当前位置:文档之家› 低温固相反应合成莫来石的研究_朱新文

低温固相反应合成莫来石的研究_朱新文

低温固相反应合成莫来石的研究_朱新文
低温固相反应合成莫来石的研究_朱新文

低温固相反应合成莫来石的研究

朱新文,江东亮,谭寿洪

(中国科学院上海硅酸盐研究所高性能陶瓷和超微结构国家重点实验室,上海200050)

摘 要 以α-A l2O3和硅灰为起始原料,通过固相反应合成莫来石,对莫来石的生成反应做了热力学计算,得到莫来石生成自由能的近似数学表达式,考察了M gF2,CaF2和V2O5等外加剂和工艺条件对莫来石合成的影响。运用X RD、SEM等手段对莫来石形成及形貌进行了表征,并对莫来石形成机制进行了探讨。研究表明:M gF2、V2O5的加入有利于莫来石的生成,并在1350℃煅烧6h的条件下实现了莫来石的低温合成。

关键词 固相反应;低温合成;莫来石

莫来石因具有抗热震稳定性好、荷重软化温度高、抗渣性好及较高的抗蠕变性等优良性能,被认为是一种耐火工业、电子、光学和高温结构等领域的重要侯选材料〔1〕。然而,莫来石的合成温度较高,一般在1400℃以上,能耗高,成本大,如何降低其合成温度,促进其应用,已成为人们关注的热点。

莫来石是唯一稳定的铝硅晶相,其形成过程与起始原料和制备工艺密切相关,受颗粒大小、比例、晶体形态和杂质等因素的影响。为了降低莫来石的合成温度,国内外学者主要采用如下两条途径〔2〕: (1)采用湿化学方法,主要是sol-gel方法来制备颗粒尺寸更小,反应活性及混合性更好的莫来石先驱体,以实现莫来石的低温合成。主要以正硅酸已酯和硝酸铝为起始原料,用来合成莫来石先驱体。这种双相凝胶的莫来石生成反应一般认为按以下两条途径进行:一是莫来石由无定形SiO2和过渡态Al2O3之间反应进行;二是凝胶首先在~1000℃生成Al-Si尖晶石相,然后在1200℃以上同无定形SiO2反应生成莫来石〔3〕;(2)通过加入LiF、AlF3、V2O5添加剂等来实现莫来石的低温合成〔4、5〕。

虽然采用sol-gel法能较大程度地降低莫来石的合成温度,但是工艺参数不易控制,生产周期长,难以达到规模化生产的要求。为此,本工作仍采用传统的固相反应合成方法,以廉价的α-Al2O3和硅灰为起始原料,通过加入V2O5,CaF2,M gF2等添加剂来实现低温合成莫来石,考察这些添加剂和工艺条件对莫来石合成的影响,并进一步探讨莫来石的形成机理。

1 实验方法

采用α-Al2O3(d50=0.62μm)和硅灰(silica fume,d50=0.50μm)为起始原料,它们的化学组成见表1。将α-Al2O3和硅灰按莫来石(3Al2O3·2SiO2)的理论配方进行配料,外加剂分别为MgF2, CaF2和V2O5,它们的添加量均为2%(质量分数,相对于α-Al2O3和硅灰的量)。将配料置于聚乙烯塑料桶中,以无水乙醇为混合介质,有机玻璃球为磨球,混合时间为8h,然后烘干,研细,在不同温度下进行煅烧处理。

利用XRD分析煅烧粉末的物相组成,SEM观察莫来石颗粒的形貌。

表1 原料的化学成分%

成分Al

2

O3SiO2Fe2O3R2O CaO M gO

α-Al2O399.160.070.080.50

硅灰0.6792.30.981.720.560.91

2 结果和讨论

2.1 α-Al2O3和硅灰反应形成莫来石的热力学计

对于α-Al2O3和硅灰形成莫来石的反应可表达为:

3α-Al2O3(s)+2SiO2(amorphous,s)※3Al2O3·2SiO2(s)(1)将SiO2的高温晶相β方石英作为其标准态来进行热力学计算〔6〕,这样可以对上述莫来石的生成反应进行热力学计算。由《无机物热力学数据手册》查出反应各物质在不同温度下的标准自由能数据并计算出相应温度下的反应生成自由能〔7〕,这些数据见表

第6卷专辑2000年10月

中 国 粉 体 技 术

China Powder Science and Technology

Vol.6Suppl.

October2000

2。根据表2的数据可以得到图1所示的ΔG0R~T 关系曲线。对曲线进行线性拟合可得到莫来石生成自由能的近似表达式:

ΔG0R=20688-29.31T(2)当ΔG0R=0,T=706K(433℃),也就是说当温度达到433℃时,α-Al2O3和硅灰开始发生反应。文献〔6〕提供的表达式如下:

ΔG0R=2055-4.16T(3)从(3)式得到α-Al2O3和硅灰开始反应的温度为221℃,这个数据比本工作计算出的数据低200℃。国内李晓明同志也曾对(1)式做过热力学计算,计算表明莫来石开始形成温度在800℃左右,但他未给出各反应物的热力学数据及来源,也未给出莫来石生成自由能的近似表达式〔8〕。

表2 各物质在不同温度下的热力学数据

T/K

ΔG0/kJ·mol-1

α-Al

2O3(s)cristobal ite(s)3Al2O3·2SiO2(s)

ΔG0R/kJ·mol

-1

400-1696.99-926.46(α)-6934.649.25

600-1716.78-940.62(β)-7028.742.84

800-1744.06-959.3(β)-7153.71-2.93

1000-1777.39-981.36(β)-7303.53-8.64

1200-1815.74-1006.21(β)-7473.96-14.32

图1 莫来石反应自由能与温度的关系

2.2 添加剂种类对莫来石合成的影响

为了考察添加剂种类对莫来石形成的影响,在本工作中添加剂的添加量均为2%。热力学数据计算表明,反应(1)在433℃就可以发生,也就是有莫来石产生。然而,从图2(a)看出,在1200℃下,含添加剂和无添加剂的试样均无莫来石相产生,但无定型硅灰(SiO2)已晶化为β方石英。MgF2,CaF2和V2O5的熔点分别为1266℃,1360℃和690℃。在1200℃下,只有添加剂V2O5的试样出现液相,但从XRD结果表明,在该温度下,即使有液相存在,也没有莫来石相的产生,这很可能是由于动力学条件不充分所致。关于用氧化物合成莫来石的固相反应,目前普遍认为是扩散控制过程,莫来石首先在Al2O3和SiO2界面上成核,接着通过铝和硅在界面莫来石层中的扩散进行生长〔2〕。当温度升到1300℃时,从图(b)发现,含有M gF2和V2O5的煅烧粉末的XRD图谱上已有少量莫来石峰出现,但是对于添加CaF2和无添加剂的煅烧粉末却没有莫来石相产生。在1300℃,M gF2和V2O5熔化为液相。这说明液相的存在能促进莫来石的生成。当温度提高至1350℃,从图(c)看出,无添加剂的煅烧粉末也有少量莫来石产生,但是对于添加MgF2和V2O5的煅烧粉末XRD图谱上几乎全部是莫来石峰,而只有极少量的刚玉峰,并且石英峰几乎看不到,这说明在此温度下起始原料近乎完全反应生成莫来石。文献〔5〕以特级苏州土和工业氢氧化铝,通过添加V2O5,在1250℃煅烧6h的条件下合成了莫来石,比本工作的结果低100℃,这种差别很可能是由于两者选择的起始原料不同造成的,因为苏州土的高温分解和工业氢氧化铝的高温分解以及多晶转变等过程能提高反应和扩散能力,从而降低莫来石的合成温度。

