydraulic, Pneumatic seals and industrial 370,000 annual sales income of 100 million yuan in state-owned, village-run, private and cooperative enterprises, individual, "three capital" enterprises with a total of more than 1,300, of which about 700 hydraulic, Pneumatic seals and the approximately 300 thousand. By 1996 with the international trade statistics, the total output value of China's industry hydraulic 2.348 billion yuan, accounting for the world's 6; Pneumatic industry output 419 million yuan, accounting for world No. 10. 1.22 the current supply and demand profiles

Through the introduction of technology, independent development and technological innovation, and high-pressure piston pump, gear pumps, vane pump, General Motors hydraulic valves, tanks, Non-lubricated aerodynamic pieces and various seals of the first large technology products has increased noticeably. stability of the mass production may, for various mainframe products provide a level of assurance. In addition, hydraulic and pneumatic components of the CAD system, pollution control, proportional servo technology has scored some achievements, and is already in production. Currently, hydraulic, pneumatic and seals products total about 3,000 species, more than 23,000 specifications. Among them, there are 1,200 hydraulic varieties, more than 10,000 specifications (including hydraulic products 60 varieties 500 specifications); Pneumatic are 1,350 varieties, more than 8,000 specifications; Rubber seal 350 species more than 5,000 specifications have been basically cater to the different types of mainframe products to the general needs, complete sets of equipment for major varieties of matching rate was over 60%, and started a small amount of exports.

1998 pieces of homemade hydraulic output 4.8 million. sales of about 28 billion (of which about 70% mechanical systems); aerodynamic pieces yield 3.6 million. sales of about 5.5 billion (of which about 60% of mechanical systems); Seals output of about 800 million. sales of about 10 billion (of which about 50% mechanical systems). According to the China Hydraulic Pneumatic Seals Industry Association 1998 annual report, hydraulic product sales rate of 97. 5% (101% for hydraulic), pneumatic 95.9%, 98.7% sealed. This fully reflects the basic marketing convergence.

My hydraulic, pneumatic and sealing industry has attained a great deal of progress, but with mainframe development needs, and the world's advanced level, there are still many gaps, mainly reflected in the product variety, performance and reliability, and so on. Hydraulic products as an example, products abroad only one-third, life for half abroad. In order to meet key mainframe, and mainframe imports of major technology and equipment needs, every year a large number of hydraulic, pneumatic and sealing products imports. According to customs statistics and the analysis of data, in 1998 hydraulic, pneumatic and seals in the import about 200 million U.S. dollars, Hydraulic which about 1.4 billion dollars, aerodynamic nearly 030 million U.S. dollars, sealed about 030 million U.S. dollars. compared with a slight decline in 1997. By sums, currently imported products on the domestic market share of about 30%. 1998 pieces of the domestic market demand for hydraulic total of about six million, the total sales of nearly 40 billion; aerodynamic pieces of the total demand of about 5 million, with sales more than 700 million yuan; Seals total demand of about 1.1 billion. total sales of about 1.3 billion.

1.3the development trend of the future

1.31 affect the development of the main factors

(1) product development ability, and the level of technological development and speed can not completely meet the advanced mainframe products, major equipment and technology imported equipment and maintenance support;

(2) the number of enterprises manufacturing technology, the level of equipment and

management standards are comparatively backward, coupled with a strong sense of quality, resulting in low levels of product performance, quality, Reliability poor services in a timely manner, lack of user satisfaction and trust of the brand-name products;

(3) industry specialization of production low, scattered strength, low repeat serious, between regions and enterprises of convergence products, blindly compete with each other, driving down prices, the decline of enterprise returns, lack of funds, liquidity difficulties, product development and technological transformation is inadequate and seriously restricted the industry to improve the overall level of competition and the increase of strength;

(4) The internationalization of the domestic market and the increasing degree of foreign companies have entered the Chinese market and participate in competition with the domestic private and cooperative enterprises, individuals, foreign-funded enterprises, such as the rise of state-owned enterprises due to the growing impact.

