当前位置:文档之家› 倒立摆系统自适应神经网络学习算法的研究

倒立摆系统自适应神经网络学习算法的研究

倒立摆系统自适应神经网络学习算法的研究
倒立摆系统自适应神经网络学习算法的研究

倒立摆实验报告

倒立摆实验报告 机自82 组员:李宗泽 李航 刘凯 付荣

倒立摆与自动控制原理实验 一.实验目的: 1.运用经典控制理论控制直线一级倒立摆,包括实际系统模型的建立、根轨迹分析和控制器设计、频率响应分析、PID 控制分析等内容. 2.运用现代控制理论中的线性最优控制LQR 方法实验控制倒立摆 3.学习运用模糊控制理论控制倒立摆系统 4.学习MATLAB工具软件在控制工程中的应用 5.掌握对实际系统进行建模的方法,熟悉利用MATLAB 对系统模型进行仿真,利用学习的控制理论对系统进行控制器的设计,并对系统进行实际控制实验,对实验结果进行观察和分析,非常直观的感受控制器的控制作用。 二. 实验设备 计算机及等相关软件 固高倒立摆系统的软件 固高一级直线倒立摆系统,包括运动卡和倒立摆实物 倒立摆相关安装工具 三.倒立摆系统介绍 倒立摆是机器人技术、控制理论、计算机控制等多个领域、多种

技术的有机结合,其被控系统本身又是一个绝对不稳定、高阶次、多变量、强耦合的非线性系统,可以作为一个典型的控制对象对其进行研究。倒立摆系统作为控制理论研究中的一种比较理想的实验手段,为自动控制理论的教学、实验和科研构建一个良好的实验平台,以用来检验某种控制理论或方法的典型方案,促进了控制系统新理论、新思想的发展。由于控制理论的广泛应用,由此系统研究产生的方法和技术将在半导体及精密仪器加工、机器人控制技术、人工智能、导弹拦截控制系统、航空对接控制技术、火箭发射中的垂直度控制、卫星飞行中的姿态控制和一般工业应用等方面具有广阔的利用开发前景。 倒立摆已经由原来的直线一级倒立摆扩展出很多种类,典型的有直线倒立摆环形倒立摆,平面倒立摆和复合倒立摆等,本次实验采用的是直线一级倒立摆。 倒立摆的形式和结构各异,但所有的倒立摆都具有以下的特性: 1) 非线性2) 不确定性3) 耦合性4) 开环不稳定性5) 约束限制 倒立摆控制器的设计是倒立摆系统的核心内容,因为倒立摆是一个绝对不稳定的系统,为使其保持稳定并且可以承受一定的干扰,需要给系统设计控制器,本小组采用的控制方法有:PID 控制、双PID 控制、LQR控制、模糊PID控制、纯模糊控制 四.直线一级倒立摆的物理模型: 系统建模可以分为两种:机理建模和实验建模。实验建模就是通过在研究对象上加上一系列的研究者事先确定的输入信号,激励

数学建模_BP神经网络算法模板

1.1 BP 神经网络原理简介 BP 神经网络是一种多层前馈神经网络,由输入、输出、隐藏层组成。该网络的主要特点是信号前向传递,误差反向传播。在前向传递中,输入信号从输入层经隐藏层逐层处理,直至输出层。每一层的神经元状态只影响下一层神经元状态。如果输出层得不到期望输出则转入反向传播,根据预测误差调整网络权值和阈值,从而使BP 神经网络预测输出不断逼近期望输出。结构图如下: 隐藏层传输函数选择Sigmoid 函数(也可以选择值域在(-1,1)的双曲正切函数,函数‘tansig ’),其数学表达式如下: x e 11)x ( f α-+=,其中α为常数 输出层传输函数选择线性函数:x )x (f = 1.隐藏层节点的选择 隐藏层神经元个数对BP 神经网络预测精度有显著的影响,如果隐藏层节点数目太少,则网络从样本中获取信息的能力不足,网络容易陷入局部极小值,有时可能训练不出来;如果隐藏层节点数目太多,则学习样本的非规律性信息会出现“过度吻合”的现象,从而导致学习时间延长,误差也不一定最佳,为此我们参照以下经验公式: 12+=I H ]10,1[ ,∈++=a a O I H I H 2log = 其中H 为隐含层节点数,I 为输入层节点数,O 为输出层节点数,a 为常数。 输入层和输出层节点的确定: 2.输入层节点和输出层节点的选择 输入层是外界信号与BP 神经网络衔接的纽带。其节点数取决于数据源的维数和输入特征向量的维数。选择特征向量时,要考虑是否能完全描述事物的本质特征,如果特征向量不能有效地表达这些特征,网络经训练后的输出可能与实际有较大的差异。因此在网络训练前,应全面收集被仿真系统的样本特性数据,并在数据处理时进行必要的相关性分析,剔除那些边沿和不可靠的数据,最终确定出数据源特征向量的维度。对于输出层节点的数目,往往需要根据实际应用情况灵活地制定。当BP 神经网络用于模式识别时,模式的自身特性就决定了输出的结果数。当网络作为一个分类器时,输出层节点数等于所需信息类别数。(可有可无) 训练好的BP 神经网络还只能输出归一化后的浓度数据,为了得到真实的数据