当进一步温度提高到1450℃,从图(d)看出,无添加剂和含有添加剂的煅烧粉末几乎全部是莫来石相,也就是说在这个温度下,即使无任何添加剂的加入,Al2O3和SiO2基本上完全生成莫来石。研究结果表明莫来石成核和晶化速率强烈依赖于温度条件,当温度条件充分后,液相的存在能大大加速铝和硅在界面莫来石层中的扩散,从而促进莫来石晶相的大量生成。根据热力学条件,反应(1)在1300℃以前的生成物可能是过渡型或非化学计量莫来石〔8〕,这尚不能用XRD手段检测到。

2.3 合成莫来石颗粒的形貌

图3(a)、(b)、(c)为在1450℃煅烧6h下合成的莫来石粉末的形貌照片,可以看出颗粒形状主要为三角锥形。对于添加Mg F2、V2O5得到的莫来石颗粒出现异常长大,这说明液相的存在,使得莫来石晶粒异常长大。为了获得晶粒细小、分布均匀的莫来石粉末,应该严格控制工艺条件和外加剂(MgF2、V2O5)的添加量。

119

 2000年专辑 中 国 粉 体 技 术

(a )(b

)

(c )

(d )

(a )1200℃;(b )1300℃;(c )1350℃;(d )1450℃;(◇α-Al 2O 3, β-ceristobalite ,◆mull ite )

图2 煅烧粉体的XRD 衍射图

(a )(b )

(c )

(a )no additive ;(b )M gF 2;(c )V 2O 5

图3 煅烧粉体的SEM 照片

120

C hina Po wder Science and Technology 2000Suppl .

3 结 论

(1)对α-Al2O3和硅灰反应生成莫来石作了热力学计算,得到莫来石生成自由能的近似数学表达式:ΔG0R=20688-29.31T;

(2)添加熔点低的M gF2和V2O5,在1350℃煅烧6h的条件下实现了莫来石的低温合成,表明液相的存在有利于莫来石晶相的形成,但促使莫来石晶粒的异常长大;

(3)热力学计算表明,α-Al2O3和硅灰在1300℃以前的生成物可能是过渡型或化学计量莫来石。

〔参考文献〕

〔1〕 杜春生.莫来石的工业应用〔J〕.硅酸盐通报,1998,(2):57-60.〔2〕 郭向华,等.Al2O3-SiO2体系的莫来石生成反应〔J〕.现代技术陶瓷,1998,19(3):498-502.

〔3〕 Wang K,et al.J Am Ceram Soc,1996,79(1):12-16.

〔4〕 Shutt T J,et al.J C an Ceram S oc,1968,(37):33.

〔5〕 彭红,等.矿化剂对莫来石合成的影响〔J〕.现代技术陶瓷, 1998,19(3):494-497.

〔6〕 Turkdogan E T.Phys ical Chemistry of High Temperature Tech-nology〔M〕.Academic Press.Inc(London)LTD,1980.

〔7〕 梁英教,等.无机物热力学数据手册〔M〕.沈阳:东北大学出版社,1993.

〔8〕 李晓明.微粉与新型耐火材料〔M〕.北京:冶金工业出版社,1997.

(上接第111页)

图2 不同处理量下分级效率变化规律

表3 原料和粗粉的粒度分布%粒径/μm<4<8<12<16<24原料716.548.876.899

粗粉435.865.799

在此分级过程中,粗粉产品的产率为91%。可见,Turboplex分级机的分级精度是非常高的。

4 结 语

分级机本身的结构和操作参数对分级质量和分级效率起决定性的影响。当用户选择分级机时,不仅要了解分级机的各项技术经济指标,而且还要了解分级机对所要处理物料的分级效果和适应性。

〔参考文献〕

〔1〕 盖国胜.超细分级技术的工业应用〔J〕.金属矿山,1998,(1): 12-15.

〔2〕 汪淑慧.一种新型超细粉体气力分级机〔J〕.湿法冶金,1998,

(2):63-66.

〔3〕 陆厚根.离心逆流式气流分级机分级粒径的计算与分析〔J〕.

同济大学学报,1992,20(3):263-268.

〔4〕 吉晓莉,叶菁,陈家炎.离心式微粉分级机分级性能的研究〔J〕.华中理工大学学报,1998,26(12):40-42.

121

 2000年专辑 中 国 粉 体 技 术

扩散与固相反应

扩散与固相反应 7-1试分析碳原子在面心立方和体心立方铁八面体空隙间跳跃情况, 并以D = Y 2 r 形式 写出其扩散系数(设点阵常数为a )。(式中r 为跃迁自由程;丫为几何因子;r 为跃迁频率。) 7-2设有一种由等直径的 A 、B 原子组成的置换型固溶体。该固溶体具有简单立方的晶 体结构, 点阵常数 A = 0.3nm ,且A 原子在固溶体中分布成直线变化,在 0.12mm 距离内原 子百分数由0.15增至0.63。又设A 原子跃迁频率 r= 10-6s 1 ,试求每秒内通过单位截面的 A 原子数? 7-3制造晶体管的方法之一是将杂质原子扩散进入半导体材料如硅中。 假如硅片厚度是 0.1cm ,在其中每107 个硅原子中含有一个磷原子,而在表面上是涂有每 107 个硅原子中有 400个磷原子,计算浓度梯度(a )每cm 上原子百分数,(b )每cm 上单位体积的原子百分 数。硅 晶格常数为 0.5431 nm 。 7-4已知MgO 多晶材料中Mg 2+ 离子本征扩散系数(DQ 和非本征扩散系数(D ex )由 下式给出 486000 2 D in = 0.249exp ( ) cm ; s RT 5 254500、 2 ■■ D ex =1.2 10 exp ( ) cm . s RT (a ) 分别求出 25C 和 1000C 时,Mg 2+ 的(D in )和(D ex )。 (b ) 试求在Mg 2+ 的InD ?1/T 图中,由非本征扩散转变为本征扩散的转折点温度? 7-5从7-4题所给出的D in 和D ex 式中求MgO 晶体的肖特基缺陷形成焓。若欲使 Mg 2+ 在MgO 中的 扩散直至 MgO 熔点2800 C 时仍是非本征扩散,试求三价杂质离子应有什么样 的浓度? 7-6若认为晶界的扩散通道宽度一般为 0.5nm ,试证明原子通过晶界扩散和晶格扩散的 扩散系数。 Q gb = _ Q v 7-7设体积扩散与晶界扩散活化能间关系为 2 (Qg b 、Q v 分别为晶界扩散与体 积扩散激活能),试画出lnD ?1/T 曲线,并分析在哪个温度范围内, 晶界扩散超过体积扩散 ? 7-8在一种柯肯达尔扩散中,假定(a )晶体为简单立方结构;(b )单位体积内原子数 为一常数1023 ; (c ) A 原子的跃迁频率为1010s -1 , B 原子跃迁频率为109s -1 ; (d )点阵常数 a = 0.25nm ; (e )浓度梯度为10个/cm ; (f )截面面积为0.25cm 。试求A 、B 原子通过标志 界面的扩散通量以 及标志界面移动速度。 7-9纯固相反应在热力学上有何特点?为什么固相反应有气体或液体参加时, 范特荷夫 规则就不适用了? 7-10假定从氧化铝和二氧化硅粉料形成莫来石为扩散控制过程,如何证明这一点?又 假如激活 能为210kJ/mol ,并在1400 C 下1h (小时)内反应过程完成 10%,问在1500 C 下 质量之比为 10-9 (〒) 自。其中 d 为晶粒平均直径; D gb 、D v 分别为晶界扩散系数和晶格

