当前位置:文档之家› 工程数学-线性代数 第二章 向量空间 同步综合练习

工程数学-线性代数 第二章 向量空间 同步综合练习

工程数学-线性代数 第二章 向量空间 同步综合练习
工程数学-线性代数 第二章 向量空间 同步综合练习

工程数学-线性代数 第二章 向量空间 同步综合练习

一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。

1.

A. A

B. B

C. C

D. D

答案:A

2.

A. A

B. B

C. C

D. D 答案:D

3.

A. A

B. B

C. C

D. D 答案:D

4.

A. A

B. B

C. C

D. D 答案:B

5.

A. A

B. B

C. C

D. D 答案:D

6.

A. A

B. B

C. C

D. D

答案:B

7.

A. A

B. B

C. C

D. D

答案:C

解析:利用2.3节结论3即知选项(C)正确。

8.

A. A

B. B

C. C

D. D

答案:B

解析:利用2.3节结论5即知选项(B)正确。

9.

A. A

B. B

C. C

D. D

答案:A

10.

A. A

B. B

C. C

D. D

答案:B

11.

A. A

B. B

C. C

D. D

答案:D

解析:利用2.3节结论5即知选项(D)正确.

12.

A. A

B. B

C. C

D. D

答案:B

13.

B. B

C. C

D. D 答案:D

14.

A. A

B. B

C. C

D. D 答案:B

15.

B. B

C. C

D. D

答案:C

二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。错填、不填均无分。

1. ___

答案:

2. ___

答案:2

3. ___

答案:

4. ___

答案:6

5. ___

答案:(2,28,-2) 6. ___

答案:

7. ___

答案:线性相关8. ___

答案:

9. ___

答案:3

10. ___

答案:

三、计算题(本大题共6小题,每小题9分,共54分)

1.

答案:

2.

答案:

3.

高中数学-空间直角坐标系与空间向量典型例题

高中数学-空间直角坐标系与空间向量 一、建立空间直角坐标系的几种方法 构建原则: 遵循对称性,尽可能多的让点落在坐标轴上。 作法: 充分利用图形中的垂直关系或构造垂直关系来建立空间直角坐标系. 类型举例如下: (一)用共顶点的互相垂直的三条棱构建直角坐标系 例1 已知直四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2,底面ABCD 是直角梯形,∠ A 为直角,A B ∥CD ,AB =4,AD =2,D C =1,求异面直线BC 1与DC 所成角的余弦 值. 解析:如图1,以D 为坐标原点,分别以DA 、DC 、DD 1所在直线为x 、y 、z 轴建立空间直角坐标系,则C 1(0,1,2)、B (2,4,0), ∴1(232)BC =--u u u u r ,,,(010)CD =-u u u r ,,. 设1BC u u u u r 与CD uuu r 所成的角为θ, 则11317 cos 17BC CD BC CD θ== u u u u r u u u r g u u u u r u u u r . (二)利用线面垂直关系构建直角坐标系 例2 如图2,在三棱柱ABC -A 1B 1C 1中,AB ⊥侧面BB 1C 1C ,E 为棱CC 1上异于 C 、C 1的一点,EA ⊥EB 1.已知2AB = ,BB 1=2,BC =1,∠BCC 1= 3 π .求二面角A -EB 1-A 1的平面角的正切值. 解析:如图2,以B 为原点,分别以BB 1、BA 所在直线为y 轴、z 轴,过B 点垂直于平面AB 1的直线为x 轴建立空间直角坐标系. 由于BC =1,BB 1=2,AB = 2,∠BCC 1= 3 π,

线性代数教案-向量与向量空间

线性代数教学教案 第3章 向量与向量空间 授课序号01 教 学 基 本 指 标 教学课题 第3章 第1节 维向量及其线性运算 课的类型 新知识课 教学方法 讲授、课堂提问、讨论、启发、自学 教学手段 黑板多媒体结合 教学重点 维向量的概念、向量的线性运算的性质 教学难点 向量的线性运算的性质 参考教材 同济版《线性代数》 作业布置 课后习题 大纲要求 理解维向量的概念 教 学 基 本 内 容 一. 维向量的概念 1.维向量:由个数组成的有序数组称为维向量. 2.称为维行向量,称为维列向量. 二.维向量的线性运算 1.定义: (1)分量全为0的向量称为零向量; (2)对于,称为的负向量; (3)对于,,当且仅当时,称与相等; (4)对于,,称为与的和; (5)对于,,称为与的差; (6)对于,为实数,称为的数乘,记为. 2.向量的线性运算的性质:对任意的维向量和数,有: n n n n n n n a a a ,,,21 n ),,,(21n a a a n 12?????????????? n a a a n n ()12T n αa ,a ,,a = ()12---T n a ,a ,,a αT n a a a ),,,(21 =αT n b b b ),,,(21 =β),,2,1(n i b a i i ==αβT n a a a ),,,(21 =αT n b b b ),,,(21 =βT n n b a b a b a ),,,(2211+++ αβT n a a a ),,,(21 =αT n b b b ),,,(21 =β()1122---T n n a b ,a b ,,a b αβT n a a a ),,,(21 =αk T n ka ka ka ),,,(21 ααk n γβα,,l k ,