单级倒立摆稳定控制实验

单级倒立摆稳定控制实验 一.实验目的 1.了解单级倒立摆的原理与数学模型的建立; 2.掌握LQR控制器的设计方法; 3.掌握基于LQR控制器的单级倒立摆稳定控制系统的仿真方法。 二.实验内容 图1 一级倒立摆原理图 一级倒立摆系统的原理框图如上所示。系统包括计算机、运动控制卡、伺服机构、倒立摆本体和光电码盘几大部分,组成了一个闭环系统。光电码盘1将连杆的角度、角速度信号反馈给伺服驱动器和运动控制卡,摆杆的角度、角速度信号由光电码盘2反馈回控制卡。计算机从运动控制卡中读取实时数据,确定控制决策,并由运动控制卡来实现该控制决策,产生相应的控制量,驱动电机转动,带动连杆运动,保持摆杆的平衡。 在忽略了空气阻力,各种摩擦之后,可将直线一级倒立摆系统抽象成小车和匀质杆组成的系统,如下图2所示。 图2 直线一级倒立摆系 统

其中: M 小车质量 m 摆杆质量 b 小车摩擦系数 l 摆杆转动轴心到杆质心的长度 I 摆杆惯量 F 加在小车上的力 x 小车位置 φ 摆杆与垂直向上方向的夹角 θ 摆杆与垂直向下方向的夹角(考虑到摆杆初始位置为竖直向下) 下图是系统中小车和摆杆的受力分析图。其中,N 和P 为小车与摆杆相互作用力的水平和垂直方向的分量。 注意:在实际倒立摆系统中检测和执行装置的正负方向已经完全确定,因而矢量方向定义如图所示,图示方向为矢量正方向。 图3 (a )小车隔离受力图; (b ) 摆杆隔离受力图 分析小车水平方向所受的合力,可以得到以下方程: Mx F bx N =--&&& (1) 由摆杆水平方向的受力进行分析可以得到下面等式: ()2 2sin d N m x l dt θ=+ (2) 即:2cos sin N mx ml ml θθθθ=+-&&&&&

BP神经网络算法步骤

B P神经网络算法步骤 SANY GROUP system office room 【SANYUA16H-

传统的BP 算法简述 BP 算法是一种有监督式的学习算法,其主要思想是:输入学习样本,使用反向传播算法对网络的权值和偏差进行反复的调整训练,使输出的向量与期望向量尽可能地接近,当网络输出层的误差平方和小于指定的误差时训练完成,保存网络的权值和偏差。具体步骤如下: (1)初始化,随机给定各连接权[w],[v]及阀值θi ,rt 。 (2)由给定的输入输出模式对计算隐层、输出层各单元输出 (3)计算新的连接权及阀值,计算公式如下: (4)选取下一个输入模式对返回第2步反复训练直到网络设输出误差达到要求结束训练。 第一步,网络初始化 给各连接权值分别赋一个区间(-1,1)内的随机数,设定误差函数e ,给定计 算精度值 和最大学习次数M 。 第二步,随机选取第k 个输入样本及对应期望输出 ()12()(),(),,()q k d k d k d k =o d ()12()(),(),,()n k x k x k x k =x 第三步,计算隐含层各神经元的输入和输出 第四步,利用网络期望输出和实际输出,计算误差函数对输出层的各神经元的偏导数()o k a δ 第五步,利用隐含层到输出层的连接权值、输出层的()o k δ和隐含层的输出计算误差函数对隐含层各神经元的偏导数()h k δ 第六步,利用输出层各神经元的()o k δ和隐含层各神经元的输出来修正连接权值()ho w k 第七步,利用隐含层各神经元的()h k δ和输入层各神经元的输入修正连接权。 第八步,计算全局误差211 1(()())2q m o o k o E d k y k m ===-∑∑ ε

二阶倒立摆实验报告

研究生课程实验报告 课程名称:线性系统 实验名称:平面二级倒立摆实验 班级:12S0441 学号:12S104057 姓名:白俊林 实验时间:2012 年12 月21 日

控制科学与工程教学实验中心

1.实验目的 1)熟悉Matlab/Simulink仿真; 2)掌握LQR控制器设计和调节; 3)理解控制理论在实际中的应用。 倒立摆研究的意义是,作为一个实验装置,它形象直观,简单,而且参数和形状易于改变;但它又是一个高阶次、多变量、非线性、强耦合、不确定的绝对不稳定系统的被控系统,必须采用十分有效的控制手段才能使之稳定。因此,许多新的控制理论,都通过倒立摆试验对理论加以实物验证,然后在应用到实际工程中去。因此,倒立摆成为控制理论中经久不衰的研究课题,是验证各种控制算法的一个优秀平台,故通过设计倒立摆的控制器,可以对控制学科中的控制理论有一个学习和实践机会。 2.实验内容 1)建立直线二级倒立摆数学模型 对直线二级倒立摆进行数学建模,并将非线性数学模型在一定条件下化简成线性数学模型。对于倒立摆系统,由于其本身是自不稳定的系统,实验建立模型存在一定的困难,但是经过小心的假设忽略掉一些次要的因素后,倒立摆系统就是一个典型的运动的刚体系统,可以在惯性坐标系内应用经典力学理论建立系统的

动力学方程。对于直线二级倒立摆,由于其复杂程度,在这里利用拉格朗日方程推导运动学方程。 由于模型的动力学方程中存在三角函数,因此方程是非线性的,通过小角度线性化处理,将动力学非线性方程变成线性方程,便于后续的工作的进行。 2)系统的MATLAB仿真 依据建立的数学模型,通过MATLAB仿真得出系统的开环特性,采取相应的控制策略,设计控制器,再加入到系统的闭环中,验证控制器的作用,并进一步调试。控制系统设计过程中需要分析内容主要包括得出原未加控制器时系统的极点分布,系统的能观性,能控性。 3)LQR控制器设计与调节实验 利用线性二次型最优(LQR)调节器MATLAB仿真设计的参数结果对平面二阶倒立摆进行实际控制实验,参数微调得到较好的控制效果,记录实验曲线。 4)改变控制对象的模型参数实验 调整摆杆位置,将摆杆1朝下,摆杆2朝上修改模型参数、起摆条件和控制参数,重复3的内容。 3.实验步骤

