当前位置:文档之家› 植物表观遗传学相关研究进展

植物表观遗传学相关研究进展

植物表观遗传学相关研究进展
植物表观遗传学相关研究进展

 万方数据

 万方数据

 万方数据

植物表观遗传学相关研究进展

作者:王霞, 亓宝, 胡兰娟, Wang Xia, Qi Bao, Hu Lanjuan

作者单位:东北师范大学生命科学学院表观遗传学实验室,长春,130024

刊名:

生物技术通报

英文刊名:BIOTECHNOLOGY BULLETIN

年,卷(期):2008(6)

参考文献(22条)

1.Aufsatz W;Mette Mr;van der Winden J;Matzke A J Matzke M RNA-directed DNA methylation in Arabidopsis[外文期刊] 2002(suppl 4)

2.Wassenegger M;Heimes S;Riedei L;Sanger HL查看详情 1994

https://www.doczj.com/doc/ba3857605.html,chner MO;Sullivan RJ;Jenuwein T查看详情[外文期刊] 2003(10)

4.Fischle W;Wang Y;Allis CD Histone and chromatin cross-talk [Review][外文期刊] 2003(2)

5.Jaskelioff M;Peterson CL Chromatin and transcription: histones continue to make their marks[外文期刊] 2003(11)

6.Kinoshita Y;Saze H查看详情 2007

7.Kinoshita Y查看详情 2007

8.Stam M The regulatory regions required for B ' paramutation and expression are located far upstream of the maize b1 transcribed sequences[外文期刊] 2002(2)

9.Chandler VL;Stam M查看详情[外文期刊] 2004

10.Zamore PD查看详情[外文期刊] 2002

11.Allshire R RNAi and heterochromatin--a hushed-up affair[外文期刊] 2002(5588)

12.Mette MF;Aufsatz W;van der Winden J;Matzke MA Matzke AJ查看详情 2000

13.杨金水查看详情 1995(03)

14.Genger RK;Kovac KA;Dennis ES查看详情[外文期刊] 1999(02)

15.Buryanov YI;Shevchuk TV查看详情 2005

16.Finnegan EJ;Kovac KA查看详情[外文期刊] 2000

17.张春燕表观遗传学及其研究进展[期刊论文]-四川生理科学杂志 2006(02)

18.Kooter JM;Matzke MA;Meyer P查看详情 1999

19.Alleman M;Doctor J Genomic imprinting in plants: observations and evolutionary implications [Review][外文期刊] 2000(2/3)

20.Wolffe AP;Matzke MA Epigenetics: regulation through repression.[外文期刊] 1999(5439)

21.Wang X;Zhang Y查看详情[外文期刊] 2007

22.Waddington CH The Strategy of the Genes 1957

本文读者也读过(8条)

1.张丽更.杨若飞.付凤玲.李晚忱.ZHANG Li-Geng.YANG Ruo-Fei.FU Feng-Ling.LI Wan-Chen植物印迹基因研究进展[期刊论文]-遗传2010,32(12)

2.陈小强.王春国.李秀兰.宋文芹.陈瑞阳.Xiao-Qiang Chen.Chun-Guo Wang.Xiu-Lan Li.Wen-Qin Song.Rui-Yang Chen植物DNA甲基化及其表观遗传作用[期刊论文]-细胞生物学杂志2007,29(4)

3.王树昌.Wang Shuchang表观遗传学在植物中的研究[期刊论文]-安徽农业科学2011,39(5)

4.李双龙.吴代坤.韩梅.Li Shuanglong.Wu Daikun.Han Mei植物DNA甲基化的表观遗传作用研究进展[期刊论文]-湖北林业科技2009(3)

5.张今今.褚会娟.张逸.武艳植物DNA甲基化及在禾本科作物中的研究进展[期刊论文]-陕西农业科学2010,56(4)

6.魏华丽.杨文华.韩素英.齐力旺.WEI Hua-li.YANG Wen-hua.HAN Su-ying.QI Li-wang表观遗传学在木本植物中的研究策略及应用[期刊论文]-中国农业科技导报2009,11(2)

7.王迪.傅彬英.张立军.Wang Di.Fu Binying.Zhang Lijun植物表观遗传变化与环境压力研究进展[期刊论文]-分子植物育种2008,6(3)

8.吕芳.苏幼红.张富春.李江伟.L(U) Fang.SU You-hong.ZHANG Fu-chun.LI Jiang-wei植物活性成分对表观遗传调节的研究概况[期刊论文]-中草药2008,39(10)

本文链接:https://www.doczj.com/doc/ba3857605.html,/Periodical_swjstb200806004.aspx

细胞生物学名词解释整理终版题库

名词解释 1. genome 基因组p235 某一个生物的细胞中储存于单倍染色体组中的总遗传信息,组成该生物的基因组 2. ribozyme 核酶p266 核酶是具有催化功能的RNA分子,是生物催化剂,可降解特异的mRNA序列。核酶又称核酸类酶、酶RNA、核酶类酶RNA。大多数核酶通过催化转磷酸酯和磷酸二酯键水解反应参与RNA自身剪切、加工过程。与一般的反义RNA相比,核酶具有较稳定的空间结构,不易受到RNA酶的攻击。更重要的是,核酶在切断mRNA后,又可从杂交链上解脱下来,重新结合和切割其它的mRNA分子。 3. signal molecule 信号分子p158 信号分子是细胞的信息载体,包括化学信号如各种激素,局部介质和神经递质以及各种物理信号比如声、光、电和温度变化。各种化学信号根据其化学性质通常可分为3类:1、气体性信号分子,包括NO、CO,可以自由扩散,进入细胞直接激活效应酶产生第二信使cGMP,参与体内众多生理过程。2、疏水性信号分子,这类亲脂性分子小、疏水性强,可穿过细胞质膜进入细胞,与细胞内和核受体结合形成激素-受体复合物,调节基因表达。3、亲水性信号分子,包括神经递质、局部介质和大多数蛋白类激素,他们不能透过靶细胞质膜,只能通过与靶细胞表面受体结合,经信号转换机制,在细胞内产生第二信使或激活蛋白激酶或蛋白磷酸酶的火星,引起细胞的应答反应。 4. house-keeping gene管家基因p319 管家基因是指所有细胞中均表达的一类基因,其产物是维持细胞基本生命活动所需要的,如糖酵解酶系基因等。这类基因一般在细胞周期S期的早期复制。分化细胞基因组所表达的基因大致可分为2中基本类型一类是管家基因,另外一类是组织特异性基因。 5. cis-acting elements顺式作用元件 存在于基因旁侧序列中能影响基因表达的序列。顺式作用元件包括启动子、增强子、调控序列和可诱导元件等,它们的作用是参与基因表达的调控。顺式作用元件本身不编码任何蛋白质,仅仅提供一个作用位点,要与反式作用因子相互作用而起作用。是指与结构基因串联的特定DNA序列,是转录因子的结合位点,它们通过与转录因子结合而调控基因转录的精确起始和转录效率。 6. epigenetics 表观遗传学p251(重新查!!!1) 表观遗传学是研究基因的核苷酸序列不发生改变的情况下,基因表达了可遗传的变化的一门遗传学分支学科。表观遗传的现象很多,已知的有DNA甲基化,基因组印记,母体效应,基因沉默,核仁显性,休眠转座子激活和RNA编辑等。是在基因组水平上对表观遗传学改变的研究。表观遗传现象包括DNA甲基化、RNA干扰、组织蛋白修饰等 7. Hayflick limitation Hayflick界线 Leonard Hayflick利用来自胚胎和成体的成纤维细胞进行体外培养,发现:胚胎的成纤维细胞分裂传代50次后开始衰退和死亡,相反,来自成年组织的成纤维细胞只能培养15~30代就开始死亡。Hayflick等还发现,动物体细胞在体外可传代的次数,与物种的寿命有关;细胞的分裂能力与个体的年龄有关,由于上述规律是Hayflick研究和发现的,故称为Hayflick 界线。关于细胞增殖能力和寿命是有限的观点。细胞,至少是培养的二倍体细胞,不是不死的,而是有一定的寿命;它们的增殖能力不是无限的,而是有一定的界限,这就是Hayflick 界线。 8. proto-oncogene原癌基因p312 原癌基因是细胞内与细胞增殖相关的基因,是维持机体正常生命活动所必须的,在进化上高等保守。当原癌基因的结构或调控区发生变异,基因产物增多或活性增强时,使细胞过度增