高中数学典型例题解析平面向量与空间向量

高中数学典型例题分析 第八章 平面向量与空间向量 §8.1平面向量及其运算 一、知识导学1.模(长度):向量的大小,记作||。长度为0的向量称为零向量,长度等于1个单位长度的向量,叫做单位向量。 2.平行向量:方向相同或相反的非零向量叫做平行向量,又叫做共线向量。 3.相等向量:长度相等且方向相同的向量。 4.相反向量:我们把与向量a 长度相等,方向相反的向量叫做a 的相反向量。记作-a 。 5.向量的加法:求两个向量和的运算。 已知a ,b 。在平面内任取一点,作AB =a ,BC =b ,则向量AC 叫做a 与b 的和。 记作a +b 。 6. 向量的减法:求两个向量差的运算。 已知a ,b 。在平面内任取一点O ,作OA =a ,OB =b ,则向量BA 叫做a 与b 的差。 记作a -b 。 7.实数与向量的积: (1)定义: 实数λ与向量a 的积是一个向量,记作λa ,并规定: ①λa 的长度|λa |=|λ|·|a |; ②当λ>0时,λa 的方向与a 的方向相同; 当λ<0时,λa 的方向与a 的方向相反; 当λ=0时,λa =0 (2)实数与向量的积的运算律:设λ、μ为实数,则 ①λ(μa )=(λμ) a ②(λ+μ) a =λa +μa ③λ(a +)=λa +λ 8.向量共线的充分条件:向量b 与非零向量a 共线的充要条件是有且只有一个实数λ,使得b =λa 。 另外,设a =(x 1 ,y 1), b = (x 2,y 2),则a //b x 1y 2-x 2y 1=0 9.平面向量基本定理: 如果1e 、2e 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ,有且只有一对实数λ1、λ 2 使 a =λ11e +λ22e ,其中不共线向量1e 、2e 叫做表示这一

高中数学典型例题解析汇报平面向量与空间向量

实用文档 文案大全高中数学典型例题第八章平面向量与空间向量 §8.1平面向量及其运算 一、、疑难知识导析 1.向量的概念的理解,尤其是特殊向量“零向量” 向量是既有大小,又有方向的量.向量的模是正数或0,是可以进行大小比较的,由于方向不能比较大小,所以向量是不能比大小的.两个向量的模相等,方向相同,我们称这两个向量相等,两个零向量是相等的,零向量与任何向量平行,与任何向量都是共线向量; 2.在运用三角形法则和平行四边形法则求向量的加减法时要注意起点和终点; 3.对于坐标形式给出的两个向量,在运用平行与垂直的充要条件时,一定要区分好两个公式,切不可混淆。因此,建议在记忆时对比记忆; 4.定比分点公式中则要记清哪个点是分点;还有就是此公式中横坐标和纵坐标是分开计算的; 5.平移公式中首先要知道这个公式是点的平移公式,故在使用的过程中须将起始点的坐标给出,同时注意顺序。 二知识导学 1.模(长度):向量AB的大小,记作|AB|。长度为0的向量称为零向量,长度等于1个单位长度的向量,叫做单位向量。 2.平行向量:方向相同或相反的非零向量叫做平行向量,又叫做共线向量。 3.相等向量:长度相等且方向相同的向量。 4.相反向量:我们把与向量a?长度相等,方向相反的向量叫做a?的相反向量。记作-a?。 5.向量的加法:求两个向量和的运算。 已知a?,b?。在平面内任取一点,作AB=a?,BC=b,则向量AC 叫做a与b?的和。记作a?+b?。 6. 向量的减法:求两个向量差的运算。 已知a?,b?。在平面内任取一点O,作OA=a?,OB=b?,则向量BA 叫做a?与b?的差。记作a?-b?。 7.实数与向量的积: (1)定义:实数λ与向量a?的积是一个向量,记作λa?,并规定: ①λa?的长度|λa?|=|λ|·|a?|; ②当λ>0时,λa?的方向与a?的方向相同; 当λ<0时,λa?的方向与a?的方向相反; 当λ=0时,λa?=0? (2)实数与向量的积的运算律:设λ、μ为实数,则 ①λ(μa?)=(λμ) a?

空间向量和立体几何典型例题

空间向量与立体几何典型例题 一、选择题: 1.(2008全国Ⅰ卷理)已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 内的射影为ABC △的中心,则1AB 与底面ABC 所成角的正弦值等于( C ) A . 13 B . 3 C .3 D .2 3 1.解:C .由题意知三棱锥1A ABC -为正四面体,设棱长为a ,则1AB = ,棱柱的高 1 3AO a ===(即点1B 到底面ABC 的距离),故1AB 与底面ABC 所成角的正弦值为11AO AB =另解:设1,,AB AC AA 为空间向量的一组基底,1,,AB AC AA 的两两间的夹角为0 60 长度均为a ,平面ABC 的法向量为1111 33 OA AA AB AC =- -,11AB AB AA =+ 2111126 ,,333 OA AB a OA AB ?= == 则1AB 与底面ABC 所成角的正弦值为 111 12 3 OA AB AO AB ?= . 二、填空题: 1 .(2008全国Ⅰ卷理)等边三角形ABC 与正方形ABDE 有一公共边AB ,二面角 C AB D --M N ,分别是AC BC ,的中点,则EM AN ,所成角的余弦值等于 6 1 . 1.答案: 1 6 .设2AB =,作CO ABDE ⊥面, OH AB ⊥,则CH AB ⊥,CHO ∠为二面角C AB D -- cos 1CH OH CH CHO ==?∠=,结合等边三角形ABC 与正方形ABDE 可知此四棱锥为正四棱锥,则AN EM ==11 (),22 AN AC AB EM AC AE =+=-, 11()()22AN EM AB AC AC AE ?=+?-=1 2 故EM AN ,所成角的余弦值 1 6 AN EM AN EM ?= 另解:以O 为坐标原点,建立如图所示的直角坐标系, 则点(1,1,0),(1,1,0),(1,1,0),A B E C ----,