倒立摆实验报告

目录 一、倒立摆系统介绍 (2) 1.1倒立摆系统简介 (2) 1.2 倒立摆组成及其原理 (2) 1.3 倒立摆特性 (3) 二、一级倒立摆 (3) 2.1一级倒立摆建模 (3) 2.2 一级倒立摆控制方法 (11) 2.2.1 单输入—单输出控制方法 (11) 超前滞后控制方法 2.2.2 单输入—多输出控制方法 (22) 双PID控制方法 2.2.3 多输入—多输出控制方法 (30) 极点配置法 二次线性最优控制法 三、二级倒立摆 (36) 3.1二级倒立摆建模 (36) 3.2 二级倒立摆控制方法 (46) 3.2.1 二次线性最优控制法 (46) 3.2.2 基于融合技术的模糊控制法 (48) 四、总结 (60) 五、参考文献 (63)

一、倒立摆系统介绍 1.1倒立摆系统简介 倒立摆是机器人技术、控制理论、计算机控制等多个领域、多种技术的有机结合,其被控系统本身又是一个绝对不稳定、高阶次、多变量、强耦合的非线性系统,可以作为一个典型的控制对象对其进行研究。最初研究开始于二十世纪50 年代,麻省理工学院(MIT)的控制论专家根据火箭发射助推器原理设计出一级倒立摆实验设备。近年来,新的控制方法不断出现,人们试图通过倒立摆这样一个典型的控制对象,检验新的控制方法是否有较强的处理多变量、非线性和绝对不稳定系统的能力,从而从中找出最优秀的控制方法。倒立摆系统作为控制理论研究中的一种比较理想的实验手段,为自动控制理论的教学、实验和科研构建一个良好的实验平台,以用来检验某种控制理论或方法的典型方案,促进了控制系统新理论、新思想的发展。由于控制理论的广泛应用,由此系统研究产生的方法和技术将在半导体及精密仪器加工、机器人控制技术、人工智能、导弹拦截控制系统、航空对接控制技术、火箭发射中的垂直度控制、卫星飞行中的姿态控制和一般工业应用等方面具有广阔的利用开发前景。平面倒立摆可以比较真实模拟火箭的飞行控制和步行机器人的稳定控制等方面的研究。 1.2倒立摆组成及其原理 倒立摆的组成包括计算机、运动控制卡、伺服系统、倒立摆本体和光电码盘、反馈测量元件等几大部分,组成一个闭环系统。对于直线型倒立摆,可以根据伺服电机自带的码盘反馈通过换算获得小车的位移,小车的速度信号可以通过差分法得到;各个摆杆的角度由光电码盘测得并直接反馈到控制卡,速度信号可以通过差分方法得到。计算机从运动控制卡中实时读取数据,确定控制策略(电机的输出力矩),并发送给运动控制卡。运动控制卡经过DSP 内部的控制算法实现该控制决策,产生相应的控制量,使电机转动,带动小车运动,保持摆杆平衡。

BP神经网络的基本原理+很清楚

5.4 BP神经网络的基本原理 BP(Back Propagation)网络是1986年由Rinehart和 McClelland为首的科学家小组提出,是一种按误差逆传播算 法训练的多层前馈网络,是目前应用最广泛的神经网络模型 之一。BP网络能学习和存贮大量的输入-输出模式映射关系, 而无需事前揭示描述这种映射关系的数学方程。它的学习规 则是使用最速下降法,通过反向传播来不断调整网络的权值 和阈值,使网络的误差平方和最小。BP神经网络模型拓扑结 构包括输入层(input)、隐层(hide layer)和输出层(output layer)(如图5.2所示)。 5.4.1 BP神经元 图5.3给出了第j个基本BP神经元(节点),它只模仿了生物神经元所具有的三个最基本 也是最重要的功能:加权、求和与转移。其中x 1、x 2 …x i …x n 分别代表来自神经元1、2…i…n 的输入;w j1、w j2 …w ji …w jn 则分别表示神经元1、2…i…n与第j个神经元的连接强度,即权 值;b j 为阈值;f(·)为传递函数;y j 为第j个神经元的输出。 第j个神经元的净输入值为: (5.12) 其中: 若视,,即令及包括及,则

于是节点j的净输入可表示为: (5.13)净输入通过传递函数(Transfer Function)f (·)后,便得到第j个神经元的输出 : (5.14) 式中f(·)是单调上升函数,而且必须是有界函数,因为细胞传递的信号不可能无限增加,必有一最大值。 5.4.2 BP网络 BP算法由数据流的前向计算(正向传播)和误差信号的反向传播两个过程构成。正向传播时,传播方向为输入层→隐层→输出层,每层神经元的状态只影响下一层神经元。若在输出层得不到期望的输出,则转向误差信号的反向传播流程。通过这两个过程的交替进行,在权向量空间执行误差函数梯度下降策略,动态迭代搜索一组权向量,使网络误差函数达到最小值,从而完成信息提取和记忆过程。 5.4.2.1 正向传播 设 BP网络的输入层有n个节点,隐层有q个节点,输出层有m个节点,输入层与隐层之间的权值为,隐层与输出层之间的权值为,如图5.4所示。隐层的传递函数为f (·), 1 (·),则隐层节点的输出为(将阈值写入求和项中): 输出层的传递函数为f 2

