当前位置:文档之家› 第四章 测试系统特性

第四章 测试系统特性

第四章 测试系统特性
第四章 测试系统特性

第四章测试系统特性

4.1 测试系统概述

测试系统是执行任务的传感器、仪器和设备的总称。现在习惯把具有自动化、智能化、可编程化等功能的测试系统称为现代测试系统。

这些装置和仪器对被测物理量进行传感、转换与处理、传送、显示、记录以及存储。测试系统的复杂程度取决于被测信息的难以程度以及所采用的试验方法。

典型测试系统的组成

研究测试系统的特性,就是研究系统的输入量x(t)、输出量y(t)和系统的传输特性h(t)三者之间的关系

系统分析中的三类问题:

1)当输入、输出是可测量的(已知),可以通

过它们推断系统的传递特性(系统辨识)

2)当系统的传递特性已知、输出可测量,可以通过它们推断导致该输出的输入量(反求)

3)如果输入和系统特性已知,则可以推断和估计系统的输出量(预测)

理想的测试系统应该具有单值的、确定的输入—输出关系。对于每一输入量都应该只有单一的输出量与之对应。知道其中一个量就可以确定另一个量。其中输入和输出成线性关系最佳。

测试装置能否实现准确测量,取决于其特性:

注:测试系统各特性是统一的,相互关联的。如动态特性方程一般可视为线性方程,但考虑静态特性的非线性、迟滞等因素,就成为了非线性方程。

1、静态特性:测量时,测试系统的输入和输出信号不随时间变化(或变化缓慢)。如温度测量、体重测量。静态测量时,测试系统表现出的响应特性称为静态响应特性。静态标准是一个试验过程,这一过程是在只改变测量系统的一个输入量,测量对应的输出量,由此得到输入与输出间的关系,作为静态特性。

静态特性包括线性度、灵敏度(Δy/Δx )、分辨力(能够测量的最小变化量)、回程误差(也称为迟滞)、零点漂移和灵敏度漂移等

2、动态特性:当被测量(输入)随时间快速变化时,测量输入与相应输出之间动态关系的数学描述。如心电图测量测量,热处理过程的温度测量、铸造过程的流量测量。动态测量:输入随时间变化,输出也随输入而变化。对迅速变化的物理量进行测定,要求动态测试仪器具有较高的动态响应特性

测试系统的(动态)数学模型主要有三种形式:①时域分析用的微分方程;②频域方程用的频率特性;③复频域用的传递函数

测量系统的微分方程(常系数微分方程、线性时不变系统)

传递函数 0

1110111)()()(a s a s a s a b s b s b s b s X s Y s H n n n n m m m m ++++++==---- 频响函数 )

()()(ωωωj X j Y j H = 3、负载特性 当传感器安装到被测物体上或进入被测介质,要从物体与介质中吸收能量或产生干扰,使被测物理量偏离原来的量值,从而不可能实现理想的测量,这种现象称为负载效应。这种效应不仅发生在传感器和被测物体之间,还存在于测量系统的各个环节。对于电路间的级联来说,负载效应的程度决定于前级的输出阻抗和后级的输入阻抗。测量系统的负载特性是其固有特性,在进行测量或组成测量系统时,要考虑这种特性并将其影响降到最小。

4、抗干扰性 测量过程中,常受到各种干扰,包括电源干扰、环境干扰(电磁场、声、光、温度、振动等)和信道干扰。这些干扰的影响决定于测量系统的抗干扰性,并且与所采取的抗干扰措施有关

信道干扰,对于多通道测量系统,理想状况是各通道完全独立或完全隔离的,即通道间不发生耦合或相互影响。实际上通道间存在一定程度的影响,即信道干扰。多通道测量要考虑通道间的隔离性能。

4.3系统的静态特性 测量时,测试系统的输入和输出信号不随时间变化(或变化缓慢)。

1、线性度 测量系统的输入与输出之间的关系与理想比例关系(理想线性关系)的偏离程度。实际上由静态标定所得输入、输出的数据并不在一条直线上,这些点与理想直线最大的偏差值Δmax 称为线性误差,也可以由百分数表示线性误差

%100min

max max ?-?Y Y 线性误差= 2、灵敏度 单位输入变化引起的输出的变化。通常使用理想直线的斜率作为测量装置的灵敏度。灵敏度的量纲为输出量的量纲与输入量的量纲之比。

3、系统能够检测出的最小变化量,表征测量系统的分别能力。(分辨力—绝对数值,如0.01mm,0.1g等;分别率—相对数值,能检测出的最小被测量的变换量相对于满量程的百分数,如0.1%,0.02%等;阈值—系统零输入点附近的分辨力。

4、回程误差,也称为迟滞。是描述测量系

统同输入变化方向有关的输入特性。

实际测量系统中同样的测量条件下,当输入量

由小到达或由大到小变化时,得到当输出量往

往存在差值。

4.3 系统的动态特性

研究测试系统的动态特性时,往往认为系

统参数是不变的,并忽略如迟滞、死区等非线性因素,即用常系数线性微分方程描述测量系统的输入输出关系。把测试系统视为定常线性系统,可用常系数线性微分方程进行描述输入、输出之间的关系,但使用不便。可以通过拉普拉斯变化建立传递函数;通过傅立叶转换可以建立频率特性函数,描述会更简洁有效。

测量系统的动态特性可由物理原理的理论分析和参数的试验估计得到,也可由系统的试验方法得到。前者适用于简单的测量系统,后者适用于普遍适用的方法。

测量系统的动态特性建模中,常常使用静态标定得到的灵敏度常数。在某些情况下,动态灵敏度不同于静态灵敏度。

确定测量系统动态特性的目的是为了了解其所能实现的不失真测量的频率范围。反之在确定了动态测量任务之后,则要选择满足这种测量要求的测量系统,必要时还要用试验的方法准确确定此装置的动态特性,从而得到可靠的测量结果和估计测量误差。

1、传输函数特点:不能简单的认为传输函数就是输出、输入两者拉普拉斯变化之比。只有在系统初始条件均为零时,才成立。

1)H(s)与输入x(t)及系统的初始状态无关,它只表达系统的输入特性。

2) H(s)是对物理系统的微分方程,它只反映系统传输特性而不拘泥于系统的物理结构。同一传输函数可以表征具有相同传输特性的不同物理系统。

3)对于实际的物理系统,输入x(t)和输出y(t)都有各自的量纲。用传递函数描述系统传输、转换特性应真实的反映量纲这种变换关系。微分方程中系数的的量纲将因具体的物理系统和输入输出的量纲而异。

4)H (s )中的分母取决于系统的结构。分母中s 的幂次n 代表系统微分方程的阶数。分子则和系统同外界之间的关系,如输入点的位置、输入方式、被测量及测点布置情况有关。

一般测量装置总是稳定系统,分母中s 的幂次总是大于分子中s 的幂次,即n>m 。

2、频率响应函数 在频率域中描述系统特性,而转递函数是在复数域中描述系统的特性的,比在时域中用微分方程描述系统特性有很多优点。许多工程系统微分方程式及其传递函数极难建立,而且传递函数的物理概念也很难理解。与传递函数相比较,频率响应函数有着物理概念明确、容易通过试验来建立、也极易求的传递函数等有点。