线性代数向量空间自测题(附答案)

《第四章 向量空间》 自测题 (75分钟) 一、选择、填空(20分,每小题4分) 1. 下列向量集合按向量的加法和数乘运算构成R 上一个向量空间的是( )。 (A )R n 中,分量满足x 1+x 2+…+x n =0的所有向量; (B )R n 中,分量是整数的所有向量; (C )R n 中,分量满足x 1+x 2+…+x n =1的所有向量; (D )R n 中,分量满足x 1=1,x 2,…,x n 可取任意实数的所有向量。 2.设R 4 的一组基为,,,,4321αααα令 414433322211,,,ααβααβααβααβ+=+=+=+=, 则子空间}4,3,2,1,|{44332211=∈+++=i F k k k k k W i ββββ的维数为 ,它的一组基为 。 3. 向量空间R n 的子空间 },0|)0,,,,{(1121121R x x x x x x x W n n ∈=+=-- 的维数为 , 它的一组基为 。 4. 设W 是所有二阶实对称矩阵构成的线性空间,即?? ? ???????∈???? ??=R a a a a a W ij 2212 1211,则它的维数为 ,一组基为 。 5.若A=????? ? ? ?????? ?? ? - 10 0021021b a 为正交矩阵,且|A|=-1,则a = ,= 。 二、计算题(60分) 1.(15分)设R 3的两组基为: T T T )1,1,0(,)0,1,1(,)1,0,1(321===ααα和T T T )1,2,1(,)2,1,1(,)1,1,1(321===βββ, 向量α=(2,3,3)T (1)求由基321,,ααα到基321,,βββ的过渡矩阵。 (2)求α关于这两组基的坐标。 (3)将321,,βββ化为一组标准正交基。 2. (15分)在R 4 中,求下述齐次线性方程组的解空间的维数和基,

线性代数 向量空间

第五节 向量空间 分布图示 ★ 向量空间 ★ 例1 ★ 例2 ★ 例3 ★ 例4 ★ 例5 ★ 子空间 ★ 例6 ★ 例7 ★ 向量空间的基与维数 ★ 例8 ★ 例9 ★ 向量在基下的坐标 ★ 例10 ★ 关于集合的坐标系的注记 ★ 例11 ★ 内容小结 ★ 课堂练习 ★ 习题3-5 内容要点 一、向量空间与子空间 定义1 设V 为n 维向量的集合,若集合V 非空,且集合V 对于n 维向量的加法及数乘两种运算封闭, 即 (1) 若,,V V ∈∈βα则V ∈+βα; (2) 若,,R V ∈∈λα则V ∈λα. 则称集合V 为R 上的向量空间. 记所有n 维向量的集合为n R , 由n 维向量的线性运算规律,容易验证集合n R 对于加法及数乘两种运算封闭. 因而集合n R 构成一向量空间, 称n R 为n 维向量空间. 注:3=n 时, 三维向量空间3R 表示实体空间; 2=n 时, 维向量空间2R 二表示平面; 1=n 时, 一维向量空间1R 表示数轴. 3>n 时, n R 没有直观的几何形象. 定义2 设有向量空间1V 和2V , 若向量空间21V V ?, 则称1V 是2V 的子空间. 二、向量空间的基与维数 定义3 设V 是向量空间, 若有r 个向量V r ∈ααα,,,21 , 且满足 (1) r αα,,1 线性无关; (2) V 中任一向量都可由r αα,,1 线性表示. 则称向量组r αα,,1 为向量空间V 的一个基, 数r 称为向量空间V 的维数,记为r V =dim 并称V 为r 维向量空间. 注: (1) 只含零向量的向量空间称为0维向量空间, 它没有基; (2) 若把向量空间V 看作向量组,则V 的基就是向量组的极大无关组, V 的维数就是向量组的秩; (3) 若向量组r αα,,1 是向量空间V 的一个基,则V 可表示为 }.,,,,|{2111R x x V r r r ∈++==λλλαλαλ 此时, V 又称为由基r αα,,1 所生成的向量空间. 故数组r λλ,,1 称为向量x 在基r αα,,1 中的坐标. 注: 如果在向量空间V 中取定一个基r a a a ,,,21 , 那么V 中任一向量x 可惟一地表示为 ,2211r r a a a x λλλ+++= 数组r λλλ,,,21 称为向量x 在基r a a a ,,,21 中的坐标.

