当前位置:文档之家› 微积分论文 高等数学论文

微积分论文 高等数学论文

微积分论文 高等数学论文
微积分论文 高等数学论文

微积分论文高等数学论文

浅谈微积分中的反例

摘要:本文列举了微积分中常见的典型反例,并论述了反例在微积分教学中的作用:一方面可以强化概念、揭示概念的内涵,准确把握概念之间的关系,透彻理解定理的条件;另一方面有助于培养学生的逆向思维能力,更有助于培养学生的数学技能。

Abstract:This article lists Calculus common typical counter-examples and discusses the role of counter-examples in Calculus Teaching. On the one hand,the counter-examples can strengthen the concept and reveal connotation of the concept,it make student exactly grasp the relationship between the concepts,thoroughly understand the conditions of theorem. On the other hand it trains students reverse thinking,what is more it helps to develop the math skills of students.

关键词:反例;微积分;函数;微分;积分

Key words:counter-examples; Calculus; function; Differential; Integral

0引言

用命题形式给出的一个数学问题,要判断它是错误的,利用只满足命题的条件但是结论不成立的例证,就足以否定这个命题,这就是反例。通过举出反例从而证明一个命题的虚假性的方法叫做反例法。

反例思想是微积分中的重要思想,用逆向思维方法从问题反面出发,可以解决用直接方法很难或无法解决的问题。在微积分中存在大量的反例,其意义远远超过了它的具体内容,除了它能帮助学生深入地理解有关数学对象性质之外,还促进了学生的辨证思维方式的形成。

1连续、可导、可微问题

微积分中对于无穷大与无界、极大(小)值与最大(小)值以及可导与连续等容易混淆的概念之间的关系,可以通过运用适当的反例进行准确理解把握。同时也能培养与提高学生的辩证思维能力。

情形1 若函数f(x)在a连续,则函数f(x)在a也连续,但其逆命题不成立。

反例:函数

f(x)=1,x?叟0-1,x<0,

虽然f(x)=1在x=0处连续,但f(x)在x=0处不连续。

情形2 可导函数必定是连续函数。那么“连续函数必定是可导函数?答:不一定。

反例:函数f(x)=x+1,在x=0连续,但在x=0不可导,事实上,f(x)=x+1=1=f(0),所以f(x)在x=0连续;但极限==1或-1不相等,所以f(x)在x=0不可导。

情形3 函数f(x)在x=x0处可导,则函数f(x)在x=x0的邻域内不一定连续。

反例:函数

f(x)=x,x为有理数0,x为无理数,

在x=0处可导,但在0点的任何邻域,除0点外都不连续。

情形4 f(x)在x=x0处可导,则f(x)在x=x0处是否有连续导数?

反例:函数f(x)=xcosx≠0 0x=0 在x=0处可导,但导数不连续。

事实上,f′(0)===xcos=0,即f(x)在x=0处可导,但当x ≠0时,f′(x)=2xcos-xsin?-=2xcos+sin

极限f′(x)=2xcos-xsin?-=2xcos+sin不存在,即f(x)的导数不连续。

综上归结,对一元函数f(x)在点x0可有:可微?圳可导连续有极限。通过恰当的反例可以快捷而准确地把握它们之间所存在的关系。

情形5 当f(x0)≠0时,由f(x)在x0可导不一定能推出f(x)在x0可导。

反例:函数f(x)= x,x∈[0,1]-x,x∈[1,2],而f(x)=x,x∈[0,2],显然f(x)在x0=1处可导,但f(x)在x0=1处不可导。

情形6下面命题是否成立:若f(x)在(a,b)内可导,则在(a,b)内必定存在ξ,使得f′(ξ)=?

事实上,举出这样的反例:f(x)=x,0

2可积问题

情形7若函数f(x)在区间[a,b]上可积,则函数f(x)在区间[a,b]上也可积,且f(x)dx?燮f(x)dx,但其逆命题不成立,即当函数f(x)在区间[a,b]上可积时,函数f(x)在区间[a,b]上不一定可积。

反例:函数

f(x)= 1,x为有理数-1,x为无理数

函数在[0,1]上不可积,而f(x)≡1,这是常函数,显然在[0,1]上可积。

3无穷大量与无界量问题

情形8 无穷大量是无界量,但无界量不一定是无穷大量。

反例:f(x)=xcosx 当x→∞时f(x)为无界量。事实上,对无论多大的G>0,总存在x=nπ,当n>时,有f(x)=nπcosnπ=nπ>G 然而,当x→∞时,若取x=nπ+此时f(x)=nπ+cosnπ+=0。即f (x)并不趋于∞。

4函数的极大(小)值与最大(小)值问题

情形9[4]可导函数的极值点一定是函数的驻点,但驻点不一定是函数的极值点。

反例:x=0是函数f(x)=x3的驻点,但不是其极值点。

情形10 函数f(x)的极大(小)值不一定就是最大(小)值。

反例:函数f(x)=x-4x+3x+1,x∈[-1,3],由于f′(x)=4x-8x+3=4(x-1)-1,易见x=或x=为f(x)的稳定点,列表如下:

由上表可知:点为f(x)的极大值点,极大值为;点x=为f(x)的极小值点,极小值为1。但函数f(x)在点x=3取得最大值为6,在点x=-1取得最小值为-。

上述归结,若函数f(x)在闭区间[a,b]上连续,则f(x)在[a,b]上一定有最大、最小值。若函数f(x)的最大(小)值点x0在区间内,则x0必定是f(x)的极大(小)值点。但f(x)的最大(小)值也可能在区间端点处取得,则f(x)的极大(小)值不一定就是最大(小)值,要通过比较才能确定。

5结语

微积分中的反例有助于提高学生的数学逻辑思维能力,突出数学所表达的逆向思维以及体现了数学的严谨性.透彻理解命题、定理条件的充分性及必要性,为了分清条件的充分性与必要性使用恰当的反例是非常有好处的。反例对巩固和加深对概念与定理的理解,以及对掌握相关概念的差异和层次方面有着正面说明或证明所无法取代的作用。

在微积分的教学中,反例的试举已成为提高教学质量的重要的一环。另一方面:“反例教学”对培养学生的数学思维能力方面的作用也是显著的。它不仅有助于培养学生纵向思维能力,而且有助于培养和发展学生的横向思维能力,更有助于培养学生的数学技能,并使学生养成严格推理、全面分析问题的能力。

参考文献:

[1]刘福保.反例教学法在数学分析中的作用和构造[J].科技创新导报,2009,NO.11.