1.32 the development trend

As the socialist market economy continues to deepen, hydraulic, pneumatic and sealing products in the market supply and demand and there is a greater change, long ago to a "shortage" of the seller's market has basically become a "structural surplus" of the characteristics of the buyer's market place . Overall capacity, is already in oversupply situation, in particular the general low level of hydraulic, pneumatic and seals, the general oversupply; and the host of urgent high-tech high-parameter, high value-added high-end products, and they do not satisfy the market needs, only dependent on imports. China joins the WTO, its impact may be even greater. Therefore, the "15" during the growth of the output value of industry, must not depend on volume growth and the industry should address the structural problems of their own, increase the intensity of the adjustment of the industrial structure and product mix, is, we should rely on the improvement of quality, and promote technical upgrading of products to meet market demand and stimulating, seek greater development.

2 The application of hydraulic power sliding stage 2.1 Power sliding Taiwan introduced

This paper deals with the investigation for slide unit's impact and motion stabil?ity in modular machine tool fay means of the method of power bond graph and state space analysis. The dynamic mathematical model of self-adjusting back pressure speed control system used to drive slide unit is established. Main reasons and affect?ing factors for slide unit impact and motion unstability are analysed through compu?ter digital simulation, It is concluded from those that, if the structural dimensions of hydraulic cylinder and back pressure valve are designed rationally, the slide unit's dynamics will

markedly be improved.

NOMENCLA TURE

Sf flow source

Sei sliding friction force in slide unit

R equivalent viscous friction coefficient in slide unit

Ii mass of slide unit and cylinder

h mass of SABP valve spool

Ci,C2hydraulic capacitances of rod chamber and non-rod chamber in cylinder re-

spec-tively

C3spring compliance of SABP valve

R]r R2hydraulic resistances of damping holes

R9hydraulic resistance of orifice of SABP valve

Se2presetting force of spring in SABP valve

I4J5equivalent liquid inertia in pipe lines

C^Cg equivalent hydraulic capacitances in pipe lines

equivalent hydraulic resistances in pipe lines

V-j V^oil-containing volumes in non-rod chamber and rod chamber respectively

P,r:, P-i oil pressures in non-rod chamber and rod chamber respectively

F load acted on slide unit

V slide unit velocity

* Department of Mechanical Engineering, Dalian Ur.iversity of Technology, Dalian. China.

2.2 Introduction

During operation of modular machine tool, the changes of slid unit's speed and load acted on it in both magnitude and direction will affect working performar.ee to a different extent Particularly the impact caused by sudden vanishing of load and the motion unstability due to periodical change of load in operation will affect the surface quality of the workpiece machined, and the tool would be broken off under serious conditions, By using the method of power bond graph and state space analy-sis, the dynamic mathematical model of the system used to drive slide unit is estab-lished, that is called as self-adjusting back pressure speed control system and abbre-viated to SABP system. In order to improve slide unit's dynamics, it is necessary to find out the main reasons and affecting factors, that must be based on computer digital simulation and study on the results.

2.3 Dynamic Mathematica Modeld

The schematic diagram of SABP system is shown in Fig.l, the system is used to perform the cycle of feeding, stopping and returning. Four way control valve works in the right position during slide unit's feeding. The supply pressure of the pump is approximately constant under the action of pressure relief valve, the oil through the control valve and pressure compensated flow control valve enters the non-rod chamber to put slide unit forward. At the same time, the oil from the rod chamber is discharged through SABP valve and directional control valve to tank. In this process, the state of two check valves and pressure relief valve is not changed, To establish the mathematical model as reasonably and simply as possible, consid-eration must be focused on main affecting factors for a complex non-linear system such as the SABP system. It is illustrated by theoretical analysis and test result ' ,

that the transient time of the system is much longer than that of the flow control valve, and the flowrate overshoot of the valve in transients affects very small to slide unit speed because of the ;large effective sectional area of non-rod chamber in cylinder. For investigating the system's dynamics widely and deeply, the initial mod-el tn is further simplified in this paper, and so the study can be efficiently made with microcomputer. It is assumed that the flowrate through the flow control valve is constant in the whole transient process, and is denoted to a flow source.Fig.2 shows the structure diagram of the dynamic model of the system, it is composed of cylin-der, slide unit, SABP valve and pipe line; etc.

By using the method of power bond graph and state space analysis in this paper, the dynamic mathematical model of the system is to be established- The power bond graph is a power flow diagram, which expresses abstractly the actions among sub-systems as three effects, i.e. resistance effect, capacitive effect and inertia effect, according to the way of energy transform, on the basis of practical structure and by means of method of lumped parameters. The model is characterized by a clear conception in physics, and non-linear system can be accurately analysed in combination with method of state space analysis, thus it is a effective method used in the dynamic investigation of complex non-linear system in the'timedomain.