高二数学空间向量苏教版(文)

高二数学空间向量苏教版(文) 【本讲教育信息】 一. 教学内容: 空间向量 二. 本周教学目标: 1. 运用类比的方法,经历向量及运算由平面向空间推广的过程。 2. 了解空间向量的概念,掌握空间向量的线性运算及其性质.理解空间向量共线的条件。 3. 了解向量共面的含义,理解共面向量定理,能运用共面向量定理证明有关线面平行和点共面的简单问题。 4. 掌握空间向量基本定理及推论,理解空间任意一个向量可以用不共面的三个已知向量线性表示,而且这种表示是唯一的。 5. 能用坐标表示空间向量,掌握空间向量的坐标运算,会根据向量的坐标判断两个空间向量的平行。 6. 掌握空间向量夹角的概念,掌握空间向量的数量积的概念、性质和运算率。了解空间向量的几何意义;掌握空间向量数量积的坐标形式,会用向量的方法解决有关垂直、夹角和距离的简单问题。 三. 本周知识要点。 1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。 注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。 (2)空间的两个向量可用同一平面内的两条有向线段来表示。 2. 空间向量的运算。 定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。 OB OA AB a b =+=+u u u r u u u r u u u r v r ;BA OA OB a b =-=-u u u r u u u r u u u r r r ;()OP a R λλ=∈u u u r r 运算律:⑴加法交换律:a b b a ? ??ρ+=+ ⑵加法结合律:)()(c b a c b a ? ???ρ?++=++ ⑶数乘分配律:b a b a ? ???λλλ+=+)( 3. 共线向量。 (1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线 向量或平行向量,a ρ平行于b ρ,记作b a ρ ?//。

空间向量与立体几何典型例题

空间向量与立体几何典型例题 一、选择题: 1.(2008全国Ⅰ卷理)已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 内的射影为ABC △的中心,则1AB 与底面ABC 所成角的正弦值等于( C ) A. 13 D.2 3 1、解:C.由题意知三棱锥1A ABC -为正四面体,设棱长为a , 则1AB =, 棱柱的高 1 3AO a ===(即点1B 到底面ABC 的距离),故1AB 与底面ABC 所成角的正弦值为113 AO AB =、 另解:设1,,AB AC AA u u u r u u u r u u u r 为空间向量的一组基底,1,,AB AC AA u u u r u u u r u u u r 的两两间的夹角为0 60 长度均为a ,平面ABC 的法向量为111133 OA AA AB AC =--u u u r u u u r u u u r u u u r ,11AB AB AA =+u u u r u u u r u u u r 211112,,33 OA AB a OA AB ?===u u u r u u u r u u u r u u u r 则1AB 与底面ABC 所成角的正弦值为11 1 1OA AB AO AB ?=u u u u r u u u r u u u r u u u r 、 二、填空题: 1.(2008全国Ⅰ卷理)等边三角形ABC 与正方形ABDE 有一公共边AB ,二面角C AB D -- M N ,分别就是AC BC ,的中点,则EM AN ,所成角的余弦值等于 6 1 . 1、答案: 1 6 、设2AB =,作CO ABDE ⊥面, OH AB ⊥,则CH AB ⊥,CHO ∠为二面角C AB D -- cos 1CH OH CH CHO ==?∠=,结合等边三角形ABC 与正方形ABDE 可知此四棱锥为正四棱锥,则AN EM ==11(),22AN AC AB EM AC AE =+=-u u u r u u u r u u u r u u u u r u u u r u u u r , 11()()22AN EM AB AC AC AE ?=+?-=u u u r u u u u r u u u r u u u r u u u r 12 故EM AN ,所成角的余弦值1 6 AN EM AN EM ?=u u u r u u u u r u u u r u u u u r 另解:以O 为坐标原点,建立如图所示的直角坐标系, 则点(1,1,0),(1,1,0),(1,1,0),A B E C ----, 1111(,,(,,)222222 M N ---,

3.1空间向量及其运算教案(经典例题及答案详解)

3.1 空间向量及其运算 第一课时 3.1.1 空间向量及其加减运算----3.1.2 空间向量的数乘运 算 教学要求:理解空间向量的概念,掌握其表示方法;会用图形说明空间向量加法、减法、数乘向量及它们的运算律;能用空间向量的运算意义及运算律解决简单的立体几何中的问题. 教学重点:空间向量的加减与数乘运算及运算律. 教学难点:由平面向量类比学习空间向量. 教学过程: 一、复习引入 1、有关平面向量的一些知识:什么叫做向量?向量是怎样表示的呢? 既有大小又有方向的量叫向量.向量的表示方法有:用有向线段表示;用字母a 、b 等表示; 用有向线段的起点与终点字母:AB .长度相等且方向相同的向量叫相等向量. 2. 向量的加减以及数乘向量运算: 向量的加法: 向量的减法: 实数与向量的积: 实数λ与向量a 的积是一个向量,记作λa ,其长度和方向规定如下:|λa |=|λ||a | (2)当λ>0时,λa 与a 同向; 当λ<0时,λa 与a 反向; 当λ=0时,λa =0. 3. 向量的运算运算律:加法交换律:a +b =b +a 4. 三个力都是200N ,相互间夹角为60°,能否提起一块重500N 的钢板? 二、新课讲授 1. 定义:我们把空间中具有大小和方向的量叫做空间向量.向量的大小叫做向量的长度或模. → 举例? 表示?(用有向线段表示) 记法? → 零向量? 单位向量? 相反向量? → 讨论:相等向量? 同向且等长的有向线段表示同一向量或相等的向量. → 讨论:空间任意两个向量是否共面? 2. 空间向量的加法、减法、数乘向量的定义与平面向量的运算一样: OB OA AB =+=a +b , AB OB OA =-(指向被减向量), OP =λa ()R λ∈ (请学生说说数乘运算的定义?) 3. 空间向量的加法与数乘向量的运算律. ⑴加法交换律:a + b = b + a ; ⑵加法结合律:(a + b ) + c =a + (b + c ); ⑶数乘分配律:λ(a + b ) =λa +λb ; ⑶数乘结合律:λ(u a ) =(λu )a . 4. 推广:⑴12233411n n n A A A A A A A A A A -++++=; ⑵122334110n n n A A A A A A A A A A -+++++=;⑶空间平行四边形法则. 5. 出示例:已知平行六面体(底面是平行四边形的四棱柱)''''ABCD A B C D - (如图),化简下列向量表达式,并标出化简结果的向量: AB BC +⑴; 'AB AD AA ++⑵; 1(3)'2AB AD CC ++; 1(')3 AB AD AA ++⑷. 师生共练 → 变式训练 6. 小结:概念、运算、思想(由平面向量类比学习空间向量)

