当前位置:文档之家› 细胞生物学知识点整理

细胞生物学知识点整理

细胞生物学知识点整理
细胞生物学知识点整理

一、名词解释

细胞生物学:研究细胞基本生命活动规律的科学,它从不同层次(显微、亚显微和分子水平)上研究细胞结构与功能,细胞增殖、分化、衰老与凋亡,细胞信号转导,细胞基因表达与调控,细胞起源与分化等。细胞分化:其本质是细胞内基因选择性表达功能蛋白质的过程。

细胞质膜(plasma membrane):又称细胞膜,指围绕在细胞最外层,由脂质和蛋白质组成的生物膜。

内膜:形成各种细胞器的膜。

生物膜(biomembrane):质膜和内膜的总称。

细胞外被:也叫糖萼,由质膜表面寡糖链形成。

膜骨架:质膜下起支撑作用的网络结构。

细胞表面:由细胞外被、质膜和表层胞质溶胶构成。

脂筏模型(lipid rafts model) :即在生物膜上胆固醇等富集而形成有序脂相,如同脂筏一样载着各种蛋白。脂筏是质膜上富含胆固醇和鞘磷脂的微结构域。

被动运输指通过简单扩散或协助扩散实现物质由高浓度到低浓度方向的跨膜运输。

水孔蛋白(aquporins;AQPs):或称水分子通道,是一类具有选择性、高效转运水分的膜通道蛋白。不具有“水泵”功能,通过减小水分跨膜运动的阻力而使细胞间的水分迁移速度加快。

协助扩散:也称促进扩散(facilitated diffusion):各种极性分子和无机离子顺着浓度梯度或电化学梯度的跨膜运输。

通道蛋白:跨膜亲水性通道,允许特定离子顺浓度梯度通过,又称离子通道。

配体门通道:受体与细胞外的配体结合,引起通道构象改变,“门”打开,又称离子通道型受体。

协同运输:靠间接提供能量完成主动运输,所需能量来自膜两侧离子的浓度梯度。动物细胞中常常利用膜两侧Na+浓度梯度来驱动。植物细胞和细菌常利用H+浓度梯度来驱动。分为:同向协同和反向协同。

膜泡运输:真核细胞通过胞吞作用(endocytosis)和胞吐作用(exocytosis)完成大分子与颗粒性物质的跨膜运输。

胞吐作用:包含内容物的囊泡移至细胞表面,与质膜融,将物质排出细胞之外

底物水平的磷酸化:由相关酶将底物分子上的磷酸基团直接转移到ADP分子生成A TP的过程。

氧化磷酸化:在呼吸链上与电子传递相耦联,ADP被磷酸化生成A TP的过程。

半自主性细胞器:自身含有遗传表达系统,但编码的遗传信息十分有限,其RNA转录、蛋白质翻译、自身构建和功能发挥等必须依赖核基因组编码的遗传信息。

细胞内膜系统:是指细胞内在结构、功能及发生上相关的、由膜包被的细胞器或细胞结构。包括内质网、高尔基体、溶酶体和分泌泡等。

粗面内质网:多为扁囊状,在ER膜的外表面附有大量的核糖体,普遍存在于分泌蛋白质的细胞中。

光面内质网:ER膜上无颗粒(核糖体),ER的成分不是扁囊,而常为小管小囊,它们连接成网,广泛存在于能合成类固醇的细胞中。

次级溶酶体:是正在进行或完成消化作用的溶酶体,分为自噬溶酶体和异噬溶酶体。

残体:又称后溶酶体(post-lysosome),已失去酶活性,仅留未消化的残渣,可排出细胞,也可能留在细胞内逐年增多,如表皮细胞的老年斑,肝细胞的脂褐质。

细胞内蛋白质分选:除线粒体和植物叶绿体中能合成少量蛋白质外,绝大多数的蛋白质均在细胞质基质中的核糖体上开始合成然后运至细胞的特定部位,这一过程称蛋白质的定向转运或蛋白质分选。

信号序列:引导蛋白质定向转移的线性序列,通常15-60个氨基酸残基,对所引导的蛋白质没有特异性要求。

信号斑:存在于完成折叠的蛋白质中,构成信号斑的信号序列之间可以不相邻,折叠在一起构成蛋白质分选的信号。

翻译后转运:在细胞质基质游离核糖体上完成多肽链的合成,然后转运至膜围绕的细胞器或成为基质可溶性驻留蛋白和支架蛋白。

共翻译转运:蛋白质合成在游离核糖体上起始后,由信号肽引导转移至糙面内质网,然后新生肽链边合成边转入糙面内质网,经高尔基体加工包装转运溶酶体、细胞质膜或分泌到细胞外。

分子伴侣:细胞中的某些蛋白质分子,可以识别正在合成的多肽或部分折叠的多肽,并与多肽的某些部位结合,从而帮助这些多肽转运、折叠、或装配。这类分子本身并不参与最终产物的形成。

细胞信号转导:指细胞外因子通过与受体(膜受体或核受体)结合,引发细胞内的一系列生物化学反应以及蛋白间相互作用,直至细胞生理反应所需基因开始表达、各种生物学效应形成的过程。

双信使系统:在磷脂酰肌醇信号通路中胞外信号分子与细胞表面G蛋白耦联型受体结合,激活质膜上的磷脂酶C(PLC-β),使质膜上4,5-二磷酸磷脂酰肌醇(PIP2)水解成1,4,5-三磷酸肌醇(IP3)和二酰基甘油(DAG)两个第二信使,胞外信号转换为胞内信号这一信号系统又称为“双信使系统”。

细胞骨架:是指存在于真核细胞中的蛋白纤维网架体系。狭义:指存在于细胞质基质中,包括微丝、微管和中间纤维。广义:包括细胞核骨架、细胞质骨架、细胞膜骨架和细胞外基质,形成贯穿于细胞核、细胞质、细胞外的一体化网络结构。

微丝:又称肌动蛋白纤维(actin filament),是由两条线性排列的肌动蛋白链形成的螺旋,形状如双线捻成的绳子,直径约7 nm 。

踏车行为:单体可同时在(+)端添加,在(-)端分离。

微管:微管是由微管蛋白组成的管状结构,在胞质中形成网络结构,作为运输路轨并起支撑作用。对低温、高压和秋水仙素敏感。

核纤层(lamina):由核纤层蛋白(lamin)组成的蛋白质纤维网络结构,核纤层蛋白:lamin α、β、γ三个亚单位组成。

染色体包装:染色质形成染色体的过程,称染色体包装

初缢痕:在着丝粒处,由于染色质相对松散、伸展,因此这部分染色体比较细小,形成一个缢痕,称初缢痕

多聚核糖体:由多个甚至几十个核糖体串连在一条mRNA分子上高效地进行肽链的合成,这种具有特殊功能与形态结构的核糖体与mRNA的聚合体称为多聚核糖体。

细胞周期:指从一次分裂结束开始,经过物质积累过程,直到下一次细胞分裂结束所经历的过程。MPF:又称细胞促分裂因子或M期促进因子,是一种使多种底物蛋白磷酸化的蛋白激酶;由细胞周期蛋白与周期蛋白依赖性蛋白激酶组成的复合物,能启动细胞进入M期。

Hayflick界限:1958年Hayflick等人证实人成纤维细胞的复制能力是有限的,首次提出了细胞水平上的“衰老”现象,称为Hayflick界限。

成纤维细胞(fibroblast ):普遍存在于结缔组织中的一种中胚层来源的细胞。分泌前胶原、纤连蛋白和胶原酶等细胞外基质成分,伤口愈合过程中可迁移到伤口进行增殖。

细胞凋亡:是一个主动的由基因决定的自动结束生命的过程,所以也常常被称为细胞编程死亡或细胞程序性死亡。

二、大题目

1.研究细胞增殖及其调控的生物学意义以及方向。

研究细胞增殖的基本规律及其调控机制不仅是控制生物生长与发育的基础,而且是研究癌变发生及逆转的重要途径。

研究细胞增殖的调控主要从两方面进行:

(1)从环境中与有机体中寻找控制细胞增殖的因子,以阐明它们的作用机制。(2)寻找控制细胞增殖的关键性基因,并通过调节基因产物来控制细胞的增殖。

2.简述细胞生物学研究的主要内容。

细胞生物学主要研究细胞结构与功能、细胞重要生命活动,如细胞膜和细胞器结构与功能;细胞骨架体系;细胞核、染色体及基因组;细胞增殖与调控;细胞分化与调控;细胞的衰老与凋亡;细胞的起源与进化和细胞工程。

3.比较真核细胞与原核细胞在结构与功能上的差异。

4.细胞组分的显示方法

A. 金属沉淀法:如磷酸酶分解磷酸酯底物后,反应产物最终生成CoS 或PbS 有色沉淀,而显示出酶活性。(Gomori 法)

B. Schiff 反应:细胞中的醛基可使Schiff 试剂中的无色品红变为红色。用于显示糖类物质和脱氧核糖核酸所在部。(Feulgen 反应)

C. 联苯胺染色:过氧化酶分解H202,产生新生氧,后者再将无色联苯胺氧化成联苯胺蓝,进而变成棕色化合物。

D. 脂溶染色法:借苏丹Ⅲ染料溶于脂类而使脂类显色。

E. 茚三酮反应:显示蛋白质。

F. 米伦(Millon )染色:显示蛋白质(红色)

5、简述膜的不对称性。

(1)膜脂的不对称性:同一种脂分子在脂双层中呈不均匀分布,如:PC 和SM 主要分布在外小叶,PE 和PS 分布在内小叶。用磷脂酶处理完整的人类红细胞,80%的PC 降解,PE 和PS 分别只有20%和10%的被降解。

(2)复合糖的不对称性:糖脂和糖蛋白只分布于细胞膜的外表面。

(3)膜蛋白的不对称性:如细胞色素C 位于线粒体内膜M 侧。

6.线粒体与叶绿体结构的相似性:

①两层膜包被,内外膜结构和性质不同。

②为半自主性细胞器,绿色植物细胞具有3个遗传系统。

③具有蛋白质后转译现象。

7. 比较主动运输与被动运输的异同。

①运输方向不同:主动运输逆浓度梯度或电化学梯度,被动运输:顺浓度梯度或电化学梯度;②是否需要载体的参与:主动运输需要载体参与,被动运输方式中,简单扩散不需要载体参与,而协助扩散需要载体的参与;③是否需要细胞直接提供能量:主动运输需要消耗能量,而被动运输不需要消耗能量;④被动运输是减少细胞与周围环境的差别,而主动运输则是努力创造差别,维持生命的活力。

8. 半自主性主要表现在这三个方面:

(1)线粒体与叶绿体具有自己的DNA ;(2)线粒体与叶绿体具有蛋白质合成系统,能合成部分蛋白质;

(3)由于其基因组小,编码的蛋白质数量有限,在很大程度上要依赖细胞核基因组,它们的自主性是有限的。

9.简述细胞质基质的功能。

1、完成各种中间代谢过程,如糖酵解过程、磷酸戊糖途径、糖醛酸途径等

2、蛋白质的分选与运输

3、与细胞质骨架相关的功能,维持细胞形态、细胞运动、胞内物质运输及能量传递等。

4、蛋白质的修饰、蛋白质选择性的降解

原核细胞 真核细胞 细胞大小

很小(1~10μm ) 较大(10~100μm ) 细胞核

无核膜和核仁(拟核) 有核膜和核仁(真核) 染色体

由1条环状DNA 组成,DNA 不与组蛋白结合 有两条以上DNA ,线状DNA 与组蛋白结合,形成若干对染色体 细胞质

无各种膜相细胞器与细胞骨架,具70S 核糖体(包括50S 和30S 大小亚单位) 有各种膜相细胞器与细胞骨架,具80S 核糖体(包括60S 和40S 大小亚单位) 细胞壁

