当前位置:文档之家› 相关测速原理

相关测速原理

相关测速原理
相关测速原理

2.4.1互相关直接算法

如果从上、下游传感器获得的流动噪声信号()x t 和()y t 分别是来自各态历经的平稳随机过程{}()x t 和{}()y t 的一个样本函数,则它们的互相关函数可由时间平均运算求得如下:

01

()lim ()()T

xy T R x t y t d T τττ→∞=+?(2.6)

实际上,T 不可能取到无穷大,而且为了满足测量实时性的要求,上式的时间平均运算只能在有限时间范围内进行。因此,将上式的积分用有限和代替,即得到离散后的相关公式: μ1

1()()()N xy i R x i T y i T N ττ==??+∑(2.7) 在式(2.7)中,T ?是采样的时间分辨率,T T N ?=,()x i T ?和()y i T ?是上、下游传感器获得的流动噪声信号的采样值。

如果时延τ是△T 的整数倍,则(2.7)可写成: μ11()()(())0,1,2,,,N xy i R x i T y i j T j m m N N τ==?+?=???<∑(2.8)

式(2.8)可展开成下面的形式:

()()11223311223311(0)1()((0,1,2,,,)xy N N xy J J J N N J R x y x y x y x y N R J x y x y x y x y N

J j T j m m N +++++=

+++???+=+++???+=?=???<

(2.9)

从式(2.9)可以看出,为了完成一个确定的延时值的互相关计算,需要作N 次乘法和N 次加法运算。如果要得到m+l 个不同时延值的互相关函数,就需要完成(1)m N +次加法和(1)m N +次乘法运算,而相关器为了求得渡越时间,一般都要求数以千计的时延值的互相关函数(具体数目根据A/D 采样频率、流体流速和传感器间距确定),所以直接相关算法的运算量是相当大,不能保证相关运算的实时性。

流动噪声信号x(t)和y(t)的互相关函数()xy R τ与它们的互谱密度函数xy S ,是一对傅立叶变换对,可利用傅立叶变换来计算互相关函数()xy R τ。求互相关函数的间接频域算法是:先通过快速傅立叶变换(FFT)求x(t)和y(t)的互功率谱密度。然后求其傅立叶变换(IFFT)而获得互相关函数。

用FFT 来求互相关的计算步骤如下:

(1)、设()()x n y n 和是流动噪声信号()()x t y t 和的采样值,且()x n 的列长为1N ,()y n 的列长为2N ,两者线性相关:

0()()()N

k z n x k y n k ==+∑

(2)、为了使两个有限长序列的线性相关可用其圆周相关代替不产生混淆现象,因此可用FFT 和IFFT 计算式,并选择周期121,N=l N N N ≥+-且2(l 为正整数)。用补零的方法使()()x t y t 和具有列长N 即:

111()0,1,,1()=0

,1,,1x n n N x n n N N N =???-??=+???-? 222()0,1,,1

()=0,1,,1y n n N y n n N N N =???-??=+???-?

(3)、为利用圆周相关定理计算线性相关,先用FFT 计算()()x t y t 和的N 点离散傅里叶变换:

()()

()()

FFT FFT x n X k y n Y k ???→???→

(4)、可求得()()()Z k X k Y k = (5)、对Z(k)作IFFT ,即得到相关序列()z n

1

1

001()()()()N N nk N k k z n Z k W x k y n k N ---==??==+????∑∑ 将()z τ除以N ,就可以得到()xy R τ

1

11()()()()N xy k R z x k y k N N τττ-===+∑

数值乘法是标准化互相关函数计算的主要耗时因素,为缩短运算时间,可采用极性相关计算方法[23]。上下游流动信号,由过零检测装置按照穿越零点的方向,变成只有两个电平连续变化的方波信号。即转换为由正极性

向负极性穿越零点,或者由负极性向正极性方向穿越零点,以及穿越时间的一致性问题。

极性相关中,信号被1比特量化,量化后的信号为0和1(或-1和+1)两种值。因此,相关器中的乘法运算就转变为比较两个输入信号的符号的异同。这样,相关器的构成电路大大简化,运算速度大大加快,对流速测量情况,传感器输出信号的频率不高。如果按奈奎斯特频率采样信号,时延测量的分辨率就会很低,为了满足分辨率的要求,一般使用的信号采样频率比奈奎斯特频率要高10~20倍。这样,得到的数据很多,但它们包含的信息并不多。对于二值符号函数(())

Sign x n和Sign y n,如果把采样数据全部存储下来,将是长串的“0”和“1”的组合,这样(())

数据处理将耗费CPU大量运算时间。如果只记录信号的过零时刻,将会使采样到的数据紧凑得多,加快运算速度[24]。用软件实现相关函数的计算,时延值可以随意选择,还可以用二分法来快速搜寻峰值点。

图2.4极性相关原理图

多普勒测速仪开题报告

1.结合毕业设计课题情况,根据所查阅的文献资料,撰写2000字左右的文献综述: 文献综述 一、本课题的研究背景及意义 随着我国经济建设的高速发展,人民生活的不断提高,道路上各式各样的车辆数目也在大幅上升,也使得交通违章不断增加,给道路交通和人民的生活带来了极大的威胁。由于汽车工业的不断进步,行驶在道路上的车辆速度越来越快,交通事故发生的频率也不断增加。众所周知,交通事故的发生大部分是由驾驶员的超速驾驶造成的。为提高汽车运行的安全性,减少交通事故的发生以及快速检测车辆行驶中的速度,所以有了测速仪的问世。 随着科技的进步,由雷达传感器制作的测速仪已经广泛应用于车辆测速的行业中,实现对车辆速度准确,快速的测量。该测速仪结构简单,可靠性高,操作方便,可广泛应用于摩托车、汽车等机动车辆的速度测量中。测速仪的发展动向是把测速仪的准确性,稳定性和可靠性作为重要的质量指标。 二、本课题国内外研究现状 我国测速仪的应用和研究起源于八十年代,伴随着我国经济发展,由最初的简单雷达测速仪发展到现在的超声波,激光等多种测速仪,同时在误差补偿,超速报警,便捷等多个方面的研究和发展取得了长足的进步,由以前的单一,简单,笨重的测速仪演变为如今的多样,复杂,小巧,为我国的交通做出了巨大贡献,同时涌现了广州科能,西安光伟等一大批骨干测速仪制造企业,基本上形成了中国测速仪目前的发展格局。 雷达测速仪是根据接收到反射波频移量的计算而得出物体的运动速度,雷达测速易于捕捉目标,无须精确瞄准,可以采用手持的方式,在车辆的运动中进行测速。在中国的雷达测速仪发展中,雷达测速仪越来越向着高精度,高智能,高便捷的方向快速发展。 面对风起云涌的国内外市场及日新月异的中国经济,我国测速仪的发展和应用依然存在着非常严峻的问题。在2010年的国家测速仪调查报告中,我们可以看到我国的测速仪采用国外进口的测速仪占很大的比例,其中居多来自美国,日本。主要是因为我国的测速仪在质量,测量误差,报警设计方面离国外的测速仪还有一定的差距,但在近年的研究中,我国的测速仪发展还是取得了好大的进步。

