当前位置:文档之家› 数值积分矩形公式的复化及误差分析

数值积分矩形公式的复化及误差分析

数值积分矩形公式的复化及误差分析
数值积分矩形公式的复化及误差分析

数值积分矩形公式的复化及误差分析

张晓霞

(西北师范大学 数学与信息科学学院 甘肃 兰州 730070)

摘 要: 先推导得出中矩形公式、左矩形公式,然后对其进行复化,但由于结果不理想,再对两个公

式进行递推,求出它们的递推化公式以及对其误差进行分析,最后举例说明几种逼近公式误差的变化情况;

关键词:中矩形公式,左矩形公式,误差分析,复化公式,公式递推化

1 引言

以前我们在进行积分运算时,都是先对被积函数求出其原函数,然后代值进行计算,但不是每个被积函数都是能轻易找到其原函数的,有的甚至找不到它的原函数,这就要求我们找出另外一种方法来研究积分运算.

首先我们来定义即将用到的左矩形公式和中矩形公式:

对于积分dx x f I b

a

?

=

)(,由积分中值定理知,?一点ξ∈),(b a ,使得

?

b

a

x d x f )()(=(b-a)f (ξ)

A . 若用区间左端点a 的函数值f (a)作为f (ξ)的近似值,则得到我们熟悉的左矩形公式:

)()(a f a b J -=,其积分余项 2)(2

)

(a b f J I R J -'=

-=η (1) B . 若改用区间中点2b a c +=

的函数值)2

(b

a f +作为)(ξf 的近似值,则得到中矩形公式:

)2

(

)(b

a f a

b R +-=,其积分余项 3)(24)(a b f J I R R -''=-=η (2) 由于我们导出的左矩形公式和中矩形公式对积分值的近似估计误差很大,所以我们采用复化求积公式来近似估计积分的准确值.

2复化公式

所谓复化[1]就是指将一个积分的积分区间[]b a ,划分为n 等分,在每一个小区间[]1,+k k x x 上应用左、中矩形公式求出积分值),,2,1(n k I k =,然后对k I 求和,近似估计出积分I 的积分值的算法.

2.1复化左矩形公式

将积分区间[]b a ,划分为n 等分,步长n

a

b h -=

,分点.,,1,0,n k kh a x k =+= 对每一个小区间[]1,+k k x x 采用左矩形公式有

J x x x x n n k k k n k k k n k b a

f h f dx x

x x f dx x f I k k ==-≈==∑∑∑??-=-=+-=+10

10110)()()()()(1 (3)

J

n

称为复化左矩形求积公式,下标n 表示将区间[]b a ,划分为n 等分.

2.2复化中矩形公式

类似于复化左矩形公式,对每一个小区间[]1,+k k x x 采用中矩形公式,且令

2

1

2

1+++=

k k k x x x ,则有 R x x x x n n k k k n k k k n k b

a

f h f dx x x x f dx x f I k k ==-≈==∑∑∑??

-=++-=+-=+1

21211011

0)()()()()(1

(4)

n R 称为复化中矩形求积公式,下标n 表示将区间[]b a ,划分为n 等分.[3]

3复化公式的误差分析

3.1 复化左矩形公式的误差估计公式

由(1)式对每个小区间有误差估计式

2

2112

)()()(2)()()()(1

h f x hf x x f x f x x dx x f I k k k k k k k k x x k k k

ηη'+=-'+

-==++?

+

其中k η介于k x ,1+k x 之间,将上式代入(3)中则有

∑∑∑?

∑?-=+-=+-=-='-+-====+1

211

1

1

1

)()(21)()()()(1

n k k k k n k k k k n k x x n k k b

a

f x x x f x x dx x f I dx x f I k k

η

∑∑

-=-='+

=1

2

1

)(2

)(n k k

n k k f h x f h η

从而复化左矩形公式的误差估计式为

∑∑

-=-='?-==

-=1

1

2

)(12)()(2

)(n k k n k k n n f n a b h f h J I f R ηη

由于)(x f '在[]b a ,上连续,k η均为[]b a ,的内点,所以由中值定理知,存在一点[]b a ,∈η,

使得)()(11

ηηf f n n k k '='?∑-=,所以有

)(2

)

()(ηf a b h J I f R n n '-=

-= ,[]b a ,∈η (5)

)(f R n 称为复化左矩形公式的误差估计式,下标n 表示将区间[]b a ,划分为n 等分.