层状磷酸锆纳米晶的低热固相合成及表征

层状磷酸锆纳米晶的低热固相合成及表征Ξ 吴文伟3,赖水彬,廖 森,吴学航,侯生益 (广西大学化学化工学院,广西南宁530004) 摘要:以Z rOCl2?8H2O和(NH4)3PO4?3H2O为原料,先在室温下研磨反应混合物使其进行固相反应,然后将其在80℃下密封保温96h,接着用水洗去混合物中的可溶性无机盐后于80℃下烘干,即得磷酸锆纳米晶产品。采用TG/DT A,IR,XRD和TE M对产品及其热解产品进行表征。结果表明,80℃下保温3h得到结晶良好、空间群为P21/c(14)、平均粒径约为23nm的Z r(HPO4)2?H2O,其晶体结构稳定的温度可高达450℃。在900℃下煅烧Z r(HPO4)2?H2O则得到结晶良好、空间群为Pa23(205)、平均粒径约为31nm的Z rP2O7晶体。 关键词:磷酸锆;纳米晶;低热固相合成;表征 中图分类号:TG13 文献标识码:A 文章编号:0258-7076(2007)06-0798-04 在目前各种重要的无机材料中,层状多价金属磷酸盐占据了特别重要的地位。这是由于具有层状结构的多价金属磷酸盐是一类有应用前景的高选择性离子交换剂、高效酸催化剂、质子导体和新功能材料[1~4]。其中,磷酸锆是一种四价金属磷酸盐,它的合成及应用一直深受人们的关注。磷酸锆有两种基本形式,即α2和γ2磷酸锆,分别以Z r(HPO4)2?H2O(α2Z rP)和Z r(PO4)(H2PO4)?2H2O(γ2Z rP)表示。这些化合物首先由Clear field等[5]通过回流法制得;后来,Benbam za等[6]采用溶胶2凝胶法制得了α2Z rP 晶体;Alberti[7]采用直接沉淀法(或称为氟配合物法)制得了结晶度高的α2Z rP;T arafdar等[8]采用碳酸锆配合物、磷酸氢二铵为原料,在溴化十四烷基三甲铵(TT Br)表面活性剂存在下的碱性介质中用直接沉淀法则制得了球形中等层间距磷酸锆。由于α2Z rP 层间距的可调性,因此可将某些有机分子或表面活性剂分子通过“层离一插层法”嵌入α2Z rP层间,来改变α2Z rP层间距或它的疏水性,从而制备出聚合物/α2Z rP纳米复合材料[9]或新型层柱催化材料[10]。层状α2Z rP及其改性产品的应用前景取决于它的性质及其是否价廉易得。因此,探索出简单、有效的合成方法是实现产品应用的关键。 低热固相反应法是一种有前途的新的合成法,已成功用于多种化合物的合成,如原子簇化合物、多酸化合物、某些低价金属磷酸盐和纳米氧化物[11~13]。基于低热固相反应法所具有的优点,本文尝试用该法进行了结晶磷酸锆的合成。 1 实 验 1.1 试剂与仪器 Z rOCl2?8H2O和(NH4)3PO4?3H2O均为市售分析纯。 Netsch40PC型热重/差热分析仪;Nexus470型傅里叶变换红外分光光度计;Rigaku D/Max2500V 型X射线衍射仪,Cu靶,带石墨单色器;J E M2 2000EX/S透射电子显微镜。 1.2 Z r(HPO4)2?H2O的制备 先将8.64g(NH4)3PO4?3H2O和5.00g Z rOCl2?8H2O分别置于两个研钵中研磨成粉末,然后将(NH4)3PO4?3H2O粉末加入盛有Z rOCl2?8H2O粉末的研钵中,在室温下用研磨棒研磨50min,研磨速度约为90圈/min,强度适中。研磨结束后将糊状的反应混合物转入100ml烧杯中用磷酸调节糊状反应混合物至pH=1~2后,套上保温膜置于80℃的烘箱中保温96h使无定型产品转变成晶体。然后用水洗去混合物中的可溶性盐,接着用无水乙醇淋洗沉淀两次,再将沉淀抽干。将沉淀置于80℃烘箱中干燥3h,即得Z r(HPO4)2?H2O产品。 第31卷 第6期V ol.31№.6 稀 有 金 属 CHI NESE JOURNA L OF RARE MET A LS 2007年12月 Dec.2007 Ξ收稿日期:2007-03-11;修订日期:2007-04-20 基金项目:广西自然科学基金(0640009);广西大型仪器协作共用网资助基金(360220062049)资助项目作者简介:吴文伟(1961-),男,广西合浦人,硕士,教授;研究方向:无机功能材料和有色冶金新工艺3通讯联系人(E2mail:gxuwuwenwei@https://www.doczj.com/doc/bc3918602.html,)

低温固相合成的发展现状与研究进展

低温固相合成的发展现状与研究进展 ??? 摘要:本文对低温固相合成这种无机合成新方法进行综述,介绍了我国近年纳米材料、发光材料、半导体材料的低温固相合成的技术研究现状,并对其发展方向提出展望. 关键词:低温固相合成;纳米材料;发光材料;半导体材料 Low-Temperature Solid-State Synthesis of Development Status and Research Progress ??? Abstract:This paper are reviewed some new method about the Low-temperature solid-State synthesis of inorganic synthesis. The Nano-materials Luminescent materials Semiconductor materials by solid state reactions at low temperature in recent years, these synthetic technologies are reviewed, and development direction for this field is put out. Key words:Low-Temperature Solid-State Synthesis;Nano-materials;Luminescent materials;Semiconductor materials 低温固相合成化学是室温或近室温(小于40℃)条件下的固-固相化学反应是近几年刚刚发展起来的一个新研究领域。相对于传统的高温固相反应而言,低温固相反应可以合成一些热力学不稳定产物或动力学控制的化合物,这对人们了解固相反应机理,尽早实现利用固相化学反应行定向合成和分子装配大有益处。此外,从能量学和环境学的角度考虑,低温固相反应可大大节约能耗,减少三废排放,是绿色化工发展的一个主要趋势。 目前,低温固相合成化学可以合成出二百多种簇合物,其中有些是利用液相不易得到的新型簇合物:如鸟巢状结构、双鸟巢状结构、半开口的类立方烷结构。利用低温固相反应方法可以方便地合成单核和多核配合物,还可以合成高温固相反应及液相反应无法合成的固配化合物等。利用低温固相反应可以合成各种功能材料,如非线性光学材料等,气敏材料等,还有化学防伪材料、生物活性材料,铁电材料,无机抗苗剂及荧光材料等。利用低温固相反应合成各种纳米材料是最近的研究热点,用该方法合成的氧化物、金属及合金等已在许多方面取得了应用。 1、低温固相合成方法合成纳米材料的发展现状与研究进展 1.1纳米氧化镍的低温固相合成及电容性能研究及展望 韩丹丹,景晓燕,王君,徐鹏程,李蕾,公敬欣通过低热固相反应法合成了纳米氧化镍,在不同温度热处理条件下研究氧化镍的结构、形貌及其作为超级电容器电极材料的电化学性能。采用XRD和SEM表征产物的结构特点,采用循环伏安和恒流充放电等方法表 征其电化学性能。XRD测试结果表明,所制备的氧化镍为立方相,且随着热处理温度升高,晶型趋于完整。SEM和电化学测试结果表明,高温热处理(>400℃)使样品团聚更为严重,导致电极材料利用率降低,质子传递阻力加大,比电容急剧下降;低温处理颗粒分布均匀,粒子间存在孔道,使电极具有较大的比容量(228 F/g)和良好的化学稳定性,在20 mV/s 快速扫描速率下,电极显示出良好的倍率特性。 纳米氧化镍可以做成超级电容器的电极,超级电容器具有更高的比电容量,可存储的比电容量为静电电容器的10倍以上。同时,它又具有传统化学电源无法比拟的高功率密度、长循环寿命及优越的脉冲充放电性能。因此对纳米氧化镍合成的研究有着重要的意义[1]。1.2纳米硫化镉低温固相合成的新方法研究 唐文华,邹洪涛,蒋天智,刘吉平以硫代乙酰胺(TAA)与氯化镉为原料,用低温固相反应合成纳