固定流动电子狗测速原理

固定流动电子狗测速原理 什么是电子狗?反流动测速雷达的灵敏度越高是否越好?好启点为你介绍固定流动电子狗是怎样来测速的。 电子狗的使用是越来越广,简直是到了随处都可以看到电子狗身影的地步,而电子狗确实也不失大众所望,给车主带来很多便利,国内的电子狗的行业已经有长足的进步,而电子狗也迎来了它自己的春天。 电子狗是一种车载装置,作用是提前提醒车主电子眼或测速雷达的存在,以便车主减速行驶,可 减少甚至防止因为超速或违规而被罚款和扣分,让驾驶者安心驾驶,安全驾驶,尽得驾驶真趣,又叫安全驾驶预警机。 很多人都知道电子狗中有一款电子狗叫雷达流动测速电子狗的,它的反流动测速雷达是非常强悍的,雷达流动测速电子狗是一种检测雷达流动测速仪的设备,安装在汽内,可以在一定距离内检测到周围是否有雷达流动测速仪。在汽车在行使过程中,当汽车靠近雷达流动测速仪时雷达流动测速电子狗则会发出声音作为提示,司机可以降低车速。 那是不是反流动测速雷达的灵敏度越高越好呢?普遍上认为反流动测速雷达的灵敏度越高越好,但是考核反流动测速雷达的指标除了灵敏度外,还要考核反流动测速雷达的误报率。因为,在我们的周围存在许多电信号,随着灵敏度的提高,误报的比率也会提高。单纯在高速路行使还好,一旦进入城市就如同草木皆兵,到处都响,而城市的边缘是个模糊的概念,所以使用City模式会变得复杂。因此,并不是灵敏度越高越好,重要的是能够提供足够的预警距离,根据实际使用状况100-400米的范围就可以满足使用要求,从100公里减速到0通常需要60米左右的距离,而超速时并不需要加速到0,只要减速到正常水平有2、3秒时间就足够了,所以驾驶员也需要不断地提高使用技巧。 电子狗=固定+流动介绍: 目前市场大部分的电子狗都是固定+流动二合一电子狗。 一.固定:指凡是能看见的交警道路测速、拍照的所有不动的固定电子眼,包括:红绿灯照相、压线照相、电子监控等等!早期厂家通过在各固定电子眼的周边埋天线的方式发射信号,电子狗里面安装接收电路的方式来报警,由于需要定期给发射器换电池,其维护成本繁重!故该方式已淘汰! 目前电子狗的固定报警全采用GPS数据播报,厂家采集车队到全国各地的固定电子眼进行经、纬度坐标采集,进行统一编程,储蓄到电子狗的内存芯片里。顾客汽车的里电子狗与卫星通讯,准确找到目前的位置,当汽车行驶到前方电子眼的时候,储存器内的数据就会播报该电子眼的详细数据,例如:“前方为固定测速路段,限速80公里”等等。固定播报的优劣取决于各厂家采集电子眼数据的详细程度,另外每年新增的电子眼,也需要厂家定时去新增采集,目前国内有采集实力的厂家为:好启点、征服者、先知、善领。 固定播报的优劣另外还取决于厂家是否定期升级网站数据,升级的越频繁,代表数据的更新程度越快!好启点飞机电子狗,全国数据即时采集,时时更新,数据更即时。 二.流动:指道路上面交警使用的流动警车雷达、流动架接雷达、手持测速雷达、固定测速雷达。这些设备都会通过发射雷达波测试目标车辆的速度,如果超度将被拍罚款和扣分!目前测速雷达所用的频段主要有:X、K、Ka、Ku、LASER等。由于这些测速设备没有固定的位置,无法采集坐标进行固定播报,但它们必须发射雷达波,因此电子狗内部就安装了接收雷达波的雷达模块,当汽车安装电子狗行驶在道路上,电子狗侦测到前方2000米处有流动雷达波测速,则立即报警。播报方式为:“侦测到。。。频段。。。滴、滴、滴。。。”流动效果的好坏有很大区别,好的雷达2000米就可以提前报警。而差的雷达可能离目标200米才报警!好启点采用韩国最新技术8G跳频雷达以及美国相控阵雷达芯片,让车主们原理罚单。 好启点飞机电子狗特点: 国家级保护商标西南销量第一 固定测速流动测速 100%私模产品独享尊贵 好启点品牌突破100万用户 好启点数据西南地区连续三年第一 功能升级独有免费增值服务

利用多普勒测车速的原理

关于利用多普勒测车速的原理探究 摘要 本文从实例出发,阐述了雷达测速仪的工作原理───电磁波的多普勒效应,以及其实际应用上的一些情况. 关键词 电磁波的多普勒效应 The discovery of the principle of the velometer with Doppler effect Li Hongyang, Zhangyan Lin Weiping Tang Guangzhao , Li Zhuoran (A group from nuclear physics major, the physics department, scu) Abstract this article describes the application of Doppler effect of electromagnetic wave ,and the principle of the radar velometer. Keywords the Doppler effect of electromagnetic wave 背景 假定这种情景:一平直公路放置一测速仪,远方式来一辆车,其速度为v,测速仪发射一列电磁波,其频率为f,在极短时间后收到一频率为f ’的反射波.现在需要由f,f ’求v. 由于发出的为电磁波,经典运动理论下的多普勒公式已远远不够.再次我们避开四维坐标,用洛仑兹变换与狭义相对论来推导相对论下的多普勒效应. 令静止参考系为K 系,运动参考系为K ’系 则有 ①, ② 而由洛仑兹变换知: ③ ∴ ④ ⑤ 联立③④⑤得: ⑥ 2 2 2 01c u c m E -=2220'1'c u c m E -=????? ? ? ?? ??? -===-=γγ2''''c vt t t z z y y vt x x ?? ?????? ?? ??? ??-=-=-=221'1''c vu u u c vu u u vt u u x z z x y y x x γγγ2222''''z y x u u u u ++=2222z y x u u u u ++=22222 11'1c vu c u c u x --=-γ