园林植物遗传学大纲(修改后的)

园林植物遗传学 绪论 遗传学的基本概念,遗传学发展简史,观赏植物遗传学研究现状。 第一章遗传的细胞学基础 1.细胞的结构与功能 根据构成生物体的基本单位,可以将生物分为: (1)非细胞生物:包括病毒、噬菌体(细菌病毒),具有前细胞形态的构成单位; (2)细胞生物:以细胞为基本单位的生物;根据细胞核和遗传物质的存在方式不同又可以分为: ⅰ真核生物(eukaryote):(真核细胞)原生动物、单细胞藻类、真菌、高等植物、动物、人类 ⅱ原核生物(prokaryote):(原核细胞)细菌、蓝藻(蓝细菌) 真核细胞:细胞膜、细胞质、细胞核及(植物)细胞壁 与动物细胞不同,植物细胞具有细胞壁及穿壁胞间连丝(plasmodesma)。 2.染色体的形态和结构 采用碱性染料对未进行分裂的细胞核(间期核)染色,会发现其中具有染色较深的、纤细的网状物,称为染色质。在细胞分裂过程,核内的染色质便卷缩而呈现为一定数目和形态的染色体。染色质和染色体是同一物质在细胞分裂过程中所表现的不同形态。一条染色体的两个染色单体互称为姊妹染色单体。 3.细胞的物质成分 4.细胞分裂及其生物学意义 有丝分裂包括两个紧密相连的过程:核分裂、细胞质分裂。通常有丝分裂主要是指核分裂,特别是在遗传学中更主要讨论细胞核分裂。 有丝分裂过程可分为五个时期,即:间期、前期、中期、后期、末期。 有丝分裂的遗传学意义可从两个方面来理解:①核内染色体准确复制、分裂,为两个子细胞的遗传组成与母细胞完全一样打下基础;②染色体复制产生的两条姊妹染色单体分别分配到两个子细胞中,子细胞与母细胞具有相同的染色体数目和组成。通过有丝分裂能够维持了生物个体的正常生长和发育(组织及细胞间遗传组成的一致性);并且保证了物种的连续性和稳定性(单细胞生物及无性繁殖生物个体间及世代间的遗传组成的一致性)。 减数分裂是性母细胞成熟时,配子形成过程中所发生的一种特殊的有丝分裂,又称成熟分裂。其结果是产生染色体数目减半的性细胞,所以称为减数分裂。

浅谈表观遗传学

浅谈表观遗传学 摘要:表观遗传学改变包括DNA甲基化、组蛋白修饰、非编码RNA作用等,产生基因组印记、母性影响、基因沉默、核仁显性、休眠转座子激活等效应。表观遗传变异是环境因素和细胞内遗传物质间交互作用的结果,其效应通过调节基因表达,控制生物学表型来实现。本文则从以上几个方面简述了表观遗传学的改变以及基本原理。 经典遗传学认为,核酸是遗传的分子基础,生命的遗传信息储存在核酸的碱基序列。每个个体内虽然所有细胞所含有的遗传信息是相通的,但由于基因的选择性表达,即不同细胞所表达的基因种类不同,这些来源相同的细胞经过增殖分化后将变成功能形态各不相同的细胞,从而组成机体内不同的组织和器官。几年来发现,在DNA序列不发生改变的情况下,基因表达也可发生能够遗传的改变,这种现象就被定义为表观遗传。它的主要论点是生命有机体的大部分性状是由DNA序列中编码蛋白质的基因传递的,但是DNA序列以外的化学标记编码的表观遗传密码,对于生命有机体的健康及其表型特征,同样也有深刻的影响。 表观遗传学的调节机制主要包括组蛋白修饰、DNA甲基化、非编码RNA作用等,通过这些调节模式,影响基因转录和(或)表达,从而参与调控机体的生长、发育、衰老及病理过程。这些调节模式相比核酸蛋白质的经典遗传途径更容易受环境的影响,因此表观遗传学更加关注环境诱导的表观遗传变异。因为表观遗传的这些调节机制易受环境影响,而任何一种调节机制发生异常都可能导致细胞状态、功能等发生紊乱,进而引起各种疾病,同时又由于许多表观遗传变异是可逆的,导致表观遗传异常引发的疾病相对容易治疗,因此近年来表观遗传学致病的研究成为了热门的话题之一。 组蛋白在DNA组装中发挥了关键作用, 利用核心组蛋白的共价修饰包括组蛋白甲基化、乙酰化、磷酸化、泛素化、ADP-核糖基化及特定氨基酸残基N-末端的SUMO化传递表观遗传学信息。修饰的主要靶点是组蛋白氨基末端上的赖氨酸、精氨酸残基,这些组蛋白翻译后修饰对基因特异性表达的调控,是其表观遗传学的重要标志。正常机体内,组蛋白修饰保持着可逆的动态平衡,当平衡打破,组蛋白去乙酰化则使得乙酰基从乙酰化组蛋白转移到乙酰辅酶A上,形成了致密的染色质状态, 从而使基因转录下降或沉默。