空间向量知识点归纳总结(经典)知识讲解

空间向量与立体几何知识点归纳总结 一.知识要点。 1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。 注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。 (2)向量具有平移不变性 2. 空间向量的运算。 定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。 OB OA AB a b =+=+u u u r u u u r u u u r v r ;BA OA OB a b =-=-u u u r u u u r u u u r r r ;()OP a R λλ=∈u u u r r 运算律:⑴加法交换律:a b b a ???ρ+=+ ⑵加法结合律:)()(c b a c b a ????ρ?++=++ ⑶数乘分配律:b a b a ????λλλ+=+)( 运算法则:三角形法则、平行四边形法则、平行六面体法则 3. 共线向量。 (1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量或平行向量,a ρ平行于b ρ,记作b a ρ?//。 (2)共线向量定理:空间任意两个向量a ρ、b ρ(b ρ≠0ρ),a ρ//b ρ存在实数λ,使a ρ=λb ρ。 (3)三点共线:A 、B 、C 三点共线<=>λ= <=>)1(=++=y x OB y OA x OC 其中 (4)与a 共线的单位向量为a a ± 4. 共面向量 (1)定义:一般地,能平移到同一平面内的向量叫做共面向量。 说明:空间任意的两向量都是共面的。 (2)共面向量定理:如果两个向量,a b r r 不共线,p r 与向量,a b r r 共面的条件是存在实数,x y 使p xa yb =+r r r 。 (3)四点共面:若A 、B 、C 、P 四点共面<=>y x AP += <=>)1(=++++=z y x OC z OB y OA x OP 其中 5. 空间向量基本定理:如果三个向量,,a b c r r r 不共面,那么对空间任一向量p r ,存 在一个唯一的有序实数组,,x y z ,使p xa yb zc =++r r r r 。

空间向量典型例题

空间向量与立体几何 一、非坐标系向量法 1.已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 内的射影为ABC △的中心,则1AB 与底面ABC 所成角的正弦值等于( ) A .13 B . 3 C D . 23 2.等边三角形ABC 与正方形ABDE 有一公共边AB ,二面角C AB D --的余弦 ,M N ,分别是AC BC ,的中点,则EM AN ,所成角的余弦值等于 . 3.已知正四面体ABCD 中,E 、F 分别在AB ,CD 上,且 , ,则直线DE 和BF 所成角的余弦值为( ) A 、 B 、 C 、 D 、 4.如图,已知四棱柱ABCD-A 1 B 1 C 1 D 1 的底面ABCD 是菱形且 ∠C 1CB=∠C 1CD=∠BCD , (1)证明:C 1C ⊥ BD ; (2)当1 CD CC 的值为多少时,能使 A 1C ⊥ 平面C 1BD ?请给出证明。 13413313 4 -133- AB AE 4 1=CD CF 41=A D C B A D C B 1 1 1 1

二、坐标系向量法 1.如图,在直三棱柱中,,,,点是 的中点 (1)求异面直线与所成角的余弦值 (2)求平面与所成二面角的正弦值. 2、如图,直棱柱中,分别是的中点,. (Ⅰ)证明:平面; (Ⅱ)求二面角的正弦值.

3、如图,在三棱锥P -ABC 中,AC =BC =2,∠ACB =90°,AP =BP =AB ,PC ⊥AC . (Ⅰ)求证:PC ⊥AB ; (Ⅱ)求二面角B -AP -C 的大小. 4.如图,已知点P 在正方体ABC D -A 1B 1C 1D 1的对角线BD 1上,∠PDA=60°。 (1)求DP 与CC 1所成角的大小;(2)求DP 与平面AA 1D 1D 所成角的大小。 1 A

线性代数n维向量和向量组的线性相关性

第三章 线性方程组 § n 维向量及其线性相关性 教学目标:掌握n 维向量及其运算,准确理解向量的线性相关和线性无关的定义, 掌握向量组的线性相关和线性无关的判定定理和判定方法. 重 点: ★ n 维向量的概念 ★ 向量的线性运算 ★ 线性方程组的向量形式 ★ 向量组的线性组合 ★ 向量组间的线性表示 ★ 线性相关和线性无关的概念 ★ 向量组的线性相关和线性无关判定 难 点: ★ 线性相关和线性无关的概念的理解, ★ 向量组的线性相关和线性无关的证明 内容要点 一、n 维向量及其线性运算 定义 数域F 上的n 个有次序的数n a a a ,,,21 所组成的有序数组),,,(21n a a a 称为数域F 上的n 维向量, 这n 个数称为该向量的n 个分量, 第i 个数i a 称为第i 个分量. 向量常用小写希腊字母,,,αβγ来表示; 向量通常写成一行 12(,, ,)n a a a α= 称之为行向量; 向量有时也写成一列 12n a a a α?? ? ?= ? ??? T n a a a ),,,(21 = 称之为列向量. 注:在解析几何中,我们把“既有大小又有方向的量”称为向量,并把可随意平行移动的有向线段作为向量的几何形象. 引入坐标系后,又定义了向量的坐标表示式(三个有次序实数),此即上面定义的3维向量. 因此,当3≤n 时,n 维向量可以把有向线段作为其几何形象. 当3>n 时,n 维向量没有直观的几何形象.