[2]薛迎杰.浅谈反例在高等数学教学中的作用[J].中国校外教育,下旬刊.

[3]马建珍.反例在数学分析中的作用[J].宜宾学院学报,2006,6(12).

[4]华东师范大学数学系.数学分析(第三版) [M].北京:高等教育出版社,2001.

微积分笔记

第一章 函数、极限和连续 §1.1 函数 一、 主要内容 ㈠ 函数的概念 1. 函数的定义: y=f(x), x ∈D 定义域: D(f), 值域: Z(f). 2.分段函数: ?? ?∈∈=2 1 ) ()(D x x g D x x f y 3.隐函数: F(x,y)= 0 4.反函数: y=f(x) → x=φ(y)=f -1(y) y=f -1 (x) 定理:如果函数: y=f(x), D(f)=X, Z(f)=Y 是严格单调增加(或减少)的;则它必定存在反函数: y=f -1(x), D(f -1)=Y, Z(f -1)=X 也是严格单调增加(或减少)的。 ㈡ 函数的几何特性 1.函数的单调性: y=f(x),x ∈D,x 1、x 2∈D 当x 1<x 2时, 若f(x 1)≤f(x 2),则称f(x)在D 内单调增加( ); 若f(x 1)≥f(x 2),则称f(x)在D 内单调减少( ); 若f(x 1)<f(x 2),则称f(x)在D 内严格单调增加( ); 若f(x 1)>f(x 2),则称f(x)在D 内严格单调减少( )。 2.函数的奇偶性:D(f)关于原点对称 奇函数:f(-x)=-f(x) 偶函数:f(-x)=f(x) 3.函数的周期性: 周期函数:f(x+T)=f(x), x ∈(-∞,+∞) 周期:T ——最小的正数 4.函数的有界性: |f(x)|≤M , x ∈(a,b) ㈢ 基本初等函数 1.常数函数: y=c , (c 为常数) 2.幂函数: y=x n , (n 为实数) 3.指数函数: y=a x , (a >0、a ≠1) 4.对数函数: y=log a x ,(a >0、a ≠1) 5.三角函数: y=sin x , y=con x y=tan x , y=cot x y=sec x , y=csc x 6.反三角函数:y=arcsin x, y=arccon x y=arctan x, y=arccot x ㈣ 复合函数和初等函数 1.复合函数: y=f(u) , u=φ(x) y=f[φ(x)] , x ∈X 2.初等函数:由基本初等函数经过有限次的四则运算(加、减、乘、除)和复合所构成的,并且能用一个数学式子表示的函数 §1.2 极 限 一、 主要内容 ㈠极限的概念 1. 数列的极限: A y n n =∞ →lim 称数列{}n y 以常数A 为极限;或称数列{}n y 收敛于A. 定理: 若{}n y 的极限存在 ?{}n y 必定有界.

高等数学微积分总结

积 分 整个高数课本,我们一共学习了不定积分,定积分,重积分(二重,三重),曲线积分(两类),曲面积分(两类).在此,我们对 积分总结,比较,以期同学们对积分有一个整体的认识. 一、不定积分 不定积分是微分的逆运算,其计算方法、各种技巧是我们后面各种积分计算的基础,希望同学们熟记积分公式,及各种 方法(两类换元,分部积分,有理函数积分等) 二、定积分 1.定义式: ()b a f x dx ? 2.定义域:一维区间,例如[,]a b 3.性质:见课本P 229-P 232 特殊:若 1f =,则()b a f x dx b a =-?,即区间长度. 4.积分技巧:奇偶对称性. 注意:定积分中积分变量可以任意替换即()()b b a a f x dx f y dy =? ?,而不定积分不具有这种性质. 5.积分方法:与不定积分的方法相同. 6.几何应用: 定积分的几何意义: ()b a f x dx ? 表示以()f x 为顶与x 轴所夹区域面积的代数和(注意如()0f x <,则面积为负); 其他应用:如 ()f x 表示截面积,则积分为体积;平面弧长 (b a f x ? 等. 三、二重积分 1.定义式: (,)xy D f x y d σ ?? 2.定义域:二维平面区域 3.性质:见下册课本P 77 特殊: 若 1f =,则(,)xy D f x y dxdy S =?? ,即S 为xy D 的面积. 4.坐标系: ①直角坐标系: X 型区域,Y 型区域 ②极坐标系:适用范围为圆域或扇形区域,注意坐标转换后不要漏掉r ,积分时一般先确定θ的范围,再确定r 的范围. 5.积分技巧:奇偶对称性(见后),质心; 6.几何应用: 二重积分的几何意义:若(,)0f x y ≥,则(,)xy D f x y dxdy ?? 表示以(,)f x y 为顶以xy D 为底的曲顶柱体体积; 其他应用:求曲面(,)z z x y =的面积xy D ?? 四、三重积分 1.定义式 (,,)f x y z dv Ω??? 2.定义域:三维空间区域; 3.性质:与二重积分类似; 特殊: 若 1f =,则(,,)f x y z dv V Ω =???,其中V 表示Ω的体积. 4.坐标系: ①直角坐标系:投影法,截面法(一般被积函数有一个自变量,而当该变量固定时所得截面 积易求时采用) ②柱坐标系:积分区域为柱形区域,锥形区域,抛物面所围区域时可采用; ③球坐标系:积分区域为球域或与球面相关的区域时,确定自变量范围时,先θ,后?,最后 r . 5.积分技巧:奇偶对称性,变量对称性(见后),质心等. 6.应用: (,,)f x y z 表示密度,则(,,)f x y z dv Ω ???为物体质量.(不考虑几何意义) 五、第一类曲线积分