3.2复化中矩形公式的误差估计公式

类似于复化左矩形的误差公式,同样可得复化中矩形公式的误差估计公式

∑∑-=-=''?-=''=-=1

2103)(124)()(24)(n k k n k k n n f n a b h f h R I f E ξξ 其中),(1+∈k k k x x ξ,由于)(x f ''在[]b a ,上连续,k ξ均为[]b a ,的内点,所以由中值定理知,

存在一点[]b a ,∈ξ,使得 )()(11

ξξf f n n k k ''=''?∑-=,所以有

)(24

)

()(2ξf a b h R I f E n n ''-=-=, []b a ,∈ξ (6)

4矩形公式的递推化

虽然复化求积方法对提高精度是行之有效的,但在使用求积公式之前必须给出合适的步长,步长太长,精度难以保证,步长太小,又会导致计算量的增加.而事先给出一个合适的步长往往是困难的,那到底怎样选取步长才是合适的呢?

实际计算中常常采用变步长的方案,即在步长逐次分半(即步长二分)的过程中,反复利

用复化求积公式进行计算,直至所求得的积分值满足精度要求为止.

4.1左矩形公式的递推公式及误差

变步长过程中左矩形的计算规律:

将求积区间[]b a ,分成n 等份,则一共有1+n 个分点,按左矩形公式计算n J ,需要提供

n 个函数值,如果将积分区间再分一次,则分点增至12+n 个,将二分前后两个积分值联系

起来加以考虑,注意到每个子区间[]1,+k k x x 经过二分只增加了一个分点2

1

2

1+++=

k k k x x x ,利用复化的左矩形公式求得该子区间上的积分值为

[]

)()(2

2

1++k k x f x f h

,其中代

n

a

b h -=

表二分前的步长,将每个子区间上的积分值相加得 []

n n n k k n k k n k k k n

R J x f h x f h x f x f h J 2

1

21)(2)(2)()(210101022

121+=+=+=∑∑∑-=+-=-=+ (7)

从而根据左矩形公式的误差公式[])()(2

)(2a f b f h

dx x f h J I b a n -='≈-?得,积分值的截

断误差大致与h 成正比,因此当步长二分后,误差将减至原有误差的2/1,即有

2

1

2≈--n n J I J I ,

移项整理得n n n J J J I -≈-22,由此可见只要二分前后的两个积分值n J 与n J 2相当接近,就可以保证计算结果误差很小,积分近似值n J 2的误差大致等于n n J J -2,因此,如果用这个误差值作为n J 2的一种补偿,可以期望得到的

n n n n n J J J J J J -≈-+='2222

可能是更好的结果.

4.2中矩形公式的递推公式及误差

同理对中矩形公式也一样,将求积区间[]b a ,分成n 等份,则一共有1+n 个分点,按中矩形公式计算n R ,需要提供1+n 个函数值,如果将积分区间再分一次,则分点增至2n +1个,将二分前后两个积分值联系起来加以考虑,注意到每个子区间[]1,+k k x x 经过二分只增加了

一个分点21

2

1+++=

k k k x x x ,在上述二分后的子区间上利用复化的中矩形公式求得该子区

间上的积分值为[]

)()(24

341+++k k x f x f h ,同样n

a

b h -=

代表二分前的步长,将每个子区间上的积分值相加,得

[]

∑-=+++=1

2)()(24

341n k k k n x f x f h R (8)

根据中矩形公式的误差公式[])()(2

)(2

2

2

b f a f h dx x f h R I b

a

n '-'=''≈

-?

得,积分值

的截断误差大致与2

h 成正比,因此当步长二分后,误差将减至原有误差的4/1,即有

412≈--n n R I R I ,移项整理得)(31

22n n n R R R I -≈-,同样,当二分前后的两个积分值n R 与

n R 2相差很近时,就可以保证计算结果误差很小,积分近似值n R 2的误差大致等于

)(3

1

2n n R R -,因此,如果用这个()k f x 误差值作为n R 2的一种补偿,则可以得到 n n n n n R R R R R R 3

1

34)(31222-=-+='

可能结果比较理想.