表观遗传学

课程信息 当前位置:首页 > 教育教学 > 研究生教育 > 课程信息 表观遗传学 061M4021H 学期:2015-2016学年秋| 课程属性:| 任课教师:曹晓风等 教学目的、要求 本课程为遗传与发育生物学专业研究生的专业核心课,同时也可作为细胞生物学、基因组学和分子生物学等相关学科研究生的选修课。表观遗传学是研究非DNA序列改变、可遗传的表达改变的科学,是遗传学的深入和补充,与分子生物学、细胞生物学、生物化学、基因组学和结构生物学相互交融,是后基因组时代重要的生命科学学科之一。表观遗传学机制参与动、植物生长发育调控和环境适应的各个方面,其调控异常会导致人类癌症和其他疾病的发生。本课程将讲授表观遗传学现象和发展简史;详细阐释表观遗传调控的分子机制及相关的生物学过程,重点包括真核基因转录调控、DNA甲基化和去甲基化、组蛋白共价修饰和变体、非编码RNA、染色质重塑、染色质高级结构、表观遗传学与动植物发育/疾病、表观遗传组学、表观遗传继承性的概念、研究进展、新技术和新方法的原理和方法,旨在使研究生系统掌握所在学科的完整知识体系、理论框架、发展历史与现状,为研究生今后从事系统性、基础性和前沿性的科研工作实践提供理论知识,为设计研究课题的技术路线和方案奠定基础。 预修课程 分子生物学,遗传学,生物化学 教材 生命科学学院 主要内容 1. 经典表观遗传学现象(3学时,曹晓风)9月15日 2. 真核基因转录调控(3学时,朱冰)9月22日 3. DNA甲基化(3学时,慈维敏)9月29日 4. DNA去甲基化(3学时,慈维敏)10月8日 5.组蛋白共价修饰(3学时,李国红)10月13日 6. 组蛋白变体(3学时,李国红)10月20日 7. 非编码RNA和RNA修饰(3学时,杨运桂)10月27日 8. 染色质重塑(3学时,李国红)11月3日 9. 染色质结构与功能(3学时,李国红)11月10日10. 染色质高级结构(3学时,朱平)11月

园林植物遗传育种(专套本详细整理)

一、名词 1遗传学:是研究生物体遗传与变异规律的科学;是研究生物体遗传信息和表达规律的科学;是研究和了解基因本质的科学。 2?遗传:指生物亲代与子代之间相似的现象。 3?变异:生物亲代与子代之间以及子代个体之间性状上的差异。 4.表型模写:环境条件的改变所引起的表型变异与某些基因引起的变化相似的现象,有时亦称为饰变。 5?个体发育:生物体的性状是从受精卵开始逐步形成的,这就是个体发育过程。 6. 细胞分化:在一个生命周期中,性状逐渐发生变化,这是细胞分化过程。分化的细胞通过遗传控制的形态建成构成一个结构和功能完美协调个体。所以,细胞分化是个体发育的基础。 7?系统发育:种群从原有的一种共同形态向另一种共有形态功能过渡的过程。是生物界共同的进化历程。 8?园林植物:园林植物是观赏植物的泛称,指具有一定观赏价值,使用于室内外布置以美化环境并丰富人们生活的植物。 主要包括:园林树木、花卉、草坪草和地被植物。 9. 花卉:①狭义花卉:卉,草本植物总称,花卉--开花的草本植物--有观赏价值的草本植物。 ②广义花卉:除草本花卉外,包括木本观花植物。 10?园林植物育种学:园林植物育种是通过引种、选种、杂交或良种繁育等途径改良观赏植物固有类型而创造新品种的一门科学。是一门应用科学。 11品种:(1)经人工选择培育,在遗传上相对纯合稳定,在形态和生物学特性上相对一致,并作为生产资料在农业生产中应用的作物类型(中国农业百科全书)。DUS :品种的三个基本特征:特异性,稳定性,一致性。 ⑵根据特异性(形态学、细胞学、化学等)可以和其它品种相区别的栽培植物群体,不因繁殖(有性或无性)而失去重要特性(联合国粮农组织和国际种子检验协会《种子法指南》)。 (3)具有在特定条件下表现为不妨碍利用的优良、适应、整齐、稳定和特异性的家养动植物群体(景士西)。 12. 细胞:细胞是生物体结构的基本单位;细胞是代谢和功能的基本单位:细胞是生长发育的基础;细胞是遗传的基本单位,具有全能性,在一定条件下能发育成新的个体。 13. 染色体:是细胞核中易被碱性染料染色的物质,在细胞分裂期形成特定的形态。细胞分裂间期称为染色质。(常染色质、异染色质),染色单体:复制时产生的染色体拷贝。细胞分裂中期的染色体是由两个染色单体组成的,两个染色单体在对应的空间位置上以着丝粒结合在一起。 14. A染色体:通常把正常恒定数目的染色体称为A染色体。包括常染色体和性染色体。 B染色体:把细胞中除正常染色体以外,额外出现的染色体称为B染色体,也成为超数染色体或副染色体。 15?染色体组:生物为完成其生活机能所必需的包含了最小基因群的一组染色体,又称染色体基数(X)。 16?着丝点:着丝粒两侧的具有三层盘状或球状结构的蛋白 17.同源染色体:形态与结构相似的一对染色体,一条来自父本,一条来自母本。 18?非同源染色体:形态与结构不同的染色体互称非同源染色体。 19?组型:又称核型,是指染色体组在细胞有丝分裂中期的表型,是染色体数目、大小、形态特征的总和。 20. 组型分析:在对染色体进行测量计算的基础上,进行同源染色体配对、分组排列并进行形态分析的过程,又称核型分析。核型模式图:将一个染色体组的全部染色体逐条按其特征画下来,再按长短、形态等特征排列起来的图称为核型模式图。 21. 有丝分裂:真核细胞的染色质凝集成染色体、复制的姐妹染色单体在纺锤丝的牵拉下分向两极,从而产生两个染色体数和遗传性相同的子细胞核的一种细胞分裂类型 22 ?减数分裂:又称成熟分裂,是在性母细胞成熟形成配子时所发生的一种特殊的有丝分裂,因其使体细胞染色体数目减半,故称减数分裂。 23?二价体:联会的一对同源染色体称为二价体。 24. 四合体:一个二价体含有4条染色单体,也称为四合体。 25. 自花授粉:同一朵花内或同株花朵间的授粉。 26?异花授粉:不同株的花朵问授粉。 27. 联会:减数分裂前期I偶线期来自两个亲本的同源染色体侧向靠紧,像拉链似的并排配对现象。 28. 受精:雄配子(精子)与雌配子(卵细胞)融合为1个合子过程。 29?双受精:一个精核与卵细胞结合成合子,将来发育成胚,另一个精核与两个极核结合,将来发育成胚乳,这一过程被称为双受精。双受精现象是被子植物在有性繁殖过程中特有的现象。 30.转录:以DNA双链之一为模版,将DNA上的遗传信息通过碱基互补的方式记载到mRNAb的过程。 31 .翻译:以mRNA为模版,tRNA为运载工具,将tRNA转运来的氨基酸,按照mRNAk的密码顺序相互连接起来形成多肽,并进一步折叠起来成为蛋白质的过程。 32. 三联体密码:mRNAt,三个相连的碱基决定一种氨基酸,这样相连的三个碱基成为一个密码子,又称三联体密码。 4 种碱基可以组合成64种密码子,生物体内只有20种氨基酸,因此,多个密码子代表一个氨基酸。 中心法则:遗传信息由DNA到DNA的复制以及遗传信息由DNA到RNA再到蛋白质的转录和翻译的过程,就是生物学上的中心法则。 33. 基因:具有遗传效应的DNA片段。 34. 经典遗传学:基因是突变、交换、功能的三位一体的最小