(完整版)基于神经网络的中国人口预测算法研究毕业论文

毕业论文(设 计) 题目基于神经网络的中国人口预测 算法研究

所在院(系)数学与计算机科学学院 专业班级信息与计算科学1102班 指导教师赵晖 完成地点陕西理工学院 2015年5 月25日

基于神经网络的中国人口预测算法研究 作者:宋波 (陕理工学院数学与计算机科学学院信息与计算科学专业1102班,陕西汉中 723000) 指导教师:赵晖 [摘要]我国现正处于全面建成小康社会时期,人口发展面临着巨大的挑战,经济社会发展与资源环境的矛盾日益尖锐。我国是个人口大国、资源小国,这对矛盾将长期制约我国经济社会的发展。准确地预测未来人口的发展趋势,制定合理的人口规划和人口布局方案具有重大的理论意义和实用意义。本文介绍了人口预测的概念及发展规律等。 首先,本文考虑到人口预测具有大量冗余、流动范围和数量扩大的特性,又为提高人口预测的效果,因此,使用归一化对人口数据进行了处理,该方法不需要离散化原数据,这样就保证了人口预测的准确性和原始数据的信息完整性。其次,本文提出了一种基于神经网络预测的优化算法,该算法避免了人们在预测中参数选择的主观性而带来的精度的风险,增强了人口预测的准确性。同时,为说明该算法的有效性,又设计了几种人们通常所用的人口模型和灰色预测模型算法,并用相同的数据进行实验,得到了良好的效果,即本文算法的人口预测最为准确,其预测性能明显优于其他算法,而这主要是参数的选择对于增强预测性方面的影响,最终导致人口预测精确度。同时,在算法的稳定性和扩展性方面,该算法也明显优于其他算法。 考虑出生率、死亡率、人口增长率等因素的影响,重建神经网络模型预测人口数量。 [关键词] 神经网络人口模型灰色预测模型软件

BP神经网络计算的题目

对如下的BP 神经网络,学习系数1=η,各点的阈值0=θ。作用函数为: ? ? ?<≥=111 )(x x x x f 。 输入样本0,121==x x ,输出节点z 的期望输出为1,对于第k 次学习得到的权值分别为1)(,1)(,1)(,2)(,2)(,0)(2122211211======k T k T k w k w k w k w ,求第k 次和1+k 次学习得到的输出节点值)(k z 和)1(+k z (写出计算公式和计算过程)。 y 2 )(11=k w 1)(22=k 11=x 02=x 计算如下: 1. 第k 次训练的正向过程如下: 1 )0()0210()()(12 1 11==?+?==-=∑=f f net f x w f y j j j θ) ()(i j i j ij i net f x w f y =-=∑θ

2 )2()0112()()(22 1 22==?+?==∑==f f net f x w f y j j j 3 )3()2111()()(2 1 ==?+?==∑==f f net f y T f z l i i i 2)31(2 1 2=-=E 2. 第k 次训练的反向过程如下: 212)3()31()(')(''-=?-=?-=-=f net f z z l l δ li l l i i T net f ∑=δδ)('' 1)2(01)2()0(')(''111=?-?=?-?==f T net f l δδ 2 1)2(11)2()2(')(''222-=?-?=?-?==f T net f l δδ 1 1)2(11)()()1(11111-=?-?+=+=?+=+y k T T k T k T l ηδ ) ()(l i l i li l net f y T f O =-=∑θ

二阶倒立摆实验报告

. I 线性系统实验报告 : 院系:航天学院 学号: . .

2015年12月

1.实验目的 1)熟悉Matlab/Simulink仿真; 2)掌握LQR控制器设计和调节; 3)理解控制理论在实际中的应用。 倒立摆研究的意义是,作为一个实验装置,它形象直观,简单,而且参数和形状易于改变;但它又是一个高阶次、多变量、非线性、强耦合、不确定的绝对不稳定系统的被控系统,必须采用十分有效的控制手段才能使之稳定。因此,许多新的控制理论,都通过倒立摆试验对理论加以实物验证,然后在应用到实际工程中去。因此,倒立摆成为控制理论中经久不衰的研究课题,是验证各种控制算法的一个优秀平台,故通过设计倒立摆的控制器,可以对控制学科中的控制理论有一个学习和实践机会。 2.实验容 1)建立直线二级倒立摆数学模型 对直线二级倒立摆进行数学建模,并将非线性数学模型在一定条件下化简成线性数学模型。对于倒立摆系统,由于其本身是自不稳定的系统,实验建立模型存在一定的困难,但是经过小心的假设忽略掉一些次要的因素后,倒立摆系统就是一个典型的运动的刚体系统,可以在惯性坐标系应用经典力学理论建立系统的动

力学方程。对于直线二级倒立摆,由于其复杂程度,在这里利用拉格朗日方程推导运动学方程。 由于模型的动力学方程中存在三角函数,因此方程是非线性的,通过小角度线性化处理,将动力学非线性方程变成线性方程,便于后续的工作的进行。 2)系统的MATLAB仿真 依据建立的数学模型,通过MATLAB仿真得出系统的开环特性,采取相应的控制策略,设计控制器,再加入到系统的闭环中,验证控制器的作用,并进一步调试。控制系统设计过程中需要分析容主要包括得出原未加控制器时系统的极点分布,系统的能观性,能控性。 3)LQR控制器设计与调节实验 利用线性二次型最优(LQR)调节器MATLAB仿真设计的参数结果对平面二阶倒立摆进行实际控制实验,参数微调得到较好的控制效果,记录实验曲线。 4)改变控制对象的模型参数实验 调整摆杆位置,将摆杆1朝下,摆杆2朝上修改模型参数、起摆条件和控制参数,重复3的容。 3.实验步骤