若干个同维数的列向量(或行向量)所组成的集合称为向量组.=n F {数域F 上n 维向量的全体},=n R 实数域上的n 维向量的全体. 例如,一个n m ?矩阵 ?? ?? ?? ? ??=mn m m n n a a a a a a a a a A 2 1 22221 11211 每一列???? ?? ? ??=mj j j j a a a 21α),2,1(n j =组成的向量组n ααα,,,21 称为矩阵A 的列向量组, 而由矩阵A 的每一行),,2,1(),,,(21m i a a a in i i i ==β组成的向量组m βββ,,,21 称为矩阵A 的行向量组. 根据上述讨论,矩阵A 记为),,,(21n A ααα = 或 ???? ?? ? ??=n A βββ 21. 这样,矩阵A 就与其列向量组或行向量组之间建立了一一对应关系. 定义 两个n 维向量),,,(21n a a a =α与),,,(21n b b b =β的各对应分量之和组成的向量,称为向量α与β的和, 记为βα+,即 ),,,(2211n n b a b a b a +++=+ βα 由加法和负向量的定义,可定义向量的减法: )(βαβα-+=- ),,,(2211n n b a b a b a ---= . 定义 n 维向量),,,(21n a a a =α的各个分量都乘以实数k 所组成的向量,称为数k 与向量α的乘积(又简称为数乘),记为αk ,即 ),,,(21n ka ka ka k =α. 向量的加法和数乘运算统称为向量的线性运算. 注:向量的线性运算与行(列)矩阵的运算规律相同,从而也满足下列运算规律: (1) αββα+=+; (2) )()(γβαγβα++=++; (3) ;αα=+o (4) ;)(o =-+αα (5) ;1αα= (6) ;)()(ααkl l k = (7) ;)(βαβαk k k +=+ (8) .)(αααl k l k +=+ 二、 n 维向量空间 定义:数域P 上的n 维向量的全体,同时考虑到定义在它们上的的加法和数量乘法,称为

利用空间向量求角和距离典型例题精讲

9.8用空间向量求角和距离 一、明确复习目标 1.了解空间向量的概念;会建立坐标系,并用坐标来表示向量; 2.理解空间向量的坐标运算;会用向量工具求空间的角和距离. 二.建构知识网络 1.求角: (1)直线和直线所成的角:求二直线上的向量的夹角或补角; (2)直线和平面所成的角: ①找出射影,求线线角; ②求出平面的法向量n ,直线的方向向量a ,设线面角为 θ,则|cos ,||||||| n a sin n a n a θ?=<>=? . (3)二面角: ①求平面角,或求分别在两个面内与棱垂直的两个向量的夹角(或补角); ②求两个法向量的夹角(或补角). 2.求距离 (1)点M 到面的距离||cos d M N θ= (如图)就是斜线段MN 在法向量n 方向上的正投影. 由||||cos ||n N M n N M n d θ?=??=? 得距离公式:|| || n N M d n ?= (2)线面距离、面面距离都是求一点到平面的距离; (3)异面直线的距离:求出与二直线都垂直的法向量n 和连接两异面直线上两点的向量N M ,再代上面距离公式. 三、双基题目练练手

1.在空间直角坐标系中,已知点P (x ,y ,z ),下列叙述中正确的个数是 ( ) ①点P 关于x 轴对称点的坐标是P 1(x ,-y ,z ) ②点P 关于yOz 平面对称点的坐标是P 2(x ,-y ,-z ) ③点P 关于y 轴对称点的坐标是P 3(x ,-y ,z ) ④点P 关于原点对称的点的坐标是P 4(-x ,-y ,-z ) A.3 B.2 C.1 D.0 2. 直三棱柱A 1B 1C 1—ABC ,∠BCA =90°,D 1、F 1分别是A 1B 1、A 1C 1的中点,BC =CA =CC 1,则BD 1与AF 1所成角的余弦值是 ( ) A . 10 30 B . 2 1 C . 15 30 D . 10 15 3.已知向量a =(1,1,0),b =(-1,0,2),且ka +b 与2a -b 互相垂直,则k = ___ 4. 已知A (3,2,1)、B (1,0,4),则线段AB 的中点坐标和长度分别是 , . ◆答案提示: 1. C ; 2. A ; 3. 5 7; 4.(2,1, 2 5),d AB 四、以典例题做一做 【例1】 (2005江西)如图,在长方体ABCD —A 1B 1C 1D 1,中,AD =AA 1=1,AB =2,点E 在棱AB 上移动.(1)证明:D 1E ⊥A 1D ; (2)当E 为AB 的中点时,求点E 到面ACD 1的距离; (3)AE 等于何值时,二面角D 1—EC —D 的大小为4 π . 解:以D 为坐标原点,直线DA ,DC ,DD 1分别为x ,y ,z 轴,建立空间直角坐标系,设AE =x ,则A 1(1,0,1),D 1(0,0,1),E (1,x ,0),A (1,0,0)C (0,2,0) (1)11(1,0,1)(1,,1)DA D E x ?=?- 因为110,.DA D E =⊥ 所以 (2)因为E 为AB 的中点,则E (1,1,0), 从而)0,2,1(),1,1,1(1-=-=AC E D ,)1,0,1(1-=AD , 设平面ACD 1的法向量为,n n 则不与y 轴垂直,可设 (,1,)n a c = ,则???? ?=?=?, 0,01AD n AC n