激光多普勒测速实验报告

.\ 研究生专业实验报告 实验项目名称: LDV激光多普勒测速实验 学号: 20141002042 姓名:张薇 指导教师:唐经文 动力工程学院

.\ LDV激光多普勒测速实验 一、实验目的 应用激光测量流体的流速,是六十年代迅速发展起来的一种新的测速方法。它和过去应用的传统的测速仪器,如皮托管、旋浆式流速仪、热线式风速仪等相比,有如下几个主要优点:无接触测量,不干扰流场;测速范围广(4秒 米 10 104 5- ?-);空间分辨率高;动态响应快。特别是对高速流体、恶性(如:酸性、碱性、高温等)流体、狭窄流场、湍流、紊流边界层等的测量方面,显示出传统方法无法比拟的优点。 本实验要求在熟悉激光测速光学系统和信号处理基本原理的基础上,应用实验室的频移型二维激光测速仪测量一个具有分离、再附、旋涡和高湍流度的复杂流场,了解这种流场中平均速度、速度直方图、湍流度和雷诺应力等湍流参数在主流区、回流区、剪切层和边界层等区域的不同特征,以及激光测速在测量复杂湍流流动方面的功能和优点有着重要的实验意义。 二、实验设备 图1:激光多普勒测速仪 图2:实验模型结构尺寸

图3:实验系统图 三、实验原理和方法 激光多普勒测速仪,英文缩写是流体流速测量的光学方法之一,是利用光学多普勒效应。即当激光照射运动着的流体时,激光被跟随流体运动的粒子所散射,散射光的频率将发生变化,它和入射激光的频率之差称为多普勒频差或多普勒拍频。这个频差正比于流速,所以测出多普勒频差,就测得了流体的速度。 实际接收到的多普勒信号,是包含有各种各样噪声的信号。例如光电倍增管带来的信号散粒噪声,暗电流散粒噪声,背景光噪声,热噪声,以及其他测量仪器带来的噪声等。同时,多普勒信号还是一个调制信号,由于各种原因,使多普勒频带加宽。例如,振幅调制,散射粒子受布朗运动影响,散射粒子通过探测体积所需要的渡越时间,多粒子进入探测体积初位相的不同,激光束的角扩散及速度梯度等原因,都会引起多普勒频带的加宽。为了尽量减小噪声和带宽,以及从具有一定的噪声和带宽的信号中,取出反映流速的“有用”信号,必须选择合适的信号处理装置,对多普勒信号进行处理。 一种信号处理装置,是利用高分辨率的法布里-珀罗干涉仪,直接跟踪光学信号。此种干涉仪调整比较简单,在大散射角工作时空间分辨率较高,但在测低速 厘米。另一种信号处理装置是频谱分析时受到限制,一般能测的下限速度为25秒 仪,它实际上是通过调谐窄带滤波器,把信号用示波器器显示出来,其中心频率在频谱范围内缓慢地扫描。由于使用滤波器,在任一瞬间时只能观察到全部信号的很少一部分,浪费了有用的信息和时间。进来信号处理装置都采用能跟踪可变频率的振荡器,称为自动跟踪可变频率跟踪器,简称频率跟踪器。 四、实验内容 在熟悉激光测速光学系统和信号处理基本原理的基础上,应用频移型二维激光测速仪测量复杂流场的速度。

多普勒测速仪工作原理

浏览次数:110次悬赏分:0|解决时间:2011-8-24 19:30|提问者:匿名 最佳答案 从开过来的机车所听到的声波间的距离被压缩了,就好像一个人正在关手风琴。这个动作的结果产生一个明显的较高的音调。当火车离去时,声波传播开来,就出现了较低的声音--这种现象被称为“多普勒”效应。 检查机动车速度的雷达测速仪也是利用这种多普勒效应。从测速仪里射出一束射线,射到汽车上再返回测速仪。测速仪里面的微型信息处理机把返回的波长与原波长进行比较。返回波长越紧密,前进的汽车速度也越快--那就证明驾驶员超速驾驶的可能性也越大。 多普勒测速仪仪器介绍 TSI的LDV/PDPA系统 LDV/PDPA的主要装置和原理 激光多普勒测速仪是测量通过激光探头的示踪粒子的多普勒信号,再根据速度与多普勒频率的关系得到速度。由于是激光测量,对于流场没有干扰,测速范围宽,而且由于多普勒频率与速度是线性关系,和该点的温度,压力没有关系,是目前世界上速度测量精度最高的仪器。 LDV/PDPA测速工作原理可以用干涉条纹来说明。当聚焦透镜把两束入射光以?角会聚后,由干激光束良好的相干性,在会聚点上形成明暗相间的干涉条纹,条纹间隔正比干光波波长,而反比干半交角的正弦值。当流体中的粒子从条纹区的方向经过时,会依次散射出光强随时间变化的一列散射光波,称为多普勒信号。这列光波强度变化的频率称为多普勒频移。经过条纹区粒子的速度愈高,多普勒频移就愈高。将垂直于条纹方向上的粒子速度,除以条纹间隔,考虑到流体的折射率就能得到多普勒频移与流体速度之间线性关系。LDV/PDPA系统就是利用速度与多谱勒频移的线性关系来确定速度的。各个方向上的多普勒频率的相位差和粒子的直径成正比,利用监测到的相位差可以来确定粒径。 LDV/PDPA系统从功能上分为:光路部分、信号处理部分。光路部分:采用He-Ni激光器或Ar离子激光器,是因为它们能够提供高功率的514.5nm,488nm,476.5nm三种波长的激光。带有频移装置的分光器将激光分成等强度的两束,经过单模保偏光纤和光纤耦合器,将激光送到激光发射探头,调整激光在光腰部分聚焦在同一点,以保证最小的测量体积,这一点就是测量体即光学探头。接受探头将接受到的多普勒信号送到光电倍增管转化为电信号以及处理并发大,再至多普勒信号分析仪分析处理后至计算机记录,配套系统软件可以进行数据处理工作。在流场中存在适当示踪粒子的倩况下,可同时测出流动的三个方向速度及粒子直径。 TSI公司在国际上第一个生产商业化的LDV/PDPA系统,现在的TSI公司的LDV/PDPA系统已经拥有4项专利设计,并且在流场、湍流、传质、传热、流型、燃烧研究上有广泛的使