From main performances of components in SAEP system, the power bond graph of the system has been formed by means of the rule of model establishing ' and is shown in Fig.3. Half arrow in each bond indicates a direction of power How, two variahles of power are effort variable and flow variable. O-junction illustrates algebraic summation of flow variables at common effort, i.e. parallel connection, 1-junction does algebraic summation of effort variables at common flow, i.e. series connection. The symbol TF represents power transformer between two types of energy, and transforming modulus between efforts or flows is noted below the sym-bol TF. Short transverse bar across one end of each bond shows causality between two variables. A full arrow expresses a control action. Among three actions, there is an integration or differential form in capacitive effect and inertia effect between two variables. So state equation may be derived from Fig.3, there are nine state vari-ables in this complex nonlinear equation. Studying on the slide unit's dynamics is started with impact and motion stability. The equation is simulated by using the method of 4th order Runge-Kutta integration procedure on IBM-PC computer. Fig.4 and Fig.5 illustrate the results respectively.

Slide unit's impact phenominon results from load's vanishing in the transients, ■for example, the situation of drilling through workpiece, Fig.4 expounds the varia-tions of the load and speed of slide unit, the pressures of chambers in cylinder. When slide unit motions evenly under the action of load, the oil pressure in non-rod chamber is very high, and there is a lot of hydraulic energy accumulated in side. The pressure decreases at once with load's discharging rapidly. During the process of oil pressure converting from high to low, the system absorbs some of the energy, so slide unit impacts forward with high speed. And then the oil in rod chamber is

compressed to increase back pressure, some of the energy is consumed, which plays a part of restraining the impact of the slide unit. It must be noted that inlet pressure of SABP valve telys on the interaction of pressures of two chambers, and increases rapidly at the instant of load's vanishing, and then stabilizes at some value greater than initial one. This pressure is also greater than one of traditional speed control system, therefore the energy can be absorbed much more in the rod chamber. In result, the impact of slide unit in SABP system is 20% lawer than in traditional's. It is thus clear that slide unit with SABP system for driving has a good performance in restraining the impact and SABP valve plays an important part in that,

2.4 Motion stability

When load acting on slide unit varies periodically, such as the situation of mill-ing, slide unit's speed will bring about some pulse. In order to meet the requirements of manufacturing quality, the magnitude of the speed pulse must be reduced as small as possible. The variation of the load is assumed to be of sine wave, in order to sim-plify discussion of the problem, The result of digital simulation is shown in Fig.5 It can be seen that, the response of the system is the sameas traditionl's and the differ-ences between them are very small. The reason for this is that the variation of the load is not targe, there the pressures in chambers vary very little that is, the effect of the SABP valve is not obvious.

2.5 Improvement

It is shown by studying, that dynamics of slide unit which used SABP speed control system as driving system is better than that of traditional system. To reduce the slide unit's impact, the back pressure of rod chamber has to be increased rapidly in the transients of load's vanishing; on the other hand, to enhance the slide unit's motion stability, it is necessary to raise the system rigidity. However, main recom-mendation lies in decreasing the volume of oil. It is known from system structure that, there is a lot of oil-containing volume between the rod chamber and drain pipe as shown in Fig.6a. Because the volume exists, not only the effect of SABP valve is delayed and reduced, hut also the rigidity of the system is decreased. Therefore, it is hindered to further improve the impact and motion stability. To make the slide unit dynamics better, the structural dimensions of cylinder's chamber and the SABP valve must be designed suitably. Based on simulations under the various structural dimensions and comparison among the results, the following two measures can be taken for improvements:

The ratio between volumeV4 and V3 is changed from 5.5 to 1 approximately, as shown in Fig,6b;

15

the bottom diameter of spool of the SABP valve is increased from 10 mm to 13 mm and the length of side of triangular damping slot is decreased from 1 mm to 0.7mm the slide unites impact quantity can be reduced by 30%, and the time of dyna-mic response is shortened. In addition, slide unit's motion stability may be improved obviously. It is thus evident that improvements are very effective.

相关主题
文本预览
相关文档 最新文档