(完整word版)深度学习-卷积神经网络算法简介

深度学习 卷积神经网络算法简介 李宗贤 北京信息科技大学智能科学与技术系 卷积神经网络是近年来广泛应用在模式识别、图像处理领域的一种高效识别算法,具有简单结构、训练参数少和适应性强的特点。它的权值共享网络结构使之更类似与生物神经网络,降低了网络的复杂度,减少了权值的数量。以二维图像直接作为网络的输入,避免了传统是被算法中复杂的特征提取和数据重建过程。卷积神经网络是为识别二维形状特殊设计的一个多层感知器,这种网络结构对于平移、比例缩放、倾斜和其他形式的变形有着高度的不变形。 ?卷积神经网络的结构 卷积神经网络是一种多层的感知器,每层由二维平面组成,而每个平面由多个独立的神经元组成,网络中包含一些简单元和复杂元,分别记为C元和S元。C元聚合在一起构成卷积层,S元聚合在一起构成下采样层。输入图像通过和滤波器和可加偏置进行卷积,在C层产生N个特征图(N值可人为设定),然后特征映射图经过求和、加权值和偏置,再通过一个激活函数(通常选用Sigmoid函数)得到S层的特征映射图。根据人为设定C层和S层的数量,以上工作依次循环进行。最终,对最尾部的下采样和输出层进行全连接,得到最后的输出。

卷积的过程:用一个可训练的滤波器fx去卷积一个输入的图像(在C1层是输入图像,之后的卷积层输入则是前一层的卷积特征图),通过一个激活函数(一般使用的是Sigmoid函数),然后加一个偏置bx,得到卷积层Cx。具体运算如下式,式中Mj是输入特征图的值: X j l=f?(∑X i l?1?k ij l+b j l i∈Mj) 子采样的过程包括:每邻域的m个像素(m是人为设定)求和变为一个像素,然后通过标量Wx+1加权,再增加偏置bx+1,然后通过激活函数Sigmoid产生特征映射图。从一个平面到下一个平面的映射可以看作是作卷积运算,S层可看作是模糊滤波器,起到了二次特征提取的作用。隐层与隐层之间的空间分辨率递减,而每层所含的平面数递增,这样可用于检测更多的特征信息。对于子采样层来说,有N 个输入特征图,就有N个输出特征图,只是每个特征图的的尺寸得到了相应的改变,具体运算如下式,式中down()表示下采样函数。 X j l=f?(βj l down (X j l?1) +b j l)X j l) ?卷积神经网络的训练过程 卷积神经网络在本质上是一种输入到输出的映射,它能够学习大量的输入和输出之间的映射关系,而不需要任何输入和输出之间的精确数学表达式。用已知的模式对卷积网络加以训练,网络就具有了输

人工神经网络算法

https://www.doczj.com/doc/be4717738.html,/s/blog_5bbd6ec00100b5nk.html 人工神经网络算法(2008-11-20 17:24:22) 标签:杂谈 人工神经网络算法的作用机理还是比较难理解,现在以一个例子来说明其原理。这个例子是关于人的识别技术的,在门禁系统,逃犯识别,各种验证码破译,银行预留印鉴签名比对,机器人设计等领域都有比较好的应用前景,当然也可以用来做客户数据的挖掘工作,比如建立一个能筛选满足某种要求的客户群的模型。 机器识别人和我们人类识别人的机理大体相似,看到一个人也就是识别对象以后,我们首先提取其关键的外部特征比如身高,体形,面部特征,声音等等。根据这些信息大脑迅速在内部寻找相关的记忆区间,有这个人的信息的话,这个人就是熟人,否则就是陌生人。 人工神经网络就是这种机理。假设上图中X(1)代表我们为电脑输入的人的面部特征,X(2)代表人的身高特征X(3)代表人的体形特征X(4)代表人的声音特征W(1)W(2)W(3)W(4)分别代表四种特征的链接权重,这个权重非常重要,也是人工神经网络起作用的核心变量。 现在我们随便找一个人阿猫站在电脑面前,电脑根据预设变量提取这个人的信息,阿猫面部怎么样,身高多少,体形胖瘦,声音有什么特征,链接权重初始值是随机的,假设每一个W均是0.25,这时候电脑按这个公式自动计 算,Y=X(1)*W(1)+X(2)*W(2)+X(3)*W(3)+X(4)*W(4)得出一个结果Y,这个Y要和一个门槛值(设为Q)进行比较,如果Y>Q,那么电脑就判定这个人是阿猫,否则判定不是阿猫.由于第一次计算电脑没有经验,所以结果是随机的.一般我们设定是正确的,因为我们输入的就是阿猫的身体数据啊. 现在还是阿猫站在电脑面前,不过阿猫怕被电脑认出来,所以换了一件衣服,这个行为会影响阿猫的体形,也就是X(3)变了,那么最后计算的Y值也就变了,它和Q比较的结果随即发生变化,这时候电脑的判断失误,它的结论是这个人不是阿猫.但是我们告诉它这个人就是阿猫,电脑就会追溯自己的判断过程,到底是哪一步出错了,结果发现原来阿猫体形X(3)这个 体征的变化导致了其判断失误,很显然,体形X(3)欺骗了它,这个属性在人的识别中不是那 么重要,电脑自动修改其权重W(3),第一次我对你是0.25的相信,现在我降低信任值,我0.10的相信你.修改了这个权重就意味着电脑通过学习认为体形在判断一个人是否是自己认识的人的时候并不是那么重要.这就是机器学习的一个循环.我们可以要求阿猫再穿一双高跟皮鞋改变一下身高这个属性,让电脑再一次进行学习,通过变换所有可能变换的外部特征,轮换让电脑学习记忆,它就会记住阿猫这个人比较关键的特征,也就是没有经过修改的特征.也就是电脑通过学习会总结出识别阿猫甚至任何一个人所依赖的关键特征.经过阿猫的训练电脑,电脑已经非常聪明了,这时你在让阿猫换身衣服或者换双鞋站在电脑前面,电脑都可以迅速的判断这个人就是阿猫.因为电脑已经不主要依据这些特征识别人了,通过改变衣服,身高骗不了它.当然,有时候如果电脑赖以判断的阿猫关键特征发生变化,它也会判断失误.我们就