多普勒雷达原理

汽笛声变调的启示--多普勒雷达原理 1842年一天,奥地利数学家多普勒路过铁路交叉处,恰逢一列火车从他身 旁驰过,他发现火车由远而近时汽笛声变响,音调变尖(注:应为“汽笛声的音频频率变高”);而火车由近而远时汽笛声变弱,音调变低(应为“汽笛声的音频频率降低了”)。他对这种现象感到极大兴趣,并进行了研究。发现这是由于振源与观察者之间存在着相对运动,使观察者听到的声音频率不同于振源频率的缘故,称为频移现象。因为这是多普勒首先提出来的,所以称为多普勒效应。 由于缺少实验设备,多普勒当时没有用实验进行验证。几年后有人请一队小号手在平板车上演奏,再请训练有素的音乐家用耳朵来辨别音调的变化,验证了该效应。 为了理解这一现象,需要考察火车以恒定速度驶近时,汽笛发出的声波在传播过程中表现出的是声波波长缩短,好像波被“压缩”了。因此,在一定时间间隔内传播的波数就增加了,这就是观察者为什么会感受到声调变高的原因;相反,当火车驶向远方时,声波的波长变大,好像波被“拉伸”了。因此,汽笛声听起来就显得低沉。 用科学语言来说,就是在一个物体发出一个信号时,当这个物体和接收者之间有相对运动时,虽然物体发出的信号频率固定不变,但接收者所接收到的信号频率相对于物体发出的信号频率出现了差异。多普勒效应也可以用波在介质中传播的衰减理论解释,波在介质中传播,会出现频散现象,随距离增加,高频向低频移动。 多普勒效应不仅适用于声波,它也适用于所有类型的波,包括电磁波。 多普勒效应被发现以后,直到1930年左右,才开始应用于电磁波领域中。常见的一种应用是医生检查就诊人用的“彩超”,就是利用了声波的多普勒效应。简单地说,“彩超”就是高清晰度的黑白B超再加上彩色多普勒。超声振荡器产生一种高频的等幅超声信号,向人体心血管器官发射,当超声波束遇到运动的脏器和血管时,便产生多普勒效应,反射信号为换能器所接受,根据反射波与发射波的频率差可以求出血流速度,根据反射波的频率是增大还是减小判定血流方向。 20世纪40年代中期,也就是多普勒发现这种现象之后大约100年,人们才将多普勒效应应用于雷达上。多普勒雷达就是利用多普勒效应进行定位,测速,测距等的雷达。当雷达发射一固定频率的脉冲波对空扫描时,如遇到活动目标,回波的频率与发射波的频率出现频率差(称为多普勒频率),根据多普勒频率的大小,可测出目标对雷达的径向相对运动速度;根据发射脉冲和接收的时间差,可以测出目标的距离。20世纪70年代以来,随着大规模集成电路和数字处理技术的发展,多普勒雷达广泛用于机载预警、导航、导弹制导、卫星跟踪、战场侦察、靶场测量、武器火控和气象探测等方面,成为重要的军事装备以及科学研究、业务应用装置。 多普勒天气雷达,是以多普勒效应为基础,当大气中云雨等目标物相对于雷达发射信号波有运动时,通过测定接收到的回波信号与发射信号之间的频率差异就能够解译出所需的信息。它与过去常规天气雷达仅仅接收云雨目标物对雷达发射电磁波的反射回波进了一大步。这种多普勒天气雷达的工作波长一般为5~10厘米,除了能起到常规天气雷达通过回波测定云雨目标物空间位置、强弱分布、垂直结构等作用,它的重大改进在于利用多普勒效应可以测定降水粒子的运

激光多普勒测速

南京理工大学 课程考核论文 课程名称:图像传感与测量 论文题目:激光多普勒测速技术 姓名:陈静 学号: 314101002268 成绩: 任课教师评语: 签名: 年月日

激光多普勒测速技术 一、引言 激光多普勒测速技术即LDV(Laser Doppler Velocimetry)是伴随着激光器的诞生而产生的一种新的测量技术,它是利用激光的多普勒效应来对流体或固体速度进行测量的一种技术,广泛应用于军事、航空航天、机械、能源、冶金、水利、钢铁、计量、医学、环保等领域[1]。 激光测速技术的发展大体上可分为三个阶段。 第一个阶段是1964至1972年,这是激光测速发展的初期。在此期间,大多数的光学装置都比较简单,用各种元件拼搭而成,光学性能和效率不高,使用调准也不方便[2]。 第二个阶段是1973至1980年,在此期间,激光测速在光学系统和信号处理器方面有了很大的发展。光束扩展,空间滤波,偏振分离,频率分离,光学频移等近代光学技术相继应用到激光测速仪中。 第三个阶段是1981年至今。在此期间,应用研究得到快速发展[3]。 在发表的论文中,有关流动研究的论文急剧增加。多维系统,光纤传输技术以及数字信号处理和微机数据处理技术等的出现把激光多普勒技术推向更高水平,使用调整更加方便。此外,半导体激光器的应用是其小型化成为可能,推动激光多普勒测速走出实验室,迈向工业和现场应用。 二、主要内容 激光的多普勒效应是激光多普勒测速技术的重要理论基础,当光源和运动物体发生相对运动时,从运动物体散射回来的光会产生多普勒频移,这个频移量的

大小与运动物体的速度,入射光和速度方向的夹角都有关系。 由于其有许多潜在的独特功能,激光多普勒技术吸引了大量的实验流体力学和其他学科的研究工作者去研究和解决这些问题,使激光测速技术得到飞速发展,成为流动测量实验的有力工具[4]。 1.激光多普勒测速原理 激光测速的原理大致是这样:激光束射向流动着的粒子,粒子发出的散射光的频率改变了,通过光电装置测出频率的变化,就测得了粒子的速度,也就是流动的速度 [5]。 设一束散射光与另一束参考光的频率分别为12,s s f f ,它们到达光探测器阴极 表面的电场强度分别为: 1210112022cos(2) cos(2)s s E E f t E E f t π?π?=+=+ 式中,0102,E E 分别为两束光在光阴极表面处的振幅,12,??分别为两束光的初始相位。两束光在光阴极表面混频,其合成的电场强度为: 1212011022cos(2)cos(2)s s E E E E f t E f t π?π?=+=+++ 光强度与光的电场强度的平方成正比: 1222212010201021(t)()()cos[2()]2 s s I k E E k E E kE E f f t π?=+=++-+ 式中为k 常数,?为两束光初始相位差,12???=-。其中第一项为直流分量,可用电容器隔去,第二项为交流分量,其中12s s f f -是得到的多普勒频移。 多普勒频移与物体运动速度V 的关系为: 12[cos(,)cos(,)]s s i s V f f K K υυλ -=- 式中:i K 是激光的传播矢量,s K 为散射光传播矢量,υ是物理运动速度方