高等数学笔记

第1章函数 §1 函数的概念 一、区间、邻域 自然数集N整数集Z有理数集Q实数集R 建立数轴后: 建立某一实数集A与数轴上某一区间对应 区间:设有数a,b,a0),则称实数集{x|a?δ

a称为N(a,δ)的中心,δ>0称为邻域N(a,δ)的半径。 去心邻域:把N(a,δ)的中心点a去掉,称为点a的去心邻域,记为N(a^,δ)={x|0<|x?a|<δ}=N(a,δ)?{a} 注:其中,?{a}表示去掉由a这一个数组成的数集。 二、函数概念 例1. 设圆的半径为x(x>0),它的面积A=πx2,当x在(0,+∞)内任取一个数值(记为?x∈(0,+∞))时,由关系式A=πx2就可以确定A的对应数值。 文章来源:https://www.doczj.com/doc/bd4700445.html,/ 例2. 设有半径为r的圆,作圆的内接正n边形,每一边对应的圆心角α=2πn,周长S n=n?2r sinπn,当边数n在自然数 集N(n≥3)任取一个数,通过关系式S n=2nr sinπn就有一个S n对应确定数值。 函数定义:设有数集X,Y,f是一个确定的对应法则,对?x∈X,通过对应法则f都有唯一的y∈Y与x对应,记为x→f y,或f(x)=y,则称f为定义在X上的函数。 其中X称为f的定义域,常记为D f。 X——自变量,Y——因变量。 当X遍取X中的一切数时,那么与之对应的y值构成一个数集V f={y|y=f(x),x∈X},称V f为函数f的值域。 文章来源:https://www.doczj.com/doc/bd4700445.html,/ 注意: (1)一个函数是由x,y的对应法则f与x的取值范围X所确定的。把“对应法则f”、“定义域”称为函数定义的两个要素。 例如,y=arcsin(x2+2)这个式子,由于x2+2>2,而只有当|x2+2|≤1时,arcsin才有意义,因此这个式子不构成函数关系。又例如,y=ln x2与y=2ln x不是同一个函数,因为定义域不同。而y=ln x2与y=2ln|x|是同一个函数,因为定义域相同。(2)函数的值域是定义域和对应法则共同确定的。 (3)确定函数定义域时,注意:若函数有实际意义,需依据实际问题是否有意义来确定。 若函数不表示某实际问题,则定义域为自变量所能取得的使函数y=f(x)成立的一切实数所组成的数值。 函数的几何意义:设函数y=f(x)定义域为D f,?x∈D f,对应函数值y=f(x)在XOY平面上得到点(x,y),当x遍取D f中一切实数时,就得到点集P={(x,y)|y=f(x),x∈D f}。点集P称为函数y=f(x)的图形。 文章来源:https://www.doczj.com/doc/bd4700445.html,/ 三、函数的几个简单性质 1. 函数的有界性 若?M>0,s.t.|f(x)|≤M,x∈I,则称y=f(x)在区间I上有界。否则称f(x)在I上无界。 注:s.t.是“使得,满足于”的意思,I表示某个区间。

大学微积分知识点总结

【第五部分】不定积分 1.书本知识(包含一些补充知识) (1)原函数:F ’(x )=f (x ),x ∈I ,则称F (x )是f (x )的一个“原函数”。 (2)若F (x )是f (x )在区间上的一个原函数,则f (x )在区间上的全体函数为F (x )+c (其中c 为常数) (3)基本积分表 c x dx x +?+?=?+???11 1 (α≠1,α为常数) (4)零函数的所有原函数都是c (5)C 代表所有的常数函数 (6)运算法则 []??????±?=?±??=??dx x g dx x f dx x g x f dx x f a dx x f a )()()()()()(②① (7 )[][]c x F dx x x f +=??)()(')(???复合函数的积分: c b x F dx b x f c b ax F a b ax d b ax f a dx b ax f ++=?+++?=+?+?=?+???)()()(1)()(1)(一般地, (9)连续函数一定有原函数,但是有原函数的函数不一定连续,没有原函数的函数一定不连续。 (10)不定积分的计算方法 数乘运算 加减运算 线性运算 (8)

①凑微分法(第一换元法),利用复合函数的求导法则 ②变量代换法(第二换元法),利用一阶微分形式不变性 ③分部积分法: 【解释:一阶微分形式不变性】 释义:函数 对应:y=f(u) 说明: (11)分段函数的积分 例题说明:{}dx x? ?2,1 max (12)在做不定积分问题时,若遇到求三角函数奇次方的积分,最好的方法是将其中的一 (16)隐函数求不定积分 例题说明: (17)三角有理函数积分的万能变换公式 (18)某些无理函数的不定积分 ②欧拉变换 (19)其他形式的不定积分