主要成分为肽聚糖 主要成分为纤维素 转录和翻译

在同一时间和地点 在不同的时间和地点 细胞分裂 无丝分裂 以有丝分裂为主

10.简述细胞中E1、E2、E3的之间的作用机制。

细胞中的E1、E2和E3三种酶,它们各有分工。E1负责激活泛素分子,泛素分子被激活后就被运送到E2上,E2负责把泛素分子绑在需要降解的蛋白质上。但E2并不认识指定的蛋白质,这就需要E3帮助,因为E3具有辨认指定蛋白质的功能。当E2携带着泛素分子在E3的指引下接近指定蛋白质时,E2就把泛素分子绑在指定蛋白质上。这一过程不断重复,指定蛋白质上就被绑了一批泛素分子。

11、简述膜泡运输。

膜泡运输是蛋白运输的一种特有的方式,普遍存在于真核细胞中。膜泡运输按不同的包被小泡分为三种类型,具有不同的物质运输作用。(1)网格蛋白包被小泡负责蛋白质从高尔基体反面膜囊向质膜、胞内体或溶酶体和植物液泡运输;(2)COPII包被小泡负责从内质网向高尔基体的物质运输;(3)COPI包被小泡负责回收、转运内质网逃逸蛋白回内质网,另外在非选择性的运输中也介导从内质网至高尔基体至质膜的运输。

12、简述高尔基体不同区域的细胞化学反应:

嗜锇反应:cis面膜囊被特异地染色;

焦磷酸硫胺素酶(TPP酶):trans面的膜囊;

烟酰胺腺嘌呤二核苷酸酶(NADP酶)或甘露糖酶:显示中间的膜囊;

胞嘧啶单核苷酸酶(CMP酶)或核苷酸二磷酸酶:trans面的囊状和管状结构。

13、简述高尔基体的功能

(1)参与细胞分泌活动: RER合成Pr→ER腔→COPII小泡→CGN→medial Golgi加工→TGN区形成运输泡→与质膜融合、排出。(2)蛋白质的糖基化.(3)进行膜的转化功能。(4)将蛋白水解为溶性物质。(5)参与形成溶酶体和微体。(6)参与植物细胞壁的形成: 合成纤维素和果胶质。

14、溶酶体的功能

(1)自体吞噬:清除细胞中无用的生物大分子,衰老的细胞器等,如许多生物大分子的半衰期只有几小时至几天,肝细胞中线粒体的平均寿命约10天左右。

(2)防御作用:如巨噬细胞可吞入病原体,在溶酶体中将病原体杀死和降解。

(3)细胞内消化:对高等动物而言,细胞的营养物质主要来源于血液中的水分子物质,而一些大分子物质通过内吞作用进入细胞,如内吞低密脂蛋白获得胆固醇;对一些单细胞真核生物,溶酶体的消化作用就更为重要了。

(4)细胞凋亡:个体发生过程中往往涉及组织或器官的改造或重建,如昆虫和蛙类的变态发育等等。这一过程是在基因控制下实现的,溶酶体可清除不需要的细胞。

(5)参与分泌过程的调节:如将甲状腺球蛋白降解成有活性的甲状腺素。

(6)形成精子的顶体

15、简述溶酶体的产生。

在高尔基体的trans面以出芽的方式形成:溶酶体酶前体→N-连接的糖基化→高尔基体→磷酸转移酶识别信号斑→将N-乙酰葡糖胺磷酸转移在1~2个甘露糖残基上→在中间膜囊切去N-乙酰葡糖胺形成M6P配体→与trans膜囊上M6P受体结合→通过clathrin衣被包装成运输小泡→与晚期的内体融合,受体解离→切除甘露糖残基上的磷酸。

16、过氧化物酶体的功能。

在动物中:①参与脂肪酸的β-氧化。β氧化途径(βoxidation pathway)是脂肪酸氧化分解的主要途径,脂肪酸被连续地进行β碳氧化,降解生成乙酰CoA,同时生成NADH和FADH2,因此可产生大量的A TP);

②具有解毒作用,过氧化氢酶氧化有害物质,饮入的酒精1/4是在其中氧化为乙醛的。

在植物中:①参与光呼吸,将光合作用的副产物乙醇酸氧化为乙醛酸和过氧化氢;②在萌发的种子中,进行脂肪的β-氧化。

17、蛋白质分选的类型以及转运方式。

蛋白质的分选主要包括以下四种类型:(1)门控运输:在细胞质基质中合成的蛋白质通过核孔复合体选择

性地完成核输入或从细胞核返回细胞质;(2)跨膜运输:在细胞质基质中合成的蛋白质转运到内质网、线

粒体、质体和过氧化物酶体等细胞器;(3)膜泡运输:蛋白质通过不同类型的转运小泡从糙面内质网合成

部位转运至高尔基体进而分选运至细胞的不同部位。(4)细胞质基质中的蛋白质转运。

两条途径:(1)后转移:在细胞质基质中完成多肽链的合成,然后转运至膜围绕的细胞器,如线粒体(或叶

绿体)、过氧化物酶体、细胞核及细胞质基质的特定部位;(2)共转移:蛋白质在糙面内质网上合成,经高

尔基体运至溶酶体、细胞膜或分泌到细胞外。

18、膜泡运输的定向机制

SNAREs 可溶性N-乙基马来酰亚胺敏感因子连接物复合体

功能:介导运输小泡与靶膜的融合。

类型:v-SNAREs(囊胞膜)和t-SNAREs(靶膜)。

结构:具有一个螺旋结构域,相互缠绕形成跨SNAREs复合体,将小泡与靶膜拉在一起。

v-SNAREs和t-SNAREs都具有一个螺旋结构域,能相互缠绕形成跨SNAREs复合体(trans-SNAREs complexes),并通过这个结构将运输小泡的膜与靶膜拉在一起,实现运输小泡特异性停泊和融合。

19、简述cAMP途径中的Gs调节模型。

激素配体与受体结合后,激素-受体复合物与Gs结合,Gs的α亚基构象改变,从而排斥GDP,结合GTP而活化,使三聚体Gs蛋白解离出α亚基和βγ基复合物,并暴露出α亚基与腺苷酸环化酶的结合位点;结合GTP 的α亚基与腺苷酸环化酶结合,使之活化,并将ATP转化为cAMP。随着GTP的水解α亚基恢复原来的构象并导致与腺苷酸环化酶解离,终止腺苷酸环化酶的活化作用。α亚基与βγ亚基重新结合,使细胞回复到静止状态。

该信号途径涉及的反应链可表示为:

激素→G蛋白耦联受体→G蛋白→腺苷酸环化酶→cAMP→依赖cAMP的蛋白激酶A→基因调控蛋白→基因转录。

20、简述信号转导中的双信使系统

当激素-受体复合物与G蛋白结合,G蛋白的α亚基排斥GDP,结合GTP而活化,解离出α和βγ亚基;α

亚基激活质膜上的磷脂酶C(PLC-β),使4,5-二磷酸磷脂酰肌醇(PIP2)水解成IP3和DAG,两个第二信

使。IP3调控细胞质基质中的Ca2+水平;DAG可以活化PKC,使底物蛋白磷酸化,调控特异基因的表达。

随着GTP的水解α亚基恢复原来的构象并导致与磷脂酶C解离,终止磷脂酶C的活化作用。α亚基与βγ

亚基重新结合,使细胞回复到静止状态。

反应链:胞外信号分子→G-蛋白偶联受体→G-蛋白

→IP3→胞内Ca2+浓度升高→Ca2+结合蛋白

(CaM)→细胞反应

→磷脂酶C(PLC)→

→DAG→激活PKC→蛋白磷酸化或促Na+/H+交

换使胞内pH上升

21、简述细胞信号分子的类型及特点?

细胞信号分子包括:短肽、蛋白质、气体分子(NO、CO)以及氨基酸、核苷酸、脂类的胆固醇衍生物等,

其共同特点是:①特异性,只能与特定的受体结合;②高效性,几个分子即可发生明显的生物学效应,这

一特性有赖于细胞的信号逐级放大系统;③可被灭活,完成信息传递后可被降解或修饰而失去活性,保证

信息传递的完整性和细胞免于疲劳。

22、NO的产生及其细胞信使作用?

NO是可溶性的气体,NO的产生与血管内皮细胞和神经细胞相关,血管内皮细胞接受乙酰胆碱,引起细胞

内Ca2+浓度升高,激活一氧化氮合成酶,该酶以精氨酸为底物,以NADPH为电子供体,生成NO和胍氨

酸。细胞释放NO,通过扩散快速透过细胞膜进入平滑肌细胞内,与胞质鸟苷酸环化酶活性中心的Fe2+结

合,改变酶的构象,导致酶活性的增强和cGMP合成增多。cGMP可降低血管平滑肌中的Ca2+离子浓度,

引起血管平滑肌的舒张,血管扩张、血流通畅。

23、cAMP信号系统的组成及其信号途径?

1)、组成:主要包括:Rs和Gs;Ri和Gi;腺苷酸不化酶;PKA;环腺苷酸磷酸二酯酶。2)、信号途径主要有两种调节模型:Gs调节模型,当激素信号与Rs结合后,导致Rs构象改变,暴露出与Gs结合的位点,使激素-受体复合物与Gs结合,Gs的构象发生改变从而结合GTP而活化,导致腺苷酸环化酶活化,将A TP 转化为cAMP,而GTP水解导致G蛋白构象恢复,终止了腺苷酸环化酶的作用。该信号途径为:激素→识别并与G蛋白偶联受体结合→激活G蛋白→活化腺苷酸环化酶→胞内的cAMP浓度升高→激活PKA→基因调控蛋白→基因转录。Gi调节模型,Gi对腺苷酸环化酶的抑制作用通过两个途径:一是通过α亚基与腺苷酸环化酶结合,直接抑制酶的活性;一是通过β和γ亚基复合物与游离的Gs的α亚基结合,阻断Gs的α亚基对腺苷酸酶的活化作用。

24、肌肉的收缩

①肌球蛋白结合A TP,引起头部与肌动蛋白纤维分离;

②ATP水解,引起头部与肌动蛋白弱结合;

③Pi释放,头部与肌动蛋白强结合,头部向M线方向弯曲,引起细肌丝向M线移动;

④ADP释放A TP结合上去,头部与肌动蛋白纤维分离。如此循环

25、微丝的功能。

微丝除参与形成肌原纤维外还具有以下功能:1.形成应力纤维(stress fiber):结构类似肌原纤维,使细胞具有抗剪切力。2.形成微绒毛。3.细胞的变形运动。 4. 胞质分裂;5. 顶体反应(海胆);6. 其他功能:抑制微丝的药物(细胞松弛素)可增强膜的流动、破坏胞质环流。

26、IF的装配

过程:①两个单体形成超螺旋二聚体;②两个二聚体反向平行组装成四聚体;③四聚体组成原纤维;④8根原纤维组成中间纤维。

特点:无极性;无动态蛋白库;装配与温度和蛋白浓度无关;不需要A TP、GTP或结合蛋白的辅助。27、比较微丝、微管与中间纤维

28、简述核仁的结构及其功能。

在光学显微镜下,核仁通常是匀质的球形小体,一般有1-2个,但也有多个。主要含蛋白质,是真核细胞间期核中最明显的结构,在电镜下显示出的核仁超微结构与胞质中大多数细胞器不同,在核仁周围没有界膜包围,可识别出3个特征性区域:纤维中心、致密纤维组分、颗粒组分。功能是进行核蛋白体的生物发生的重要场所,即核仁是进行rRNA的合成、加工和核蛋白体亚单位的装配的重要场所。

29、端粒的功能

1)端粒可防止染色体粘连,保持各个染色体的个性

2)保证DNA完成末端复制,使DNA不因细胞分裂而变短

30、染色体DNA的三种功能元件(关键序列)

(1)DNA复制起点(起始序列):确保染色体DNA自我复制。

(2)着丝粒DNA序列:确保复制了的染色体平均分配到子细胞。

(3)端粒DNA序列:确保染色体的独立性和稳定性,使DNA完成末端复制,不会越来越短。

31、为什么说核孔复合体是双功能双向性的通道?