支气管哮喘的表观遗传学研究进展

支气管哮喘的表观遗传学研究进展 摘要:支气管哮喘(简称: 哮喘)是一种常见的呼吸道疾病,发病率呈逐年上升趋势,其病理机制极其复杂,涉及环境因素、免疫调节紊乱、遗传背景等。近年来越来越多的证据表明表观遗传学在其发病机制中发挥重要作用,哮喘的表观遗传学相关研究主要涉及DNA甲基化、组蛋白修饰、miRNA调控等方面。随着相关机制研究的深入,哮喘的表观遗传学相关药物研究也在进行中。 关键词:表观遗传;哮喘;甲基化;组蛋白修饰;miRNA 表观遗传学现象包括DNA甲基化、组蛋白修饰、miRNA 调控等,可不改变DNA 序列而改变基因表达水平,产生可遗传性改变。表观遗传调节的异常参与了癌症、炎症、代谢性疾病、神经精神疾病等的发生发展,近年来支气管哮喘的表观遗传学越来越受到关注,取得了一定进展。下面将从DNA甲基化、组蛋白修饰、miRNA 调控以及临床应用四个方面进行阐述。 1.DNA 甲基化 DNA甲基化是指DNA碱基在DNA甲基化转移酶( DNA methyltransferases DNMTs)的催化下与甲基发生共价结合的一种表观遗传修饰现象。大部分DNA 甲基化发生在位于结构基因启动子的核心序列和转录起始点的胞嘧啶-鸟嘌呤( CPG)[1],DNA甲基化由DNMTs催化,DNMTs包括DNMT1、DNMT3A和DNMT3B,其中DNMT3A和DNMT3B主要功能是起始甲基化,DNMT1维持DNA甲基化水平[2]。基因启动子内的CpG岛高甲基化导致基因转录沉默,而低甲基化促进转录的发生。哮喘患者的Th1/Th2细胞失衡向Th2偏移是哮喘的一个明显特征,T淋巴细胞中Th1/Th2细胞失衡,Th2占优势与哮喘发病密切相关,由幼稚CD + 4T细胞分化为Th2产生多种细胞因子如IL-4、IL-5和IL-13等与过敏反应密切相关。DNA甲基化水平与遗传相关,同时受环境、年龄、疾病影响,遗传易感个体在致病环境暴露后通过DNA甲基化促进哮喘发生发展[3],儿童哮喘及其他过敏性疾病的国际研究( ISAAC) 显示哮喘发病的时间趋势伴有一定地域性特点,亦提示环境因素与哮喘发病相关[4],环境中的空气污染物、

基因组学复习资料整理

基因组学 1. 简述基因组的概念和其对生命科学的影响。 基因组:指一个物种的全套染色体和基因。广义的基因组:核基因组,线粒体基因组,叶绿体基因组等。 基因组计划对生命科学的影响: ①研究策略的高通量,彻底认识生命规律:基因组研究高通量,研究手段和 研究策略的更新,加强了生命科学研究的分工与协作,从不同层次深入研究生命现象。 ②促进了相关学科的发展:分子生物学遗传学生物信息学生物化学细胞生 物学生理学表观遗传学等 ③物种的起源与进化: Ⅰ.重要基因的发掘、分离和利用:遗传疾病相关基因,控制衰老的基因,工业价值的细菌基因,重要农艺性状基因等。 Ⅱ.充分认识生命现象:基因的表达、调控,基因间的相互作用,不同物种基因组的比较研究,揭示基因组序列的共性,探讨物种的起源和进化。 ④伦理学法律问题:伦理问题,知识产权问题,法律问题,社会保险问题。 2. Ac/Ds转座因子 Ac因子有4563bp,它的大部分序列编码了一个由5个外显子组成的转座酶基因,成熟的mRNA有3500bp。该因子本身的两边为11bp的反向重复末端(IR),发生错位酶切的靶序列长度8bp。Ds因子较Ac因子短,它是由Ac因子转座酶基因发生缺失而形成的。不同的Ds因子的长度差异由Ac因子发生不同缺失所致。 Ac/Ds因子转座引起的插入突变方式:玉米Bz基因是使糊粉层表现古铜色的基因,当Ac/Ds转座插入到Bz基因座后,糊粉层无色。当Ac/Ds因子在籽粒发育过程,部分细胞发生转座,使Bz靶基因发生回复突变,从而形成斑点。 Ac/Ds两因子系统遗传特点: 1)Ac具有活化周期效应,有活性的Ac+因子被甲基化修饰后会形成无活性的ac-因子,反之无活性的ac-因子去甲基化成有活性的Ac+因子。 2)Ac与Ds因子有时表现连锁遗传但更多表现独立遗传。 3)Ac对Ds的控制具有负剂量效应。 4)Ac/Ds可引发靶基因表现为插入钝化、活性改变、表达水平改变和缺失突变等。 5)Ds的结构不同,插入同一靶基因的位点可能不同,形成的易变基因的表型也不同。(分子生物学79-81) 3. 正向遗传与反向遗传 正向遗传学研究指从突变体开始的遗传学研究,关心的问题是突变体表型的变化是由哪一个基因功能丧失后引起。 反向遗传学研究指从基因序列开始的遗传学研究,关心的问题是基因功能丧失后会使植物的表型产生什么样的变化。