多普勒天气雷达原理与业务应用思考题

1 多普勒天气雷达主要由几个部分构成?每个部分的主要功能是什么? 答:主要由雷达数据采集子系统(RDA ),雷达产品生成子系统(RPG ),主用户终端子系统(PUP )三部分构成。RDA 的主要功能是:产生和发射射频脉冲,接收目标物对这些脉冲的散射能量,并通过数字化形成基本数据。RPG 的主要功能是:由宽带通讯线路从RDA 接收数字化的基本数据,对其进行处理和生成各种产品,并将产品通过窄带通讯线路传给用户,是控制整个雷达系统的指令中心。PUP 的主要功能是:获取、存储和显示产品,预报员主要通过这一界面获取所需要的雷达产品,并将它们以适当的形式显示在监视器上。 2 多普勒天气雷达的应用领域主要有哪些? 答:一、对龙卷、冰雹、雷雨大风、暴洪等多种强对流天气进行监测和预警;二、利用单部或多部雷达实现对某个区域或者全国的降水监测;三、进行较大范围的降水定量估测;四、获取降水和降水云体的风场信息,得到垂直风廓线;五、改善高分辨率数值预报模式的初值场。 3 我国新一代天气雷达主要采用的体扫模式有哪些? 答:主要有以下三个体扫模式:VCP11——规定5分钟内对14个具体仰角的扫描,主要对强对流天气进行监测;VCP21——规定6分钟内对9个具体仰角的扫描,主要对降水天气进行监测;VCP31/VCP32——规定10分钟内对5个具体仰角的扫描(使用长脉冲),主要对无降水的天气进行监测。 4 天气雷达有哪些固有的局限性? 答:一、波束中心的高度随距离的增加而增加;二、波束宽度随距离的增加而展宽;三、静锥区的存在。 5 给出雷达气象方程的表达式,并解释其中各项的意义。 答: P t 为雷达发射功率(峰值功率); G 为天线增益;h 为脉冲长度; 、 :天线在水平方向和垂直方向的波束宽度; r 为降水目标到雷达的距离; :波长; m :复折射指数; Z 雷达反射率因子。 6 给出反射率因子在瑞利散射条件下的理论表达式,并说明其意义。 答:∑= 单位体积6i D z ,反射率因子指在单位体积内所有粒子的直径的六次方的总和,与波长无关。 7 给出后向散射截面的定义式及其物理意义。 答: 定义:设有一个理想的散射体,其截面面积为?,它能全部接收射到其 上的电磁波能量,并全部均匀的向四周散射,若该理想散射体返回雷达天线处的电磁波能流密度,恰好等于同距离上实际散射体返回雷达天线的电磁波能流密度,则该理想散射体的截面面积?就称为实际散射体的后向散射截面。 物理意义:定量表示粒子后向散射能力的强弱,后向散射截面越大,粒子的后向散射能力越强,在同等条件下,它所产生的回波信号也越强。 8 什么是天气雷达工作频率?什么是天气雷达脉冲重复频率? 答:工作频率——天气雷达发射的探测脉冲的震荡频率 脉冲重复频率——每秒产生的触发脉冲的数目 9 什么是波束的有效照射深度和有效照射体积? 答:有效照射深度——雷达发出的探测脉冲具有一定的持续时间τ,在空间的电磁波列就有一定的长度h=τc ,在雷Z R C Z m m r h G p p t r ?=?+-=2 2222223212ln 1024λθ?πθ?λi S s R S 24πσ=

激光测速与雷达测速的原理比较

激光测速与雷达测速的原理与比较 多谱勒效应和雷达测速 你一定有这样的经验,当你站在马路旁边,即使没有去注视路面上车辆的行驶的情况,单凭耳朵的听觉判断,你能感到一辆汽车正在驶过来,或者离你而去. 这里面当然依靠汽车行驶的声音是渐强还是渐弱,但细细想想,主要还是根据汽车行驶的车轮声或喇叭声调的变化. 原来,车辆驶近时,声音要变尖,也就是说,音调要高些;开过以后,远离的时候,声音会越来越低. 为什么会这样呢?原来,声音的形成,首先是由于发声体的振动,然后在它周围的空气中形成了一会疏一会密的声波,传到耳朵里,使耳膜随着它同样地振动起来,人们就听到了声音. 耳膜每秒钟振动的次数多,人就感到音调高;反之,耳膜每秒钟振动的次数少,人就感到音调低. 照这样说,声源发出什么声,我们听到的就是什么调. 问题的关键在于汽车在怎样的运动. 汽车匀速驶来,轮胎与地面摩擦产生的声波传来时“疏”、“密”、“疏”、“密”是按一定规律,一定距离排列的,可当汽车向你开来时,它把空气中声波的“疏”和“密”压得更紧了,“疏”、“密”的距离更近了,人们听到的音调也就高了. 反之,当汽车离你远去时,它把空气中的疏密拉开了,听到的声音频率就小了,音调也就低了. 汽车的速度越大,音调的变化也越大. 在科学上,我们把这种听到音调与发声体音调不同的现象,称为“多谱勒效应”. 有趣的是,雷达测速计也正是根据多谱勒效应的原理研制出来的. 我们知道,小汽车可以开得很快,可是为了保证安全,在某些路段上,交通警察要对车速进行限制. 那么,在汽车快速行进时,交通警察是怎样知道它们行驶的速度呢?最常用的测速仪器叫雷达测速计,它的外形很像一支大型信号枪,它也有枪筒,手柄、板机等部件,在枪的后面有一排数码管. 把枪口对准行驶的车辆,一扣板机,一束微波就射向行驶中的车辆. 微波是波长很短的无线电波,微波的方向性很好,速度等于光速. 微波遇到车辆立即被反射回来,再被雷达测速计接收. 这样一来一回,不过几十万分之一秒的时间,数码管上就会显示出所测车辆的车速. 它所依据的原理依然是“多谱勒效应”. 雷达测速计发出一个频率为1000 MHz的脉冲微波,如果微波射在静止不动的车辆上,被反射回来,它的反射波频率不会改变,仍然是1000 MHz. 反之,如果车辆在行驶,而且速度大,那么,根据多谱勒效应,反射波频率与发射波的频率就不相同. 通过对这种微波频率微细变化的精确测定,求出频率的差异,通过电脑就可以换算出汽车的速度了. 当然,这一切都是自动进行的. 雷达测速计的测速范围大约在每小时24 km到199 km之间,测速范围比较大,精确度也相当高,车速在每小时100 km/h,误差不会超过1 km/h. 测速雷达朝向公路,可以测量车速,如果指向天空,就可以测云层的高度,测云层的速度. 当然,要测几十千米外,甚至上百千米外的飞机,也是这个原理,只不过要向它扫描的空间连续发射微波束,这些微波束遇到飞机再反射回来,已经极其微弱了,要想把它接收到,分辨清并计算出来,就很困难了,这就需要一个庞大的灵敏的雷达. 雷达测速与激光测速的比较