从功能上讲,核孔复合体可以看作是一种特殊的跨膜运输蛋白复合体,并且是一个双功能双向性的亲水性核质交换通道。双功能表现在它有两种运输方式:被动扩散与主动运输。双向性表现在既介导蛋白质的入核转运,又介导RNA、核糖核蛋白颗粒的出核转运。

32、多聚核糖体的生物学意义

1)细胞内各种多肽的合成,不论其分子量的大小或是mRNA的长短如何,单位时间内所合成的多肽分子数目都大体相等。

1)以多聚核糖体的形式进行多肽合成,mRNA的利用及对其浓度的调控更为经济和有效。

33、原核生物翻译起始复合物形成

1)核蛋白体大小亚基分离;

2)mRNA在小亚基定位结合;

3)起始氨基酰-tRNA的结合;

4)核蛋白体大亚基结合。

34、根据细胞周期可将高等动物细胞分为3类:

①连续分裂细胞,如表皮生发层、骨髓干细胞。

②休眠细胞,暂不分裂,适当刺激下可重新进入细胞周期,称G0期细胞,如淋巴细胞、肝、肾细胞等。

③不分裂细胞,又称终端细胞,不再分裂,如神经、肌肉、多形核细胞等。

35、细胞周期人工同步化有哪些方法?比较其优缺点。

1. 选择同步化

1)有丝分裂选择法:优点:操作简单,同步化程度高,细胞不受药物伤害。缺点:获得的细胞数量较少(分裂细胞约占1%~2%)。

2)细胞沉降分离法:优点:可用于任何悬浮培养的细胞。缺点:同步化程度较低。

2. 诱导同步化

1)DNA合成阻断法:用DNA合成抑制剂,可逆阻断细胞周期,然后释放。优点:同步化程度高;缺点:产生非均衡生长,个别细胞体积增大。

2)中期阻断法:用秋水仙素等微管抑制剂将细胞阻断在中期。优点是便于观察染色体,缺点是可逆性较差。

36、细胞周期中有哪些主要检验点?细胞周期检验点的生理作用是什么?

细胞周期检验点主要有:R点,G1/S,G2/M,中期/后期,即:G1期中的R点或限制点,S期的DNA损伤检验点、DNA复制检验点,G2/M检验点,M中期至M后期又称纺锤体组装检验点等。

通过细胞周期检验点的调控使细胞周期能正常动转,从而保证了遗传物质能精确地均等分配,产生具有正常遗传性能和生理功能的子代细胞,如果上述检验点调控作用丢失,就会导致基因突变、重排,使细胞遗传性能紊乱,增殖、分化异常,细胞癌变甚至死亡。

37、正常情况下终生保持分裂的细胞,其分裂能力是否随着有机体年龄的增高而下降?它们会不会衰老?1)衰老动物体内,细胞分裂速度显著减慢,其原因主要是G1期明显延长;

2)衰老个体内的环境因素影响了细胞的增殖和衰老;

3)骨髓干细胞移植实验说明随着年龄的增加,干细胞增殖速度也趋缓慢.

38、简述细胞衰老的基本特征。

⑴细胞膜的变化:使膜的流动性减弱,细胞膜选择透过性能力降低;

⑵细胞质的变化:色素积聚,空泡形成;

⑶线粒体的变化:方面线粒体数目减少,另一方面线粒体的结构也发生变化,使体积增大。

⑷细胞核的变化:核增大;核膜内陷;染色质凝聚、固缩、碎裂。

⑸致密体的生成:绝大多数动物细胞在衰老时都会有致密体的积累。

此外,细胞衰老时,细胞间间隙连接及膜内颗粒的分布也发生变化。

39、细胞凋亡的生物学意义。

生物学意义:细胞凋亡对于多细胞生物个体发育的正常进行,自稳平衡的保持以及抵御外界各种因素的干扰方面都起着非常关键的作用。

1)在发育中,幼体器官的缩小和退化:蝌蚪尾巴的消失;脊椎动物的神经系统的发育;发育过程中手和足的形成过程。

2)成熟个体中,组织细胞的自然更新如骨髓和肠中,每小时约有10亿个细胞凋亡

3 )清除多余的、发育不正常的细胞(如大脑中没有正确连接的神经元)

4 )清除对机体有害的细胞(如对自身抗原起反应的胸腺T细胞)

5 )清除受损的、有癌前病变或受病毒等感染的细胞

40、细胞凋亡的形态学特征和生化特征。

①染色质聚集、分块、位于核膜上,胞质凝缩,最后核断裂,细胞通过出芽的方式形成许多凋亡小体

②凋亡小体内有结构完整的细胞器,还有凝缩的染色体,可被邻近细胞吞噬消化,因始终有膜封闭,没有内溶物释放,故不会引起炎症;

③凋亡细胞中仍需要合成一些蛋白质,但是在坏死细胞中A TP和蛋白质合成受阻或终止;

④核酸内切酶活化,导致染色质DNA 在核小体连接部位断裂,形成约200bp 整数倍的核酸片段,凝胶电泳图谱呈梯状;

⑤凋亡通常是生理性变化,而细胞坏死是病理性变化。

生化特征:核酸内切酶活化,导致染色质DNA在核小体连接部位断裂,形成约200 bp整数倍的核酸片段,凝胶电泳图谱呈梯状

41、细胞程序性死亡与细胞凋亡的区别

首先,PCD是一个功能性概念,描述在一个多细胞生物体中,某些细胞的死亡是个体发育中一个预定的,并受到严格控制的正常组成部分,而凋亡是一个形态学概念,指与细胞坏死不同的受到基因控制的细胞死亡形式;其次,PCD的最终结果是细胞凋亡,但细胞凋亡并非都是程序化的。

42、细胞凋亡和细胞坏死的区别

区别点细胞凋亡细胞坏死

起因生理或病理性病理性变化或剧烈损伤

范围单个散在细胞大片组织或成群细胞

细胞膜保持完整,一直到形成凋亡小体破损

染色质凝聚在核膜下呈半月状呈絮状

细胞器无明显变化肿胀、内质网崩解

细胞体积固缩变小肿胀变大

凋亡小体有,被邻近细胞或无,细胞自溶,残余碎片

巨噬细胞吞噬被巨噬细胞吞噬

基因组DNA 有控降解,电泳图谱呈梯状随机降解,电泳图谱呈涂抹状

蛋白质合成有无

调节过程受基因调控被动进行

炎症反应无,不释放细胞内容物有,释放内容物。

三、填空题

1、是最小、最简单的有机体。

2、是最小、最简单的细胞。

3、细胞内代谢活动的最大特点是。

4、原核细胞与真核细胞都有的一种细胞器是。

5、电子显微镜以__________作光源,__________作透镜。电子束波长与__________ 成反比;由电子束照明系统、

、__________、__________、__________等5部分构成;分辨率__________,放大倍数可达百万倍;用于观察超__________

微结构(小于0.2μm)。

6、标本置于干冰(-78.5摄氏度)或液氮(-196摄氏度)中冰冻。然后升温,冰升华,暴露。向断面喷涂一层和。然后将组织溶掉,把铂和碳的膜剥下来,此膜即为。

7、透射电子显微镜的基本原理:在条件下,电子束经后,穿透样品时形成和透射电子,它们在电磁透镜的作用下在上成像。

8、扫描电子显微镜主要用于观察样品的、、等。

9、差速离心的特点:;。用途:分离大小相差悬殊的细胞和细胞器。沉降顺序:——线粒体————内质网与高基体——。

10、密度梯度离心常用介质:、、多聚蔗糖

11、膜脂主要包括、、三类。

12、根据与脂分子的结合方式蛋白质可分为:、、

13

①②③④⑤⑥。

14、生物膜的特性主要表现为()和()。

15、

16、细胞膜上与物质转运有关的蛋白占核基因编码蛋白的( ),细胞用在物质转运方面的能量达细胞总消耗能量的( )。

17、转运蛋白分为( )和( )。

18、水孔蛋白只允许( )通过,不允许( )和( )通过,半径大于水分子半径(0.15nm ),小于最小溶质分子半径0.2nm 。

19、协助扩散的载体( )、( )。

20、通道蛋白中,有些通道长期开放,如( ),允许钾离子不断外流;有些通道平时处于关闭状态,仅在特定刺激下才打开,称为( ),包括:电位门通道、( )、环核苷酸门通道、( )。

21、配体门通道分为阳离子通道,如( );和( ),如γ-氨基丁酸受体。

22、电位门通道:膜电位变化可引起( )变化,“门”打开。其结构为四聚体,每个单体跨膜( )次。Na+、K+、Ca2+电压门通道结构相似,由同一个远祖基因演化而来。

23、线粒体分为( )、( )、( )和( )四部分,它们的标志酶分别是( )、( )、( )、( )。

24、胞吞作用的两种类型是:( )、( )

25、胞饮作用形成的小泡叫( ),吞噬作用形成的小泡叫( )。

26、RER 的功能( )、( )、( )、脂类的合成。

27、高尔基体在结构和生化成分上具有极性,和内质网临近的近核一侧,扁囊弯曲呈( ),称为形成面(forming face )或( )(cis face );在远核的一侧,面向细胞膜的一面呈( ),称为成熟面(mature face )或( )(trans face )。

28、细胞内合成的蛋白质、脂类等物质之所以能够定向的转运到特定的细胞器取决于两个方面:A 、蛋白质中包含特殊的( );B 、 细胞器上具特定的( )。

29、COP I 衣被小泡的回收信号:(Lys-Asp-Glu-Leu )即内质网滞留信号,KDEL 。

30、Rabs 促进和调节运输小泡的停泊和融合。

31、ARF :参与clathrin 和COP I 衣被的形成。SAR 1:参与COP II 衣被的形成。

32、细胞以三种方式进行通讯:分泌化学信号、细胞间接触依赖、细胞间形成间隙连接

33、 第二信使有cAMP 、cGMP 、三磷酸肌醇、二酰甘油。

34、双信使通路下游激活的激酶为蛋白激酶C 。

35、硝酸甘油能治疗心绞痛是因为它可在体内转化成NO ,可舒张血管。

36、DAG 通过两种途径终止其信使作用,它们是被DAG 激酶磷酸化为磷脂酸;被DAG 脂酶水解成单脂

( )