1)幅频特性、相频特性和频率相应函数

如定常线性系统的频率保持性,系统在信号t X t x ωsin )(0=的激励下的输出信号)sin()(0?ω+=t Y t y ,输出和输入信号的幅值比值和相位差都是频率ω的函数。定常线性系统在简谐信号的机理下,其稳态输出信号和输入信号的幅值比并定义为系统的幅频特性,即为A(ω),稳态输出对输入的相位差被定义为该系统的相频特性φ(ω),两者通称为系统的频率特性。系统的频率特性可以表示为

)()()(ω?ωωj e A H =

2)频响响应的求法:a )从传递函数H (s )求的,另s =j ω;b )用试验求的频率响应的原理(用频率响应函数来描述系统的最大优点);c )初始条件全为零时,测得x(t)和y(t),经傅立叶转换X(ω)和Y(ω),然后求的)(/)()(ωωωX Y H =;

特别指出:简谐(正弦或余弦)输入和响应的稳态输出。

3)幅、相频率特性即图像描述。绘制A(ω)--ω和φ(ω)—ω图谱,横坐标为ω或f =ω/2π,A(ω)坐标为分贝;相角取实数标尺。由此所做的曲线分别称为对数幅频特性曲线和对数相频特性,总称为伯德图(Bode 图)

4)环节的串联和并联

①两个传递函数环节串联,它们之间没有能量交换,则串联后组成的系统传递函数H (s )在初始条件为零时:

N 和环节串联有:∏==n i i s H s H 1)()( ,频响函数 ∏==n

i i H H 1

)()(ωω

②两个传递函数环节并联

同理,n 各环节并联,有∑==n i i s H s H 1)()(,其频响函数∑==n

i i H H 1)()(ωω

4.4一阶系统的时域分析

一阶电路,也就是电路中只包含一个独立的储能元件或等效为一个储能元件的线性电路。对于比较复杂的电路,即使包含多个电路和电源之路,只要储能元件只有一个,都可以认为是一阶电路。从数学的角度来说,

它们的微分方程都是一阶常系数线性微分电路。

一些RC 滤波器、LC 谐振电路和热电偶测温

系统都是一阶系统

线性:满足叠加原理的系统具有线性特性。即若对

两个激励x 1(n)和x 2(n),有T[ax 1(n)+bx 2(n)]=aT[x 1(n)]

+bT[x 2(n)],式中a 、b 为任意常数。时不变系统:就是系统的参数不随时间而变化,即不管输入信号作用的时间先后,输出信号响应的形状均相同,仅是从出现的时间不同。

时域分析方法包括两方面内容:一是基于高等数学

直接求解微分方程的经典法;而是基于线性电路具有

可分解性的零输入、零状态法。在求零状态响应时要

用到卷积积分,因此又称为卷积积分法。

对于上图,就是一个简单的一阶电路系统,它的

稳态和暂态分析在电工技术中已经学过

S C R u t u t u =)()0(+---

RC u t u RC dt t du S C C =+)(1)(。)

其微分方程

其中 T =RC

取其拉氏变换

其幅频特性

其中负号表示输出信号滞后与输入信号

一阶系统的幅频、相频特性曲线

其单位阶跃响应0

e

H T t,

t

=-t

1

)

(/≥

-

右图说明系统的实际输出量是按指数

规律上升至最终稳定态。从图还可以看出,

时间常数T越小,响应越快,即惯性越小,

所以一阶系统也称为“惯性系统”

一阶系统的脉冲响应因为R(s)=1,

所以K(s)=Φ(s)=1/(Ts+1)

从右图可以看出一阶系统的单位阶跃响应

为一单调下降的指数曲线。仍然可以从图获知,

时间常数越小,系统响应越快。

在初始条件为零的情况下,一阶系统的单位脉

冲响应与系统闭环传递函数包含了相同的动态

信息。这一特点也同样适用于其他各阶线性定

常系统。

一阶系统的特点:

4.5、二阶系统的时域分析

二阶系统是以二阶微分方程作为运动方程的控制系统。(拉普拉斯变换后式子中s为二次方。)

式中ξ为阻尼比,w n自然频率或无阻尼振荡频率

对于二阶测振仪(右上图)

二阶系统的动态特性:

二阶系统的幅频、相频特性曲线

二阶系统的脉冲响应函数为

二阶系统的特点:

4.6 测量系统不失真的条件

设测试系统为x(t),若实现不失真测试,则该测试系统的输出y(t)应满足

式中A0、t0均为常数。

此式子表明,该测试系统输出波形与输入波形精确一致。只是幅值(或者说每个瞬间值)放大了A 0倍和时间上延迟了t 0。这种情况,被认为测量系统具有不失真测量的特性

将上式进行傅立叶转换,得到

)()(00ωωωX e A Y t j -=

当测试系统初始状态为零时,即t<0时,x(t)=0,y(t)=0,则测试系统的频率响应函数为:

若要求系统的输出波形不失真,则其幅频和相频特性分别满足:

A(ω)不等于常数时引起的失真为幅值失真,φ(ω)与ω之间的非线性关系所引起的失真为相位失真。

应当指出,满足不失真条件后,系统的输出仍然后滞于输入一定时间。如果测量的目的只是精确的测量出输入波形,那么上述条件完全满足不失真测量的要求。如果测量的结果要用来反馈控制信号,那么还应该注意到输出对输入的时间后滞有可能破坏系统的稳定性。这时应根据具体要求,力求减小时间滞后。

从实现不失真条件和其他工作性能综合起来,对一阶装置而言,如果时间常数τ

越小,则系统响应越快,近于满足测试不失真条件的通频带也越宽。所以一阶系统的时间常数τ原则上越小越好。(用于衡量放大电路对不同频率信号的放大能力。由于放大电路中电容、电感及半导体器件结电容等电抗元件的存在,在输入信号频率较低或较高时,放大倍数的数值会下降并产生相移。通常情况下,放大电路只适用于放大某一个特定频率范围内的信号。)对于二阶系统,其特性曲线上有两个频段需要注意。ω<0.3ωn范围内φ(ω)的数值较小,且φ(ω)- ω特性曲线接近直线。A(ω)在此范围内的变化不超过10%,若用于测量,波形输出失真很小。在ω>(2.5~3) ωn范围内φ(ω)接近于180?,且随ω变化很小,此时如果在实际测量电路中或数据处理中减去固定相位差或者把测量信号反相180?,则相频特性基本上满足不失真测量条件。但此时幅频相位A(ω)太小,输出幅值也很小。

在二阶系统输入信号的频率在ω>(2.5~3) ωn区间内,系统的频率特性受ζ的影响很大。一般来说ζ=0.6~0.8时,可以获得较为合适的综合特性。计算表明,对二阶系统,当ζ=0.7时,在0~0.58ωn的频率范围内,幅频特性A(ω)变化不超过5%,同时相频特性也接近于直线,因而所产生的相位失真也较小。

测量系统中,任意一个环节产生波形失真,必然会引起整个系统最终输出波形失真。虽然各环节失真对波形失真的影响程度不一样,但是原则上信号频带内都应使每个环节上满足不失真测量的要求。

4.7 测量系统动态特性的测量

要使测量装置精确可靠,不仅测量装置的定度要精确,而且要定期校准。定度和校准就其试验内容来说,就是对测量装置本身特性的测量。

对装置的静态参数进行测量时,一般以经过校准的标准静态量作为输入,求输入-输出特性曲线。根据这条曲线确定其回程误差,整理和确定其校准曲线、线性误差和灵敏度。所采用的输入量误差应当不大于所要求测量结果误差的1/3~1/5或更小。