表观遗传学

表观遗传学 比较通俗的讲表观遗传学是研究在没有细胞核DNA序列改变的情况时,基因功能的可逆的、可遗传的改变。也指生物发育过程中包含的程序的研究。在这两种情况下,研究的对象都包括在DNA序列中未包含的基因调控信息如何传递到(细胞或生物体的)下一代这个问题。表观遗传学是与遗传学(genetic)相对应的概念。遗传学是指基于基因序列改变所致基因表达水平变化,如基因突变、基因杂合丢失和微卫星不稳定等;而表观遗传学则是指基于非基因序列改变所致基因表达水平变化,如DNA甲基化和染色质构象变化等;表观基因组学(epigenomics)则是在基因组水平上对表观遗传学改变的研究。所谓DNA甲基化是指在DNA 甲基化转移酶的作用下,在基因组CpG二核苷酸的胞嘧啶5'碳位共价键结合一个甲基基团。正常情况下,人类基因组“垃圾”序列的CpG二核苷酸相对稀少,并且总是处于甲基化状态,与之相反,人类基因组中大小为100—1000 bp左右且富含CpG二核苷酸的CpG岛则总是处于未甲基化状态,并且与56%的人类基因组编码基因相关。人类基因组序列草图分析结果表明,人类基因组CpG岛约为28890个,大部分染色体每1 Mb就有5—15个CpG岛,平均值为每Mb含10.5个CpG岛,CpG岛的数目与基因密度有良好的对应关系[9]。由于DNA甲基化与人类发育和肿瘤疾病的密切关系,特别是CpG岛甲基化所致抑癌基因转录失活问题,DNA甲基化已经成为表观遗传学和表观基因组学的重要研究内容。 几十年来,DNA一直被认为是决定生命遗传信息的核心物质,但是近些年新的研究表明,生命遗传信息从来就不是基因所能完全决定的,比如科学家们发现,可以在不影响DNA序列的情况下改变基因组的修饰,这种改变不仅可以影响个体的发育,而且还可以遗传下去。这种在基因组的水平上研究表观遗传修饰的领域被称为“表观基因组学(epigenomics)”。表观基因组学使人们对基因组的认识又增加了一个新视点:对基因组而言,不仅仅是序列包含遗传信息,而且其修饰也可以记载遗传信息。 摘要表观遗传学是研究没有DNA 序列变化的可遗传的基因表达的改变。遗传学和表观遗传学系统既相区别、彼此影响,又相辅相成,共同确保细胞的正常功能。表观遗传学信息的改变,可导致基因转录抑制、基因组印记、细胞凋亡、染色体灭活以及肿瘤发生等。 关键词表观遗传学;甲基化;组蛋白修饰;染色质重塑;非编码RNA 调控;副突变 表观遗传学( epigenetics) 是研究没有DNA序列变化的可遗传的基因表达的改变。它最早是在1939 年由Waddington在《现代遗传学导论》一书中提出,当时认为表观遗传学是研究基因型产生表型的过程。1996 年,国内学术界开始介绍epigenetics 研究,其中译名有表遗传学、表观遗传学、表型遗传修饰等10 余种,其中,表观遗传学、表遗传学在科技文献中出现的频率较高。 1 表观遗传学调控的分子机制 基因表达正确与否,既受控于DNA 序列,又受制于表观遗传学信息。表观遗传学主要通过DNA 的甲基化、组蛋白修饰、染色质重塑和非编码RNA 调控等方式控制基因表达。近年发现,副突变也包含有表观遗传性质的变化。 1.1 DNA 甲基化DNA 甲基化是由酶介导的一种化学修饰,即将甲基选择性地添加到蛋白质、DNA 或RNA上,虽未改变核苷酸顺序及组成,但基因表达却受影响。其修饰有多种方式,即被修饰位点的碱基可以是腺嘌呤N!6 位、胞嘧啶的N!4 位、鸟嘌呤的N!7 位和胞嘧啶的C!5 位,分别由不同的DNA 甲基化酶催化。在真核生物DNA 中,5- 甲基胞嘧啶是唯一存在的化学性修饰碱基,CG 二核苷酸是最主要的甲基化位点。DNA 甲基化时,胞嘧啶从DNA 双螺旋突出,进入能与酶结合的裂隙中,在胞嘧啶甲基转移酶催化下,有活性的甲基从S- 腺苷甲硫氨酸转移至胞嘧啶5' 位上,形成5- 甲基胞嘧啶( 5mC)。DNA 甲基化不仅可影响细胞基因的表达,

园林植物遗传育种学

园林植物遗传育种学 教案 适用园林、药用植物高职班 学校:楚雄农校 任课教师:罗春梅 二OO六年八月二十日

第一篇园林植物遗传学 第1章园林植物遗传学基础 计划学时:2学时属累计学时:1-2学时 教学目的:让学生了解遗传与变异的概念和关系,分离规律的实质。 教学重点:基因型和表现型的概念,分离规律的实质。 教学难点:分离规律的实质。 教学方法:理论讲解 教学过程:[A]组织教学 [B]讲授新课 第一节遗传、变异和环境 一、遗传学的概念 遗传学是研究生物遗传与变异的科学。即是一门研究亲子代之间的传递和继承的科学。 如:为什么出现“种瓜得瓜,种豆得豆”,“一娘生九子,九子各不同”等现象,这些都属于遗传学解决的问题。 二、遗传与变异的概念及关系 (一)遗传 1、概念:指亲代的性状又在子代出现的现象。 2、原因:是由于遗传物质从亲代传递给了子代,使得子代按照遗传物质的规定,发育成了与亲代相似的各种性状。 3、遗传物质:指生物体的细胞内部传递遗传信息的物质,能自我复制。染色体是遗传物质的载体。染色体的主要成分是DNA和蛋白质。其中DNA(脱氧核糖核酸)就是遗传物质。少数病毒不含DNA,其遗传物质是RNA(核糖核酸)。 4、基因:是遗传物质(DNA)的基本单位。它是DNA分子链中各个微小的区段。基因控制着生物的某个或某些性状。具有相对的稳定性。 (二)变异 1、概念:指生物的亲代与子代或同一亲本的子代个体之间,有些性状彼此不同的现象。 2、变异的类型