第七章扩散与固相反应

第七章扩散与固相反应 一、名词解释 1.扩散;2.扩散系数与扩散通量;3.本征扩散与非本征扩散; 4.自扩散与互扩散;5.无序扩散与晶格扩散;6.稳定扩散与不稳定扩散: 7.反常扩散(逆扩散);8.固相反应 二、填空与选择 1.晶体中质点的扩散迁移方式有、、、和。2.当扩散系数的热力学因子为时,称为逆扩散。此类扩散的特征为,其扩散结果为使或。3.扩散推动力是。晶体中原子或离子的迁移机构主要分为两种:和。4.恒定源条件下,820℃时钢经1小时的渗碳,可得到一定厚度的表面碳层,同样条件下,要得到两倍厚度的渗碳层需小时. 5.本征扩散是由而引起的质点迁移,本征扩散的活化能由和 两部分组成,扩散系数与温度的关系式为。 6.菲克第一定律适用于,其数学表达式为;菲克第二定律适用于,其数学表达式为。 7.在离子型材料中,影响扩散的缺陷来自两个方面:(1)肖特基缺陷和弗仑克尔缺陷(热缺陷),(2)掺杂点缺陷。由热缺陷所引起的扩散称,而掺杂点缺陷引起的扩散称为。(自扩散、互扩散、无序扩散、非本征扩散) 8.在通过玻璃转变区域时,急冷的玻璃中网络变体的扩散系数,一般相同组成但充分退火的玻璃中的扩散系数。(高于、低于、等于) 9.在UO2晶体中,O2-的扩散是按机制进行的。(空位、间隙、掺杂点缺陷)10.杨德尔方程是基于模型的固相方程,金斯特林格方程是基于模型的固相方程。 三、浓度差会引起扩散,扩散是否总是从高浓度处向低浓度处进行?为什么? 四、试分析离子晶体中,阴离子扩散系数-般都小于阳离子扩散系数的原因。 五、试从结构和能量的观点解释为什么D表面>D晶面>D晶内。 六、碳、氮氢在体心立方铁中扩散的激活能分别为84、75和13kJ/mol,试对此差异进行分析和解释。 七、欲使Ca2+在CaO中的扩散直至CaO的熔点(2600℃)都是非本征扩散,要求三价杂质离子有什么样的浓度?试对你在计算中所作的各种特性值的估计作充分说明(已知CaO 肖特基缺陷形成能为6eV)。 八、已知氢和镍在面心立方铁中的扩散系数为:

低温固相合成综述

研究生课程论文封面 课程名称 材料制备与合成 开课时间 10-11学年第一学期 学院 数理与信息学院 学科专业 凝聚态物理 学 号 2009210663 姓名 朱伶俊 学位类别 理学 任课教师 李正全 交稿日期 成绩 评阅日期 评阅教师 签名 浙江师范大学研究生学院制

低温固相合成综述 目前,环境污染、能源过度消耗队地球及人类带来的危害已经越来越大。人们在发展经济的同时也在积极面对怎样克服对环境的污染,保护我们的生态平衡。近十几年来,由于传统的化学反应里在溶液或气相中进行,其反应需要能耗高,时间长,污染环境严重以及工艺复杂,因此越来越多的人将目光投向曾经被人类很早就利用过的固相化学反应。低温固相化学反应法是20世纪80年代发展起来的一种新的合成方法,并且发展极为迅速。其制备工艺简单,反应条件温和,节约能源,产率高,污染低等优点,使其再化学合成领域中日益受到重视。固相反应法已经成为了人们制备新型无机功能材料的重要手段之一。 1、低温固相合成的发展 固相化学反应是人类最早使用的化学反应之一,我们的祖先早就掌握了制陶工艺,将制得的陶器用作生活日用品。但固相化学作为一门学科被确认却是在20世纪初,原因自然是多方面的,除了科学技术不发达的限制外,更重要的原因是人们长期的思想束缚。自亚里士多德时起,直至距今80多年前,人们广泛相信“不存在液体就不发生固体间的化学反应”。直到1912年,Hedvall在Berichte 杂志发表了《关于林曼绿》(CaO和ZnO的粉末固体反应)为题的论文,有关固相化学的历史才正式拉开序幕。事实上,许多固相反应在低温条件下便可发生。早在1904年,Pfeifer等发现加热[Cr(en)3]Cl3或[Cr(en)3](SCN)3分别生成cis-[Cr(en)2Cl2]Cl和trans-[Cr(en)2(SCN)2]SCN;1963年,Tscherniajew等首先用K2[PtI6]与KCN固-固反应,制取了稳定产物 K2[Pt(CN)6]。虽然这些早期的工作已发现了低温下的固相化学反应,但由于受到传统固相反应观念的束缚,人们对它的研究没有像对待高温固相反应那样引起足够的重视,更未能在合成化学领域中得到广泛应用。然而研究低温固相反应并开发其合成应用的价值的意义是不言而喻的。 1993年Mallouk教授在 Science 上发表评述:“传统固相化学反应合成所得的是热力学稳定的产物,而那些介稳中间物或动力学控制的化合物往往只能在较低温度下存在,它们在高温时分解或重组成热力学稳定的产物。为了得到介稳固态相反应产物,扩大材料的选择范围,有必要降低固相反应温度。”可见,降低反应温度,不仅可获得更新的化合物,为人类创造更加丰富的物质财富,而且可最直接地提供人们了解固相反应机理所需要的实验佐证,为人类尽早地实现能动、合理地利用固相化学反应进行定向合成和分子装配,最大限度地发挥固相反