高等数学学习笔记

第一章 代数运算与自然数 主要内容: 1、集合与映射的概念 2、映射及其运算 3、代数系统 4、自然数及其他相关定义 5、归纳法原理与反归纳法的运用 重点掌握 1、由A →B 的单映射σ的定义为:设2121,,,:a a A a A a B A ≠∈∈→若由σ,就推出)()21a a σσ≠(,则称σ为从A 到B 的单映射。 2、由A →B 的满映射σ的定义为:设B ran B A =→)(,:σσ若,则称σ为从A 到B 的满映射。 3、给出一个由整数集合Z 到自然数集合N 的双射:可考虑分段映射,即将定义域分为小于0、等于0、大于0的整数三部分分别给出其象 4、若集合|A|=n ,则集合A →A 的映射共有n n 种。 5、皮阿罗公理中没有前元的元素为1。 6、自然数a 与b 加法的定义中两个条件为①:'1a a =+②:)'('b a b a +=+. 7、自然数a 与b 相乘的定义中两个条件为: ①:a a =?1;②:a b a b a +?=?' 8、自然数a>b 的定义为:如果给定的两个自然数a 与b 存在一个数k,使得a=b+k ,则称a 大于b,b 小于a,记为a>b 或b

12、若A 是有限集合,则A →A 的不同映射个数为:||||A A 。 13、从整数集合Z 到自然数集合N 存在一个单映射。 14、若A 是有限集合,则不存在A 到其真子集合的单映射。 15、若A 为无限集合,则存在A 的真子集合B 使其与A 等价。 16、存在从自然数集合N 到整数集合Z 的一个满映射,但不是单映射。 可考虑将定义域分成奇数、偶数两部分,定义一个与n )1(-有关的映射 17、存在从自然数N 到整数集合Z 的双射。 可考虑分段映射 18、代数系统(+R ,?)与代数系统(R,+)是同构的,其中+R 表示正实数集合,R 表示实数集合,?与+就是通常的实数乘法与加法。 根据同构定义,只需找到一个从(+R ,?)到(R,+)的一一映射,例如lgx 就可以证明上述论述。 19、令+Q 为正有理数集合,若规定 2 b a b a +=⊕,ab b a =? 则: (1){+Q ,⊕}构成代数体系,但不满足结合律。 (2){+Q ,?}不构成代数体系,但满足结合律。 根据代数体系和结合律的定义可得上述论述成立。 20、若在实数集合中规定b a ⊕=a+b-a ×b ,其中+与×是通常的加法与乘法,则⊕满足结合律。 只需证明等式(b a ⊕)⊕c=)(c b a ⊕⊕成立 21、分别利用归纳法与反归纳法可以证明n 个数的算术平均值大于等于这n 个数的几何平均值。 归纳法根据定义易证,在运用反归纳法证明时可先证n=2,4,…,n 2都成立,假设命题对n=k 成立,令,...21k a a a S k k +++= 1 ...1211-+++=--k a a a S k k ,利用12111...---≥k k k a a a S 证之成立

微积分知识点小结

第一章 函数 一、本章提要 基本概念 函数,定义域,单调性,奇偶性,有界性,周期性,分段函数,反函数,复合函数,基本初等函数,初等函数 第二章 极限与连续 一、本章提要 1.基本概念 函数的极限,左极限,右极限,数列的极限,无穷小量,无穷大量,等价无穷小,在一点连续,连续函数,间断点,第一类间断点(可去间断点,跳跃间断点),第二类间断点. 2.基本公式 (1) 1sin lim 0=→口 口口, (2) e )11(lim 0=+→口口口 (口代表同一变量). 3.基本方法 ⑴ 利用函数的连续性求极限; ⑵ 利用四则运算法则求极限; ⑶ 利用两个重要极限求极限; ⑷ 利用无穷小替换定理求极限; ⑸ 利用分子、分母消去共同的非零公因子求0 0形式的极限; ⑹ 利用分子,分母同除以自变量的最高次幂求∞ ∞形式的极限; ⑺ 利用连续函数的函数符号与极限符号可交换次序的特性求极限;

⑻利用“无穷小与有界函数之积仍为无穷小量”求极限. 4.定理 左右极限与极限的关系,单调有界原理,夹逼准则,极限的惟一性,极限的保号性,极限的四则运算法则,极限与无穷小的关系,无穷小的运算性质,无穷小的替换定理,无穷小与无穷大的关系,初等函数的连续性,闭区间上连续函数的性质. 第三章导数与微分 一、本章提要 1.基本概念 瞬时速度,切线,导数,变化率,加速度,高阶导数,线性主部,微分. 2.基本公式 基本导数表,求导法则,微分公式,微分法则,微分近似公式. 3.基本方法 ⑴利用导数定义求导数; ⑵利用导数公式与求导法则求导数; ⑶利用复合函数求导法则求导数; ⑷隐含数微分法; ⑸参数方程微分法; ⑹对数求导法; ⑺利用微分运算法则求微分或导数. 第四章微分学的应用 一、本章提要 1. 基本概念 未定型,极值点,驻点,尖点,可能极值点,极值,最值,曲率,上凹,下凹,拐点,渐近线,水平渐近线,铅直渐近线.

高等数学积分公式大全

常 用 积 分 公 式 (一)含有ax b +的积分(0a ≠) 1.d x ax b +? = 1ln ax b C a ++ 2.()d ax b x μ+?=1 1() (1) ax b C a μμ++++(1μ≠-) 3.d x x ax b +?= 2 1(ln )ax b b ax b C a +-++ 4.2 d x x ax b +? = 22 311()2()ln 2ax b b ax b b ax b C a ??+-++++???? 5.d () x x ax b +? =1ln ax b C b x +-+ 6.2 d () x x ax b +? =2 1ln a ax b C bx b x +- ++ 7.2 d () x x ax b +? =2 1(ln )b ax b C a ax b ++ ++ 8.2 2 d () x x ax b +? = 2 3 1(2ln )b ax b b ax b C a ax b +-+- ++ 9.2 d () x x ax b +? = 2 11ln () ax b C b ax b b x +- ++ 的积分 10.x ? = C 11.x ?=2 2(3215ax b C a -+ 12.x x ?= 2 2 2 3 2(15128105a x abx b C a -+ 13.x ? = 2 2(23ax b C a -+