生物的变异是很复杂的,在农业生产中常有这样的情况:在田间选择穗大粒多的变异植株为亲本,把它们的种子种下去后,在子代中有的保持了亲代穗大粒多的性状,有的却不能。这就说明,并不是所有的变异都能遗传。我们把能遗传的变异称为可遗传的变异,不能遗传的称为不遗传的变异。 (1)不遗传的变异 指生物性状的变异不能遗传给子代。 原因主要是由于外界的环境条件而引起,即环境条件仅能使生物的某些外部性状发生变异,而遗传物质并未变化。 (2)可遗传的变异 指能够遗传的变异。 原因主要是由于遗传物质发生了变化,故所产生的变异可遗传给后代。 (3)两种变异的区分及其重要性 两种变异主要根据其变异性状能否遗传来进行区分,这两种变异有时容易分清楚,而有时不易分清。例如:象植物的花冠颜色、形状及籽粒颜色、穗色、芒的长短、茸毛的有无等这些性状,往往受环境影响较小,若发生变异,一般是可以遗传的。如:长芒小麦后代中产生无芒的变异,红粒高粱后代中出现白粒变异单株等。类似这样的性状变异,一般是能够遗传的。 而有些性状如穗子大小、植株高矮、叶色的深浅等,往往受环境条件影响大,类似这里边些性状发生就异,可能是由于遗传物质变化造成,也可能是由于地力肥瘦不同造成,或者是由于两种变异共同作用的结果。对于育种工作来讲,能够遗传的就异是遗传育种工作的重要课题之一,因为只有从可遗传的变异中才能选育出新品种。 三、遗传与变异的关系 遗传和变异是生物界最普遍和最基本的两个特征,两者是生命运动中的一对矛盾,它们是对立而又统一的,正是由于这对矛盾的不断运动才使生物界生生不息、世代留传和更新发展,不断进化。 遗传使生物性状得到相对稳定,但这种不变是相对的,通过变异使得这种稳定性遭到破坏,在一定范围内表现差异,产生新的性状,使生物

表观遗传学修饰与肿瘤耐药关系的研究进展

表观遗传学修饰与肿瘤耐药关系的研究进展本文就DNA甲基化和组蛋白乙酰化与恶性肿瘤耐药的关系及其在逆转耐药中的作用方面的研究进展述之如下。 1DNA甲基化和组蛋白乙酰化 1.1DNA甲基化DNA甲基化是指在DNA复制以后,在DNA甲基化酶的作用下,将S-腺苷甲硫氨酸分子上的甲基转移到DNA分子中胞嘧啶残基的第5位碳原子上,随着甲基向DNA分子的引入,改变了DNA分子的构象,直接或通过序列特异性甲基化蛋白、甲基化结合蛋白间接影响转录因子与基因调控区的结合。目前发现的DNA甲基化酶有两种:一种是维持甲基转移酶;另一种是重新甲基转移酶。 1.2组蛋白乙酰化染色质的基本单位为核小体,核小体是由组蛋白八聚体和DNA缠绕而成。组蛋白乙酰化是表观遗传学修饰的另一主要方式,它属于一种可逆的动态过程。 1.3DNA甲基化与组蛋白乙酰化的关系由于组蛋白去乙酰化和DNA 甲基化一样,可以导致基因沉默,学者们认为两者之间存在串扰现象。 2表观遗传学修饰与恶性肿瘤耐药 2.1基因下调导致耐药在恶性肿瘤中有一些抑癌基因和凋亡信号通路的基因通过表观遗传学修饰的机制下调,并与化疗耐药有关。其中研究比较确切的一个基因是hMLH1,它编码DNA错配修复酶。此外,由于表观遗传学修饰造成下调的基因,均可导致恶性肿瘤耐药。 2.2基因上调导致耐药在恶性肿瘤中,表观遗传学修饰的改变也可导致一些基因的上调,包括与细胞增殖和存活相关的基因。上调基

因FANCF编码一种相对分子质量为42000的蛋白质,与肿瘤的易感性相关。2003年,Taniguchi等证实在卵巢恶性肿瘤获得耐药的过程中,FANCF基因发生DNA去甲基化和重新表达。另一个上调基因Synuclein-γ与肿瘤转移密切相关。同样,由表观遗传学修饰导致的MDR-1基因的上调也参与卵巢恶性肿瘤耐药的形成。 3表观遗传学修饰机制在肿瘤治疗中的应用 3.1DNA甲基化抑制剂目前了解最深入的甲基化抑制剂是5-氮杂脱氧胞苷(5-aza-dc)。较5-氮杂胞苷(5-aza-C)相比,5-aza-dc 首先插入DNA,细胞毒性比较低,并且能够逆转组蛋白八聚体中H3的第9位赖氨酸的甲基化。有关5-aza-dc治疗卵巢恶性肿瘤的体外实验研究结果表明,它能够恢复一些沉默基因的表达,并且可以恢复对顺柏的敏感性,其中最引人注目的是hMLH1基因。有关地西他滨(DAC)治疗的临床试验,研究结果显示,结果显示:DAC是一种有效的治疗耐药性复发性恶性肿瘤的药物。 3.2HDAC抑制剂由于组蛋白去乙酰化是基因沉默的另一机制,使用HDAC抑制剂(HDACI)是使表观遗传学修饰的基因重新表达的又一策略。根据化学结构,可将HDACI分为短链脂肪酸类、氯肟酸类、环形肽类、苯酸胺类等4类。丁酸苯酯(PB)和丙戊酸(VPA)属短链脂肪酸类。PB是临床前研究最深入的一种HDACI,在包括卵巢恶性肿瘤在内的实体肿瘤(21例)Ⅰ期临床试验中有3例患者分别有4~7个月的肿瘤无进展期,其不良反应是短期记忆缺失、意识障碍、眩晕、呕吐。因此,其临床有效性仍有待于进一步在Ⅰ、Ⅱ期临床试验中确定。在VPA的临床试验中,Kuendgen等在