被动运输

吞噬

( ) ( ) 简单扩散 ( ) 跨膜运输

transport ( ) 膜泡运输

胞吐

酰甘油

37、细胞松弛素(cytochalasin)可切断微丝纤维,并结合在微丝末端抑制肌动蛋白加合到微丝纤维上。鬼笔环肽(phalloidin)与微丝能够特异性的结合,使微丝纤维稳定而抑制其功能。荧光标记的鬼笔环肽可特异性的显示微丝。

38、肌肉由肌原纤维组成,肌原纤维的粗肌丝主要成分是肌球蛋白,细肌丝主要成分是肌动蛋白、原肌球蛋白和肌钙蛋白。

39、每条微管是13条原纤维构成的中空管状结构,直径22~25nm,每条原纤维由微管蛋白二聚体线性排列而成。二聚体由结构相似的α和β球蛋白构成,均可结合GTP。α球蛋白结合的GTP从不发生水解或交换。β球蛋白也是一种G蛋白,结合的GTP可发生水解,结合的GDP可交换为GTP 。具有极性,(+)极生长速度快,(-)极生长速度慢。(+)极的最外端是β球蛋白,(-)极是α球蛋白。大多数微管处于动态组装和去组装状态(如纺缍体),具有踏车行为。秋水仙素、长春花碱抑制微管装配。紫杉醇能促进微管的装配, 并使已形成的微管稳定。

40、提纯的微管,在微酸性环境,适宜温度,存在GTP、Mg2+和去除Ca2+的条件下能自发的组装成11条原纤维的微管。

41、中间纤维分5类:角蛋白、结蛋白、胶质原纤维酸性蛋白、波形纤维蛋白、神经纤丝蛋白。具有组织特异性,不同类型细胞含有不同IF。通常一种细胞含有一种IF,少数含2种以上。肿瘤细胞转移后仍保留源细胞的IF。

42、rRNA基因(rDNA)是组成核仁的主要成份,又称为核仁组织者或核仁组织中心(NOR)在染色质包装成染色体后,NOR分布在染色体末端次缢痕处。人染色体的次缢痕:13、14、15、21、23号染色体上。

43、组蛋白(histon)是一类碱性蛋白,有5种:H1、H3、H2A、H2B、H4,分子量从H1→H4递减,遗传稳定性从H1→H4递增(H1变化大,H4稳定、保守)。

44、染色体包装学说(模型):超螺旋学说,骨架学说,区段模式,骨架-放射环模型。

45、染色体带型:(G-C含量不同、螺旋折叠程度不同引起)G带、Q带、T带、C带、R带。

46、细胞增殖次数与端粒DNA长度有关,端粒的长度与端粒酶(telomerase)的活性有关。

47、细胞凋亡的检测,形态学观测:染色法、透射和扫描电镜观察。

四、选择题

1、在细胞匀浆液离心过程中,最先沉淀下来的是()

A. 核糖体

B. 线粒体

C. 未破碎的细胞

D. 微体

2、冰冻蚀刻技术主要用于()

A. 电子显微镜

B. 光学显微镜

C. 荧光显微镜

D. 隧道显微镜

3、特异显示DNA在细胞中分布的方法是()

A、PAS反应

B、福尔根反应

C、格莫瑞法

D、原位杂交

4、光镜同电镜比较, 下列各项中, ()是不正确的。

A. 电镜用的是电子束, 而不是可见光

B. 电镜样品要在真空中观察, 而不是暴露在空气中

C. 电镜和光镜的样品都需要用化学染料染色

D. 用于电镜的标本要彻底脱水, 光镜则不必

5、在电镜下观察生物膜切面可以看到()

A、三层深色致密层

B、两层深色致密层和中间一层浅色疏松层

C、两层浅色疏松层和中间一层深色致密层

D、三层浅色疏松层

6、构成细胞膜骨架的成分是()

A、镶嵌蛋白质

B、附着蛋白质

C、脂质分子

D、糖类

7、生物膜的流动性是由()决定的。

A、生物膜构成的多样性

B、膜脂分子的运动

C、膜蛋白分子的运动

D、脂质双分子层的液晶态结构

8、细胞的流动镶嵌模型是指()

A、脂质双分子层中镶嵌着蛋白质分子

B、脂质双分子层中镶嵌着多糖

C、蛋白质双分子层中镶嵌着脂质分子

D、蛋白质双分子层中镶嵌着多糖

9、以下脂质分子运动仅在合成脂质活跃的内质网膜上经常发生的是()

A、侧向移动

B、旋转运动

C、左右摆动

D、翻转运动

10、载体蛋白通过()改变以完成物质的运输。

A. 通道的大小

B. 与转运物质结合力的大小

C. 受体

D. 构象

11、钠钾泵的Na+和A TP结合位点位于()。

A. 小亚基

B. 大亚基胞外一侧

C. 大亚基胞内一侧

D. 分别位于大小亚基上

12、协同运输的能量来自()。

A. 耦联转运蛋白提供的能量

B. A TP直接供应能量

C. 光能

D. 间接消耗顺浓度梯度所提供的能量

13、小肠上皮细胞通过()机制吸收葡萄糖。

A. 被动运输

B. 协助扩散

C. 同向协同

D. 反向(对向)协同

四、是非题:

1.CsCl密度梯度离心法分离纯化样品时, 样品要和CsCl混匀后分装, 离心时, 样品中不同组分的重力不同, 停留在不同区带。

2.载体蛋白既可以介导协助扩散,又可以介导主动运输()。

3.钠钾泵每消耗1个A TP可以泵出3个Na+和2个K+()。

4.细胞不含纯粹的RER或SER,它们分别是ER连续结构的一部分。()

细胞生物学考试重点

第一章:绪论 细胞学说:施来登和施旺提出 主要内容:◆所有生物都是由一个或多个细胞组成的 ◆细胞是所有生物结构和功能的基本单位 ◆一切细胞产自于已存在的细胞 意义:对细胞与生物有机体的关系及其在生物体中的作用和地位有了明确的科学理论的概括,把动植物等生物有机体在细胞水平上统一起来。对生物科学的发展起到重大推动作用。 第二章:细胞的统一性和多样性 细胞的基本共性: 1、相似的化学组成 2、脂-蛋白体系的生物膜 3、相同的遗传装置:核酸和蛋白质分子构成的遗传信息的复制与表达系统 4、一分为二的分裂方式 原核细胞主要代表:支原体、细菌、蓝藻 真核细胞的基本结构体系: 1、以脂质及蛋白质成分为基础的生物膜结构系统:质膜、细胞核、细胞质 主要功能:选择性的物质跨膜运输与信号转导 2、遗传信息表达系统: 包括细胞核和核糖体 DNA与组蛋白构成了染色质与染色体的基本结构—核小体(nucleosome) 核小体装配成染色质,继而在细胞分裂阶段形成染色体 3、细胞骨架系统:是由一系列特异的结构蛋白装配而成的网架系统。分为胞质骨架和核骨架。 (胞质骨架:由微丝、微管与中等纤维等构成的网络体系。核骨架:包括核纤层和核基质。)器官的大小主要决定于细胞的数量,与细胞的数量成正比,而与细胞的大小无关,把这种现象为“细胞体积的守恒定律”。 细胞的体积受什么因素控制? 答:与各部分细胞的代谢活动及细胞功能有关;受外界环境条件的影响;细胞的核与质之间有一定的比例关系;细胞的“比面值”与细胞内外物质的交换及细胞内物质交流的关系 原核细胞与真核细胞、植物与动物细胞的比较: 功能上的共同点:都是生命的基本结构单位;都能进行分裂;都能遗传 结构上的共同点:都有细胞膜;都有DNA和RNA;都有核糖体

最新细胞生物学知识点总结

细胞通讯的方式 (1)细胞通过分泌化学信号进行细胞间通讯,这是多细胞生物普遍采用的通讯方式。 (2)细胞间接触依赖性的通讯,指细胞间直接接触,通过与质膜结合的信号分子影响其它细胞。 (3)动物相邻细胞间形成间隙连接以及植物细胞间通过胞间连丝使细胞间相互沟通,通过交换小分子来实现代谢耦联或电耦联。 细胞分泌化学信号可长距离或短距离发挥作用,其作用方式分为: (1)内分泌,由内分泌细胞分泌信号分子到血液中,通过血液循环运送到体内各个部位,作用于靶细胞。 (2)旁分泌,细胞通过分泌局部化学介质到细胞外液中,经过局部扩散作用于邻近靶细胞。在多细胞生物中调节发育的许多生长因子往往是通过旁分泌起作用的。此外,旁分泌方式对创伤或感染组织刺激细胞增殖以恢复功能也具有重要意义。 (3)自分泌,细胞对自身分泌的物质产生反应。自分泌信号常存在于病理条件下,如肿细胞合成并释放生长因子刺激自身,导致肿瘤细胞的持续增殖。 (4)通过化学突触传递神经信号,当神经元接受刺激后,神经信号以动作电位的形式沿轴突快速传递至神经末梢,电压门控的Ca2+通道将电信号转换为化学信号。 通过胞外信号介导的细胞通讯步骤 (1)产生信号的细胞合成并释放信号分子。 (2)运送信号分子至靶细胞。 (3)信号分子与靶细胞受体特异性结合并导致受体激活。 (4)活化受体启动胞内一种或多种信号转导途径。 (5)引发细胞功能、代谢或发育的改变。 (6)信号的解除并导致细胞反应终止。 核被膜所具有的功能

一方面,核被膜构成了核、质之间的天然选择性屏障,将细胞分成核与质两大结构与功能区域,使得DNA复制、RNA转录与加工在核内进行,而蛋白质翻译则局限在细胞质中。这样既避免了核质问彼此相互干扰,使细胞的生命活动秩序更加井然,同时还能保护核内的DNA分子免受损伤。 另一方面,核被膜调控细胞核内外的物质交换和信息交流。核被膜并不是完全封闭的,核质之间进行着频繁的物质交换与信息交流。这些物质交换与信息交流主要是通过核被膜上的核孔复合体进行的。 核被膜的结构组成及特点 (1)核被膜由内外两层平行但不连续的单位膜构成。面向核质的一层膜被称作内(层)核膜,而面向胞质的另一层膜称为外(层)核膜。两层膜厚度相同,约为7。5 nm。两层膜之间有20~40nm的透明空隙,称为核周间隙或核周池。核周间隙宽度随细胞种类不同而异,并随细胞的功能状态而改变。 (2)核被膜的内外核膜各有特点:①外核膜表面常附有核糖体颗粒,且常常与糙面内质网相连,使核周间隙与内质网腔彼此相通。从这种结构上的联系出发,外核膜可以被看作是糙面内质网的一个特化区域。②内核膜表面光滑,无核糖体颗粒附着,但紧贴其内表面有一层致密的纤维网络结构,即核纤层。内核膜上有一些特有的蛋白成分,如核纤层蛋白B受体。③双层核膜互相平行但并不连续,内、外核膜常常在某些部位相互融合形成环状开口,称为核孔,:在核孔上镶嵌着一种复杂的结构,叫做核孔复合体。核孔周围的核膜特称为孔膜区,它也有一些特有的蛋白成分。