交警测速仪原理

交警测速仪原理 很多城市设立了抓拍路口违章的“电子眼”,本人根据3年多的开车经验、闯红灯经验,再加上向交警朋友的数年虚心讨教,终于弄懂了电子警察工作原理,希望对各位车友的行车有所帮助,知己知彼,百战不殆嘛。 1.电子眼采用感应线来感应路面上的汽车传来的压力,通过传感器将信号采集到电脑,并将信号暂存(该数据在一个红灯周期内有效); 2.在同一个时间间隔内(红灯周期内),如果同时产生两个脉冲信号,即视为“有效”,简单地说,就是如果当时红灯,你的前轮子过线了,而后轮子没出线,则只产生了一个脉冲,在没有连续的两个脉冲时,不拍照; 3.有些情况是:有的人开车前轮越过线了,怕被拍到,于是他又倒一下车,回到线内,结果还是被照了,什么原因?就是因为一前一后,产生了“一对”脉冲信号(这一对脉冲是在同一个红灯周期内产生的); 4.黄灯亮时,拍照系统延时两秒后启动;红灯亮时,系统已经启动;绿灯将要亮时,提前两秒关闭系统,主要是为了防止误拍。所以很多出租车司机都知道,差不多就可以走了,一样没事,就这个道理。严重建议大家不要这样做,因为时机比较难把握哟。 后期处理: 当图像被下载传输指挥中心以后,就需要对图像进行登记、编号、公告,再传输到中心计算机数据库,以备各种机关调用。 系统特点: 车辆捕获率——100%(不包括二轮摩托车等)。

识别时间——约1秒。 车牌识别率——白天95%以上,晚上90%以上(比较高啊)。 适用车速——5-180Km/h(如果你开190,它连个鬼都拍不到)。 交警查超速主要就两大类,一是雷达波测速,二是摄像机测速。 雷达波测速主要用于流动测速,配合摄像机拍号牌,主要用于高速及无固定测速路段,原理就是测速机发射某频率雷达波,锁定你的车,通过雷达波反射测定车速。此类测速较隐蔽,通常以流动测速车停在高速的临时停车处为主,也有通过手持测速仪隐藏在树后。我在高速上遇到过的测速车有依维柯和桑塔纳改装的,一般车顶有天线,还有拿手持的坐到车里,外面看不见,不小心就被抓到了。 摄像机测速的是固定测速,原理就是车通过该摄像机摄像区时通过你的位移及时间测定车速。此类测速基本很醒目,很远处你就会看到路的上方有横贯路面的铁架子,上面会摆很多摄像机,由于条件的限制,摄像机装在哪里就再也不会动了,所以如果你有一次被拍到,相信不会有第二次了。当然少数也很隐蔽,比如装在人行天桥或者立交桥下面,有时候不注意离近了才发现,踩刹车已经晚了。还有更损的装在人行天桥或立交桥的背面,你从正面行驶的过程中是不可能看见的,当你高速行驶过去时尾部的车牌已经被拍了下来。 还有很多种测速模式,比如压感测速,固定雷达测速等,国内用的比较少,就不做分析了

雷达测速仪有哪些特点

我国河流湖泊众多,水网密布,而要测量水流的流速,记录水文数据资料,就需要用到测速仪。雷达测速仪就是众多测速仪中的一种,雷达测流运用的原理是多普勒效应。多普勒效应是为纪念奥地利物理学家克里斯琴约翰.多普勒而命名的。在声学领域中,当声源与接收体(即探头和反射体)之间有相对运动时,回声的频率将有所变化,此种频率的变化称之为频移,即多普勒效应。如下图所示,当雷达流速仪与水体以相对速度V发生对运动时,雷达流速仪所收到的电磁波频率与雷达自身所发出的电磁波频率有所不同, 此频率差称为多普勒频移。通过解析频移与V的关系,得到流体表面流速。 雷达测速仪被广泛应用在河道、灌渠、防汛等水文测量;江河、水资源监测;环保排污、地下水道管网监测;城市防洪、山区暴雨性洪水监测;地质灾害预警监测等诸多领域。 今天我们主要来看看雷达测速仪的特点,主要有如下几个特点: 1、非接触、安全低损、少维护、不受泥沙影响; 2、能胜任洪水期高流速条件下的测量; 3、具有防反接、防雷保护功能; 4、系统功耗低,一般太阳能供电即可满足测流需要; 5、多种接口方式,既有数字接口又具有模拟接口,方便接入系统; 6、无线传输功能(可选),可将数据无线传输到3.5km以外;

7、测速范围宽,测量距离远达40m; 8、多种触发模式:周期、触发、查询、自动; 9、安装特别简单,土建量很少; 10、全防水设计,适合野外使用。 非接触雷达测流方式测速时设备不受污水腐蚀,不受泥沙影响,少受水毁影响,土建简单,便于维护,保障人员安全,特殊的天线设计使得功耗超低,大大降低了供电需求。不仅可用于平时流速监测,而且特别适合承担急难险重观测任务。 航征科技是目前国内具有自主知识产权的雷达方案提供商, 拥有多项专利和软件著作权。航征面向水文、水利、环境保护、城市排水管网等行业用户, 提供雷达流速流量在线监测解决方案。航征分别在上海、无锡建立了运营和研发测试中心,拥有完整的技术研发体系和阵容强大的科研队伍,与清华大学、国防科技大学、上海交通大学等知名院校达成长期战略合作,有多位业内专家作为公司的技术后盾,立志成为全球优秀的智能传感解决方案提供商。

激光多普勒测速系统

激光多普勒测速系统 一、概述: 项目背景: 该项目主要通过激光器和激光接收机实时检测目标的XYZ方向上的相对速度,并将3个方向的速度值矢量合成后,通过串口上报给主机。 系统原理如下: ●通过特殊的调制信号激励激光器,发射连续波激光。 ●同时在不同阶段接收从目标反射回的信号并通过高速ADC采集这些信号。 ●FPGA实时进行FFT计算,根据FFT结果比较不同阶段的频偏和符号。 ●根据多普勒效应,通过频偏大小和频偏方向,就能计算出目标的相对速度和方向。 ●3个通道通过不同角度的合成,可以最终计算出目标的相对矢量速度。 ●通过串口将速度数据传到上位机。

系统原理框图如下: 我们面临的挑战: ●由于物体相对速度较快,达到125m/s;对应的信号带宽为DC-250MHz左右, 需要1GHz进行高速采集。 ●同时对1Gsps的数据量进行最大32K点FFT时,数据覆盖率达50%上。此时单 一的FFT模块在FPGA中计算时间不够,需要4路FFT并行计算;逻辑设计难 度较大。 ●要求测试距离在3KM以上。由于激光在大气中的衰减比较严重,同时受到大气 的干扰也比较严重。致使回波信号比较弱,同时不稳定。 示波器捕获的原始数据