14 .2 x ? = 222 3 2(34815a x abx b C a -+ 15 .? (0) (0) C b C b ?+>?的积分 22.2 d x ax b +? =(0) (0) C b C b ? +>? ? ?+< 23.2 d x x ax b +? = 2 1 ln 2ax b C a ++

(完整版)高等数学(下)知识点总结

高等数学(下)知识点 主要公式总结 第八章 空间解析几何与向量代数 1、 二次曲面 1) 椭圆锥面:2 2 222z b y a x =+ 2) 椭球面:122 222 2=++c z b y a x 旋转椭球面:1222222=++c z a y a x 3) 单叶双曲面:122 222 2=-+c z b y a x 双叶双曲面:1222222=--c z b y a x 4) 椭圆抛物面:z b y a x =+2222 双曲抛物面(马鞍面):z b y a x =-22 22 5) 椭圆柱面:1222 2=+b y a x 双曲柱面:122 22=-b y a x 6) 抛物柱面: ay x =2 (二) 平面及其方程 1、 点法式方程: 0)()()(000=-+-+-z z C y y B x x A 法向量:),,(C B A n =ρ ,过点),,(000z y x 2、 一般式方程: 0=+++D Cz By Ax 截距式方程: 1=++c z b y a x 3、 两平面的夹角:),,(1111C B A n =ρ,),,(2222C B A n =ρ , 22 22 22 21 21 2 1 2 12121cos C B A C B A C C B B A A ++?++++= θ ?∏⊥∏21 0212121=++C C B B A A ;?∏∏21// 2 1 2121C C B B A A == 4、 点 ),,(0000z y x P 到平面0=+++D Cz By Ax 的距离: 2 2 2 000C B A D Cz By Ax d +++++= (三) 空间直线及其方程

高等数学微积分复习题

第五章 一元函数积分学 1.基本要求 (1)理解原函数与不定积分的概念,熟记基本积分公式,掌握不定积分的基本性质。 (2)掌握两种积分换元法,特别是第一类换元积分法(凑微分法)。 (3)掌握分部积分法,理解常微分方程的概念,会解可分离变量的微分方程,牢记非齐次 线性微分方程的通解公式。 (4)理解定积分的概念和几何意义,掌握定积分的基本性质。 (5)会用微积分基本公式求解定积分。 (6)掌握定积分的凑微分法和分部积分法。 (7)知道广义积分的概念,并会求简单的广义积分。 (8)掌握定积分在几何及物理上的应用。特别是几何应用。 2.本章重点难点分析 (1) 本章重点:不定积分和定积分的概念及其计算;变上限积分求导公式和牛顿—莱布 尼茨公式;定积分的应用。 (2) 本章难点:求不定积分,定积分的应用。 重点难点分析:一元函数积分学是微积分学的一个重要组成部分,不定积分可看成是微分运算的逆运算,熟记基本积分公式,和不定积分的性质是求不定积分的关键,而定积分则源于曲边图形的面积计算等实际问题,理解定积分的概念并了解其几何意义是应用定积分的基础。 3.本章典型例题分析 例1:求不定积分sin3xdx ? 解:被积函数sin3x 是一个复合函数,它是由()sin f u u =和()3u x x ?==复合而成,因此,为了利用第一换元积分公式,我们将sin3x 变形为'1 sin 3sin 3(3)3x x x = ,故有 ' 111 sin 3sin 3(3)sin 3(3)3(cos )333 xdx x x dx xd x x u u C ===-+??? 1 3cos33 u x x C =-+ 例2:求不定积分 (0)a > 解:为了消去根式,利用三解恒等式2 2 sin cos 1t t +=,可令sin ()2 2 x a t t π π =- << ,则 cos a t ==,cos dx a dt =,因此,由第二换元积分法,所以积分 化为 2221cos 2cos cos cos 2 t a t a tdt a tdt a dt +=?==??? 2222cos 2(2)sin 22424a a a a dt td t t t C =+=++?? 2 (sin cos )2 a t t t C =++ 由于sin ()2 2 x a t t π π =- << ,所以sin x t a = ,arcsin(/)t x a =,利用直角三角形直接写

高等数学微积分公式精髓

总论 初等代数从最简单的一元一次方程开始,一方面进而讨论二元及三元的一次方程组,另一方面研究二次以上及可以转化为二次的方程组。沿着这两个方向继续发展,代数在讨论任意多个未知数的一次方程组,也叫线型方程组的同时还研究次数更高的一元方程组。发展到这个阶段,就叫做高等代数。 高等代数是代数学发展到高级阶段的总称,它包括许多分支。现在大学里开设的高等代数,一般包括两部分:线性代数初步、多项式代数。 高等代数在初等代数的基础上研究对象进一步的扩充,引进了许多新的概念以及与通常很不相同的量,比如最基本的有集合、向量和向量空间等。这些量具有和数相类似的运算的特点,不过研究的方法和运算的方法都更加繁复。 集合是具有某种属性的事物的全体;向量是除了具有数值还同时具有方向的量;向量空间也叫线性空间,是由许多向量组成的并且符合某些特定运算的规则的集合。向量空间中的运算对象已经不只是数,而是向量了,其运算性质也由很大的不同了。 高等代数发展简史 代数学的历史告诉我们,在研究高次方程的求解问题上,许多数学家走过了一段颇不平坦的路途,付出了艰辛的劳动。 人们很早就已经知道了一元一次和一元二次方程的求解方法。关于三次方程,我国在公元七世纪,也已经得到了一般的近似解法,这在唐朝数学家王孝通所编的《缉古算经》就有叙述。到了十三世纪,宋代数学家秦九韶再他所著的《数书九章》这部书的“正负开方术”里,充分研究了数字高次方程的求正根法,也就是说,秦九韶那时候以得到了高次方程的一般解法。 在西方,直到十六世纪初的文艺复兴时期,才由有意大利的数学家发现一元三次方程解的公式——卡当公式。 在数学史上,相传这个公式是意大利数学家塔塔里亚首先得到的,后来被米兰地区的数学家卡尔达诺(1501~1576)骗到了这个三次方程的解的公式,并发表在自己的著作里。所以现在人们还是叫这个公式为卡尔达诺公式(或称卡当公式),其实,它应该叫塔塔里亚公式。 三次方程被解出来后,一般的四次方程很快就被意大利的费拉里(1522~1560)解出。这就很自然的促使数学家们继续努力寻求五次及五次以上的高次方程的解法。遗憾的是这个问题虽然耗费了许多数学家的时间和精力,但一直持续了长达三个多世纪,都没有解决。