医用细胞生物学知识点

医用细胞生物学知识点 细胞生物学 (cell biology ):细胞生物学是以细胞为研究对象,经历了从显微水平到亚显微和分子水平 的发展过程,成为今天在分子层次上研究细胞精细结构和生命活动规律的学科。 医学细胞生物学 (medical cell biology):医学细胞生物学以揭示人体各种细胞在生理和病理过程中 的生 命活动规律为目的,期望能对人体各种疾病的发病机制予以深入阐明,为疾病的诊断、治疗和预防提 供理论依据和策略。 对细胞概念理解的五个角度: ①细胞是构成有机体的基本单位; ②细胞是代谢与功能的基本单位; ③ 细胞是有机体生长与发育的基础; ④细胞是遗传的基本单位; ⑤没有细胞就没有完整的生命。 生物界划分的三个类型:原核细胞、古核细胞和真核细胞。 原核细胞与真核细胞的比较: p13 表 2-1 生物大分子:是由有机小分子构成的,大约有 3000种,分子量从 10000到 1000000。 核酸 (nucleic acid ) 的基本单位 :核苷酸。 核苷酸:核苷的戊糖羟基与磷酸形成酯键,即成为核苷酸。 DNA 分子的双螺旋结构模型( p18图 2-8):DNA 分子由两条相互平行而方向相反的多核苷酸链组成, 即一条链中磷酸二酯键连接的核苷酸方向是 5'→3',另一条是 3'→ 5',两条链围绕着同一个中心轴 以右手方向盘绕成双螺旋结构。 基因组:细胞或生物体的一套完整的单倍体遗传物质称为基因组。 动物细胞内含有的主要 RNA 种类及功能: p20 表 2-3 核酶 (ribozyme ) :核酶是具有酶活性的 RNA 分子。 蛋白质 ( protein )的基本单 位:氨基酸。 肽键:肽键是一个氨基酸分子上的 羧基 与另一个氨基酸分子上的 氨基经脱水缩合 而成的化学键。 肽 (peptide) :氨基通过肽键而连接成的化合物称为肽。 蛋白质分子的二级结构: α -螺旋, β-片层。 酶 (enzyme):酶是由生物体细胞产生的具有催化剂作用的蛋白质。 酶的特性:高催化效率,高度专一性,高度不稳定性。 光学显微镜的种类:普通光学显微镜,荧光显微镜,相差显微镜,暗视野显微镜,共聚焦激光扫描显 微镜。 细胞培养:细胞培养是指细胞在体外的培养技术,即无菌条件下,从机体中取出组织或细胞,模拟机 体内正常生理状态下生存的基本条件,让它在培养器皿中继续生存、生长和繁殖的方法。 细胞膜 (cell membrane ):细胞膜是包围在细胞质表面的一层薄膜,又称质膜 ( plasma membrane ) 生物膜 ( biomembrane ):目前把 质膜 和细胞内膜系统 总称为生物膜。 细胞膜的组成:主要由脂类、蛋白质和糖类组成 磷脂 (phospholipid)可分为两类:甘油磷脂 由于磷脂分子具有亲水头和疏水 尾,故称为 膜蛋白可分为三种基本类型:膜内在蛋白 蛋白 (lipid anchored protein) 。 细胞外被 ( cell coat ):在大多数真核细胞表面有富含糖类的周缘区,称为细胞外被或糖萼。 细胞外被的基本功能: 保护细胞抵御各种物理、化学性损伤 ,如消化道、呼吸道等上皮细胞的细胞外 被有助于润滑、防止机械损伤,保护黏膜上皮不受消化酶的作用。 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11 . 12 . 13 . 14 . 15 . 16 . 17 . 18 . 19. 20. 21 . 22 . 23 . 24 . 25 . 26. 27. 28. (phosphoglycerides )和鞘磷脂 (sphingomyelin,SM) 。 两亲性分子 或兼性分子 。 intrinsic protein )、膜外在蛋白 (extrinsic

细胞生物学知识点总结

细胞生物学知识点总结 导读:细胞生物学知识点总结 细胞通讯的方式 (1)细胞通过分泌化学信号进行细胞间通讯,这是多细胞生物 普遍采用的通讯方式。 (2)细胞间接触依赖性的通讯,指细胞间直接接触,通过与质 膜结合的信号分子影响其它细胞。 (3)动物相邻细胞间形成间隙连接以及植物细胞间通过胞间连 丝使细胞间相互沟通,通过交换小分子来实现代谢耦联或电耦联。 细胞分泌化学信号可长距离或短距离发挥作用,其作用方式分为:(1)内分泌,由内分泌细胞分泌信号分子到血液中,通过血液 循环运送到体内各个部位,作用于靶细胞。 (2)旁分泌,细胞通过分泌局部化学介质到细胞外液中,经过 局部扩散作用于邻近靶细胞。在多细胞生物中调节发育的许多生长因子往往是通过旁分泌起作用的。此外,旁分泌方式对创伤或感染组织刺激细胞增殖以恢复功能也具有重要意义。 (3)自分泌,细胞对自身分泌的物质产生反应。自分泌信号常 存在于病理条件下,如肿细胞合成并释放生长因子刺激自身,导致肿瘤细胞的'持续增殖。 (4)通过化学突触传递神经信号,当神经元接受刺激后,神经 信号以动作电位的形式沿轴突快速传递至神经末梢,电压门控的Ca2+

通道将电信号转换为化学信号。 通过胞外信号介导的细胞通讯步骤 (1)产生信号的细胞合成并释放信号分子。 (2)运送信号分子至靶细胞。 (3)信号分子与靶细胞受体特异性结合并导致受体激活。 (4)活化受体启动胞内一种或多种信号转导途径。 (5)引发细胞功能、代谢或发育的改变。 (6)信号的解除并导致细胞反应终止。 核被膜所具有的功能 一方面,核被膜构成了核、质之间的天然选择性屏障,将细胞分成核与质两大结构与功能区域,使得DNA复制、RNA转录与加工在核内进行,而蛋白质翻译则局限在细胞质中。这样既避免了核质问彼此相互干扰,使细胞的生命活动秩序更加井然,同时还能保护核内的DNA分子免受损伤。 另一方面,核被膜调控细胞核内外的物质交换和信息交流。核被膜并不是完全封闭的,核质之间进行着频繁的物质交换与信息交流。这些物质交换与信息交流主要是通过核被膜上的核孔复合体进行的。 核被膜的结构组成及特点 (1)核被膜由内外两层平行但不连续的单位膜构成。面向核质的一层膜被称作内(层)核膜,而面向胞质的另一层膜称为外(层)核膜。两层膜厚度相同,约为7。5 nm。两层膜之间有20~40nm的

医学细胞生物学知识点归纳

线粒体: 1.呼吸链(电子传递链)Respiratory chain一系列能够可逆地接受和释放H+和e-的化学物质所组成的酶体系在线粒体内膜上有序地排列成互相关联的链状。 2.化学渗透假说(氧化磷酸化偶联机制):线粒体内膜上的呼吸链起质子泵的作用,利用高能电子传递过程中释放的能量将H+泵出内膜外,造成内膜内外的一个H+梯度(严格地讲是离子的电化学梯度),A TP合酶再利用这个电化学梯度来合成A TP。 3.电子载体:在电子传递过程中与释放的电子结合并将电子传递下去的物质称为电子载体。参与传递的电子载体有四种∶黄素蛋白、细胞色素、铁硫蛋白和辅酶Q,在这四类电子载体中,除了辅酶Q以外,接受和提供电子的氧化还原中心都是与蛋白相连的辅基。 4.阈值效应:突变所产生的效应取决于该细胞中野生型和突变型线粒体DNA的比例,只有突变型DNA达到一定数量(阈值)才足以引起细胞的功能障碍,这种现象称为阈值效应。 5.导向序列:将游离核糖体上合成的蛋白质的N-端信号称为导向信号,或导向序列,由于这一段序列是氨基酸组成的肽,所以又称为转运肽。 6.信号序列:将膜结合核糖体上合成的蛋白质的N-端的序列称为信号序列,将组成该序列的肽称为信号肽。 7.共翻译转运:膜结合核糖体上合成的蛋白质通过定位信号,一边翻译,一边进入内质网,由于这种转运定位是在蛋白质翻译的同时进行的,故称为共翻译转运。 8.蛋白质分选:在膜结合核糖体上合成的蛋白质通过信号肽,经过连续的膜系统转运分选才能到达最终的目的地,这一过程又称为蛋白质分选。 核糖体: 1.原核生物mRNA中与核糖体16S rRNA结合的序列称为SD序列(SD sequence) 。 2.核酶:将具有酶功能的RNA称为核酶。 3.N-端规则(N-end rule): 每一种蛋白质都有寿命特征,称为半衰期(half-life)。研究发现多肽链N-端特异的氨基酸与半衰期相关,称为N-端规则。 4.泛素介导途径:蛋白酶体对蛋白质的降解通过泛素(ubiquitin)介导,故称为泛素降解途径。蛋白酶体对蛋白质的降解作用分为两个过程:一是对被降解的蛋白质进行标记,由泛素完成;二是蛋白酶解作用,由蛋白酶体催化。 细胞核: 1.核内膜:有特有的蛋白成份(如核纤层蛋白B受体),膜的内表面有一层网络状纤维蛋白质,即核纤层(nuclear lamina),可支持核膜。 核外膜:靠向细胞质的一层,是内质网的一部分,胞质面附有核糖体 核周隙:内、外膜之间有宽20~40nm的腔隙,与粗面内质网腔相通 核孔复合体:内、外膜融合处,物质运输的通道 核纤层:内核膜内表面的纤维网络,支持核膜,并与染色质、核骨架相连。 2.核孔复合体:是细胞核内外膜融合形成的小孔,直径约为70 nm,是细胞核与细胞质间物质交换的通道。 3.核孔蛋白:参与构成核孔的蛋白质,可能在经核孔的主动运输中发挥作用。 核运输受体:参与物质通过核孔的主动运输。 核周蛋白: 是一类与核孔选择性运输有关的蛋白家族,相当于受体蛋白。 5.输入蛋白:核定位信号的受体蛋白, 存在于胞质溶胶中, 可与核定位信号结合, 帮助核蛋白进入细胞核。 输出蛋白:存在于细胞核中识别并与输出信号结合的蛋白质, 帮助核内物质通过核孔复合