解决方案: 根据实际系统和算法处理精度要求,硬件系统采用如下设计: ?10bit1GSPS ADC,三通道同步采集。 ?低噪声模拟前端,支持程控增益放大,50Ω阻抗SMA接口。 ?模拟带宽DC-250MHz。 ?板载1024MB DDR3内存。 ?高稳定度,超低低抖动时钟发生器。 ?低噪声电源设计。 ?采用Xilinx XC5VSX95T FPGA,FPGA实现实时FFT和信号检测算法功能。 ?TI C6455DSP,工作频率1GHz,用于3波束速度合成算法和FPGA控制。 ?两个RS422/RS485接口。 二、系统整体框图如下: 系统整机的实物图如上

雷达测速与测距 ()

雷达测速与测距 GZH 2016/3/29 系统流程图 模块分析 1 脉冲压缩 1.1 原理分析 雷达的基本功能是利用目标对电磁波的散射而发现目标,并测定目标的空 间位置。雷达分辨力是雷达的主要性能参数之一。所谓雷达分辨力是指在各 种目标环境下区分两个或两个以上的邻近目标的能力。一般说来目标距离不 同、方位角不同、高度不同以及速度不同等因素都可用来分辨目标,而与信 号波形紧密联系的则是距离分辨力和速度(径向)分辨力。两个目标在同一角 度但处在不同距离上,其最小可区分的距离称为距离分辨力,雷达的距离分 辨力取决于信号带宽。对于给定的雷达系统,可达到的距离分辨力为 (1.1) 其中c为光速,为发射波形带宽。 雷达的速度分辨率可用速度分辨常数表征,信号在时域上的持续宽度越大, 在频域上的分辨率能力就越好,即速度分辨率越好。 对于简单的脉冲雷达,,此处,为发射脉冲宽度。因此,对 于简单的脉冲雷达系统,将有 (1.2)在普通脉冲雷达中,由于信号的时宽带宽积为一常数(约为1),因此不 能兼顾距离分辨力和速度分辨力两项指标。 雷达对目标进行连续观测的空域叫做雷达的探测范围,也是雷达的重要 性能数,它决定于雷达的最小可测距离和最大作用距离,仰角和方位角的探 测范围。而发射功率的大小影响作用距离,功率大则作用距离大。发射功率 分脉冲功率和平均功率。雷达在发射脉冲信号期间 内所输出的功率称脉冲功 率,用Pt表示;平均功率是指一个重复周期Tr内发射机输出功率的平均值, 用Pav表示。它们的关系为 (1.3) 脉冲压缩(PC)雷达体制在雷达脉冲峰值受限的情况下,通过发射宽脉 冲而获得高的发能量,以保证足够的最大作用距离,而在接收时则采用相应

486什么叫超声多普勒测速法

4.86什么叫超声多普勒测速法 多普勒(效应)法USF是利用在静止(固定)点检测从移动源发射声波多产生多普勒频移现象。 (1)流速方程式 如图5所示,超声换能器A向流体发出频率为fA的连续超声波,经照射域内液体中散射体悬浮颗粒或气泡散射,散射的超声波产生多普勒频移fd,接收换能器B收到频率为fB 的超声波,其值为 (9) 式中v-散射体运动速度。 多普勒频移fd正比于散射体流动速度 (10) 测量对象确定后,式(10)右边除v外均为常量,移行后得 (11) (2)流量方程式 多普勒法USF的流量方程式形式上与式(6)相同,只是所测得的流速是各散射体的速度v(代替式中的vm),与载体液体管道平均流速数值并不一致;方程式中流速分布修正系数Kd以代替K0 Kd是散射体的“照射域”在管中心附近的系数;其值不适用于在大管径或含较多散射体达不到管中心附近就获得散射波的系数。 (3)液体温度影响的修正 式(11)中又流体声速c,而c是温度的函数,液体温度变化会引起测量误差。由于固体的声速温度变化影响比液体小一个数量级,即在式(11)中的流体声速c用声楔的声速c0取代,以减小用液体声速时的影响。因为从图6可知cosθ=sinφ,再按斯纳尔定律sinφ/c=sinφ0/c0,式(11)便可得式(12),其中c0/sinφ0可视为常量。

(12) (4)散射体的影响 实际上多普勒频移信号来自速度参差不一的散射体,而所测得各散射体速度和载体液体平均流速间的关系也有差别。其他参量如散射体粒度大小组合与流动时分布状况,散射体流速非轴向分量,声波被散射体衰减程度等均影响频移信号。 优缺点: USF可作非接触测量。夹装式换能器USF可无需停流截管安装,只要在既设管道外部安装换能器即可。这是USF在工业用流量仪表中具有的独特优点,因此可作移动性(即非定点固定安装)测量,适用于管网流动状况评估测定 USF为无流动阻挠测量,无额外压力损失。 流量计的仪表系数是可从实际测量管道及声道等几何尺寸计算求得的,既可采用干法标定,除带测量管段式外一般不需作实流校验。 USF适用于大型圆形管道和矩形管道,且原理上不受管径限制,其造价基本上与管径无关。对于大型管道不仅带来方便,可认为在无法实现实流校验的情况下是优先考虑的选择方案。 多普勒USF可测量固相含量较多或含有气泡的液体。 USF可测量非导电性液体,在无阻挠流量测量方面是对电磁流量计的一种补充。 因易于实行与测试方法(如流速计的速度-面积法,示踪法等)相结合,可解决一些特殊测量问题,如速度分布严重畸变测量,非圆截面管道测量等。 某些传播时间法USF附有测量声波传播时间的功能,即可测量液体声速以判断所测液体类别。例如,油船泵送油品上岸,可核查所测量的是油品还是仓底水。

雷达测距、测角、测速基本原理

雷达测距、测角、测速基本原理 目标在空间的位置可以用多种坐标系表示。最常见的是直角坐标系,空间任一点目标P 的位段可用x,y,z三个坐标值来确定。在雷达应用中,测定目标坐标常采用极(球)坐标系统. 目标的斜距R为雷达到目标的直线距离OP;方位角a为目标的斜距R在水平面上的投影OB与某一起始方向(一般是正北方向)在水平面上的夹角;仰角B为斜距R与它在水平面上的投影OB在沿垂直面上的夹角,有时也称为倾角或者高低角。 如果需要知道目标的高度和水平距离,那么利用圆柱坐标系就比较方便。在这种坐标系中.目标的位由三个坐标来确定:水平距离D;方位角。;高度H, 球坐标系与圆柱坐标系之间的关系如下: D=RcosB H=RsinB a=a 上述这些关系仅在目标的距离不太远时是正确的;当距离较远时,由于地面的弯曲,必须作适当的修正。 现以典型的脉冲雷达为例来说明雷达测量的基本工作原理。它由发射机、发射天线、接收机和接收天线组成。发射电磁波中一部分能量照射到雷达目标上,在各个方向上产生二次散射。雷达接收天线收集散射回来的能量,并送至接收机对回波信号进行处理,从而发现目标,提取目标位置、速度等信息。实际脉冲雷达的发射和接收通常共用一个天线,以简化结构.减小体积和重量。 脉冲雷达采用的发射波形通常是高频脉冲串.它是由窄脉冲调制正弦载波产生的,调制脉冲的形状一般为矩形,也可采用其他形状。目标与雷达的斜距由电磁波往返于目标与雷达之间的时间来确定;目标的角位置由二次散射波前的方向来确定;当目标与雷达有相对运动时,雷达所接收到的二次散射波的载波频率会发生偏移,测量载频偏移就可以求出目标的相对速度,并且可以从固定目标中区别出运动目标来。