固相合成基础 SPPS

一、多肽合成概论 1.多肽化学合成概述: 1963年,R.B.Merrifield[1]创立了将氨基酸的C末端固定在不溶性树脂上,然后在此树脂上依次缩合氨基酸,延长肽链、合成蛋白质的固相合成法,在固相法中,每步反应后只需简单地洗涤树脂,便可达到纯化目的.克服了经典液相合成法中的每一步产物都需纯化的困难,为自动化合成肽奠定了基础.为此,Merrifield获得1984年诺贝尔化学奖. 今天,固相法得到了很大发展.除了Merrifield所建立的Boc法(Boc:叔丁氧羰基)之外,又发展了Fmoc 固相法(Fmoc:9-芴甲氧羰基).以这两种方法为基础的各种肽自动合成仪也相继出现和发展,并仍在不断得到改造和完善. Merrifield所建立的Boc合成法[2]是采用TFA(三氟乙酸)可脱除的Boc为α-氨基保护基,侧链保护采用苄醇类.合成时将一个Boc-氨基酸衍生物共价交联到树脂上,用TFA脱除Boc,用三乙胺中和游离的氨基末端,然后通过Dcc活化、耦联下一个氨基酸,最终脱保护多采用HF法或TFMSA(三氟甲磺酸)法.用Boc法已成功地合成了许多生物大分子,如活性酶、生长因子、人工蛋白等. 多肽是涉及生物体内各种细胞功能的生物活性物质。它是分子结构介于氨基酸和蛋白质之间的一类化合物,由多种氨基酸按照一定的排列顺序通过肽键结合而成。到现在,人们已发现和分离出一百多种存在于人体的肽,对于多肽的研究和利用,出现了一个空前的繁荣景象。多肽的全合成不仅具有很重要的理论意义,而且具有重要的应用价值。通过多肽全合成可以验证一个新的多肽的结构;设计新的多肽,用于研究结构与功能的关系;为多肽生物合成反应机制提供重要信息;建立模型酶以及合成新的多肽药物等。 多肽的化学合成技术无论是液相法还是固相法都已成熟。近几十年来,固相法合成多肽更以其省时、省力、省料、便于计算机控制、便于普及推广的突出优势而成为肽合成的常规方法并扩展到核苷酸合成等其它有机物领域。本文概述了固相合成的基本原理、实验过程,对其现状进行分析并展望了今后的发展趋势。 从1963年Merrifield发展成功了固相多肽合成方法以来,经过不断的改进和完善,到今天固相法已成为多肽和蛋白质合成中的一个常用技术,表现出了经典液相合成法无法比拟的优点。其基本原理是:先将所要合成肽链的羟末端氨基酸的羟基以共价键的结构同一个不溶性的高分子树脂相连,然后以此结合在固相载体上的氨基酸作为氨基组份经过脱去氨基保护基并同过量的活化羧基组分反应,接长肽链。重复(缩合→洗涤→去保护→中和及洗涤→下一轮缩合)操作,达到所要合成的肽链长度,最后将肽链从树脂上裂解下来,经过纯化等处理,即得所要的多肽。其中α-氨基用BOC(叔丁氧羰基)保护的称为BOC固相合成法,α-氨基用FMOC(9-芴甲氧羰基)保护的称为FMOC固相合成法, 2.固相合成的基本原理

扩散与固相反应

扩散与固相反应 7-1 试分析碳原子在面心立方和体心立方铁八面体空隙间跳跃情况,并以D =γr 2Γ形式写出其扩散系数(设点阵常数为a )。(式中r 为跃迁自由程;γ为几何因子;Γ为跃迁频率。) 7-2 设有一种由等直径的A 、B 原子组成的置换型固溶体。该固溶体具有简单立方的晶体结构,点阵常数A =0.3nm ,且A 原子在固溶体中分布成直线变化,在0.12mm 距离内原子百分数由0.15增至0.63。又设A 原子跃迁频率Γ=10-6s -1,试求每秒内通过单位截面的A 原子数? 7-3 制造晶体管的方法之一是将杂质原子扩散进入半导体材料如硅中。假如硅片厚度是0.1cm ,在其中每107个硅原子中含有一个磷原子,而在表面上是涂有每107个硅原子中有400个磷原子,计算浓度梯度(a )每cm 上原子百分数,(b )每cm 上单位体积的原子百分数。硅晶格常数为0.5431nm 。 7-4 已知MgO 多晶材料中Mg 2+离子本征扩散系数(D in )和非本征扩散系数(D ex )由下式给出 252486000 0249exp() cm 254500 1210exp() cm ..in ex D RT D RT -=- =?- (a ) 分别求出25℃和1000℃时,Mg 2+的(D in )和(D ex )。 (b ) 试求在Mg 2+的ln D ~1/T 图中,由非本征扩散转变为本征扩散的转折点温度? 7-5 从7-4题所给出的D in 和D ex 式中求MgO 晶体的肖特基缺陷形成焓。若欲使Mg 2+ 在MgO 中的扩散直至MgO 熔点2800℃时仍是非本征扩散,试求三价杂质离子应有什么样的浓度? 7-6 若认为晶界的扩散通道宽度一般为0.5nm ,试证明原子通过晶界扩散和晶格扩散的 质量之比为 9 10()()gb v D d D -。其中d 为晶粒平均直径;D gb 、D v 分别为晶界扩散系数和晶格扩散系数。 7-7 设体积扩散与晶界扩散活化能间关系为 1 2gb v Q Q = (Qg b 、Q v 分别为晶界扩散与体 积扩散激活能),试画出ln D ~1/T 曲线,并分析在哪个温度范围内,晶界扩散超过体积扩散? 7-8 在一种柯肯达尔扩散中,假定(a )晶体为简单立方结构;(b )单位体积内原子数为一常数1023;(c ) A 原子的跃迁频率为1010s -1,B 原子跃迁频率为109s -1;(d )点阵常数a =0.25nm ;(e )浓度梯度为10个/cm ;(f )截面面积为0.25cm 2。试求A 、B 原子通过标志界面的扩散通量以及标志界面移动速度。 7-9 纯固相反应在热力学上有何特点?为什么固相反应有气体或液体参加时,范特荷夫规则就不适用了? 7-10 假定从氧化铝和二氧化硅粉料形成莫来石为扩散控制过程,如何证明这一点?又假如激活能为210kJ/mol ,并在1400℃下1h (小时)内反应过程完成10%,问在1500℃下