确定测量系统动态特性的测量方法

1、频率响应法

输入正弦信号,即x(t)=X0sin2ωt,在输出达到稳态后测量输出和输入的幅值比和相位差。缺点时试验时间长,需要在若干个不同频率点进行试验。一般来说,动态测量系统的性能技术文件中都应附有该系统的幅频和相频特性曲线。对于二阶系统,可以从相频特性曲线直接估计其动态特性参数:固有频率ωn和阻尼比ζ。

2、阶跃响应法时域测试比较容易进行,应用最广测试系统动态参数的方法。

一阶系统主要的动态参数为τ,用输出值达到最终稳态值的63%所经过的时间作为时间常数τ。但这样求的的τ值仅取决于某些个别的瞬时值,未涉及到响应的全过程,故可靠性差。

二阶系统主要的动态参数为固有频率ωn和阻尼比ζ,小阻尼(ζ<1)情况,二阶系统的阶跃输入响应曲线

3、随机信号法输入信号为随机信号,测试系统相对复杂,使用不便。

检测系统的基本特性

第2章 检测系统的基本特性 2.1 检测系统的静态特性及指标 2.1.1检测系统的静态特性 一、静态测量和静态特性 静态测量:测量过程中被测量保持恒定不变(即dx/dt=0系统处于稳定状态)时的测量。 静态特性(标度特性):在静态测量中,检测系统的输出-输入特性。 n n x a x a x a x a a y +++++= 332210 例如:理想的线性检测系统: x a y 1= 如图2-1-1(a)所示 带有零位值的线性检测系统:x a a y 10+= 如图2-1-1(b)所示 二、静态特性的校准(标定)条件――静态标准条件。 2.1.2检测系统的静态性能指标 一、测量范围和量程 1、 测量范围:(x min ,x max ) x min ――检测系统所能测量到的最小被测输入量(下限) x max ――检测系统所能测量到的最大被测输入量(上限)。 2、量程: min max x x L -= 二、灵敏度S dx dy x y S x =??=→?)( lim 0 串接系统的总灵敏度为各组成环节灵敏度的连乘积 321S S S S = 三、分辨力与分辨率 1、分辨力:能引起输出量发生变化时输入量的最小变化量min x ?。 2、分辨率:全量程中最大的min x ?即min max x ?与满量程L 之比的百分数。 四、精度(见第三章) 五、线性度e L max .. 100%L L F S e y ?=± ? max L ?――检测系统实际测得的输出-输入特性曲线(称为标定曲线)与其拟合直线之

间的最大偏差 ..S F y ――满量程(F.S.)输出 注意:线性度和直线拟合方法有关。 最常用的求解拟合直线的方法:端点法 最小二乘法 图2-1-3线性度 a.端基线性度; b.最小二乘线性度 四、迟滞e H %100. .max ??= S F H y H e 回程误差――检测系统的输入量由小增大(正行程),继而自大减小(反行程)的测试 过程中,对应于同一输入量,输出量的差值。 ΔHmax ――输出值在正反行程的最大差值即回程误差最大值。 迟滞特性 五、稳定性与漂移 稳定性:在一定工作条件下,保持输入信号不变时,输出信号随时间或温度的变化而出 现缓慢变化的程度。 时漂: 在输入信号不变的情况下,检测系统的输出随着时间变化的现象。 温漂: 随着环境温度变化的现象(通常包括零位温漂、灵敏度温漂)。 2.2 检测系统的动态特性及指标 动态测量:测量过程中被测量随时间变化时的测量。 动态特性――检测系统动态测量时的输出-输入特性。 常用实验的方法: 频率响应分析法――以正弦信号作为系统的输入;

测试系统的特性

第4章测试系统的特性 一般测试系统由传感器、中间变换装置和显示记录装置三部分组成。测试过程中传感器将反映被测对象特性的物理量(如压力、加速度、温度等)检出并转换为电信号,然后传输给中间变换装置;中间变换装置对电信号用硬件电路进行处理或经A/D变成数字量,再将结果以电信号或数字信号的方式传输给显示记录装置;最后由显示记录装置将测量结果显示出来,提供给观察者或其它自动控制装置。测试系统见图4-1所示。 根据测试任务复杂程度的不同,测试系统中每个环节又可由多个模块组成。例如,图4-2所示的机床轴承故障监测系统中的中间变换装置就由带通滤波器、A/D变换器和快速傅里叶变换(Fast Fourier Transform,简称FFT)分析软件三部分组成。测试系统中传感器为振动加速度计,它将机床轴承振动信号转换为电信号;带通滤波器用于滤除传感器测量信号中的高、低频干扰信号和对信号进行放大,A/D变换器用于对放大后的测量信号进行采样,将其转换为数字量;FFT分析软件则对转换后的数字信号进行快速傅里叶变换,计算出信号的频谱;最后由计算机显示器对频谱进行显示。 要实现测试,一个测试系统必须可靠、不失真。因此,本章将讨论测试系统及其输入、输出的关系,以及测试系统不失真的条件。 图4-1 测试系统简图 图4-2 轴承振动信号的测试系统

4.1 线性系统及其基本性质 机械测试的实质是研究被测机械的信号)(t x (激励)、测试系统的特性)(t h 和测试结果)(t y (响应)三者之间的关系,可用图4-3表示。 )(t x )(t y )(t h 图4-3 测试系统与输入和输出的关系 它有三个方面的含义: (1)如果输入)(t x 和输出)(t y 可测,则可以推断测试系统的特性)(t h ; (2)如果测试系统特性)(t h 已知,输出)(t y 可测,则可以推导出相应的输入)(t x ; (3)如果输入)(t x 和系统特性)(t h 已知,则可以推断或估计系统的输出)(t y 。 这里所说的测试系统,广义上是指从设备的某一激励输入(输入环节)到检测输出量的那个环节(输出环节)之间的整个系统,一般包括被测设备和测量装置两部分。所以只有首先确知测量装置的特性,才能从测量结果中正确评价被测设备的特性或运行状态。 理想的测试装置应具有单值的、确定的输入/输出关系,并且最好为线性关系。由于在静态测量中校正和补偿技术易于实现,这种线性关系不是必须的(但是希望的);而在动态测量中,测试装置则应力求是线性系统,原因主要有两方面:一是目前对线性系统的数学处理和分析方法比较完善;二是动态测量中的非线性校正比较困难。但对许多实际的机械信号测试装置而言,不可能在很大的工作范围内全部保持线性,只能在一定的工作范围和误差允许范围内当作线性系统来处理。 线性系统输入)(t x 和输出)(t y 之间的关系可以用式(4-1)来描述 )()(...)()()()(...)()(0111101111t x b dt t dx b dt t x d b dt t x d b t y a dt t dy a dt t y d a dt t y d a m m m m m m n n n n n n ++++=++++------ (4-1) 当n a ,1-n a ,…,0a 和m b ,1-m b ,…,0b 均为常数时,式(4-1)描述的就是线性系统,也称为时不变线性系统,它有以下主要基本性质: (1)叠加性 若 )()(11t y t x →,)()(22t y t x →,则有