细胞生物学知识点

第一章医学细胞生物学绪论 名词解释:生物学,细胞生物学 解答题:细胞对生命活动的意义,细胞的共同属性 易考点:首次命名植物细胞的人,发现无丝分裂、减数分裂的事件,提出DNA 双螺旋模型 第二章细胞生物学研究方法 名词解释:分辨率,电子显微镜,酶细胞化学技术,流式细胞技术,细胞培养,细胞系,细胞株,细胞融合,干细胞 解答题:细胞培养的基本条件,光学显微镜技术的原理 易考点:分辨率的计算公式及各个字母代表的意思,光镜的分辨极限,暗视野显微镜观察的是细胞轮廓以及观察的范围,透射显微镜观察的是细胞内部的细微结构,扫描电子显微镜观察的是三维立体形貌。 第四章细胞膜 名词解释:生物膜,细胞膜 解答题:流动镶嵌模型,细胞膜的特性,耦联运输 易考点:功能复杂的膜中所占蛋白质的比例大,三种膜蛋白的存在形式,影响膜脂流动性的因素,细胞膜的物质转运功能(选择题形式),糖萼的本质 第六章内膜系统 名词解释:内膜系统,细胞质 解答题:信号假说的主要内容,高尔基复合体的功能,滑面内质网的功能,溶酶体的形成过程,溶酶体的功能 易考点:内质网的标志酶,高尔基复合体的形态(形成面,成熟面),溶酶体的标志酶 第七章线粒体 名词解释:三羧酸循环,氧化磷酸化,底物水平磷酸化,呼吸链,分子伴侣,导肽 解答题:描述线粒体的结构 易考点:光镜下线粒体的结构,线粒体各部位的标志酶,呼吸链的复合体中每个复合体有哪些物质,线粒体疾病的特点,化学渗透学说主要知道氧化放能

第八章细胞骨架 名词解释:细胞骨架,中间纤维结合蛋白 解答题:微管的体外装配,影响微管装配的因素,微管的功能(简单描述),微丝的组装过程,影响微丝组装的因素,微丝的功能,中间纤维结合蛋白的功能,中间纤维的组装的控制以及影响因素,中间纤维的功能 第九章细胞核 名词解释:核型,核纤层,细胞骨架,核基质, 解答题:简述细胞核的基本结构,核孔复合体的结构,常染色质和异染色质的异同点,核仁的光镜和电镜结构。 易考点:核基质的功能,人体哪几号染色体上有核仁组织区。 第十一章细胞生长与增殖 名词解释:细胞增殖,细胞周期蛋白依赖性激酶抑制物CDKI。解答题:简述有丝分裂过程及各过程标志,减数分裂过程。易考点:有丝分裂、无丝分裂、减数分裂的英文,细胞周期调控的起主要作用的物质。 第十三章细胞分化 名词解释:细胞分化,细胞决定,管家基因,奢侈基因。易考点:细胞分化实质,细胞分化特点。第十五章:名词解释:干细胞。易考点:干细胞的分类,干细胞的来源。 第十四章细胞衰老与死亡 名词解释:细胞衰老。解答题:细胞凋亡与细胞坏死的主要区别。易考点:细胞衰老的表现,细胞凋亡的特征。 第十五章:名词解释:干细胞。

细胞生物学复习重点修订稿

细胞生物学复习重点内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-DBUYI-0128)

第四章细胞膜和细胞表面 1.组成细胞膜的组要化学成分是什么这些分子是如何排列的 2. 膜脂、膜蛋白、膜糖类。膜脂排列成双分子层,极性头部朝向内外两侧,非极性尾部相对排列位于膜的内部;整合膜蛋白镶嵌于脂质双分子层中,外在膜蛋白主要分布于膜的内表面;膜糖类是分布与细胞膜外表面的一层寡糖侧链。 3.生物膜的两个显着性特征是什么? ①流动性:膜脂和膜蛋白都是可运动的。②不对称性:膜的内外两层的膜脂种类、分布不同;整合膜蛋白不对称镶嵌,外在膜蛋白在内表面;膜糖类分布在外表面。 3.小分子物质跨膜运输有哪几种各有什么特点 4. (1)被动运输其转运方向为顺浓度梯度,不消化代谢能。 (2)主动运输需要消化细胞的代谢能,但可以逆浓度梯度转运;包括离子泵和协同运输。①离子泵本身具有ATPase活性,在分解ATP放能的同时实现离子的逆浓度梯度转运;②协同运输在动物细胞是借助顺浓度转运Na+,即消耗Na+梯度的同时实现溶质的逆浓度转运,是间接地消耗ATP。 5.以钠钾泵为例,简述细胞膜的主动运输过程 ①在胞质侧结合3个钠离子;②水解ATP,本身磷酸化;③构象变化,钠离子转移到胞外侧,释放钠离子;④结合胞外2个钾离子;⑤去磷酸化;⑥构象变化,钾离子转移到胞质侧,释放钾离子。 6.以低密度脂蛋白(LDL)为例,简述受体介导的内吞作用的主要过程

①膜外侧LDL受体与LDL结合;②膜内陷形成有被小凹;③内陷进一步形成有被小泡;④有被小泡脱衣被,与内体融合;⑤内体酸性环境下受体与LDL分离,返回膜上。、 第五章细胞信号传导 1.cAMP信号通路和磷脂酰肌醇信号通路有哪些区别和联系? 是G蛋白偶联受体介导的主要2条信号转导通路。信号通路的前半段是相同的:G 蛋白偶联受体识别结合胞外信号分子,导致G蛋白三聚体解离,并发生GDP与GTP 交换,游离的Gα-GTP处于活化状态,导致结合并激活效应器蛋白。但两条通路的效应器并不相同,因此通路后半段组成及产生的细胞效应存在差别:(1)cAMP 信号通路:第一个效应器是腺苷酸环化酶(AC),活化后产生第二信使cAMP,进而活化蛋白激酶A(PKA),导致靶蛋白磷酸化及一系列级联反应;(2)磷脂酰肌醇信号通路:第一个效应器是磷脂酶C(PLC),活化后产生第二信使IP3和DAG,DAG锚定于质膜内侧,IP3扩散至内质网,刺激内质网释放Ca2+,至胞质Ca2+浓度升高,DAG和Ca2+活化蛋白激酶C(PKC),并进一步使底物蛋白磷酸化。 2.试述细胞内Ca2+浓度的调控机制 细胞膜和内质网膜上均有Ca2+泵和Ca2+通道,①Ca2+泵以主动运输方式将胞质中的Ca2+转运至胞外或内质网腔,使静息状态下胞质Ca2+浓度极低(10-7摩尔浓度);②当信号分子与Ca2+通道蛋白特异结合(如内质网上的Ca2+通道蛋白与IP3结合、突触后膜上的Ca2+通道蛋白与乙酰胆碱结合),会引起Ca2+通道瞬间开放,使胞质Ca2+浓度迅速升高,产生细胞效应。 3.总结细胞信号转导途径的组成与基本特征 组成:①配体即胞外信号分子;②受体:细胞表面受体和细胞内受体;③第二信

华师细胞生物学简答题(个人复习总结)

1、何谓成熟促进因子(MPF)?包括哪些主要成分?如何证明某一细胞提取液含有MPF? 成熟促进因子是指M期细胞中存在的促进细胞分裂的因子,是由两个不同亚基组成的异质二聚体,其一为调节亚基,有周期蛋白组成;其二为催化亚基,是丝氨酸/苏氨酸型蛋白激酶,其活性有懒于周期蛋白,故称为周期依赖性蛋白激酶。可以通过蛙卵细胞质移植实验证实MPF。成熟蛙卵细胞的细胞质可以诱导未成熟的蛙卵细胞提前进入成熟期。 2、简述微管、微丝和中间纤维的主要异同点?(顺序为微管、微丝、中间纤维) 直径:22nm、7nm、10nm;基本构件:α、β—微管蛋白,肌动蛋白,中间纤维丝蛋白;相对分子量(乘10的3次):50,43,40~200;结构:13根原丝围成的α—螺旋中空管状,双股α—螺旋,多级螺旋;极性:有,有,无;单体蛋白库:有,有,无;踏车现象:有,有,无;特异性药物:秋水仙素、长春花碱,细胞松弛素B、鬼笔环肽,无;运动相关蛋白:驱动蛋白、动力蛋白,肌球蛋白,无;主要功能:细胞运动、胞内运输、支持作用,变形运动、形状维持、胞质环流、胞质分裂环的桶状结构,骨架作用、细胞连接、信息传递;细胞分裂:纺锤体,无,包围纺锤体。 3、为什么将内质网比喻“开放的监狱”? KDEL信号序列为内质网驻守信号,如果内质网驻守蛋白被错误的包装进了COPII,并运输到顺面高尔基体,高尔基体膜上存在KDEL识别受体,能识别错误运输来的内质网驻守蛋白,并形成COP I小泡,将内质网驻守蛋白运输返回内质网。 4、在研究工作中分离得到一个与动物减数分裂直接相关的基因A,如果想由此获得该基因的单克隆抗体,请简要叙述实验方案及其实验原理。 英国科学家Milstein和Kohler因提出单克隆抗体而获得1984年诺贝尔生理学或医学奖。它是将产生抗体的单个B淋巴细胞同肿瘤细胞杂交,获得既能产生抗体又能无线增值的杂种细胞,并一次生产抗体的技术。其原理是:B淋巴细胞能够产生抗体,但在体外不能进行无限分裂;而肿瘤细胞虽然可以在体外进行无限传代,但不能产生抗体。将这两种细胞融合后得到的杂交瘤细胞具有两种亲本细胞的特性。 实验方案:a、表达基因A的蛋白,免疫小老鼠,获得免疫的淋巴细胞;b、将经过免疫的小老鼠的淋巴细胞与Hela细胞融合;c、利用选择培养基对融合细胞进行培养筛选,只有真正融合的细胞才能继续生长;d、融合细胞的培养,抗体的纯化。 5、微管是体内膜泡运输的导轨,请分析体内膜泡定向运输的机制? 微管是有极性的,微管的马达蛋白(动力蛋白和驱动蛋白)运输小泡也是单向的。动力蛋白向微管的负极运输小泡,驱动蛋白向微管的正极运输小泡。,另外,起始膜泡上有V-SNARE,靶膜上有T-SNARE。V-SNARE与T-SNARE选择性识别并定向融合。这两种因素共同导致了膜泡的定向运输。 6、简述细胞周期蛋白B的结构特点和动态调控机制?