第六章 扩散与固相反应应

第六章 扩散与固相反应应 固体中质点(原子或质子)的扩散特点:固体质点之间作用力强,开始扩散温度较低,但低于其熔点;晶体中质点以一定方式堆积,质点迁移必须越过势垒,扩散速率较低迁移自由程约为晶格常数大小;晶体中质点扩散有各向异性。 菲克第一定律:在扩散过程中,单位时间内通过单位横截面积的质点数目(或 称扩散流量密度)J 正比于扩散质点的浓度梯度? C : ???? ? ???+??+??-=?-=z c k y c j x c i D c D J (6-1) 式中D 为扩散系数(m 2/s 或cm 2/s );负号表示粒子从浓度高处向浓度低处扩散,即逆浓度梯度的方向扩散。 菲克第一定律是质点扩散定量描述的基本方程,它可直接用于求解扩散质点浓度分布不随时间变化的稳定扩散问题。 菲克第二定律:适用于求解扩散质点浓度分布随时间变化的不稳定扩散问题。 ???? ????+??+??=??222222z c y c x c D t c (6-2) ??? ? ???=Dt x erfc c t x c 2),(0 (6-3) (6-3)式为第二定律的数学解,erfc(x/2Dt )是余误差函数。在处理实际问题时,若实验中测得c(x,t),即可求得扩散深度x 与时间的近似关系。 Dt K Dt c t x c erfc x =???? ??=-01 ),( (6-4) 式(6-4)表明,x 与t 2 1成正比,在一定浓度c 时,增加1倍扩散深度则需延长4倍扩散时间。 扩散系数:从质点的无序迁移推导出扩散系数的表达式,阐述物理意义;从热力学理论导出一般热力学关系式: D i =RTB i (1+?㏑i γ/?㏑i N ) (6-5) D i 为i 质点本征扩散系数;B i 为I 质点平均速率或淌度;为i 质点活度系数;N i 为i 质点浓度。式中(1+?㏑i γ/?㏑i N )称为扩散系数的热力学因子。 当体系为理想混合时i γ=1,此时D i=D i #=RTB i 。D i #为自扩散系数。 当体系为非理想混合时,有两种情况: (1)当(1+?㏑i γ/?㏑i N )>0,D i >0为正扩散。在这种情况下物质流将由高浓度

固相合成法制备莫来石粉体

固相合成法制备莫来石粉体

实验10 固相合成法制备莫来石粉体 一、实验目的 1. 掌握固相合成制备技术及其形成机理。 2. 学习并掌握体积密度和气孔率计算并掌握莫来石表征方法。 二、实验原理 莫来石是生产一般耐火材料广泛应用的铝硅酸盐材料,常压条件下,仅在Al2O3·SiO2,系统中才存在其稳定晶相。莫来石的化学组成范围从3Al2O3·2SiO2到接近2Al2O3·SiO2。其晶体属斜方晶系,除非在无液相的条件下烧结,通常晶体都为拉伸的针状结晶。一般来讲,莫来石是由各种天然形成的铝硅酸盐材料,诸如众所周知的硅线石、蓝晶石或红柱石是通过高温处理而生产出来的。这些矿物因产地不同,其组成也不同,其铝、硅比及微量杂质含量也不同。为确保获得莫来石最佳产量进行的热处理,常常会产生大量的不均匀硅质玻璃,如加入铝矾土来提高Al2O3含量,则会混进诸如二氧化铁,氧化铁等杂质,实际上进一步改变了组分,就会极大地影响耐火度。合成莫来石的高温性能不仅要简单地寄托在组成物(整个加工阶段中非常严格的质量控制)固有的高温稳定性上,而且要在转化过程期间,能够控制结晶的生长。莫来石的耐高温及物理损坏性能和它的最初的结晶尺寸有直接关系,结晶大,会使耐火材料全部性能良好,而这也是高温处理过程的作用。晶体的增长依赖于原料的整体性、混合料的均匀性和混合料在高温下的停留时间。通过对合成莫来石的微观结构及性能进行控制,由于它具有高熔点,低热膨胀性、抗蠕变、化学惰性、高温时略微提高的抗折强度及良好的介质性能,在对各种结构及电学性能有所要求的不同材料中获得广泛的应用。通过对莫来石合成工艺、方法、原料的选择等方面的控制,并借助改进其微观结构(通过改变粒度、外形、组成、基质分布、界面特征,以及其他方面来控制其微观结构或性能),可以使其性能满足所需要的标准和要求。大量的成果是用于合成高纯度莫来石,直接地应用在各种结构和电学要求的领域中。莫来石主要的合成方法有醇盐沉淀法,化学湿混法、溶胶法及烧结反应、结合反应法,莫来石可以采用工业原料合成,也可以采用天然矿物原料合成,电熔法合成的莫来石晶粒发育良好呈针状或柱状解理明显,易于破碎;烧结法合成的莫来石晶粒细小,通常呈粒状,无明显解理存在,破碎

低温固相合成综述

研究生课程论文封面 课程名称材料制备与合成_____ 开课时间10-11 学年第一学期 学院数理与信息学院 学科专业凝聚态物理 ________ 学号2009210663 ____________ 姓名朱伶俊__________ 学位类别理学 ___________ 任课教师李正全 __________ 交稿日期___________________________ 成绩________________________ 评阅日期___________________________ 评阅教师 签名________________________

浙江师范大学研究生学院制 低温固相合成综述 目前,环境污染、能源过度消耗队地球及人类带来的危害已经越来越大。人们在发展经济的同时也在积极面对怎样克服对环境的污染,保护我们的生态平衡。近十几年来,由于传统的化学反应里在溶液或气相中进行,其反应需要能耗高,时间长,污染环境严重以及工艺复杂,因此越来越多的人将目光投向曾经被人类很早就利用过的固相化学反应。低温固相化学反应法是20世纪80年代发展起来的一种新的合成方法,并且发展极为迅速。其制备工艺简单,反应条件温和,节约能源,产率高,污染低等优点,使其再化学合成领域中日益受到重视。固相反应法已经成为了人们制备新型无机功能材料的重要手段之一。 1、低温固相合成的发展 固相化学反应是人类最早使用的化学反应之一,我们的祖先早就掌握了制陶 工艺,将制得的陶器用作生活日用品。但固相化学作为一门学科被确认却是在20世纪初,原因自然是多方面的,除了科学技术不发达的限制外,更重要的原因是人们长期的思想束缚。自亚里士多德时起,直至距今80多年前,人们广泛相信“不存在液体就不发生固体间的化学反应”。直到1912年,Hedvall在Berichte杂志发表了《关于林曼绿》(CaO和ZnO的粉末固体反应)为题的论文,有关固相化学的历史才正式拉开序幕。事实上,许多固相反应在低温条件下 便可发生。早在1904年,Pfeifer 等发现加热[Cr(en)3]Cl3 或[Cr(en)3](SCN)3 分别生成cis-[Cr(en)2Cl2]CI 和trans-[Cr(en)2(SCN)2]SCN ;1963 年,Tscherniajew等首先用K2[Pt 16]与KCN固-固反应,制取了稳定产物 K2[Pt(CN)6]。虽然这些早期的工作已发现了低温下的固相化学反应,但由于受到传统固相反应观念的束缚,人们对它的研究没有像对待高温固相反应那样引起足够的重视,更未能在合成化学领域中得到广泛应用。然而研究低温固相反应并开发其合成应用的价值的意义是不言而喻的。 1993 年Mallouk教授在Scienee上发表评述:“传统固相化学反应合成所得的是热力学稳定的产物,而那些介稳中间物或动力学控制的化合物往往只能在较低温度下存在,它们在高温时分解或重组成热力学稳定的产物。为了得到介稳固态相反应产物,扩大材料的选择范围,有必要降低固相反应温度。”可见,降低反应温度,不仅可获得更新的化合物,为人类创造更加丰富的物质财富,而且