倒立摆实验报告(现代控制理论)

现代控制理论实验报告 ——倒立摆 小组成员: 指导老师: 2013.5

实验一建立一级倒立摆的数学模型一、实验目的 学习建立一级倒立摆系统的数学模型,并进行Matlab仿真。二、实验内容 写出系统传递函数和状态空间方程,用Matlab进行仿真。三、Matlab源程序及程序运行的结果 (1)Matlab源程序见附页 (2)给出系统的传递函数和状态方程 (a)传递函数gs为摆杆的角度: >> gs Transfer function: 2.054 s ----------------------------------- s^3 + 0.07391 s^2 - 29.23 s - 2.013 (b)传递函数gspo为小车的位移传递函数: >> gspo Transfer function: 0.7391 s^2 - 20.13 --------------------------------------- s^4 + 0.07391 s^3 - 29.23 s^2 - 2.013 s (c)状态矩阵A,B,C,D: >> sys a = x1 x2 x3 x4 x1 0 1 0 0 x2 0 -0.07391 0.7175 0 x3 0 0 0 1 x4 0 -0.2054 29.23 0 b = u1 x1 0 x2 0.7391 x3 0 x4 2.054 c = x1 x2 x3 x4 y1 1 0 0 0 y2 0 0 1 0 d = u1

y1 0 y2 0 Continuous-time model. (3)给出传递函数极点和系统状态矩阵A的特征值(a)传递函数gs的极点 >> P P = 5.4042 -5.4093 -0.0689 (b)传递函数gspo的极点 >> Po Po = 5.4042 -5.4093 -0.0689 (c)状态矩阵A的特征值 >> E E = -0.0689 5.4042 -5.4093 (4)给出系统开环脉冲响应和阶跃响应的曲线(a)开环脉冲响应曲线

神经网络算法的软件应用研究

第1期(总第125期)机械管理开发 2012年2月No.1(S UM No.125) M EC HANIC AL M ANAGEM ENT AND DEVELOPM ENT Feb.2012 0引言 从第一台计算机发明以来,以计算机为中心的信息处理技术得到迅速发展,然而,计算机在处理一些人工智能的问题时遇到很大困难。一个人很容易辨认出他人的脸庞,而计算机却很难做到。这是因为传统的信息处理,都有精确的模型做指导,而人工智能却没有,很难为计算机编写明确的指令或程序。大脑是由生物神经元构成的巨型网络,本质上不同于计算机,是一种大规模的秉性处理系统,它有学习、联想、记忆、综合等能力,并有巧妙的信息处理方法。神经元不仅是组成大脑的基本单元,而且是大脑进行信息处理的基本单元。 人工神经网络(Artificial Neural Netw ork-ANN )是对人脑最简单的一种抽象和模拟,是模仿人的大脑神经系统信息处理功能的一个智能化系统,也是人们进一步解开人脑思维奥秘的有力工具。智能是指对环境的适应和自我调整能力,人工神经网络是有智能的。预测作为决策的前提和基础,对最终决策方案的选择具有至关重要的作用。1神经网络的观念介绍1.1 神经网络的模型与内涵 神经网络的学习可分为有导师学习和无导师学习。有导师学习是指基于知识系统,在实际的学习过程中,需要通过给定的输入输出数据,所进行的一种学习方式。无导师学习是指通过系统自身的学习,来达到期望的学习结果,所进行的一种学习。该学习不需要老师为系统提供各种精确的输入输出信息和有关知识,而只需提供系统所期望达到的目标和结果。 1)MP 模型。每个神经元的状态由M P 方程决定,U i =f ((ΣT ij *V j )-θi ).其意义是每个神经元的状态是由一定强度(权值Tij )的外界刺激(输入Vj )累加后经过细胞体加工(激励函数f (x))产生一个输出。神经元的模型,见图1 。 图1神经元的模型 2)联想学习。Hebb 定理:神经元i 和神经元j 之间,同时处于兴奋状态,则他们间的连接应该加强,即 △Wij =αS i *S j.. 1.2 神经网络的几何意义与样本 1)神经网络的几何意义。N 个神经元(j =1..n )对神经元i 的总输入I i 为:I i =ΣW ij x j -θi 令I =0,得到一个几何上的超平面。从几何角度看,一个神经元代表一个超平面。超平面将解空间分为3部分:平面本身、平面上部、平面下部,神经元起到分类的作用。 2)线性样本和非线性样本。现举两例说明:OR (逻辑加法):输入为((0,0),(0,1),(1,0),(1,1)),期望输出为(0,1,1,1),见图2(a )。XOR (异或运算): 输入为((0,0),(0,1),(1,0),(1,1)),期望输出为(0,1,1,0),见图2(b )。非线性样本在最早的感知机模型中遇到了障碍,因为感知机的两层网络结构不能对非线性样本 进行超平面的划分。 (a )样本能够均匀的分布 (b )不存在一个超平面 在超平面的两侧 能将样本区分开 图2超平面的划分举例 3)非线性样本转化为线性样本。一个超平面不 收稿日期:;修回日期:作者简介:白 鹏(),男,山西太原人,在读工程硕士,研究方向:计算机软件开发。 神经网络算法的软件应用研究 白 鹏 (太原理工大学计算机科学与技术学院,山西 太原 030024) 摘 要:B ackPropagation 神经网络是重要的人工神经网络,有强大的非线性映射、自学习、泛化容错能力,并能充分 考虑主观因素,具有启发式搜索的特点。主要介绍BP 网络算法用JAVA 语言的实现方式及其在预测股票价格方面的应用。 关键词:神经网络;人工神经网络;预测中图分类号:TP391.9 文献标识码:A 文章编号:1003-773X (2012)01-0201-03 2011-04-142011-09-101979-201