考研高等数学知识点总结

高等数学知识点总结 导数公式: 基本积分表: 三角函数的有理式积分: 222 2 12211cos 12sin u du dx x tg u u u x u u x +==+-=+= , , ,  a x x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(2 2 = '='?-='?='-='='2 2 22 11)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +- ='+= '--='-='? ?????????+±+ =±+=+=+= +-=?+=?+-== +==C a x x a x dx C shx chxdx C chx shxdx C a a dx a C x ctgxdx x C x dx tgx x C ctgx xdx x dx C tgx xdx x dx x x )ln(ln csc csc sec sec csc sin sec cos 2 2 2 2 2 2 2 2 C a x x a dx C x a x a a x a dx C a x a x a a x dx C a x arctg a x a dx C ctgx x xdx C tgx x xdx C x ctgxdx C x tgxdx +=-+-+= -++-=-+=++-=++=+=+-=? ???????arcsin ln 21ln 21 1csc ln csc sec ln sec sin ln cos ln 2 2 2 22 22 2 ? ????++ -= -+-+--=-+++++=+-= == -C a x a x a x dx x a C a x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n n n n arcsin 2 2 ln 2 2)ln(2 21cos sin 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 0π π

《高等数学》读书笔记

类型课程学习名称:高等数学 1 时间:2006.7.7 体裁:说明文 知识内容与结构备注一.课程目录 1函数 2极限和连续 3一元函数的导数和微分 4微分中值定理和导数的应用 5一元函数积分学 6多元函数微积分 二.知识层次分解2.3说明: 函数 1.预备知识 1)集合及其运算 1>概念 集合: 元素 2>绝对值及其基本性质

>区间和邻域 2.函数 3.基本特性 4.反函数 5.复合函数 6.初等数学 7.简单函数关系的建立 极限和连续 1数列极限 2数列级数的基本概念 3函数的极限 4极限的运算法则 5无穷小(量)和无穷大(量)6两个重要的极限 7函数的连续性和连续函数 8函数的间断点 一元函数的导数和微分 1导数的概念 2求导法则

基本求导公式 4高阶导数 5函数的微分 6导数和微分在经济学中的简单应用 微分中值定理和导数的应用 1微分中值定理 2洛必达法则 3 函数的单调性 4 曲线的凹凸性和拐点 5函数的极值与最值 一元函数积分学 1原函数和不定积分的概念 2基本积分公式 3换元积分法 4分部积分法 5微分方程初步 6定积分的概念及其基本性质 7 微积分基本公式 8 定积分的换元积分法和分部积分法 9 无穷限反常积分 10 定积分的应用

1空间解析几何 2多元函数的基本概念 3偏导数 4全微分 5多元复合函数的求导法则 6隐函数及其求导法则 7二元函数的极值 8二重积分 注: 1标识符:红色已领会理解橙色已弄懂粉色已记住绿色已会用蓝色已掌握 黑色增删修内容 2 说明:凡属课程都属说明文。要掌握其整体结构和层次内容和最后一层次 的说明内容的意思 3 步骤:1 填写结构 2 对照课程阅读,理解弄懂

高等数学(下)知识点总结

主要公式总结 第八章空间解析几何与向量代数 1、 二次曲面 1) 椭圆锥面:2 2222z b y a x =+ 2) 椭球面:122 222 2=++c z b y a x 旋转椭球面:1222222=++c z a y a x 3) 单叶双曲面:122 222 2=-+c z b y a x 双叶双曲面:1222222=--c z b y a x 4) 椭圆抛物面:z b y a x =+2222双曲抛物面(马鞍面):z b y a x =-22 22 5) 椭圆柱面:1222 2=+b y a x 双曲柱面:122 22=-b y a x 6) 抛物柱面: ay x =2 (二) 平面及其方程 1、 点法式方程: 0)()()(000=-+-+-z z C y y B x x A 法向量:),,(C B A n =ρ ,过点),,(000z y x 2、 一般式方程: 0=+++D Cz By Ax 截距式方程: 1=++c z b y a x 3、 两平面的夹角:),,(1111 C B A n =ρ ,),,(2222C B A n =ρ , 22 22 22 21 21 21 2 12121cos C B A C B A C C B B A A ++?++++= θ ?∏⊥∏210212121=++C C B B A A ;? ∏∏21//2 1 2121C C B B A A == 4、 点 ),,(0000z y x P 到平面0=+++D Cz By Ax 的距离: 2 2 2 000C B A D Cz By Ax d +++++= (三) 空间直线及其方程