扩散与固相反应word版

第十章扩散与固相反应 扩散的基本概念 当物质内有浓度梯度、应力梯度、化学梯度和其它梯度存在的条件下,由于热运动而导致原子(分子)的定向迁移,从宏观上表现出物质的定向输送,这个输送过程称为扩散。扩散是一种传质过程。 从不同的角度对扩散进行分类 1、按浓度均匀程度分: 有浓度差的空间扩散叫互扩散;没有浓度差的扩散叫自扩散 2、按扩散方向分: 由高浓度区向低浓度区的扩散叫顺扩散,又称下坡扩散; 由低浓度区向高浓度区的扩散叫逆扩散,又称上坡扩散。 3、按原子的扩散方向分: 在晶粒内部进行的扩散称为体扩散;在表面进行的扩散称为表面扩散;沿晶界进行的扩散称为晶界扩散。表面扩散和晶界扩散的扩散速度比体扩散要快得多,一般称前两种情况为短路扩散。此外还有沿位错线的扩散,沿层错面的扩散等。扩散的基本特点: 1、气体和液体传质特点

主要传质是通过对流来实现,而在固体中,扩散是主要传质过程;两者的本质都是粒子不规则的布朗运动(热运动)。 2、固体扩散的特点: A.固体质点之间作用力较强,开始扩散温度较高,远低于熔点; B.固体是凝聚体,质点以一定方式堆积,质点迁移必须越过势垒,扩散速率较低,迁移自由程约为晶格常数大小;晶体中质点扩散有各向异性。 扩散的意义 无机非金属材料制备工艺中很多重要的物理化学过程都与扩散有关系。例如,固溶体的形成、离子晶体的导电性、材料的热处理、相变过程、氧化、固相反应、烧结、金属陶瓷材料的封接、金属材料的涂搪与耐火材料的侵蚀。因此研究固体中扩散的基本规律的认识材料的性质、制备和生产具有一定性能的固体材料均有十分重大的意义。 第一节宏观动力学方程 一、稳定扩散和不稳定扩散 稳定扩散:扩散物质在扩散层内各处的浓度不随时间而变化,即dc/dt=0

第六章答案

第六章固相反应答案 1 若由MgO和Al O3球形颗粒之间的反应生成MgAl2O4是通过产物层的扩散进行的,(1) 2 画出其反应的几何图形,并推导出反应初期的速度方程。(2)若1300℃时D Al3+>D Mg2+,O2-基本不动,那么哪一种离子的扩散控制着MgAl2O4的生成?为什么? 解:(1)假设: a)反应物是半径为R0的等径球粒B,x为产物层厚度。 b)反应物A是扩散相,即A总是包围着B的颗粒,且A,B同产物C是完全接触的,反应自球表面向中心进行。 c)A在产物层中的浓度梯度是线性的,且扩散截面积一定。 反应的几何图形如图8-1所示: 根据转化率G的定义,得

将(1)式代入抛物线方程中,得反应初期的速度方程为: (2)整个反应过程中速度最慢的一步控制产物生成。D 小的控制产物生成,即D Mg 2+小,Mg 2+扩散慢,整个反应由Mg 2+的扩散慢,整个反应由Mg 2+的扩散控制。 2 镍(Ni )在10132.5Pa 的氧气中氧化,测得其质量增量如下表: 温 度 时 间 温 度 时 间 1(h ) 2(h ) 3(h ) 4(h ) 1(h ) 2(h ) 3(h ) 4(h ) 550℃ 600℃ 9 17 13 23 15 29 20 36 650℃ 700℃ 29 56 41 75 50 88 65 106 (1) 导出合适的反应速度方程;(2) 计算其活化能。 解:(1)将重量增量平方对时间t 作图,如图8-2所示。由图可知,重量增量平方与时 间呈抛物线关系,即符合抛物线速度方程式 。又由转化率的定义,得 将式(1)代入抛物线速度方程式中,得反应速度方程为:

扩散与固相反应

第十章扩散与固相反应 1.描述在金属固体中发生扩散时,原子是如何运动的。指出扩散的条件。 2.有一球壳,内半径为r1,外半径为r2。在T温度保温,有物质从球壳内 向球壳外扩散,当扩散达到平衡后,球壳内表面扩散物质的浓度为C1,外表面的浓度为C2,并测得在单位时间内从球壳内向球壳外扩散的物质总量为Q。设扩散系数为常数。求: A,扩散系数。 B,r=(r1+r2)/2处的浓度。 3.指出第一定律、第二定律中的不同适用的场合。 4.钢可以在870℃渗碳也可以在930℃渗碳,问:A)计算钢在870℃和930℃ 渗碳时,碳在钢(奥氏体)中的扩散系数。已知D0=2.0×10-5m2s-1,Q=144×103J/mol。B)在870℃渗碳要用多长时间才能获得930℃渗碳10小时的渗层深度?(渗层深度:在浓度-距离曲线中,某一浓度所对应的离表面的距离。) 5.简述置换原子和间隙原子的扩散机制。 6.何谓柯肯达尔效应,简述柯肯达尔效应的意义。 7.简述晶体结构对扩散的影响。 8.若由MgO和Al2O3球形颗粒之间的反应生成MgAl2O4是通过产物层的 扩散进行的: 9.(1) 画出其反应的几何图形并推导出反应初期的速度方程。

10.(2) 若1300℃时DAl3+>DMg2+,O2-基本不动,那么哪一种离子的扩散 控制着MgAl2O4的生成?为什么? 11.镍(Ni)在0.1大气压的氧气中氧化,测得其重量增量(μg/cm2)如 下表: (1)导出合适的反应速度方程;(2) 计算其活化能。 12.由Al2O3和SiO2粉末反应生成莫来石,过程由扩散控制,扩散活化能为 50千卡/摩尔,1400℃下,一小时完成10%,求1500℃下,一小时和四小时各完成多少?(应用扬德方程计算) 13.粒径为1μ球状Al2O3由过量的MgO微粒包围,观察尖晶石的形成,在 恒定温度下,第一个小时有20%的Al2O3起了反应,计算完全反应的时间。 (1) 用扬德方程计算 (2) 用金斯特林格方程计算 (3) 比较扬德方程、金斯特林格方程优缺点及适用条件。 14.当测量氧化铝-水化物的分解速率时,发现在等温反应期间,重量损失随 时间线性增加到50%左右,超过50%时重量损失的速率就小于线性规

材料合成与制备_复习资料(有答案)