细胞生物学复习要点整理

春2周细胞膜 1.细胞膜的化学组成及其特性:膜脂;膜蛋白;膜糖。 2.细胞膜的分子结构模型:流动镶嵌模型,脂筏模型。 3.细胞膜的生物学特性:不对称性;流动性(膜流动性的影响因素)。 1.脂质体(liposome):当脂质分子被水环境包围时,自发聚集,疏水尾在内, 亲水头在外,出现两种存在形式:球状分子团、形成双分子层,为防止两端尾部与水接触,游离端自动闭合,形成充满液体的球状小泡称为脂质体。 2.细胞外被(cell coat)或糖萼(glycocalyx):质膜中的糖蛋白和糖脂向外表面 延伸出的寡糖链构成的糖类物质。 3.脂筏(lipid raft):膜双层内含有特殊脂质和蛋白质组成的微区,微区中富含胆 固醇和鞘脂,其中聚集一些的特定种类的膜蛋白。由于鞘脂的脂肪酸尾部比较长,这一区域比膜的其他部分厚,更有秩序且较少流动,称脂筏。 1.细胞膜的基本结构特征与生理功能? 1)脂类:包括磷脂、胆固醇、糖脂,构成细胞膜主体,与膜流动性有关。 2)蛋白质:可分为内在蛋白和外在蛋白,是膜功能的主要体现者,如物质运输、 信号转导等。 3)糖类:包括糖脂和糖蛋白,对细胞有保护作用,在细胞识别起作用。 2.影响膜脂流动性的因素? 1)脂肪酸链的饱和程度(不饱和流动性大)。 2)脂肪酸链的长短(短链流动性大)。 3)胆固醇的双重调节(相变温度以上降低,相变温度以下提高)。 4)卵磷脂和鞘磷脂的比值(比值高的流动性大)。 5)膜蛋白的影响(膜蛋白越多,流动性越差)。 6)极性基团、环境温度、pH、离子强度。 春3、4周细胞内膜系统、囊泡转运 1.细胞内膜系统的概念、组成。 2.粗面内质网功能:蛋白质的合成;蛋白质的折叠装配;蛋白质的糖基化;蛋白 质的胞内运输。 3.滑面内质网的功能:参与脂质物质的合成运输;参与糖原代谢;参与解毒;参 与储存和调节Ca2+;参与胃酸、胆汁的合成分泌(内质网以葡萄糖-6-磷酸酶为标志酶)。 4.信号肽假说:新生肽链N端有独特序列称为信号肽,细胞基质中存在SRP能 识别并结合信号肽,SRP另一端与核糖体结合,形成复合结构,然后向内质网膜移动,与内质网膜上SRP-R识别结合,并附着于移位子上,然后SRP解离,肽链延伸。当肽链进入内质网腔时,信号肽序列会被内质网腔信号肽酶切除,肽链继续延伸至终止。 5.高尔基体是高度动态、具有极性的细胞器,以糖基转移酶为标志酶,主要功能 有:糖蛋白合成;参与脂质代谢;是大分子转运枢纽;加工成熟蛋白。 6.溶酶体酶的形成:①在内质网中合成、折叠和N-连接糖基化修饰,形成N-连 接的甘露糖糖蛋白,运送至高尔基体;②溶酶体酶蛋白在高尔基体中加工时甘露糖残基磷酸化为甘露糖-6-磷酸(M-6-P),为分选重要信号;③溶酶体酶分选并以出芽方式转运到前溶酶体。 7.溶酶体以酸性磷酸酶为标志酶,主要功能为:细胞内的消化作用;细胞营养功 能;机体防御和保护;激素分泌的调控;个体发生和发育的调控。 8.过氧化物酶体(peroxisome)又称微体,特点:①内有尿酸氧化酶结晶,称作 类核体;②模内表面界面可见一条称为边缘板的高电子致密度条带状结构。以过氧化物酶为标志酶。主要功能:清除细胞代谢所产生的H2O2及其他毒物; 对细胞氧张力的调节作用;参与脂肪酸等高能分子物质的代谢。 9.三种了解最多的囊泡:①网格蛋白有被囊泡:来源于反面高尔基体网状结构和 细胞膜,介导蛋白质从反面高尔基网状结构向胞内体、溶酶体和细胞膜运输; 在受体介导的胞吞作用过程中,介导物质从细胞膜向细胞质或从胞内体向从溶酶体运输;②COP Ⅰ有被囊泡:主要产生于高尔基体顺面膜囊,主要负责回收、转运内质网逃逸蛋白返回内质网及高尔基体膜内蛋白的逆向运输;③COP Ⅱ有被囊泡:产生于粗面内质网,主要介导从内质网到高尔基体的物质转运。

(完整版)细胞生物学知识点整理

细胞生物学:研究细胞基本生命活动规律的科学,它从不同层次(显微、亚显微和分子水平)上研究细胞结构与功能,细胞增殖、分化、衰老与凋亡,细胞信号转导,细胞基因表达与调控,细胞起源与分化等。 细胞分化:其本质是细胞内基因选择性表达功能蛋白质的过程。 细胞质膜 ( plasma membrane ):又称细胞膜,指围绕在细胞最外层,由脂质和蛋白质组成的生物膜。 内膜:形成各种细胞器的膜。 生物膜( biomembrane ):质膜和内膜的总称。 细胞外被:也叫糖萼,由质膜表面寡糖链形成。 膜骨架:质膜下起支撑作用的网络结构。 细胞表面:由细胞外被、质膜和表层胞质溶胶构成。 脂筏模型(lipid rafts model) :即在生物膜上胆固醇等富集而形成有序脂相,如同脂筏一样载着各种蛋白。脂筏是质膜上富含胆固 醇和鞘磷脂的微结构域。 被动运输指通过简单扩散或协助扩散实现物质由高浓度到低浓度方向的跨膜运输。 水孔蛋白(aquporins ;AQPs) :或称水分子通道,是一类具有选择性、高效转运水分的膜通道蛋白。不具有“水泵”功能,通过减小水分跨膜运动的阻力而使细胞间的水分迁移速度加快。 协助扩散:也称促进扩散( facilitated diffusion ):各种极性分子和无机离子顺着浓度梯度或电化学梯度的跨膜运输。 通道蛋白:跨膜亲水性通道,允许特定离子顺浓度梯度通过,又称离子通道。 配体门通道:受体与细胞外的配体结合,引起通道构象改变,“门”打开,又称离子通道型受体。 协同运输:靠间接提供能量完成主动运输,所需能量来自膜两侧离子的浓度梯度。动物细胞中常常利用膜两侧Na+ 浓度梯度来驱动。植物细胞和细菌常利用H+ 浓度梯度来驱动。分为:同向协同和反向协同。 膜泡运输:真核细胞通过胞吞作用( endocytosis )和胞吐作用( exocytosis )完成大分子与颗粒性物质的跨膜运输。 胞吐作用:包含内容物的囊泡移至细胞表面,与质膜融,将物质排出细胞之外底物水平的磷酸化:由相关酶将底物分子上的磷酸基团直接转移到ADP 分子生成ATP 的过程。氧化磷酸化:在呼吸链上与电子传递相耦联,ADP 被磷酸化生成ATP 的过程。 半自主性细胞器:自身含有遗传表达系统,但编码的遗传信息十分有限,其RNA 转录、蛋白质翻译、自身构建和功能发挥等必须依赖核基因组编码的遗传信息。 细胞内膜系统:是指细胞内在结构、功能及发生上相关的、由膜包被的细胞器或细胞结构。包括内质网、高尔基体、溶酶体和分泌泡等。 粗面内质网:多为扁囊状,在ER 膜的外表面附有大量的核糖体,普遍存在于分泌蛋白质的细胞中。 光面内质网:ER 膜上无颗粒(核糖体) ,ER 的成分不是扁囊,而常为小管小囊,它们连接成网,广泛存在于能合成类固醇的细胞中。 次级溶酶体:是正在进行或完成消化作用的溶酶体,分为自噬溶酶体和异噬溶酶体。 残体:又称后溶酶体( post-lysosome ),已失去酶活性,仅留未消化的残渣,可排出细胞,也可能留在细胞内逐年增多,如表皮细胞的老年斑,肝细胞的脂褐质。 细胞内蛋白质分选:除线粒体和植物叶绿体中能合成少量蛋白质外,绝大多数的蛋白质均在细胞质基质中的核糖体上开始合成然后运至细胞的特定部位,这一过程称蛋白质的定向转运或蛋白质分选。 信号序列:引导蛋白质定向转移的线性序列,通常15-60 个氨基酸残基,对所引导的蛋白质没有特异性要求。 信号斑:存在于完成折叠的蛋白质中,构成信号斑的信号序列之间可以不相邻,折叠在一起构成蛋白质分选的信号。翻译后转运:在细胞质基质游离核糖体上完成多肽链的合成,然后转运至膜围绕的细胞器或成为基质可溶性驻留蛋白和支架蛋白。共翻译转运:蛋白质合成在游离核糖体上起始后,由信号肽引导转移至糙面内质网,然后新生肽链边合成边转入糙面内质网,经高尔基体加工包装转运溶酶体、细胞质膜或分泌到细胞外。 分子伴侣:细胞中的某些蛋白质分子,可以识别正在合成的多肽或部分折叠的多肽,并与多肽的某些部位结合,从而帮助这些多肽转运、折叠、或装配。这类分子本身并不参与最终产物的形成。 细胞信号转导:指细胞外因子通过与受体(膜受体或核受体)结合,引发细胞内的一系列生物化学反应以及蛋白间相互作用,直至细胞生理反应所需基因开始表达、各种生物学效应形成的过程。 双信使系统:在磷脂酰肌醇信号通路中胞外信号分子与细胞表面G 蛋白耦联型受体结合,激活质膜上的磷脂酶C( PLC-

细胞生物学重点知识整理

细胞生物学 第一章:绪论 ●现代细胞生物学研究的三个层次是什么? ●细胞的发现 ●细胞学说 ●分子生物学的出现 ●真核细胞与原核细胞的比较 第三章:细胞基础 ●生物大分子 ●蛋白质一、二、三、四级结构 ●核酸分类 ●DNA/RNA结构、功能比较 ●三类主要RNA的大体结构与功能 ●DNA双螺旋结构模型 第四章:细胞膜 ●膜的化学组成:三种膜脂加二种膜蛋白 ●膜的流动镶嵌模型fluid mosaic model ●脂筏 ●膜的两大特性, ●物质运输的方式及比较:穿膜与跨膜 ●主/被动运输名词及其异同 ●内吞、外吐比较 ●细胞表面,细胞外被概念 第六章:细胞连接与细胞外基质 ●名解解释: ◆细胞连接cell junction, ◆紧密连接tightjunction, ◆锚定连接anchoringjunction, ◆通讯连接communicationjunction, ◆细胞外基质extracellular matrix, ●细胞连接可分为几种类型?在结构和功能上各有什么特点? 第七章:核糖体 ●根据来源和沉降系数,细胞中核糖体分两类,其亚基组成?其rRNA组成及组成蛋白质种类? ●细胞中核糖体有几种存在形式?所合成的蛋白质在功能上有什么不同? ●核糖体上重要活性位点 ●蛋白质合成的过程 ●遗传密码,密码子,反密码子之间有何联系和区别? ●遗传密码具有哪些特征?