高等数学(张宇)_-_笔记_PDF

目录 第一讲极限 一极限定义 (3) 二极限性质 (4) 三函数极限基本计算 (8) 四综合计算 (11) 五数列极限计算 (14) 六函数连续与间断 (16) 第二讲一元函数微积分 一概念 (17) 1. 导数 (18) 2. 微分 (20) 3. 不定积分 (21) 4. 定积分 (23) 5. 变限积分 (28) 6. 反常积分 (29) 二计算 (29) 1. 求导 (29) 2. 求积 (33) 三应用 (40) 1. 微分应用 (40) 2. 积分应用 (43) 四逻辑推理 (43) 1. 中值定理 (49) 2. 等式证明 (50) 3. 不等式证明 (51) 第三讲多元函数的微分学(公共部分) 一概念 (51) 1. 极限的存在性 (51) 2. 极限的连续性 (52) 3. 偏导数的存在性 (52) 4. 可微性 (53) 5. 偏导数的连续性 (54) 二计算 (54) 三应用 (56) 第四讲二重积分(公共部分)

一概念与性质 (59) 二计算 (60) 1. 基础题 (60) 2. 技术题 (61) 三综合计算 (62) 第五讲微分方程 一概念及其应用 (63) 二一阶方程的求解 (64) 三高阶方程的求解 (66) 第六讲无穷级数 一数项级数的判敛 (67) 二幂级数求收敛域 (69) 三展开与求和 (69) 四傅里叶级数 (71) 第七讲多元函数微分学 一基础知识 (73) 二应用 (75) 第八讲多元函数积分学 一三重积分 (76) 二第一型曲线、曲面积分 (78) 1. 一线 (78) 2. 一面 (79) 三第二型曲线、曲面积分 (80) 1. 二线 (81) 2. 二面 (83)

高等数学归纳笔记(全)

一、函数与极限 (2) 1、集合的概念 (2) 2、常量与变量 (3) 2、函数 (4) 3、函数的简单性态 (4) 4、反函数 (5) 5、复合函数 (6) 6、初等函数 (6) 7、双曲函数及反双曲函数 (7) 8、数列的极限 (9) 9、函数的极限 (10) 10、函数极限的运算规则 (12)

一、函数与极限 1、集合的概念 一般地我们把研究对象统称为元素,把一些元素组成的总体叫集合(简称集)。集合具有确定性(给定集合的元素必须是确定的)和互异性(给定集合中的元素是互不相同的)。比如“身材较高的人”不能构成集合,因为它的元素不是确定的。 我们通常用大字拉丁字母A、B、C、……表示集合,用小写拉丁字母a、b、c……表示集合中的元素。如果a是集合A中的元素,就说a属于A,记作:a∈A,否则就说a不属于A,记作:a A。 ⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。记作N ⑵、所有正整数组成的集合叫做正整数集。记作N+或N+。 ⑶、全体整数组成的集合叫做整数集。记作Z。 ⑷、全体有理数组成的集合叫做有理数集。记作Q。 ⑸、全体实数组成的集合叫做实数集。记作R。 集合的表示方法 ⑴、列举法:把集合的元素一一列举出来,并用“{}”括起来表示集合 ⑵、描述法:用集合所有元素的共同特征来表示集合。 集合间的基本关系 ⑴、子集:一般地,对于两个集合A、B,如果集合A中的任意一个元素都是集合B的元素,我们就说A、B有包含关系,称集合A为集合B的子集,记作A B(或B A)。。 ⑵相等:如何集合A是集合B的子集,且集合B是集合A的子集,此时集合A中的元素与集合B中的元素完全一样,因此集合A与集合B相等,记作A=B。 ⑶、真子集:如何集合A是集合B的子集,但存在一个元素属于B但不属于A,我们称集合A是集合B的真子集。 ⑷、空集:我们把不含任何元素的集合叫做空集。记作,并规定,空集是任何集合的子集。 ⑸、由上述集合之间的基本关系,可以得到下面的结论: ①、任何一个集合是它本身的子集。即A A ②、对于集合A、B、C,如果A是B的子集,B是C的子集,则A是C的子集。 ③、我们可以把相等的集合叫做“等集”,这样的话子集包括“真子集”和“等集”。 集合的基本运算 ⑴、并集:一般地,由所有属于集合A或属于集合B的元素组成的集合称为A与B的并集。记作A ∪B。(在求并集时,它们的公共元素在并集中只能出现一次。) 即A∪B={x|x∈A,或x∈B}。 ⑵、交集:一般地,由所有属于集合A且属于集合B的元素组成的集合称为A与B的交集。记作A ∩B。 即A∩B={x|x∈A,且x∈B}。 ⑶、补集: ①全集:一般地,如果一个集合含有我们所研究问题中所涉及的所有元素,那么就称这个集合为全集。通常记作U。

高数微积分公式大全总结的比较好

高等数学微积分公式大全 一、基本导数公式 ⑴()0c '= ⑵1x x μμμ-= ⑶()sin cos x x '= ⑷()cos sin x x '=- ⑸()2tan sec x x '= ⑹()2cot csc x x '=- ⑺()sec sec tan x x x '=? ⑻()csc csc cot x x x '=-? ⑼()x x e e '= ⑽()ln x x a a a '= ⑾()1 ln x x '= ⑿()1 log ln x a x a '= ⒀( )arcsin x '= ⒁( )arccos x '= ⒂()21arctan 1x x '= + ⒃()2 1arccot 1x x '=-+⒄()1x '= ⒅ ' = 二、导数的四则运算法则 三、高阶导数的运算法则 (1)()()() () () ()()n n n u x v x u x v x ±=±???? (2)()() ()()n n cu x cu x =???? (3)()()() ()n n n u ax b a u ax b +=+???? (4)()()() () ()()()0 n n n k k k n k u x v x c u x v x -=?=????∑ 四、基本初等函数的n 阶导数公式 (1)() () !n n x n = (2)() () n ax b n ax b e a e ++=? (3)() () ln n x x n a a a = (4)()() sin sin 2n n ax b a ax b n π??+=++??? ??? ?? (5) ()()cos cos 2n n ax b a ax b n π??+=++??? ????? (6)() () () 1 1! 1n n n n a n ax b ax b +??? =- ? +?? + (7) ()() () ()() 1 1! ln 1n n n n a n ax b ax b -?-+=-???? + 五、微分公式与微分运算法则 ⑴()0d c = ⑵()1d x x dx μμμ-= ⑶()sin cos d x xdx = ⑷()cos sin d x xdx =- ⑸()2tan sec d x xdx = ⑹()2cot csc d x xdx =- ⑺()sec sec tan d x x xdx =? ⑻()csc csc cot d x x xdx =-? ⑼()x x d e e dx = ⑽()ln x x d a a adx = ⑾()1 ln d x dx x =