第4章 n维向量空间

第4章 n 维向量空间 §4.1 n 维向量 定义 1 n 个有次序的数n a a a ,,,21 所组成的数组),,,(21n a a a 称为 n 维向量, 这n 个数称为该向量的n 个分量, 第i 个数i a 称为第i 个分量. n 维向量可写成一行,称为行向量,也可以写成一列,称为列向量. 向量常用黑体小写字母βα、、、b a 等表示, 即n 维列向量记为???? ?? ? ??=n a a a 21α,n 维行向量记为),,,(21n αααα =. 行向量与列向量的计算按矩阵的运算规则进行运算. 例 设.)1,0,1,0(,)2,4,7,1(,)3,1,0,2(T T T =-=-=γβα (1) 求 γβα32-+; (2) 若有x , 满足,0253=++-x γβα 求 .x 解(1)γ βα32-+T T T )1,0,1,0(3)2,4,7,1()3,1,0,2(2--+-=.)1,2,4,5(T = (2)由,0253=++-x γβα得 x )53(21γβα-+-=])1,0,1,0(5)2,4,7,1()3,1,0,2(3[2 1 T T T --+--=.)8,2/7,1,2/5(T --= 在解析几何中,我们把“既有大小又有方向的量”称为向量,并把可随意平行移动的有向线段作为向量的几何形象. 引入坐标系后,又定义了向量的坐标表示式(三个有次序实数),这就是上面定义的3维向量. 因此,当3≤n 时,n 维向量可以把有向线段作为其几何形象. 当3>n 时,n 维向量没有直观的几何形象. §4.2 向量组的线性相关性 1、向量组的概念 若干个同维数的列向量(或行向量)所组成的集合称为向量组.

空间向量在立体几何中的应用典型例题10月3日

P A D C B M N 立体几何典型例题选讲(理科) 1 .如图在棱长为2的正方体1111D C B A ABCD -中,点F 为棱CD 中点,点E 在棱BC 上 (1)确定点E 位置使⊥E D 1面F AB 1; (2)当⊥E D 1面F AB 1时,求二面角11B AF D --的平面角的余弦值。 2 .如图,四面体ABCD 中,O 、E 分别是B D .BC 的中点,2====BD CD CB CA , 2==AD AB (Ⅰ)求证:AO ⊥平面BCD; (Ⅱ)求异面直线AB 与CD 所成角的余弦值; (Ⅲ)求点E 到平面ACD 的距离. 3 .如图,在直三棱柱111C B A ABC -中,21===AB BC AA ,BC AB ⊥?M 、N 分别是 AC 和BB 1的中点? (1)求二面角111C C A B --的大小? (2)证明:在AB 上存在一个点Q ,使得平面QMN ⊥平面 C B A 11,并求出BQ 的长度? 4 .如图,直三棱柱111ABC A B C -中, AB=1,13AC AA ==,∠ABC=600. (Ⅰ)证明:1 AB AC ⊥; (Ⅱ)求二面角A —1AC —B 的大小? 5 .如图,已知P 为矩形ABCD 所在平面外一点,PA ⊥平面ABCD,E 、F 分别是A B .PC 的中点. (Ⅰ)求证:EF∥平面PAD; (Ⅱ)求证:EF ⊥CD; (Ⅲ)若,∠PDA=45°,求EF 与平面ABCD 所成角的大小. 6 .如图,PA ⊥平面ABCD ,四边形ABCD 是正方 形,PA =AD =2,M 、N 分别是A B .PC 的中点. (1)求二面角P -CD -B 的大小; (2)求证:平面MND ⊥平面PCD ; (3)求点P 到平面MND 的距离. A C D O B E M N A 1 C 1 B 1 B C A C B A C 1 B 1 A 1

线性代数思维导图

代数: 代数是研究数、数量、关系、结构与代数方程的通用解法及其性质的数学分支。初等代数一般在中学时讲授,介绍代数的基本思想:研究当我们对数字作加法或乘法时会发生什么,以及了解变量的概念和如何建立多项式并找出它们的根。 线性代数是数学的一个分支,它的研究对象是向量,向量空间,线性变换和有限维的线性方程组。向量空间是现代数学的一个重要课题;因而,线性代数被广泛地应用于抽象代数和泛函分析中;通过解析几何,线性代数得以被具体表示。线性代数的理论已被泛化为算子理论。由于科学研究中的非线性模型通常可以被近似为线性模型,使得线性代数被广泛地应用于自然科学和社会科学中。 定义与历史: 概念 线性代数是代数学的一个分支,主要处理线性关系问题。线性关系意即数学对象之间的关系是以一次形式来表达的。例如,在解析几何里,平面上直线的方程是二元一次方程;空间平面的方程是三元一次方程,而空间直线视为两个平面相交,由两个三元一次方程所组成的方程组来表示。含有n个未知量的一次方程称为线性方程。关于变量是一次的函数称为线性函数。线性关系问题简称线性问题。解线性方程组的问题是最简单的线性问题。 所谓“线性”,指的就是如下的数学关系:。其中,f叫线性算子或线性映射。所谓“代数”,指的就是用符号代替元素和运算,也