人工神经网络BP算法简介及应用概要

科技信息 2011年第 3期 SCIENCE &TECHNOLOGY INFORMATION 人工神经网络是模仿生理神经网络的结构和功能而设计的一种信息处理系统。大量的人工神经元以一定的规则连接成神经网络 , 神经元之间的连接及各连接权值的分布用来表示特定的信息。神经网络分布式存储信息 , 具有很高的容错性。每个神经元都可以独立的运算和处理接收到的信息并输出结果 , 网络具有并行运算能力 , 实时性非常强。神经网络对信息的处理具有自组织、自学习的特点 , 便于联想、综合和推广。神经网络以其优越的性能应用在人工智能、计算机科学、模式识别、控制工程、信号处理、联想记忆等极其广泛的领域。 1986年 D.Rumelhart 和 J.McCelland [1]等发展了多层网络的 BP 算法 , 使BP 网络成为目前应用最广的神经网络。 1BP 网络原理及学习方法 BP(BackPropagation 网络是一种按照误差反向传播算法训练的多层前馈神经网络。基于 BP 算法的二层网络结构如图 1所示 , 包括输入层、一个隐层和输出层 , 三者都是由神经元组成的。输入层各神经元负责接收并传递外部信息 ; 中间层负责信息处理和变换 ; 输出层向 外界输出信息处理结果。神经网络工作时 , 信息从输入层经隐层流向输出层 (信息正向传播 , 若现行输出与期望相同 , 则训练结束 ; 否则 , 误差反向进入网络 (误差反向传播。将输出与期望的误差信号按照原连接通路反向计算 , 修改各层权值和阈值 , 逐次向输入层传播。信息正向传播与误差反向传播反复交替 , 网络得到了记忆训练 , 当网络的全局误差小于给定的误差值后学习终止 , 即可得到收敛的网络和相应稳定的权值。网络学习过程实际就是建立输入模式到输出模式的一个映射 , 也就是建立一个输入与输出关系的数学模型 :

机器学习算法汇总:人工神经网络、深度学习及其它

学习方式 根据数据类型的不同,对一个问题的建模有不同的方式。在机器学习或者人工智能领域,人们首先会考虑算法的学习方式。在机器学习领域,有几种主要的学习方式。将算法按照学习方式分类是一个不错的想法,这样可以让人们在建模和算法选择的时候考虑能根据输入数据来选择最合适的算法来获得最好的结果。 监督式学习: 在监督式学习下,输入数据被称为“训练数据”,每组训练数据有一个明确的标识或结果,如对防垃圾邮件系统中“垃圾邮件”“非垃圾邮件”,对手写数字识别中的“1“,”2“,”3“,”4“等。在建立预测模型的时候,监督式学习建立一个学习过程,将预测结果与“训练数据”的实际结果进行比较,不断的调整预测模型,直到模型的预测结果达到一个预期的准确率。监督式学习的常见应用场景如分类问题和回归问题。常见算法有逻辑回归(Logistic Regression)和反向传递神经网络(Back Propagation Neural Network) 非监督式学习:

在非监督式学习中,数据并不被特别标识,学习模型是为了推断出数据的一些内在结构。常见的应用场景包括关联规则的学习以及聚类等。常见算法包括Apriori算法以及k-Means算法。 半监督式学习: 在此学习方式下,输入数据部分被标识,部分没有被标识,这种学习模型可以用来进行预测,但是模型首先需要学习数据的内在结构以便合理的组织数据来进行预测。应用场景包括分类和回归,算法包括一些对常用监督式学习算法的延伸,这些算法首先试图对未标识数据进行建模,在此基础上再对标识的数据进行预测。如图论推理算法(Graph Inference)或者拉普拉斯支持向量机(Laplacian SVM.)等。 强化学习:

(完整版)bp神经网络算法.doc

BP 神经网络算法 三层 BP 神经网络如图: 目标输出向量 传递函数 g 输出层,输出向量 权值为 w jk 传递函数 f 隐含层,隐含层 输出向量 输 入 层 , 输 入 向量 设网络的输入模式为 x (x 1 , x 2 ,...x n )T ,隐含层有 h 个单元,隐含层的输出为 y ( y 1 , y 2 ,...y h )T ,输出 层有 m 个单元,他们的输出为 z (z 1 , z 2 ,...z m )T ,目标输出为 t (t 1 ,t 2 ,..., t m )T 设隐含层到输出层的传 递函数为 f ,输出层的传递函数为 g n n 于是: y j f ( w ij x i ) f ( w ij x i ) :隐含层第 j 个神经元的输出;其中 w 0 j , x 0 1 i 1 i 0 h z k g( w jk y j ) :输出层第 k 个神经元的输出 j 此时网络输出与目标输出的误差为 1 m (t k z k ) 2 ,显然,它是 w ij 和 w jk 的函数。 2 k 1 下面的步骤就是想办法调整权值,使 减小。 由高等数学的知识知道:负梯度方向是函数值减小最快的方向 因此,可以设定一个步长 ,每次沿负梯度方向调整 个单位,即每次权值的调整为: w pq w pq , 在神经网络中称为学习速率 可以证明:按这个方法调整,误差会逐渐减小。