高等数学学习心得体会

高等数学学习心得体会 随着科技日新月异的发展和电脑无孔不入的应用.高等数学课程作为一种数学工具的功能正在逐步缩减.但作为一种思维方法的载体的功能(例如训练学生辩证思维、逻辑推理、发现同题及分析同题的能力)却愈显风采,在此分享学习心得。下面是学习啦小编为大家收集整理的高等数学学习心得体会,欢迎大家阅读。 高等数学学习心得体会篇1 高等数学是大学工科课程里的一门重要基础课。它的重要性,我相信大家都了解。高等数学是许多课程的基础,特别是与以后的许多专业课都紧密相连。因此,学好高等数学对于一名工科学生来说,至关重要。 然而,对于许多同学来说,高等数学是一门头疼的学科。如何学好高等数学呢下面是我个人在学习过程中的一些心得体会。 首先,我觉得高等数学与以前我们高中所学的数学有一点不同。高等数学注重的是一种数学的思想,比如说微积分思想,极限的思想。强调的数学的逻辑性与分析性。不像高中数学那样注重技巧性。因此,在学习的过程中,课本的知识至关重要。对于课本上面每一个概念、定理、公式、例题,都要理解清楚。特别是对于定理、公式的推导过程,不仅要

弄懂每一步的推导过程如何来,而且还要学会自己推导。因为学会自己推导,更有助于我们的记忆和应用。我的经验是,在理解的基础上去记忆公式,而不是一味的死记硬背。 第二,学习数学是不能缺少训练的。一定量的课后习题训练,不但可以让我们巩固我们学到的知识点,学会如何在实际中应用我们学到的公式定理,还有助于我们熟悉考试的各种题型。还有,题目并不是越多越好,题海战术不仅浪费大量的时间与精力,而且效果也不好。我的经验是,每做完一道题都要总结一下,特别是做错的题目,这道题的知识点是哪些应用了哪些公式定理错在哪里为什么会做错学会思考,学会总结,这样做题才能达到事半功倍的效果。 最后,学好数学是一个坚持的过程。高等数学的内容环环相扣,哪一个环节脱节都会影响整个学习的进程。所以,平时学习不应贪快,要一节一节,要一章一章过关,不要轻易留下自己不明白或者理解不深刻的问题。这样,对于后面的学习会造成很大的影响。 高等数学学习心得体会篇2 随着科技日新月异的发展和电脑无孔不入的应用.高等数学课程作为一种数学工具的功能正在逐步缩减.但作为一种思维方法的载体的功能(例如训练学生辩证思维、逻辑推理、发现同题及分析同题的能力)却愈显风采。一个多元线性方程组如何去解我们可以交给电脑去完成,只要会正确使用数学软件。但一个实际问题如

学习微积分的心得体会

学习微积分的心得体会 微积分学习心得 学号11120472 姓名吴心怡班级七班学号11120471 姓名吴亚男班级七班时间,如同轨道上疾驰的列车,匆匆行驶,不留一点痕迹的我们的寒假就这样over掉了了。恍惚之间,我们就要开始正式上课了。我们依稀还记得,放假前,老师们说让好好复习,来学校不久便是冬季学期的期末考试了,可是,嘿嘿~~自己却不得不承认有很大一部分的时间是被荒废了的。但早早来学校,我们好好静下心来思考了一下学习的经验和方法。突然有了要好好学习的冲动,可能以前真的是我们对学习不够上心的缘故吧。 对于学习方面,以前我总觉得数学一直处于主心骨的位置,它是我从小的梦想、我的骄傲。可是自从大学以来的第一个学期,微积分却着实让我们倍受打击。成绩的不再拔尖,沉痛的打击了我的自信心。但是,通过和老师交流,与同学讨论,让我明白强中自有强中手,而自己,并不是笨,只是有些方面自己做的不够,只要深切去思考自己的学习方法,自己依旧有很大的进步空间。 首先我们觉得大学里的学习课后巩固很重要,光靠一周两次大课的学习,远远不够。并且,课上老师可能会因为进度问题而降得很快,很多时候我们会跟不上老师的速度,这时,如果课后不再看老师局的

例题,课上的疑问会永远得不到解答。在此情况下谈想进步是不可能的。 然而课后的巩固应该从两方面着手,一方面是教学大纲上要求必须掌握的内容,这些是考试必考内容,或许看似很简单的内容,确实解题目的最基本的基础。秋季学期的期末考正是由于自己对基本知识忽略,在一些很简单的题目丢了分,惨痛的教训给了哦我们深刻的教训,夯实基础知识,才能维纳最重要的考试打下良好的基础。 另一方面。是自己认为在内容掌握上的盲点和误区,这些事最容易忘记的,也是应用熟练程度最差的。而考试不会因为这是自己认为的难点就会不考,所以认真钻研这些题目便可为自己在分数上的突破起决定性作用。 同时,复习一定要有耐心,要持之以恒。学习上最大的忌讳便是三天打鱼两天晒网,这样的学习不会有任何收获。知识既然学习了,我们就要好好消化,不 能让它成为大脑中的脂肪。周期性的复习才不会使大脑一片空白,一周一次或两周一次,可以根据自己的记忆力而定,以适合自己的为基准便可以。

相关主题
文本预览
相关文档 最新文档