就是说:我们不关心上面的x,y是实数还是函数,也不关心f是多项式还是微分,我们统一把他们都抽象成一个记号,或是一类矩阵。合在一起,线性代数研究的就是:满足线性关系的线性算子f都有哪几类,以及他们分别都有什么性质。 历史 线性代数作为一个独立的分支在20世纪才形成,然而它的历史却非常久远。“鸡兔同笼”问题实际上就是一个简单的线性方程组求解的问题。最古老的线性问题是线性方程组的解法,在中国古代的数学著作《九章算术·方程》章中,已经作了比较完整的叙述,其中所述方法实质上相当于现代的对方程组的增广矩阵的行施行初等变换,消去未知量的方法。 由于费马和笛卡儿的工作,现代意义的线性代数基本上出现于十七世纪。直到十八世纪末,线性代数的领域还只限于平面与空间。十九世纪上半叶才完成了到n维线性空间的过渡。 随着研究线性方程组和变量的线性变换问题的深入,行列式和矩阵在18~19世纪期间先后产生,为处理线性问题提供了有力的工具,从而推动了线性代数的发展。向量概念的引入,形成了向量空间的概念。凡是线性问题都可以用向量空间的观点加以讨论。因此,向量空间及其线性变换,以及与此相联系的矩阵理论,构成了线性代数的中心内容。 矩阵论始于凯莱,在十九世纪下半叶,因若当的工作而达到了它的顶点。1888年,皮亚诺以公理的方式定义了有限维或无限维线性

n维向量空间

第二节 n 维向量空间 定义1:n 个实数组成的有序数组称为n 维向量,一般用γβα,,等希腊字母 表示。称()n a a a ,,,21 =α为n 维行向量,称()T n n b b b b b b ,,,2121 =?????? ? ??=β为n 维列向 量。称i i b a ,分别为向量βα,的第i 个分量。 特别对矩阵=A ?? ? ? ? ? ? ??mn m m n n a a a a a a a a a 2 1 22221 11211中每一行()in i i a a a ,,,21 ),,2,1(m i =称为 矩阵A 的行向量;每一列() T nj j j a a a ,,,21 ),,2,1(n j =称为矩阵A 的列向量。 定义2:所有分量都是零的向量称为零向量,零向量记作0=()000 。 定义3:由n 维向量()n a a a ,,,21 =α各分量的相反数组成的向量,称为α的负向量,记作:()n a a a ---=-,,,21 α。 定义4:若n 维向量()n a a a ,,,21 =α与()n b b b ,,,21 =β的所有对应分量相等,即),,2,1(n i b a i i ==,则称这两个向量相等,记作βα=。 定义5:设n 维向量()n a a a ,,,21 =α,()n b b b ,,,21 =β,βα与对应分量的和所构成的n 维向量,称为向量βα与的和,记作βα+。 ()n n b a b a b a +++=+,,,2211 βα ()βαβα-=-+()n n b a b a b a ---=,,,2211 定义6:设n 维向量()n a a a ,,,21 =α的各分量都乘以数k 后所组成的n 维向量,称为数k 与向量α的乘积,记作: k α=()n ka ka ka ,,,21 。 向量的运算性质: (1)αββα+=+ (2)γβαγβα++=++)()(

高中数学空间向量与立体几何经典题型与答案

空间向量与立体几何经典题型与答案 1 已知四棱锥P ABCD -的底面为直角梯形,//AB DC ,⊥=∠PA DAB ,90 底面ABCD ,且 1 2 PA AD DC === ,1AB =,M 是PB 的中点 (Ⅰ)证明:面PAD ⊥面PCD ; (Ⅱ)求AC 与PB 所成的角; (Ⅲ)求面AMC 与面BMC 所成二面角的大小 证明:以A 为坐标原点AD 长为单位长度,如图建立空间直角坐标系,则各点坐标为 1 (0,0,0),(0,2,0),(1,1,0),(1,0,0),(0,0,1),(0,1,)2 A B C D P M (Ⅰ)证明:因.,0),0,1,0(),1,0,0(DC AP DC AP DC AP ⊥=?==所以故 由题设知AD DC ⊥,且AP 与AD 是平面PAD 内的两条相交直线,由此得DC ⊥面PAD 又DC 在面 PCD 上,故面PAD ⊥面PCD (Ⅱ)解:因),1,2,0(),0,1,1(-==PB AC . 510 | |||,cos ,2,5||,2||=??>=<=?==PB AC PB AC PB AC PB AC PB AC 所以故 (Ⅲ)解:在MC 上取一点(,,)N x y z ,则存在,R ∈λ使,MC NC λ= ..2 1 ,1,1),21,0,1(),,1,1(λλ==-=∴-=---=z y x MC z y x NC 要使14 ,00,.25 AN MC AN MC x z λ⊥=-==只需即解得 ),5 2 ,1,51(),52,1,51(,. 0),5 2 ,1,51(,54=?-===?=MC BN BN AN MC AN N 有此时能使点坐标为时可知当λ ANB MC BN MC AN MC BN MC AN ∠⊥⊥=?=?所以得由.,0,0为 所求二面角的平面角

相关主题
文本预览
相关文档 最新文档