表观遗传学

表观遗传学:营养之间的新桥梁与健康 摘要:营养成分能逆转或改变表观遗传现象,如DNA甲基化和组蛋白修饰,从而改变表达与生理和病理过程,包括胚胎发育,衰老,和致癌作用有关的关键基因。它出现营养成分和生物活性食物成分能影响表观遗传现象,无论是催化DNA直接抑制酶甲基化或组蛋白修饰,或通过改变所必需的那些酶反应底物的可用性。在这方面,营养表观遗传学一直被看作是一个有吸引力的工具,以预防儿科发育疾病和癌症以及延迟衰老相关的过程。在最近几年,表观遗传学已成为广泛的疾病,例如2型糖尿病的新出现的问题糖尿病,肥胖,炎症,和神经认知障碍等。虽然开发治疗或预防发现的可能性这些疾病的措施是令人兴奋的,在营养表观遗传学当前的知识是有限的,还需要进一步的研究来扩大可利用的资源,更好地了解使用营养素或生物活性食品成分对保持我们的健康和预防疾病经过修改的表观遗传机制。 介绍: 表观遗传学可以被定义为基因的体细胞遗传状态,从不改变染色质结构产生的表达改变的DNA序列中,包括DNA甲基化,组蛋白修饰和染色质重塑。在过去的几十年里,表观遗传学的研究主要都集中在胚胎发育,衰老和癌症。目前,表观遗传学在许多其它领域,如炎症,肥胖,胰岛素突出抵抗,2型糖尿病,心血管疾病,神经变性疾病和免疫疾病。由于后生修饰可以通过外部或内部环境的改变因素和必须改变基因表达的能力,表观遗传学是现在被认为是在不明病因的重要机制的许多疾病。这种诱导表观遗传变化可以继承在细胞分裂,造成永久的保养所获得的表型。因此,表观遗传学可以提供一个新的框架为寻求病因在环境相关疾病,以及胚胎发育和衰老,这也是已知受许多环境因素的影响。 在营养领域,表观遗传学是格外重要的,因为营养物质和生物活性食物成分可以修改后生现象和改变的基因的表达在转录水平。叶酸,维生素B-12,甲硫氨酸,胆碱,和甜菜碱可以影响通过改变DNA甲基化和组蛋白甲基化1 - 碳代谢。两个代谢物的1-碳代谢可以影响DNA 和组蛋白的甲基化:S-腺苷甲硫氨酸(的AdoMet)5,这是一个甲基供体为甲基化反应,并S-腺苷高半胱氨酸(的AdoHcy),这是一种产物抑制剂的甲基化。因此,理论上,任何营养素,生物活性组件或条件可影响的AdoMet或的AdoHcy水平在组织中可以改变DNA和组蛋白的甲基化。其他水溶性维生素B像生物素,烟酸和泛酸也发挥组蛋白修饰重要的作用。生物素是组蛋白生物素化的底物。烟酸参与组蛋白ADPribosylation如聚(ADP-核糖)的基板聚合酶作为以及组蛋白乙酰为底物Sirt1的,其功能作为组蛋白乙酰化酶(HDAC)(1)。泛酸是的一部分辅酶A以形成乙酰CoA,这是乙酰基的中组蛋白乙酰化的源。生物活性食物成分直接影响酶参与表观遗传机制。例如,染料木黄酮和茶儿茶素会影响DNA甲基(转移酶)。白藜芦醇,丁酸盐,萝卜硫素,和二烯丙基硫化物抑制HDAC和姜黄素抑制组蛋白乙酰转移酶(HAT)。改变酶activit这些化合物可能我们的有生之年通过改变基因表达过程中影响到生理和病理过程。 在这次审查中,我们更新了关于最新知识营养表观遗传学,这将是一个有助于理解如何营养素有助于我们的健康。 知识的现状 DNA甲基化 DNA甲基化,它修改在CpG二残基与甲基的胞嘧啶碱基,通过转移酶催化和通过改变染色质结构调节基因表达模式。目前,5个不同的转移酶被称为:DNMT1,DNMT2转移酶3A,DNMT3B和DnmtL。DNMT1是一个维护转移酶和转移酶图3a,3b和L分别从头转移酶。DNMT2的功能尚不明确。通过在我们的一生,营养成分影响这些转移酶和生物活性食物成分可以改变全球DNA甲基化,这是与染色体完整性以及genespecific启动子DNA甲基化,

2012CB910900-G-植物表观遗传调控及其在重要发育过程中的作用机制及结构基础研究

项目名称:植物表观遗传调控及其在重要发育过程 中的作用机制及结构基础研究 首席科学家:邓兴旺北京大学 起止年限:2012.1至2016.8 依托部门:教育部中国科学院河北省科技厅 北京市科委

一、关键科学问题及研究内容 (一)拟解决的关键科学问题 根据当前国内外植物表观遗传学机制和功能研究取得的进展和未来的发展趋势,本项目拟解决的3个关键科学问题是: 1、植物表观遗传调控的结构基础和分子机制:结合结构生物学、生物化学、遗传学和分子生物学的手段和方法研究表观遗传调控基因表达和沉默的分子途径、结构基础和作用机制,包括miRNA途径中从miRNA前体加工形成成熟的miRNA过程的调控机制、miRNA效应复合体(RISC)结构、组分和miRNA进入AGO1复合体的调控机制、该复合体在复杂的细胞内环境找到靶标mRNA的机制以及该复合体结构和功能之间的关系;siRNA途径中RNA介导的DNA甲基化途径效应复合体(RITS)关键组分、结构以及结构和功能之间的关系、DNA 依赖的RNA聚合酶Pol IV/V的转录活性调控和模板识别机制、效应因子通过DNA甲基化影响基因表达的结构和分子机制、PcG介导的基因沉默途径的组分和作用机制、PcG和RNA介导的两个基因沉默途径相互作用的分子机制。通过对上述表观遗传学基本问题和机制的了解,完善和发展表观遗传学的理论体系。 2、植物细胞分化和发育的表观遗传学机制:基因的差异表达是细胞分化和发育发生的基础。构成同一个生物体的不同细胞处于不同分化状态,根本原因是不同细胞中基因表达存在差异。同一个物种的干细胞与不同分化状态的细胞或处于不同环境条件生长细胞的基因组是完全相同的,但它们基因组的表达差异却很大。所以,基因表达差异不是由基因组决定的,而是由基因组DNA和与其紧密结合的组蛋白构成的染色质的共价修饰状态即表观基因组(Epigenome)决定。了解一个物种不同细胞的表观修饰状态以及这种修饰状态与基因表达活性以及与细胞分化和个体发育之间的关系是发育生物学和表观遗传修饰功能的基本问题。本项申请将在单基因和全基因组水平研究不同类型细胞特异性的表观遗传修饰,包括DNA甲基化、组蛋白修饰以及组蛋白构成水平差异,这些差异与基因表达和非编码RNA表达差异与细胞分化和发育之间的关系,以及参与细胞分化和重要发育过程控制的重要蛋白(或蛋白复合体)结构和功能之间的关系,从而解析植物细胞分化和发育的表观遗传机制。 3、植物杂种优势形成的表观遗传调控机制:杂种优势是一个重要的生物学现象