第三章 测试系统的基本特性

第三章 测试系统的基本特性 (一)填空题 1、某一阶系统的频率响应函数为1 21)(+= ωωj j H ,输入信号2 sin )(t t x =,则输出信号)(t y 的频率为= ω,幅值= y ,相位= φ。 2、试求传递函数分别为5.05.35 .1+s 和2 22 4.141n n n s s ωωω++的两个环节串联后组成的系统 的总灵敏度。为了获得测试信号的频谱,常用的信号分析方法有、 和 。 3、当测试系统的输出)(t y 与输入)(t x 之间的关系为)()(00t t x A t y ?=时,该系统能实现 测试。此时,系统的频率特性为=)(ωj H 。4、传感器的灵敏度越高,就意味着传感器所感知的越小。5、一个理想的测试装置,其输入和输出之间应该具有 关系为最佳。 (二)选择题1、 不属于测试系统的静特性。 (1)灵敏度 (2)线性度(3)回程误差(4)阻尼系数 2、从时域上看,系统的输出是输入与该系统 响应的卷积。(1)正弦 (2)阶跃 (3)脉冲 (4)斜坡 3、两环节的相频特性各为)(1ωQ 和)(2ωQ ,则两环节串联组成的测试系统,其相频特性 为 。 (1))()(21ωωQ Q (2))()(21ωωQ Q +(3)) ()() ()(2121ωωωωQ Q Q Q +(4)) ()(21ωωQ Q ?4、一阶系统的阶跃响应中,超调量 。 (1)存在,但<5%(2)存在,但<1(3)在时间常数很小时存在 (4)不存在 5、忽略质量的单自由度振动系统是 系统。(1)零阶 (2)一阶 (3)二阶 (4)高阶 6、一阶系统的动态特性参数是 。 (1)固有频率 (2)线性度 (3)时间常数(4)阻尼比 7、用阶跃响应法求一阶装置的动态特性参数,可取输出值达到稳态值 倍所经过的

简支梁振动系统动态特性综合测试方法分析

目录 一、设计题目 (1) 二、设计任务 (1) 三、所需器材 (1) 四、动态特性测量 (1) 1.振动系统固有频率的测量 (1) 2.测量并验证位移、速度、加速度之间的关系 (3) 3.系统强迫振动固有频率和阻尼的测量 (6) 4.系统自由衰减振动及固有频率和阻尼比的测量 (6) 5.主动隔振的测量 (9) 6.被动隔振的测量 (13) 7.复式动力吸振器吸振实验 (18) 五、心得体会 (21) 六、参考文献 (21)

一、设计题目 简支梁振动系统动态特性综合测试方法。 二、设计任务 1.振动系统固有频率的测量。 2.测量并验证位移、速度、加速度之间的关系。 3.系统强迫振动固有频率和阻尼的测量。 4.系统自由衰减振动及固有频率和阻尼比的测量。 5.主动隔振的测量。 6.被动隔振的测量。 7.复式动力吸振器吸振实验。 三、所需器材 振动实验台、激振器、加速度传感器、速度传感器、位移传感器、力传感器、扫描信号源、动态分析仪、力锤、质量块、可调速电机、空气阻尼器、复式吸振器。 四、动态特性测量 1.振动系统固有频率的测量 (1)实验装置框图:见(图1-1) (2)实验原理: 对于振动系统测定其固有频率,常用简谐力激振,引起系统共振,从而找到系统的各阶固有频率。在激振功率输出不变的情况下,由低到高调节激振器的激振频率,通过振动曲线,我们可以观察到在某一频率下,任一振动量(位移、速度、加速度)幅值迅速增加,这就是机械振动系统的某阶固有

频率。 (图1-1实验装置图) (3)实验方法: ①安装仪器 把接触式激振器安装在支架上,调节激振器高度,让接触头对简支梁产生一定的预压力,使激振杆上的红线与激振器端面平齐为宜,把激振器的信号输入端用连接线接到DH1301扫频信号源的输出接口上。把加速度传感器粘贴在简支梁上,输出信号接到数采分析仪的振动测试通道。 ②开机 打开仪器电源,进入DAS2003数采分析软件,设置采样率,连续采集,输入传感器灵敏度、设置量程范围,在打开的窗口内选择接入信号的测量通道。清零后开始采集数据。 ③测量 打开DH1301扫频信号源的电源开关,调节输出电压,注意不要过载,手动调节输出信号的频率,从0开始调节,当简支梁产生振动,且振动量最大时(共振),保持该频率一段时间,记录下此时信号源显示的频率,即为简支梁振动固有频率。继续增大频率可得到高阶振动频率。

测试系统的基本特性

第4章测试系统的基本特性 4.1 知识要点 4.1.1测试系统概述及其主要性质 1.什么叫线性时不变系统? 设系统的输入为x (t )、输出为y (t ),则高阶线性测量系统可用高阶、齐次、常系数微分方程来描述: )(d )(d d )(d d )(d 01111t y a t t y a t t y a t t y a n n n n n n ++++--- )(d )(d d )(d d )(d 01111t x b t t x b t t x b t t x b m m m m m m ++++=--- (4-1) 式(4-1)中,a n 、a n -1、…、a 0和b m 、b m -1、…、b 0是常数,与测量系统的结构特性、输入状况和测试点的分布等因素有关。这种系统其内部参数不随时间变化而变化,称之为时不变(或称定常)系统。既是线性的又是时不变的系统叫做线性时不变系统。 2.线性时不变系统具有哪些主要性质? (1)叠加性与比例性:系统对各输入之和的输出等于各单个输入的输出之和。 (2)微分性质:系统对输入微分的响应,等同于对原输入响应的微分。 (3)积分性质:当初始条件为零时,系统对输入积分的响应等同于对原输入响应的积分。 (4)频率不变性:若系统的输入为某一频率的谐波信号,则系统的稳态输出将为同一频率的谐波信号。 4.1.2测试系统的静态特性 1.什么叫标定和静态标定?采用什么方法进行静态标定?标定有何作用?标定的步骤有哪些? 标定:用已知的标准校正仪器或测量系统的过程。 静态标定:就是将原始基准器,或比被标定系统准确度高的各级标准器或已知输入源作用于测量系统,得出测量系统的激励-响应关系的实验操作。 静态标定方法:在全量程范围内均匀地取定5个或5个以上的标定点(包括零点),从零点开始,由低至高,逐次输入预定的标定值(称标定的正行程),然后再倒序由高至低依次输入预定的标定值,直至返回零点(称标定的反行程),并按要求将以上操作重复若干次,记录下相应的响应-激励关系。 标定的主要作用是:确定仪器或测量系统的输入-输出关系,赋予仪器或测量系统分度

简述系统动态特性及其测定方法

简述系统动态特性及其测定方法 系统的特性可分为静态特性和动态特性。其中动态特性是指检测系统在被测量随时间变化的条件下输入输出关系。一般地,在所考虑的测量范围内,测试系统都可以认为是线性系统,因此就可以用一定常线性系统微分方程来描述测试系统以及和输入x (t)、输出y (t)之间的关系。 1) 微分方程:根据相应的物理定律(如牛顿定律、能量守恒定律、基尔霍夫电 路定律等),用线性常系数微分方程表示系统的输入x 与输出y 关系的数字方程式。 a i 、 b i (i=0,1,…):系统结构特性参数,常数,系统的阶次由输出量最高微分阶次决定。 2) 通过拉普拉斯变换建立其相应的“传递函数”,该传递函数就能描述测试装 置的固有动态特性,通过傅里叶变换建立其相应的“频率响应函数”,以此来描述测试系统的特性。 定义系统传递函数H(S)为输出量与输入量的拉普拉斯变换之比,即 式中S 为复变量,即ωαj s += 传递函数是一种对系统特性的解析描述。它包含了瞬态、稳态时间响应和频率响应的全部信息。传递函数有一下几个特点: (1)H(s)描述系统本身的动态特性,而与输入量x (t)及系统的初始状态无关。 (2)H(S)是对物理系统特性的一种数学描述,而与系统的具体物理结构无关。H(S)是通过对实际的物理系统抽象成数学模型后,经过拉普拉斯变换后所得出的,所以同一传递函数可以表征具有相同传输特性的不同物理系统。 (3)H(S)中的分母取决于系统的结构,而分子则表示系统同外界之间的联系,如输入点的位置、输入方式、被测量以及测点布置情况等。分母中s 的幂次n 代表系统微分方程的阶数,如当n =1或n =2 时,分别称为一阶系统或二阶系统。 一般测试系统都是稳定系统,其分母中s 的幂次总是高于分子中s 的幂次(n>m)。