第一章溶胶-凝胶法 名词解释 1. 胶体(Colloid):胶体是一种分散相粒径很小的分散体系,分散相粒子的质量可以忽略不计,粒子之间的相互作用主要是短程作用力。 2. 溶胶:溶胶是具有液体特征的胶体体系,是指微小的固体颗粒悬浮分散在液相中,不停地进行布朗运动的体系。分散粒子是固体或者大分子颗粒,分散粒子的尺寸为1nm-100nm,这些固体颗粒一般由10^3个-10^9个原子组成。 3. 凝胶(Gel):凝胶是具有固体特征的胶体体系,被分散的物质形成连续的网络骨架,骨架孔隙中充满液体或气体,凝胶中分散相含量很低,一般为1%-3%。 4. 多孔材料:是由形成材料本身基本构架的连续固相和形成孔隙的流体所组成。 填空题 1.溶胶通常分为亲液型和憎液型型两类。 2.材料制备方法主要有物理方法和化学方法。 3.化学方法制备材料的优点是可以从分子尺度控制材料的合成。 4.由于界面原子的自由能比内部原子高,因此溶胶是热力学不稳定体系,若无其它条件限制,胶粒倾向于自发凝聚,达到低比表面状态。 5.溶胶稳定机制中增加粒子间能垒通常用的三个基本途径是使胶粒带表面电荷、利用空间位阻效应、利用溶剂化效应。 6.溶胶的凝胶化过程包括脱水凝胶化和碱性凝胶化两类。 7.溶胶-凝胶制备材料工艺的机制大体可分为三种类型传统胶体型、无机聚合物型、络合物型。 8.搅拌器的种类有电力搅拌器和磁力搅拌器。 9.溶胶凝胶法中固化处理分为干燥和热处理。 10.对于金属无机盐的水溶液,前驱体的水解行为还会受到金属离子半径的大小、电负性和配位数等多种因素的影响。 简答题 溶胶-凝胶制备陶瓷粉体材料的优点? 制备工艺简单,无需昂贵的设备;对多元组分体系,溶胶-凝胶法可大大增加其化学均匀性;反应过程易控制,可以调控凝胶的微观结构;材料可掺杂的范围较宽(包括掺杂量及种类),化学计量准确,易于改性;产物纯度高,烧结温度低等。 第二章水热溶剂热法 名词解释 1、水热法:是指在特制的密闭反应器(高压釜)中,采用水溶液作为反应体系,通过将反应体系加热至临界温度(或接近临界温度),在反应体系中产生高压环境而进行无机合成与材料制备的一种有效方法。 2、溶剂热法:将水热法中的水换成有机溶剂或非水溶媒(如有机胺、醇、氨、四氯化碳或苯等),采用类似于水热法的原理,以制备在水溶液中无法长成、易氧化、易水解或对水敏感的材料。 3、超临界流体:是指温度及压力都处于临界温度或临界压力之上的流体。在临界状态下,物质有近于液体的溶解特性以及气体的传递特性。 4、微波水热合成:微波加热是一种内加热,具有加热速度快,加热均匀无温度梯度,无滞后效应等特点。微波对化学反应作用是非常复杂的,但有一个方面是反应物分子吸收了微波

第七章 扩散与固相反应

第七章 扩散与固相反应 例 题 7-1 试分析碳原子在面心立方和体心立方铁八面体空隙间跳跃情况,并以D =γr 2Γ形式写出其扩散系数(设点阵常数为a )。(式中r 为跃迁自由程;γ为几何因子;Γ为跃迁频率。) 解:在面心立方晶体中,八面体空隙中心在晶胞体心及棱边中心。相邻空隙连线均为[110]晶向,空隙 间距为。因而碳原子通过在平行的[110]晶面之间跳动完成扩散。若取[110]为X 轴、]101[为Y 轴、[001] 为Z 轴,则碳原子沿这三个轴正反方向跳动的机会相等。因此碳原子在平行[110]晶面之间跳动的几率即几何因子γ=1/6。 在体心立方晶体中,八面体空隙中心在晶胞面心及核边中心,相邻空隙间距为a /2。其连线为[110]晶向,可以认为碳原子通过在平行的[200]晶面之间来完成扩散,取[100]、[010]、[001]为X 、Y 、Z 轴。碳原子沿这三个轴正反方向跳动机会均等,因而碳原子在平行的[200]晶面间跳动的几率γ=1/6。 在面心立方铁中2261= =r γ 代入 2 D r γ=Γ 12)2(6122ΓΓa a D =??=面心 在体心立方铁中16γ=2r a = 24)2(6122ΓΓa a D =??=体心 7-2 设有一种由等直径的A 、B 原子组成的置换型固溶体。该固溶体具有简单立方的晶体结构,点阵常数a =0.3nm ,且A 原子在固溶体中分布成直线变化,在0.12mm 距离内原子百分数由0.15增至0.63。又设A 原子跃迁频率Γ=10-6s -1,试求每秒内通过单位截面的A 原子数? 解:已知1 6s 101--?=Γ,16γ=;nm 30.==a r ;求扩散通量J 。 s cm 105110)1030(612226372---?=???==..r D Γγ 每cm 3固溶体内所含原子数为 322 3 7cm 1073)10 30(1个?=?-.. 2224 2224212015063 3710148100012 1510148102210s cm ........dc dx J D dc dx ----= ??=-?=-=???=? 7-3 制造晶体管的方法之一是将杂质原子扩散进入半导体材料如硅中。假如硅片厚度是0.1cm ,在其中每107个硅原子中含有一个磷原子,而在表面上是涂有每107个硅原子中有400个磷原子,计算浓度梯度(a )每cm 上原子百分数,(b )每cm 上单位体积的原子百分数。硅晶格常数为0.5431nm 。 解:由菲克第一定律计算在内部和表面上的原子的百分组成,C i 和C s 分别为内部和表面磷浓度。

扩散与固相反应

扩散与固相反应 7-1 试分析碳原子在面心立方和体心立方铁八面体空隙间跳跃情况, 并以 D = γ2rΓ形式 写出其扩散系数 (设点阵常数为 a )。(式中 r 为跃迁自由程; γ为几何因子; Γ为跃迁频率。 ) 7-2 设有一种由等直径的 A 、B 原子组成的置换型固溶体。该固溶体具有简单立方的晶 体结构,点阵常数 A = 0.3nm ,且 A 原子在固溶体中分布成直线变化,在 0.12mm 距离内原 子百分数由 0.15 增至 0.63。又设 A 原子跃迁频率 Γ=10-6 s -1 ,试求每秒内通过单位截面的 A 原子数? 7-3 制造晶体管的方法之一是将杂质原子扩散进入半导体材料如硅中。 假如硅片厚度是 0.1cm ,在其中每 107 个硅原子中含有一个磷原子,而在表面上是涂有每 107 个硅原子中有 400个磷原子,计算浓度梯度( a )每cm 上原子百分数, (b )每 cm 上单位体积的原子百分 数。硅晶格常数为 0.5431nm 。 7-4 已知 MgO 多晶材料中 Mg 2+离子本征扩散系数( D in )和非本征扩散系数( D ex )由 下式给出 486000 2 D in 0.249exp ( ) cm 2 s in RT 5 254500 2 D ex 1.2 10 5exp ( ) cm 2 s RT (a ) 分别求出 25℃和 1000℃时,Mg 2+的(D in )和( D ex )。 (b ) 试求在 Mg 2+ 的 lnD ~1/T 图中,由非本征扩散转变为本征扩散的转折点温度? 7-5 从 7-4 题所给出的 D in 和 D ex 式中求 MgO 晶体的肖特基缺陷形成焓。若欲使 Mg 2+ 在 MgO 中的扩散直至 MgO 熔点 2800℃时仍是非本征扩散,试求三价杂质离子应有什么样 的浓度? 7-6 若认为晶界的扩散通道宽度一般为 0.5nm ,试证明原子通过晶界扩散和晶格扩散的 扩散系数。 Q gb Q v 7-7 设体积扩散与晶界扩散活化能间关系为 2 (Qg b 、Q v 分别为晶界扩散与体 积 扩散激活能) ,试画出 lnD ~1/T 曲线,并分析在哪个温度范围内, 晶界扩散超过体积扩散 ? 质量之比为 10 9 (10 d ) (D D g v b )。其中 d 为晶粒平均直径; D gb 、D v 分别为晶界扩散系数和晶格

相关主题
文本预览
相关文档 最新文档