植物遗传学

第二章遗传的细胞学基础 1.原核细胞与真核细胞的主要区别 2.同源染色体:指体细胞中一条来自母方另一条来自父方,形态结构相同、遗传功能相似的一对染色体。 3.姐妹染色单体:是在细胞分裂的间期由同一条染色体经复制后形成的,其大小、形态、结构及来源完全相同 4.染色体组(基因组):一个物种单倍体的染色体数目及其携带的全部基因。 5.核型分析:按照染色体的数目、大小和着丝粒位置、臂比、次缢痕、随体等形态特征,对生物核内的染色体进行配对、分组、归类、编号、进行分析的过程称为核型分析。 6.染色体:是细胞分裂中期出现的结构,极易被碱性染料染色,故称染色体。染色体主要由DNA、蛋白质及RNA这三类化学物质组成。染色体与染色质二者为同一物质,是在细胞周期不同时相的不同形态结构。是由最基本的单位核小体成串排列而成。 6.单倍体染色体组中的DNA含量来表示基因组的大小,称为生物体的C值。同一物种的C 值是恒定的,不同物种不同。 7. 染色体的基本结构 典型的染色体通常由长臂、短臂、着丝点、着丝粒、次缢痕、随体及端粒组成。 着丝点:指两个染色单体保持连在一起的初缢痕区。及主缢痕。 着丝粒:只限于染色体上纺锤体微管附着的精细结构。 随体是指次缢痕区至染色体末端的部分 端粒是指染色体的自然末端。端粒的作用是对染色体DNA分子末端起封闭、保护作用。防止DNA酶酶切;防止发生DNA分子间融合;保持DNA复制过程中的完整性。 8. 染色体着丝粒的位置是相对稳定的,可根据着丝粒的位置将染色体分为:中间着丝粒染色体(V型)、近中着丝粒染色体(L型) 、近端着丝粒染色体、端着丝粒染色体(棒型)、粒状染色体。 9.有丝分裂与减数分裂的区别 10.高等植物雄雌性配子的形成 第三章孟德尔式遗传分析 1.性状:指生物体所表现的形态特征和生理特征。 显性性状:杂合状态中能够表现出来的性状。 隐性性状:杂合状态中不能表现出来的性状 相对性状:同一单位性状在不同个体间所表现出来的相对差异,称为相对性状。如:豌豆花色有红花和白花等。 基因:孟德尔在遗传分析中所提出的遗传因子 基因座:基因在染色体上所处的位置 等位基因:在同源染色体上占据相同座位的两个不同形式的基因 拟等位基因:完全连锁的控制同一性状的非等位基因,通过正常的交换重组不能将其分开。显性基因:在杂合状态中,能够表现其表型效应的基因,一般以大写字母表示 隐性基因:在杂合状态中,不表现其表型效应的基因,一般以小写字母表示 基因型:个体或细胞特定的基因组成 表型:生物体某特定基因所表现的性状 纯合体:基因座上有两个相同的等位基因 杂合体:基因座上有两个不同的等位基因 真实遗传:子代性状永远与亲代性状相同的遗传方式 2.基因互作

园林植物遗传学期末考试复习

植物遗传学第一章、绪论 1. 名词解释 遗传学:研究生物体遗传和变异规律的科学。 遗传:有性繁殖过程中亲代与子代以及子代不同个体之间的相似性。 变异:同种生物亲代与子代间以及不同个体间的差异称为变异。 基因型:指生物体遗传物质的总和,这些物质具有与特殊环境因素发生特殊反应的能力,使生物体具有发育成性状的潜在能力。 表型:生物体的遗传物质在环境条件的作用下发育成具体的性状,称为表现型。 遗传物质:是存在于生物器官中的“泛子/泛生粒”;遗传就是泛子在生物世代间传递和表现 个体发育:生物的性状是从受精卵开始逐渐形成的,这就是个体发育的过程。 细胞分化:在一个生物体的生命周期中,形态逐渐发生变化,这就是细胞分化的过程。 形态建成:指构成一个结构和功能完美协调的个体的过程 阶段发育的基本规律:顺序性、不可逆性、局部性 2. 简述基因型和表现型与环境和个体发育的关系。 3. 简述生物发育遗传变异的途径。 (1)基因的重组和互作:生物体变异的重要来源 (2)基因分子结构或化学组成上的改变(基因突变) (3)染色体结构和数量的变化 (4)细胞质遗传物质的改变 4. 简述观赏植物在遗传学研究中的作用。 1)园林植物种类的多样性; 2)园林植物变异的多样性(多方向、易检测、可保留); 3)园林植物栽培繁殖方式的多样性; 4)保护地栽培; 5)生命周期相对较短。 个体发育 外界环境条件作用 (外因)

第二章遗传的细胞学基础 2.1 细胞 1 组成: ? 1)结构单位——形态构成,细胞的全能性 2)功能单位——新陈代谢,生命最基本的单位 3)繁殖单位——产生变异的基本单位 2 类型 根据构成生物体的基本单位,可以将生物分为 非细胞生物:包括病毒、噬菌体(细菌病毒); 细胞生物:以细胞为基本单位的生物; 根据细胞核和遗传物质的存在方式不同又可以分为:原核生物(无丝分裂,转录,翻译在同一地点) 如:细菌、蓝藻(蓝细菌) 真核生物(有丝分裂,转录,翻译不在同一地点) 如:原生动物、单细胞藻类、真菌、高等植物、动物、人类

2012河南专升本动植物遗传学练习题

河南专升本动植物遗传学练习 一、选择题(每小题2 分,共40 分) 在每小题的四个备选答案中选出一个正确答案,用铅笔把答题卡上对应题目的答 案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。1.在豌豆杂交实验中,绿子叶×黄子叶→F1全部黄子叶→F2 3 黄子叶∶1 绿子叶, 那么F2中能真实遗传个体的比率是 A.3/4 B.1/4 C.1/3 D.1/2 2.某男子是白化病基因携带者,其细胞中可能不含该致病基因的是A.神经细胞B.精原细胞C.淋巴细胞D.精细胞 3.一对夫妇生了 4 个孩子,基因型为iiRRLMLN、IAiRrLNLN、iiRRLNLN、IBirrLMLM, 这对夫妇的基因型是 A.IAiRrLMLN与IBiRrLMLN B.IAiRrLMLN与IBiRRLMLN C.IAiRrLMLM与IBiRrLMLN D.IAirrLMLN与IBiRrLNLN 4.某人的染色体组成为47,XXY。该人发生了下列哪种染色体畸变A.双三体B.缺体C.三体D.重复 5.着丝点的位置决定染色体的形态,端着丝点染色体的臂比指数应为A.a≥7.0 B.a=3.0~7.0 C.a=1.7~3.0 D.a=1.0~1.7 6.密码子UCG 到UAG 的突变,应称为 A.错义突变B.无义突变C.中性突变D.移码突变

7.某生物的全部核酸中碱基组成为:嘌呤占58%,嘧啶占42%,则该生物不可能是 A.烟草花叶病毒(RNA)B.噬菌体(双链DNA) C.酵母菌(DNA、RNA)D.家兔(DNA、RNA) 8.下列群体中处于遗传平衡的是 A.49AA∶14Aa∶9aa B.50AA∶50aa C.100AA∶0aa D.49AA∶42Aa∶9aa 9.相互易位杂合体减数分裂时,产生的配子是 A.可育的B.不育的C.50%可育的D.80%不育的 10.人体神经细胞与肝细胞的形态结构和功能不同,其根本原因是这两种细胞的哪 种成分不同 A.DNA 碱基序列B.rRNA C.tRNA D.mRNA 11.小鼠在下述几种情况中分别能产生多少个配子 ①5 个初级精母细胞;②5 个次级精母细胞;③5 个初级卵母细胞A.20,10,20 B.20,10,5 C.5,5,20 D.20,5,5 12.A—a 和B—b 为两对独立遗传基因,但只有在A、B 同时存在时,才能共同决 定一种性状的表现,其它情况下只能表现为另一种性状,则AaBb 植株自交后

相关主题
相关文档 最新文档