第二章习题

第二章 测试系统的基本特性 (一)填空题 1、 某一阶系统的频率响应函数为121 )(+=ωωj j H ,输入信号2 sin )(t t x =,则输出信号)(t y 的频率为=ω ,幅值=y ,相位=φ 。 2、 试求传递函数分别为5.05.35.1+s 和222 4.141n n n s s ωωω++的两个环节串联后组成的系统的总灵敏度。为了获得测试信号的频谱,常用的信号分析方法有 、 和 。 3、 当测试系统的输出)(t y 与输入)(t x 之间的关系为)()(00t t x A t y -=时,该系统能实现 测试。此时,系统的频率特性为=)(ωj H 。 4、 传感器的灵敏度越高,就意味着传感器所感知的 越小。 5、 一个理想的测试装置,其输入和输出之间应该具有 关系为最佳。 (二)选择题 1、 不属于测试系统的静特性。 (1)灵敏度 (2)线性度 (3)回程误差 (4)阻尼系数 2、 从时域上看,系统的输出是输入与该系统 响应的卷积。 (1)正弦 (2)阶跃 (3)脉冲 (4)斜坡 3、 两环节的相频特性各为)(1ωQ 和)(2ωQ ,则两环节串联组成的测试系统,其相频特性 为 。 (1) )()(21ωωQ Q (2))()(21ωωQ Q + (3)) ()()()(2121ωωωωQ Q Q Q +(4))()(21ωωQ Q - 4、 一阶系统的阶跃响应中,超调量 。 (1)存在,但<5% (2)存在,但<1 (3)在时间常数很小时存在 (4)不存在 5、 忽略质量的单自由度振动系统是 系统。 (1)零阶 (2)一阶 (3)二阶 (4)高阶 6、 一阶系统的动态特性参数是 。 (1)固有频率 (2)线性度 (3)时间常数 (4)阻尼比 7、 用阶跃响应法求一阶装置的动态特性参数,可取输出值达到稳态值 倍所经过的 时间作为时间常数。

实验二-二阶系统的动态特性与稳定性分析

实验二-二阶系统的动态特性与稳定性分析

自动控制原理 实验报告 实验名称:二阶系统的动态特性与稳定性分析班级: 姓名: 学号:

实验二二阶系统的动态特性与稳定性分析 一、实验目的 1、掌握二阶系统的电路模拟方法及其动态性能指标的测试技术过阻尼、临界阻尼、欠阻尼状态 )对系统动态2、分析二阶系统特征参量(ξ ω, n 性能的影响; 3、分析系统参数变化对系统稳定性的影响,加深理解“线性系统稳定性至于其结构和参数有关,与外作用无关”的性质; 4、了解掌握典型三阶系统的稳定状态、临界稳定、不稳定状态; 5、学习二阶控制系统及其阶跃响应的Matlab 仿真和simulink实现方法。 二、实验内容 1、构成各二阶控制系统模拟电路,计算传递函数,明确各参数物理意义。 2、用Matlab和simulink仿真,分析其阶跃响应动态性能,得出性能指标。 3、搭建典型二阶系统,观测各个参数下的阶跃响应曲线,并记录阶跃响应曲线的超调量%σ、

峰值时间tp 以及调节时间ts ,研究其参数变化对典型二阶系统动态性能和稳定性的影响; 4、 搭建典型三阶系统,观测各个参数下的阶跃响应曲线,并记录阶跃响应曲线的超调量%σ、峰值时间tp 以及调节时间ts ,研究其参数变化对典型三阶系统动态性能和稳定性的影响; 5、 将软件仿真结果与模拟电路观测的结果做比较。 三、实验步骤 1、 二阶系统的模拟电路实现原理 将二阶系统: ωωξω2 2)(22 n n s G s s n ++= 可分解为一个比例环节,一个惯性环节和一个积分环节 ωωξω221)() ()()(2C C C C s C C 2 22 6215423 2 15423 2 2154215426316 320 n n s s s s s G s s s C R R R R R R R R R R R R C R R R R R R R R R U U n i ++= ++=++== 2、 研究特征参量ξ对二阶系统性能的影响 将二阶系统固有频率5 .12n =ω 保持不变,测试阻尼

机械工程测试技术课后答案第二章

2-1 一个测试系统与其输入和输出间的关系各有哪几种情形?试分别用工程实例加以说明。答:测试系统与输入、输出的关系大致可以归纳为以下三类问题: (1)当输入和输出是可观察的或已知量时,就可以通过他们推断系统的传输特性,也就是求出系统的结构与参数、建立系统的数学模型。此即系统辨识问题。 (2)当系统特性已知,输出可测时,可以通过他们推断导致该输出的输入量,此即滤波与预测问题,有时也称为载荷识别问题。 (3)当输入和系统特性已知时,则可以推断和估计系统的输出量,并通过输出来研究系统本身的有关结构参数,此即系统分析问题。 2-2什么是测试系统的静特性和动特性?两者有哪些区别?如何来描述一个系统的动特性? 答:当被测量是恒定的或是缓慢变化的物理量时,便不需要对系统做动态描述,此时涉及的就是系统的静态特性。测试系统的静态特性,就是用来描述在静态测试的情况下,实际的测试系统与理想的线性定常系统之间的接近程度。静态特性一般包括灵敏度、线性度、回程误差等。 测试系统的动态特性是当被测量(输入量)随时间快速变化时,输入与输出(响应)之间动态关系的数学描述。 静特性与动态性都是用来反映系统特性的,是测量恒定的量和变化的量时系统所分别表现出的性质。 系统的动态特性经常使用系统的传递函数和频率响应函数来描述。 2-3传递函数和频率响应函数均可用于描述一个系统的传递特性,两者有何

区别?试用工程实例加以说明。 答:传递函数是在复数域中描述系统特性的数学模型。频率响应函数是在频域中描述系统特性的数学模型。 2-4 不失真测试的条件时什么?怎样在工程中实现不失真测试? 答:理想情况下在频域描述不失真测量的输入、输出关系:输出与输入的比值为常数,即测试系统的放大倍数为常数;相位滞后为零。在实际的测试系统中,如果一个测试系统在一定工作频带内,系统幅频特性为常数,相频特性与频率呈线性关系,就认为该测试系统实现的测试时不失真测试。 在工程中,要实现不失真测试,通常采用滤波方法对输入信号做必要的预处理,再者要根据测试任务的不同选择不同特性的测试系统,如测试时仅要求幅频或相频的一方满足线性关系,我们就没有必要同时要求系统二者都满足线性关系。对于一个二阶系统,当3.0n <ωω时,测试装置选择阻尼比为~的范围内,能够得到较好的相位线性特性。当3n >ωω时,可以用反相器或在数据处理时减去固定的180°相位差来获得无相位差的结果,可以认为此时的相位特性满足精确测试条件。 2-5 进行某动态压力测量时,所采用的压电式力传感器的灵敏度为MPa ,将它与增益为nC 的电荷放大器相连,电荷放大器的输出接到一台笔式记录仪上,记录仪的灵敏度为20mm/V 。试计算这个测试系统的总灵敏度。当压力变化为时,记录笔在记录本上的偏移量是多少? 答:由题意知此系统为串联系统,故 而 1S =MPa ,2S =nC,3S =20mm/V 故可得