(细胞生物学复习资料вTсエ莋室整理) 第一,对内膜系统的概念和相互关系有较清楚的了解和掌握; 第二,重点要了解和掌握内质网,高尔基体,溶酶体和过氧化物酶体等细胞器和结构的性质特点和主要功能,以及有关的一些重要名词术语概念。 标志酶分别是。。 Signal peptide- SRP- ribosome 膜流;溶酶体分类;有被小泡类型;膜泡定向运输机制 名词解释 内膜系统; 内质网; 粗面内质网; 滑面内质网; 信号肽,信号假说内体性溶酶体; 吞噬性溶酶体;自噬性溶酶体; 异噬性溶酶体内质网有几种类型?在形态和功能上各有何特点? ●简述分泌蛋白的合成和分泌过程 ●高尔基复合体的超微结构有何特点? ●高尔基复合体有哪些主要功能? ●简述溶酶体的形成过程(溶酶体与ER、GC的关系)。 ●溶酶体分为几类?各有何特点? ●溶酶体与过氧化物酶体比较(形态结构,化学成分,标志酶,功能) ●内膜系统各细胞器的结构与功能 第八章:线粒体 ●名词解释:(部位+结构+功能)细胞氧化,细胞呼吸, 基粒,电子传递链,氧化磷酸化 ●线粒体的超微结构如何? ●线粒体的功能 ●呼吸链及组成 ●基粒的结构与功能 ●化学渗透学说如何解释氧化磷酸化偶联? ●线粒体半自主性 第九章:细胞骨架 ●细胞骨架cytoskeleton, ?微管组织中心( MTOC ), ?微管microbubule, ?微丝microfilament, ?中间纤维intermediate filament, ?踏车现象(踏车行为)p89“快于改为等于” ●微管、微丝、中间纤维的功能 ●细胞骨架中各纤维系统的异同 ●细胞骨架中各纤维系统的装配 ●比较纤毛与微绒毛的结构组成

细胞生物学重点总结

细胞生物学重点总结 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

细胞生物学期末复习资料整理 第一章:1、细胞生物学cell biology:是研究细胞基本生命活动规律的科学, 是在显微、亚显微和分子水平上,以研究细胞结构与功能,细胞增殖、分化、 衰老与凋亡,细胞信号传递,真核细胞基因表达与调控,细胞起源与进化等为 主要内容的一门学科。P2 1、什么叫细胞生物学试论述细胞生物学研究的主要内容。P3-5 答:细胞生物学是研究细胞基本生命活动规律的科学,它是在三个水平(显微、亚 显微与分子水平)上,以研究细胞的结构与功能、细胞增殖、细胞分化、细胞衰 老开发商地亡、细胞信号传递、真核细胞基因表达与调控、细胞起源与进化等 为主要内容的一门科学。 细胞生物学的主要研究内容主要包括两个大方面:细胞结构与功能、细胞重要 生命活动。涵盖九个方面的内容:⑴细胞核、染色体以及基因表达的研究;⑵ 生物膜与细胞器的研究;⑶细胞骨架体系的研究;⑷细胞增殖及其调控;⑸细 胞分化及其调控;⑹细胞的衰老与凋亡;⑺细胞的起源与进化;⑻细胞工程; ⑼细胞信号转导。 2、试论述当前细胞生物学研究最集中的领域。 P5-6 答:当前细胞生物学研究主要集中在以下四个领域:⑴细胞信号转导;⑵细胞 增殖调控;⑶细胞衰老、凋亡及其调控;⑷基因组与后基因组学研究。人类亟 待通过以上四个方面的研究,阐明当今主要威胁人类的四大疾病:癌症、心血 管疾病、艾滋病和肝炎等传染病的发病机制,并采取有效措施达到治疗的目 的。 3.细胞学说(cell theory) p9 细胞学说是1838~1839年间由德国的植物学家施莱登和动物学家施旺所提出, 直到1858年才较完善。它是关于生物有机体组成的学说,主要内容有: ①细胞是有机体,一切动植物都是由单细胞发育而来,即生物是由细胞和细 胞的产物所组成; ②所有细胞在结构和组成上基本相似; ③新细胞是由已存在的细胞分裂而来; ④生物的疾病是因为其细胞机能失常。 4、细胞学发展的经典时期 P10 ⑴原生质理论的提出;⑵细胞分裂的研究;⑶重要细胞器的发现。 第二章:试论述原核细胞与真核细胞最根本的区别。 P35-37 答:原核细胞与真核细胞最根本的区别在于:①生物膜系统的分化与演变:真 核细胞以生物膜分化为基础,分化为结构更精细、功能更专一的基本单位—— 细胞器,使细胞内部结构与职能的分工是真核细胞区别于原核细胞的重要标 志;②遗传信息量与遗传装置的扩增与复杂化:由于真核细胞结构与功能的复

细胞生物学知识点总结

细胞生物学知识点总结 细胞生物学知识点总结 导语:细胞学说是施莱登和施旺所提出:一切植物、动物都是由细胞组成的,细胞是一切动植物体的基本单位。以下是小编为大家整理分享的细胞生物学知识点总结,欢迎阅读参考。 细胞生物学知识点总结 细胞通讯的方式 (1)细胞通过分泌化学信号进行细胞间通讯,这是多细胞生物普遍采用的通讯方式。 (2)细胞间接触依赖性的通讯,指细胞间直接接触,通过与质膜结合的信号分子影响其它细胞。 (3)动物相邻细胞间形成间隙连接以及植物细胞间通过胞间连丝使细胞间相互沟通,通过交换小分子来实现代谢耦联或电耦联。 细胞分泌化学信号可长距离或短距离发挥作用,其作用方式分为: (1)内分泌,由内分泌细胞分泌信号分子到血液中,通过血液循环运送到体内各个部位,作用于靶细胞。

(2)旁分泌,细胞通过分泌局部化学介质到细胞外液中,经过局部扩散作用于邻近靶细胞。在多细胞生物中调节发育的许多生长因子往往是通过旁分泌起作用的。此外,旁分泌方式对创伤或感染组织刺激细胞增殖以恢复功能也具有重要意义。 (3)自分泌,细胞对自身分泌的物质产生反应。自分泌信号常存在于病理条件下,如肿细胞合成并释放生长因子刺激自身,导致肿瘤细胞的持续增殖。 (4)通过化学突触传递神经信号,当神经元接受刺激后,神经信号以动作电位的形式沿轴突快速传递至神经末梢,电压门控的Ca2+通道将电信号转换为化学信号。 通过胞外信号介导的细胞通讯步骤 (1)产生信号的细胞合成并释放信号分子。 (2)运送信号分子至靶细胞。 (3)信号分子与靶细胞受体特异性结合并导致受体激活。 (4)活化受体启动胞内一种或多种信号转导途径。 (5)引发细胞功能、代谢或发育的改变。 (6)信号的解除并导致细胞反应终止。 核被膜所具有的功能

细胞生物学考试重点!!

细胞生物学:是研究细胞形态结构和功能和起源的科学。 细胞:是生命活动和结构的基本单位。其结构通常由细胞膜,细胞质,以及细胞器所构成。生活在地球上的细胞可分为:原核细胞;古核细胞和真核细胞三大类。 细胞学说: 一切生物,从单细胞生物到高等动植物都是由细胞组成的,细胞是生物形态结构功能活动的基本单位,细胞通过分裂形成组织。细胞来自于细胞。每个细胞相对独立,一个生物体内各细胞之间协同配合。 为什么说细胞是生命的基本单位? 细胞是生命的基本结构单位,所有生物都是由细胞组成的; 细胞是生命活动的功能单位,一切代谢活动均以细胞为基础; 细胞是生殖和遗传的基础与桥梁;具有相同的遗传语言; 细胞是生物体生长发育的基础; 形状与大小各异的细胞是生物进化的结果 没有细胞就没有完整的生命(病毒的生命活动离不开细胞) 细胞生物学学习方法: 【1】抽象思维与动态,立体的观点;【2】同一性(unity),多样性(diversity)联系性,开放性,历史性,发展性的观点;【3】实验科学与实验技术——细胞真知源于实验室,来源于观察,实验创新的观点;【4】化学成分,结构,和功能结合的观点;【5】尊重记忆的规律来进行学习。 细胞的大小和细胞分裂的原因 细胞如果太小,则最低限度的细胞器以及生命物质没有足够的空间存放;太大则表面积不够。有人认为,由于细胞的重量和体积的增长,造成了细胞表面积与体积的比例失调,从而触发细胞分裂。随着细胞生长,细胞体积增大,而细胞表面积和体积之比(表面积/体积)却在变小。活细胞不断进行新陈代谢,细胞表面担负着输入养分,排出废物的重任。表面积/体积比值的下降,意味着代谢速率的受限和下降。所以,细胞分裂是细胞生长过程中保持足够表面积,维持一定的生长速率的重要措施 原生质(protoplasm): 1839 Purkinje用原生质一词指细胞的全部活性物质,从现代概念来说它包括质膜、细胞质和细胞核(或拟核)。 细胞核:细胞核(nucleus)是细胞内最重要的细胞器,核 表面是由双层膜构成的核被膜(nuclear envelope),核内 包含有由DNA和蛋白质构成的染色体(chromosome)。核内1 至数个小球形结构,称为核仁(nucleolus)。细胞核中的原 生质称为核质。 细胞质(cytoplasm):质膜与核被膜之间的原生质。 细胞器:具有特定形态和功能的显微或亚显微结构称为细胞器 细胞质基质:细胞质中除细胞器以外的部分。又称为或胞质溶胶(cytosol),其体积约占细胞质的一半。 真核细胞:具有核膜,由膜围成的各种细胞器,如核膜、内质网、高尔基体、线粒体、叶绿体、溶酶体等在结构上形成了一个连续的体系,称为内膜系统。内膜系统将细胞质分隔成不同的区域,即所谓的区隔化。区隔化使细胞内表面积增加了数十倍,代谢能力增强。细胞质基质的功能:为细胞内各类生化反应的正常进行提供了相对稳定的离子环境;许多代谢过程是在细胞基质中完成的,如①蛋白质的合成;②核苷酸的合成;③脂肪酸合成;④糖酵解;⑤磷酸戊糖途径;⑥糖原代谢;⑦信号转导。供给细胞器行使其功能所需要的一切底物;控制基因的表达,与细胞核一起参与细胞的分化;参与蛋白质的合成、加工、运输、选择性降解 真核细胞的结构 细胞壁(植物细胞具有) 细胞细胞膜(质膜) 原生质体细胞质 细胞核 三大结构体系: 生物膜系统质膜、内膜系统(细胞器) 遗传信息表达系统染色质(体)、核糖体、mRNA、tRNA等等 细胞骨架系统胞质骨架、核骨架 植物细胞特有的结构:细胞壁、叶绿体、大液泡、胞间连丝 细胞形态:单细胞生物细胞的形态通常与细胞外沉积物或细胞骨架有关;高等生物细胞的形状与细胞功能及细胞间的相互作用有关 原核细胞:没有核膜,遗传物质集中在一个没有明确界限的低电子密度区,称为拟核。DNA为裸露的环状双螺旋分子,通常没有结合蛋白,没有恒定的内膜系统,核糖体为70S型。无细胞器, 无细胞骨架原核细胞构成的生物称为原核生物,均为单细胞生物。一般以二分裂的方式繁殖,也有的产生孢子。以无丝分裂或出芽繁殖 原核细胞真核细胞 细胞大小很小(1-10微米)较大(10-100微米) 细胞核无核膜、核仁(称“类核”)有核膜、核仁 遗传系统 DNA不与蛋白质结合 DNA与蛋白质结合成染色质, 一个细胞仅一条DNA 一个细胞有多条的染色体 细胞器无有 细胞分裂无丝分裂有丝分裂为主 质粒(plasmid) :除核区DNA外,可进行自主复制的遗传因子,是裸露的环状DNA分子,所含遗传信息量为2~200个基因,能进行自我复制,有时能整合到核DNA中去。质粒常用作基因重组与基因转移的载体。 细胞膜:细胞质与外界相隔的一层薄膜,又叫质膜 生物膜:细胞内由膜构成的结构其成分基本相近,因此又把细胞中的所有膜统称为生物膜。特征:流动性,不对称性 “单位膜”模型由厚约3.5nm的双层脂分子和内外表面各厚约2nm的蛋白质构成。 细胞膜的功能:1. 为细胞的生命活动提供相对稳定的内环境;2. 选择性的物质运输,包括代谢底物的输入与代谢产物的排出;3. 提供细胞识别位点,并完成细胞内外信息的跨膜传递4. 为多种酶提供结合位点,使酶促反应高效而有序地进行5. 介导细胞与细胞、细胞与基质之间的连接;6. 参与形成具有不同功能的细胞表面特化结构。 脂双层的特点:⑴自我封闭性⑵装配性⑶流动性⑷不对称性

相关主题
文本预览
相关文档 最新文档