BP 神经网络(反向传播)的调整顺序为:1)先调整隐含层到输出层的权值 h 设 v k为输出层第k个神经元的输入v k w jk y j j 0 ------- 复合函数偏导公式 1 g'(u k ) e v k 1 (1 1 ) z k (1 z k ) 若取 g ( x) f (x) 1 e x,则(1e v k) 2 1e v k 1e v k 于是隐含层到输出层的权值调整迭代公式为:2)从输入层到隐含层的权值调整迭代公式为: n 其中 u j为隐含层第j个神经元的输入: u j w ij x i i 0 注意:隐含层第j 个神经元与输出层的各个神经元都有连接,即涉及所有的权值w ij,因此 y j m (t k z k )2 z k u k m y j k 0 z k u k y j (t k z k ) f '(u k )w jk k 0 于是: 因此从输入层到隐含层的权值调整迭代为公式为: 例: 下表给出了某地区公路运力的历史统计数据,请建立相应的预测模型,并对给出的 2010 和 2011 年的数据,预测相应的公路客运量和货运量。 人数 ( 单位:机动车数公路面积 ( 单公路客运量公路货运量 时间( 单位:万位:万平方公( 单位:万( 单位:万万人 ) 辆 ) 里) 人 ) 吨 ) 1990 20.55 0.6 0.09 5126 1237 1991 22.44 0.75 0.11 6217 1379 1992 25.37 0.85 0.11 7730 1385 1993 27.13 0.9 0.14 9145 1399 1994 29.45 1.05 0.2 10460 1663 1995 30.1 1.35 0.23 11387 1714 1996 30.96 1.45 0.23 12353 1834 1997 34.06 1.6 0.32 15750 4322 1998 36.42 1.7 0.32 18304 8132 1999 38.09 1.85 0.34 19836 8936 2000 39.13 2.15 0.36 21024 11099 2001 39.99 2.2 0.36 19490 11203 2002 41.93 2.25 0.38 20433 10524 2003 44.59 2.35 0.49 22598 11115 2004 47.3 2.5 0.56 25107 13320 2005 52.89 2.6 0.59 33442 16762 2006 55.73 2.7 0.59 36836 18673

哈工大一阶倒立摆

哈尔滨工业大学 控制科学与工程系 控制系统设计课程设计报告

姓名:院(系): 专业:自动化班号: 任务起至日期: 2014 年9 月9 日至 2014 年9 月20 日 课程设计题目:直线一级倒立摆控制器设计 已知技术参数和设计要求: 本课程设计的被控对象采用固高公司的直线一级倒立摆系统GIP-100-L。 系统内部各相关参数为: M小车质量0.5kg; m摆杆质量0.2kg; b小车摩擦系数0.1N/m/sec; l摆杆转动轴心到杆质心的长度0.3m; I摆杆惯量0.006kg*m*m; T采样时间0.005秒。 设计要求: 1.推导出系统的传递函数和状态空间方程。用Matlab进行阶跃输入仿真,验证系统的稳定性。 2.设计PID控制器,使得当在小车上施加0.1N的脉冲信号时,闭环系统的响应指标为: (1)稳定时间小于5秒; (2)稳态时摆杆与垂直方向的夹角变化小于0.1弧度。 3.设计状态空间极点配置控制器,使得当在小车上施加0.2m的阶跃信号时,闭环系统的响应指标为: (1)摆杆角度错误!未找到引用源。和小车位移x的稳定时间小于3秒 (2)x的上升时间小于1秒 (3)错误!未找到引用源。的超调量小于20度(0.35弧度) (4)稳态误差小于2%。 工作量: 1.建立直线一级倒立摆的线性化数学模型; 2.倒立摆系统的PID控制器设计、Matlab仿真及实物调试; 3.倒立摆系统的极点配置控制器设计、Matlab仿真及实物调试。

哈尔滨工业大学 (1) 控制系统设计课程设计报告 (1) 一.实验设备简介 (3) 二.直线一阶倒立摆数学模型的推导 (6) 2.1概述 (6) 2.2数学模型的建立 (7) 2.3一阶倒立摆的状态空间模型: (9) 2.4实际参数代入: (10) 三.定量、定性分析系统的性能 (11) 3.1 对系统的稳定性进行分析 (11) 3.2 对系统的稳定性进行分析: (12) 四. 实际系统的传递函数与状态方程 (13) 五. 系统阶跃响应分析 (14) 六.一阶倒立摆PID控制器设计 (15) 6.1 PID控制分析 (15) 6.2 PID控制参数设定及MATLAB仿真 (17) 6.3 PID控制实验 (18) 七.状态空间极点配置控制器设计 (19) 7.1 状态空间分析 (20) 7.2 极点配置及MA TLAB仿真 (21) 7.3 利用爱克曼公式计算 (21) 八.课程设计心得与体会 (22) 一.实验设备简介 倒立摆控制系统:Inverted Pendulum System (IPS) 倒立摆控制系统是一个复杂的、不稳定的、非线性系统,是进行控制理论教学及开展各种控制实验的理想实验平台。对倒立摆系统的研究能有效的反映控制中的许多典型问题:如非线性问题、鲁棒性问题、镇定问题、随动问题以及跟踪问题等。通过对倒立摆的控制,用来检验新的控制方法是否有较强的处理非线性和不稳定性问题的能力。同时,其控制方法在军工、航天、机器人和一般工业过程领域中都有着广泛的用途,如机器人行走过程中的平衡控制、火箭发射中的垂直度控制和卫星飞行中的姿态控制等。 倒立摆是进行控制理论研究的典型实验平台。倒立摆是机器人技术、控制理论、计算机控制等多个领域、多种技术的有机结合,其被控系统本身又是一个绝对不稳定、高阶次、多变量、强耦合的非线性系统,可以作为一个典型的控制对象对其进行研究。最初研究开始于二十世纪50 年代,麻省理工学院(MIT)的控制论专家根据火箭发射助推器原理设计出一级倒立摆实验设备。近年来,新的控制方法不断出现,人们试图通过倒立摆这样一个典型的控制对象,检验新的控制方法是否有较强的处理多变量、非线性和绝对不稳定系统的能力,从而从中找出最优秀的控制方法。

相关主题
文本预览
相关文档 最新文档