测试技术第二章答案

测试技术第二章答案-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-

8 第二章 习题 2-1:典型的测量系统有几个基本环节组成其中哪个环节的繁简程度相差最大 典型的测试系统,一般由输入装置、中间变换装置、输出装置三部分组成。其中输入装置的繁简程度相差最大,这是因为组成输入装置的关键部件是传感器,简单的传感器可能只由一个敏感元件组成,如测量温度的温度计。而复杂的传感器可能包括敏感元件,变换电路,采集电路。有些智能传感器还包括微处理器。 2-2:对某线性装置输入简谐信号x(t)=asin(φω+t ),若输出为y(t)=Asin(Φ+Ωt ),请对幅值等各对应量作定性比较,并用不等式等数学语言描述它们之间的关系。 x(t)=asin(φω+t )→y(t)=Asin(Φ+Ωt ), 根据线性装置的输入与输出具有的频率保持特 性可知,简谐正弦输入频率与输出频率应相等,既有:Ω=ω,静态灵敏度:K=a A = 常数,相位差:△??-Φ== 常数。 2-3:传递函数和频响函数在描述装置特性时,其物理意义有何不同? 传递函数定义式:H (s )=)()(s x s y =0 1110111a s a s a s a b s b s b s b n n n n m m m m ++++++++---- ,其中s=+αj ω称拉氏算子。H(s)是描述测量装置传输,转换特性的数学模型,是以测量装置本身的参数表示输入与输出之间的关系,与装置或结构的物理特性无关。 频率响应函数定义式: H (ωj )=)()(ωωj x j y =0 1110111)())()()()(a j a j a j a b j b j b j b n n n n n n n n ++++++++----ωωωωωω 反映了信号频率为ω时输出信号的傅氏变换与输入信号的傅氏变换之比。频率响应函数H (ωj )是在正弦信号激励下,测量装置达到稳态输出后,输出与输入之间关系的描述。H (s )与H (ωj )两者含义不同。 H (s )的激励不限于正弦激励。它不仅描述了稳态的也描述了瞬态输入与输出之间的关系。 2-4:对于二阶装置,为何要取阻尼比ζ=0.6~0.7? 当阻尼比ζ= 0.6~0.7时,从幅频特性曲线上看,几乎无共振现象,而且水平段最长。这意味着工作频率范围宽,即测量装置能在0~0.5ω的较大范围内保持近于相同的缩放能力。满足了A(ω)= C 的不失真测量条件。

测试系统的特性

第四章测试系统的特性 本章学习要求 1.建立测试系统的概念 2.了解测试系统特性对测量结果的影响 3.了解测试系统特性的测量方法 §4.1 测试系统概论 测试系统是执行测试任务的传感器、仪器和设备的总称。当测试的目的、要求不同时,所用的测试装置差别很大。简单的温度测试装置只需一个液柱式温度计,而较完整的动刚度测试系统,则仪器多且复杂。本章所指的测试装置可以小到传感器,大到整个测试系统。 在测量工作中,一般把研究对象和测量装置作为一个系统来看待。问题简化为处理输入量x(t)、系统传输特性h(t)和输出y(t)三者之间的关系。 图4.1-2 系统、输入和输出 1)当输入、输出能够测量时(已知),可以通过它们推断系统的传输特性。 2)当系统特性已知,输出可测量,可以通过它们推断导致该输出的输入量。 3)如果输入和系统特性已知,则可以推断和估计系统的输出量。 4.1.1 对测试系统的基本要求 理想的测试系统应该具有单值的、确定的输入-输出关系。对于每一输入量都应该只有单一的输出量与之对应。知道其中一个量就可以确定另一个量。其中以输出和输入成线性关系最佳。许多实际测量装置无法在较大工作范围内满足线性要求,但可以在有效测量范围内近似满足线性测量关系要求。 4.1.2线性系统及其主要性质 若系统的输入x(t)和输出y(t)之间的关系可以用常系数线性微分方程来描述 a n y(n)(t)+a n-1y(n-1)(t)+…+a1y(1)(t)+a0y(0)(t) = b m x(m)(t)+b m-1x(m-1)(t)+b1x(1)(t)+b0x(0)(t)

其中a0,a1,…,an和b0,b1,…,bm均为常数,则称该系统为线性定常系统。一般在工程中使用的测试装置、设备都是线性定常系统。 线性定常系统有下面的一些重要性质: ☆叠加性 系统对各输入之和的输出等于各单个输入所得的输出之和,即 若 x1(t) → y1(t),x2(t) → y2(t)。。 则 x1(t)±x2(t) → y1(t)±y2(t) ☆比例性 常数倍输入所得的输出等于原输入所得输出的常数倍,即 若 x(t) → y(t)。。 则 kx(t) → ky(t) ☆微分性 系统对原输入信号的微分等于原输出信号的微分,即 若 x(t) → y(t)。。 则 x’(t) → y’(t) ☆积分性 当初始条件为零时,系统对原输入信号的积分等于原输出信号的积分,即若 x(t) → y(t)。。 则∫x(t)dt →∫y(t)dt ☆频率保持性 若系统的输入为某一频率的谐波信号,则系统的稳态输出将为同一频率的谐波信号,即 若 x(t)=Acos(ωt+φx)。。 则 y(t)=Bcos(ωt+φy) 线性系统的这些主要特性,特别是符合叠加原理和频率保持性,在测量工作中具有重要作用。例如,在稳态正弦激振试验时,响应信号中只有与激励频率相同的成分才是由该激励引起的振动,而其它频率成分皆为干扰噪声,应予以剔除。 §4.2测试系统的静态响应特性

第3章测试系统的动态特性与数据处理

信号与测试技术
第3章 测试系统的动态特性与数据处理 北航 自动化科学与电气工程学院 检测技术与自动化工程系 闫 蓓
yanbei@https://www.doczj.com/doc/b64240885.html,

第3章 学习要求
1、测试系统动态特性的定义及描述方法 2、如何获取测试系统的动态特性 3、掌握主要动态性能指标 时域指标、频域指标 4、掌握动态模型的建立(动态标定) 由阶跃响应获取传递函数的回归分析法 由频率特性获取传递函数的回归分析法
2014/3/14
信号与测试技术
2

第3章 测试系统的动态特性与数据处理 3.1 3.2 3.3 3.4 3.5 测试系统的动态特性的一般描述 测试系统时域动态性能指标与回归分析方法 测试系统频域动态性能指标与回归分析方法 测试系统不失真测试条件 测试系统负载效应及抗干扰特性
第3章小结 第3章作业
2014/3/14
信号与测试技术
3

3.1 测试系统的动态特性的一般描述 1. 动态特性的定义 测试系统进行动态测量过程中的特性。 输入量和输出量随时间迅速变化时,输出与输入之 间的关系,可用微分方程表示。
y (t ) 误差 e(t ) = ? x (t ) A
瞬态误差 稳态误差 时域特性 频域特性
2014/3/14
温 度 测 量
阶跃 冲激 正弦 一阶系统 二阶系统
心电参数测量
信号与测试技术
G (ω ) ? (ω )
振动位移测量
4