用多普勒效应测速的原理及应用论文

用多普勒效应测速的原理及应用 中文摘要:本论文的目的是介绍多普勒效应的测速原理以及在生活中的应用。通过查找资料并且思考的方法,分析和推导出多普勒效应的定义,原理。并且通过对日常生活的观察以及上网的搜索,了解了多普勒效应在日常生活的应用,包括声纳测速、雷达测速以及医学仪器的使用。本论文通过对多普勒效应原理的解说,一步步引导出测速的原理,进一步直观地解释其应用,从而真正解决了对多普勒效应测速的解答。 关键词:多普勒效应测速原理应用 论文: 一、多普勒效应 多普勒效应就是,当声音、光和无线电波等振动源与观测者以相对速度V相对运动时,观测者所收到的振动频率与振动源所发出的频率有所不同。因为这一现象是奥地利科学家多普勒最早发现的,所以称之为多普勒效应。由多普勒效应所形成的频率变化叫做多普勒频移,它与相对速度V成正比,与振动的频率成反比。 二、多普勒测速原理 用波照射运动着的物体,运动物体反射或散射波,由于存在多普勒效应,反射或散射波将产生多普勒频移,利用产生频移的波与本振波进行混频再经过适当的电子电路处理即可得到运动物体的运动速度。我们假设多普勒测速仪静止,运动物体的运动速度为v,运动物体的运动方向与多普勒测速仪的测速方向在同一直线上,为了得到多普勒测速仪所接收到的由于存在多普勒效应而频移的声波频率与运动物体运动速度之间的关系,我们分两步进行讨论。 1、声波测速 第一步,多普勒测速仪发射声波,运动物体接收到其所发射的声波.在这个过程中,多普勒测速仪作为波源是静止的,而运动物体作为波接收器以速度v运动.设多普勒测速仪所发射的声波频率为f,运动物体所接收到的声波频率为f′,声波的传播速度为v0,观测者相对于介质 的运动速度vr。可得: 第二步,运动物体反射或散射声波,多普勒测速仪接收到其所反射或散射的声波.在这个过程中,运动物体作为波源以速度v运动,而多普勒测速仪作为波接收器静止.设多普勒测速仪接收到的声波频率为f″,由第一步我们知道,运动物体所反射或散射的声波频率为f′,于是可得: 代入可得: 即为被测物体的运动速度v与多普勒测速仪所发射的声波频率f、多普勒测速仪所接 收到的由于存在多普勒效应而频移的声波频率f″以及声波的传播速度v0之间的关系 2、光波测速 为了得到多普勒测速仪所接收到的由于存在多普勒效应而频移的光波频率与运动物体运动速度之间的关系,我们同样分两步进行讨论。 第一步,多普勒测速仪发射光波,运动物体接收到其所发射的光波.在这个过程中,多普勒测速仪作为波源是静止的,运动物体作为波接收器是运动的,它们之间的相对速度为v.设多普勒测速仪所发射的光波频率为f,运动物体所接收到的光波频率为f′,光波的传播速度为c,则

脉冲多普勒雷达测速仿真

任务书 雷达进行PD测速主要是利用了目标回波中携带的多普勒信息,在频域实现目标和杂波的分离,它可以把位于特定距离上、具有特定多普勒频移的目标回波检测出来,而把其他的杂波和干扰滤除。因此要求雷达必须具备很强的抑制杂波的能力,能在较强的杂波背景中分辨出运动目标的回波。 如今,不管是在军用还是民用上,雷达都在发挥着它很早重要的作用,与早期雷达采用距离微分方法测速相比,基于脉冲多普勒理论的雷达测速技术具有实时性好、精度高等优点。特别是现代相控阵技术在雷达领域的应用,实现了波束的无惯性扫描和工作方式的快速切换,更便于应用脉冲多普勒技术进行雷达测速。 本篇课程设计目的在于介绍脉冲多普勒雷达测速的原理,并对这种技术进行介绍和仿真。

摘要 脉冲多普勒(PD)雷达以其卓越的杂波抑制性能受到世人瞩目。现代飞行器性能的改进和导航手段的加强,使其能在低空和超低空飞行,因此防御低空入侵己成重要问题,由此要求机载雷达,包括预警机雷达和机载火控雷达具有下视能力,即要求能在强的地杂波背景中发现微弱的目标信号,所以现代的预警机雷达和机载火控雷达皆采用PD体制。脉冲多普勒雷达包含了连续波雷达和脉冲雷达两方面的优点,它具有较高的速度分辨能力,从而可以更有效地解决抑制极强的地杂波干扰问题;此外,脉冲多普勒雷达能够同时敏感地测定距离和速度信息;能够利用多普勒处理技术实现高分辨率的合成孔径图像;而且亦具有良好的抗消极干扰能力和抗积极干扰能力。 本文介绍了脉冲多普勒雷达测速的原理,信号处理。并用matlab简单的仿真了雷达系统对信号的处理. 关键词:脉冲多普勒雷达恒虚警脉冲压缩线性调频 Abstact Pulse Doppler (PD) radar is famous for it`s outsdanding clutter suppression.Modern aircraft`s function and GPS has been strengthen.now.it makes the aircraft can fly lower and lower.So.nowadays,Defensing.Low altitude invasion has been an important problem.so we require airborne radar. Early warning radar and airborne fire control radar have the ability to look down.That is to say.The radar is be required the ability to find Weak target signal in the strong Groung clutter.So .The modern airborne early warning radar and airborne fire control radar use the PD system.Pulse Doppler (PD) radar concludes two adervantages of Continuous wave radar and impulse radar.It has a higher velocity resolution.thus it can effectively.soveing the problem of strong ground clutter.what`s more.Pulse Dppler (PD) radar can Sensitive text the Distance and speed on the same time.Itcan use Doppler processing technology to realise Synthetic aperture images with high resolution. This article sinply introduced principle of pulse Doppler radar and signal

相关主题
文本预览
相关文档 最新文档