3.1 测试系统的动态特性的一般描述 2. 测试系统的动态特性方程 n 微分方程 传递函数 频响函数 状态方程 一阶系统 二阶系统
2014/3/14
x(t ) ? y (t )
X ( s) ? Y ( s)
d i y (t ) m d j x(t ) = ∑ bj ai ∑ i j d t d t i =0 j =0
1 1 G( s) = G( s) = 2 2 s 2 s + + ζ ω ω n n n Ts + 1
X ( jω ) ? Y ( jω ) G ( jω ) = Y ( jω ) = 输出傅立叶变换
X ( jω )
输入傅立叶变换
X = AX + BU
时域特性 频域特性
y (t ) = L?1 [G ( s ) X ( s ) ]
G ( jω ) ? ( jω )
信号与测试技术 5

第3章习题 测试系统的基本特性

第3章习题 测试系统的基本特性 一、选择题 1.测试装置传递函数H (s )的分母与( )有关。 A.输入量x (t ) B.输入点的位置 C.装置的结构 2.非线形度是表示定度曲线( )的程度。 A.接近真值 B.偏离其拟合直线 C.正反行程的不重合 3.测试装置的频响函数H (j ω)是装置动态特性在( )中的描述。 A .幅值域 B.时域 C.频率域 D.复数域 4.用常系数微分方程描述的系统称为( )系统。 A.相似 B.物理 C.力学 D.线形 5.下列微分方程中( )是线形系统的数学模型。 A.225d y dy dx t y x dt dt dt ++=+ B. 22d y dx y dt dt += C.22105d y dy y x dt dt -=+ 6.线形系统的叠加原理表明( )。 A.加于线形系统的各个输入量所产生的响应过程互不影响 B.系统的输出响应频率等于输入激励的频率 C.一定倍数的原信号作用于系统所产生的响应,等于原信号的响应乘以该倍 数 7.测试装置能检测输入信号的最小变化能力,称为( )。 A.精度 B.灵敏度 C.精密度 D.分辨率 8.一般来说,测试系统的灵敏度越高,其测量范围( )。 A.越宽 B. 越窄 C.不变 9.测试过程中,量值随时间而变化的量称为( )。 A.准静态量 B.随机变量 C.动态量 10.线形装置的灵敏度是( )。 A.随机变量 B.常数 C.时间的线形函数 11.若测试系统由两个环节串联而成,且环节的传递函数分别为12(),()H s H s ,则该系统总的传递函数为( )。若两个环节并联时,则总的传递函数为( )。

第二章测试系统的基本特性[1]

第二章测试系统的基本特性 第一节概述 测试的目的是为了准确了解被测物理量,而研究测试系统特性的目的则是为了能使系统尽可能准确真实地反映被测物理量,且为测试系统性能的评价提出一个标准。 1.测试系统能完成对某一物理量进行测取的装置,它即可以是一个单一环节组成的装置,如传感器,又可以是一个由多个功能环节组成的系统,如应变测量中的“传感器-应变仪-记录仪”。 2.对测试系统的基本要求 工程测试的基本传输关系如图示,所要寻求的是 输入x(t),输出y(t),系统传输性三者的关系,即 1)由已知的系统的输入和输出量,求系统的传递 特性。 2)由已知的输入量和系统的传递特性,推求系统的输出量。 3)由已知系统的传递特性和输出量,来推知系统的输入量。 为使上述三种问题能由已知方便的确定未知,为此提出,对于一个测试来说,应具有的基本特性是:单值的、确定的输入-输出关系,即对应于每一个输入量都应只有单一的输出量与之对应,能满足上述要求的系统一般是线性系统。 3.测试系统的特性的描述 对测试系统特性的描述通常有静态特性、动态特性、负载特性、抗干扰特性。 4.线性系统简介 二、线性系统及其主要性质 当系统的输入x(t)和输出y(t)之间的关系可用常系数线性微分方程(2-1)来描述时,则称该系统为定常线性系统。 线性系统有如下性质(以x(t) y(t)表示系统的输入、输出关系): 1)叠加性

表明作用于线性系统的各个输人所产生的输出互不影响,这样当分析众多输人同时加在系统上所产生的总效果时,可以先分别分析单个输入(假定其他输入不存往)的效果,然后将这些效果叠加起来以表示总的效果。 2)比例特性 若 x(t)→y(t) 则 3)微分性质 系统对输入导数的响应等于对原输入响应的导数,即 4)积分性质 系统对输入积分的响应等于对原输入响应的积分,即 5)频率保持性 若输入为某一频率的间谐信号,则系统的稳态输出必是、也只是同频率的间谐信号。 由于 按线性系统的比例特性,对于某一已知频率ω有 又根据线性系统的微分特性,有 应用叠加原理,有 现令输人为某一单一频率的简谐信号,记作t j e X t x ω0)(=,那么其二阶导数应为 由此,得

测试实验二测试系统动态特性校准

实验二测试系统动态特性校准 1.1 实验目的 (1)掌握振动加速度测试系统的组成 (2)掌握振动压电、压阻加速度传感器原理和测量方法 (3)掌握振动传感器比较法动态特性校准的实验方法 (4)掌握数据处理的一般方法 1.2 实验系统基本组成 本实验系统由振动控制系统和远程数据采集、处理系统两部分组成。振动控制系统中的振动台产生动态校准、动态测试所需的振动信号。振动控制系统由振动控制仪、功率放大器、振动台和反馈传感器构成,目的是使振动台按照预先设定的参考谱进行振动。标准传感器和被校传感器感受相同的振动,经过相应的变送器或放大器的输出电压信号送入数据采集系统,经服务器发送到学生实验客户端进行后续的动态校准与分析。如图1所示 主要实验设备及性能 压阻放大器

系统灵敏度S=KEs=K×0.328mv/g=2500×K1/500g=…mv/g SLM振动加速度变送器输入输出关系式0.25v/g 图1 图2 1.3 实验原理 实验以压阻式加速度传感器为校准对象,在振动台的家具台商采用背靠背的方式安装标准传感器与被校准传感器,这样保证了他们感受的是相同的振动信号,通过采集两个传感器的输出并将其送到学生实验客户端,通过比较不同的频率下的两个信号的幅值,用标准信号的灵敏度来计算出被校传感器的灵敏度,通过与理论制作比较来得到校准的结果。 1.4 实验操作 1.操作步骤 (1)固定好传感器,连接好相应的仪器与设备。 (2)打开振动台工控机与功率放大器的电源。功率放大器的启动方法如下:1.按下去电源A按钮,这时电源B上的OFF按钮上的灯亮。2.约等数秒后,按下电源B的ON开关,这时只有ON上的灯亮。3.预热约3-5分钟。 (3)打开电荷放大器和变动期的开关,点击工控机桌面的vibration test.exe 图标,选择正弦扫频振动实验。 (4)旋转增益旋钮约至60%,运行自检。 (5)待系统提示自检成功,点击运行开始运行实验,按照本实验要求进行采集数据。 (6)采集完毕后,先将功率放大器的增益旋钮旋至复位,关闭各个软件。功率放大器的关闭方式如下:1.将输出方式站换到低阻 2.按下电源B的OFF按钮,此时ON上指示灯灭,OFF指示灯亮。 3.约等十多秒后按下A按钮,此时只有风扇转动,可能会有短暂的声音,这是正常的。 (7)关断外部供电,实验完毕。 2 注意事项 (1)当由于电源干扰等原因引起的失控或计算机死机发生时,应按如下方式进行:

第二章习题

第二章习题 一、选择题 1.测试装置传递函数H (s )的分母与( )有关。 A.输入量x (t ) B.输入点的位置 C.装置的结构 2.非线形度是表示定度曲线( )的程度。 A.接近真值 B.偏离其拟合直线 C.正反行程的不重合 3.测试装置的频响函数H (j ω)是装置动态特性在( )中的描述。 A .幅值域 B.时域 C.频率域 D.复数域 4.用常系数微分方程描述的系统称为( )系统。 A.相似 B.物理 C.力学 D.线形 5.下列微分方程中( )是线形系统的数学模型。 A. 2 25d y dy dx t y x dt dt dt ++= + B. 2 2 d y y x dt += C. 2 2 105d y dy y x dt dt - =+ 6.线形系统的叠加原理表明( )。 A.加于线形系统的各个输入量所产生的响应过程互不影响 B.系统的输出响应频率等于输入激励的频率 C.一定倍数的原信号作用于系统所产生的响应,等于原信号的响应乘以该倍数 7.测试装置能检测输入信号的最小变化能力,称为( )。 A.精度 B.灵敏度 C.精密度 D.分辨率 8.一般来说,测试系统的灵敏度越高,其测量范围( )。 A.越宽 B. 越窄 C.不变 9.测试过程中,量值随时间而变化的量称为( )。 A.准静态量 B.随机变量 C.动态量 10.线形装置的灵敏度是( )。 A.随机变量 B.常数 C.时间的线形函数 11.若测试系统由两个环节串联而成,且环节的传递函数分别为12(),()H s H s ,则该系统总的传递函数为( )。若两个环节并联时,则总的传递函数为( )。 A. 12()()H s H s + B.12()()H s H s ?

实验二二阶系统的动态特性与稳定性分析

自动控制原理 实验报告 实验名称:二阶系统的动态特性与稳定性分析班级: 姓名: 学号:

实验二 二阶系统的动态特性与稳定性分析 一、实验目的 1、 掌握二阶系统的电路模拟方法及其动态性能指标的测试技术过阻尼、临界阻尼、欠阻尼 状态 2、 分析二阶系统特征参量(ξω,n )对系统动态性能的影响; 3、 分析系统参数变化对系统稳定性的影响,加深理解“线性系统稳定性至于其结构和参数 有关,与外作用无关”的性质; 4、 了解掌握典型三阶系统的稳定状态、临界稳定、不稳定状态; 5、 学习二阶控制系统及其阶跃响应的Matlab 仿真和simulink 实现方法。 二、实验容 1、 构成各二阶控制系统模拟电路,计算传递函数,明确各参数物理意义。 2、 用Matlab 和simulink 仿真,分析其阶跃响应动态性能,得出性能指标。 3、 搭建典型二阶系统,观测各个参数下的阶跃响应曲线,并记录阶跃响应曲线的超调量 %σ、峰值时间tp 以及调节时间ts ,研究其参数变化对典型二阶系统动态性能和稳定 性的影响; 4、 搭建典型三阶系统,观测各个参数下的阶跃响应曲线,并记录阶跃响应曲线的超调量 %σ、峰值时间tp 以及调节时间ts ,研究其参数变化对典型三阶系统动态性能和稳定 性的影响; 5、 将软件仿真结果与模拟电路观测的结果做比较。 三、实验步骤 1、 二阶系统的模拟电路实现原理 将二阶系统: ωωξω22)(22 n n s G s s n ++= 可分解为一个比例环节,一个惯性环节和一个积分环节

ωωξω221)() ()()(2C C C C s C C 2 22 6215423 2 15423 2 2154215426316 320 n n s s s s s G s s s C R R R R R R R R R R R R C R R R R R R R R R U U n i ++= ++=++== 2、 研究特征参量ξ对二阶系统性能的影响 将二阶系统固有频率5.12n =ω保持不变,测试阻尼系数ξ不同时系统的特性,搭建模拟电路,改变电阻R6可改变ξ的值 当R6=50K 时,二阶系统阻尼系数ξ=0.8 当R6=100K 时,二阶系统阻尼系数ξ=0.4 当R6=200K 时,二阶系统阻尼系数ξ=0.2 (1)用Matlab 软件仿真实现二阶系统的阶跃响应,计算超调量%σ、峰值时间tp 以及调节时间ts 。 当12.5n =ω,0.8=ξ时: clear g=tf(12.5^2,[1 25*0.8 12.5^2]), step(g) Transfer function: 156.3 ------------------- s^2 + 200 s + 156.3

测试装置的基本特性

第二章测试装置的基本特性 本章学习要求 1.建立测试系统的概念 2.了解测试系统特性对测量结果的影响 3.了解测试系统特性的测量方法 为实现某种量的测量而选择或设计测量装置时,就必须考虑这些测量装置能否准确获取被测量的量值及其变化,即实现准确测量,而是否能够实现准确测量,则取决于测量装置的特性。这些特性包括静态与动态特性、负载特性、抗干扰性等。这种划分只是为了研究上的方便,事实上测量装置的特性是统一的,各种特性之间是相互关联的。系统动态特性的性质往往与某些静态特性有关。例如,若考虑静态特性中的非线性、迟滞、游隙等,则动态特性方程就称为非线性方程。显然,从难于求解的非线性方程很难得到系统动态特性的清晰描述。因此,在研究测量系统动态特性时,往往忽略上述非线性或参数的时变特性,只从线性系统的角度研究测量系统最基本的动态特性。 2.1 测试系统概论 测试系统是执行测试任务的传感器、仪器和设备的总称。当测试的目的、要求不同时,所用的测试装置差别很大。简单的温度测试装置只需一个液柱式温度计,而较完整的动刚度测试系统,则仪器多且复杂。本章所指的测试装置可以小到传感器,大到整个测试系统。 玻璃管温度计 轴承故障检测仪 图2.1-1 在测量工作中,一般把研究对象和测量装置作为一个系统来看待。问题简化为处理输入量x(t)、系统传输特性h(t)和输出y(t)三者之间的关系。常见系统分析分为如下三种情况: 1)当输入、输出能够测量时(已知),可以通过它们推断系统的传输特性。-系统辨识 2)当系统特性已知,输出可测量,可以通过它们推断导致该输出的输入量。-系统反求 3)如果输入和系统特性已知,则可以推断和估计系统的输出量。-系统预测 图2.1-2 系统、输入和输出 2.1.1 对测试系统的基本要求 理想的测试系统应该具有单值的、确定的输入-输出关系。对于每一输入量都应该只有单一的输出量与之对应。知道其中一个量就可以确定另一个量。其中以输出和输入成线性关系最佳。许多实际测量装置无法在较大工作范围内满足线性要求,但可以在有效测量范围内近似满足线性测量关系要求。一般把测试系统定常线性系统考虑。 2.1.2 线性系统及其主要性质 若系统的输入x(t)和输出y(t)之间的关系可以用常系数线性微分方程来描述 a n y(n)(t)+a n-1y(n-1)(t)+…+a1y(1)(t)+a0y(0)(t) = b m x(m)(t)+b m-1x(m-1)(t)+b1x(1)(t)+b0x(0)(t) (2.1-1)

相关主题
文本预览
相关文档 最新文档