5矩圆公式

由右图可见,这样分割后,形成一些小网格,以上一些工作我们就是

通过计算这些小的矩形条的面积之和进而估计出曲线)(x f 在[]b a ,上所围 的面积.那么除此之外还有无别的近似计算方法呢?

首先,我们试想,如右图所示,把网格顶端的一些剩下的不全的网格 近似为底为h ,高为)()(1k k x f x f -+的三角形,那么前面我们按照左矩形公式 算得的矩形条的面积就为[])()(2)(1k k k x f x f h

x hf -+

+,整理后为)(2

)(21++k k x f h x f h ,那么 ∑∑??

-=++-=?????

?-+-≈==+1

0111

0))()((2)()()()(1

n k k k k k k n k b

a

x f x f h f dx x x x f dx x f I x x x k k

[]

I x f f h n k k k x '=+=∑-=+1

1)()(2 (9) 这就是我们所熟知的梯形公式,而梯形公式对准确值的逼近程度要优于左矩形公式和右矩形公式,所以这样的假设与估计是成立的,同理我们对上面算得的中矩形公式也可以加上这个小三角形的面积而得到与准确值更为近的值.

∑∑??

-=+++-=?????

?-+-≈==+1

012111

0))()((2)()()()(1

n k k k k k k n k b

a

x f x f h f dx x x x f dx x f I x x x k k

I x f f x f h n k k k k x ''=??

?

???-+=∑-=++10211)()(2)(2 (10)

下面我们来讨论另一种情形:即把上述所描写的三角形换成半径为h (或

[])()(1k k x f x f -+),为了计算方便,可以直接看成半径为h )的圆,那么按照前面我们推导得

到的左矩形公式,计算得到小矩形条的面积为2

4

1)(h x hf k π+,用它来近似积分的准确值可得到

∑∑??

-=+-=?????

?+-≈==+1

0211

041)()()()(1

n k k k k n k b a

h f dx x x x f dx x f I x x x k k π

P h f h n k k x =?????

?

+=∑-=1

041)(π

(11)

)(k x f

)(1+k x f

这就是我们所得到的左矩圆公式.

同理按照中矩形公式得到的小矩形条的面积为2

4

1)(2

1h x hf k π+

+,用它来近似积分的准

确值可得到

∑∑??

-=++-=?????

?+-≈==+1

022111

041)()()()(1

n k k k k n k b

a

h f dx x x x f dx x f I x x x k k π

Q h f h n k k x =?????

?+=∑-=+1

02141

)(π (12)

这就是我们所得到的中矩圆公式.

例 应用复化矩形公式(3)和(4)计算以及递推公式(7)与(8)和矩圆公式(11)

与(12)计算积分dx e I x ?

=

2

1

的近似值,并与其准确值作相应的比较.

解: 设x

e x

f =)(,2/1,0==b a ,分点个数8,,2,1 =n ; ∑-==1

)

(n k k

n x f h

J

∑-=+=1

)

(2

1n k k n x f h R

)()(a f a b J -=

)2

(

)(b

a f a

b R +-= n n n

R J J 2

1

212+= []

∑-=+++=102)()(24

341n k k k n x f x f h R

∑-=??????+=1

041)(n k k h f h P x π ∑-=+?????

?

+=1

02141)(n k k h f h Q x π

n

n a b h 21

=

-=

),2,1,0(,n k kh x k == 当h 取不同值时各种算法对积分的估计值与近似解的比较

J

0.500000 0.500000 0.500000 0.500000 0.500000 0.500000 0.500000 0.500000 R

0.642012 0.642012 0.642012 0.642012 0.642012 0.642012 0.642012 0.642012 n J

0.500000

0.596162

0.560453

0.609021

0.616826

0.622067

0.625828

0.628660

n R 0.642012 0.647034 0.647971 0.648299 0.648451 0.648534 0.648583 0.648616 n J 2 0.571006 0.60902 0.604212 0.62866 0.632639 0.635301 0.637206 0.638638 n R 2

0.647035 0.648299 0.648534 0.648616 0.648654 0.648674 0.648687 0.648695 P

0.696350 0.620093 0.617979 0.621293 0.624680 0.627521 0.629835 0.631728 Q

0.838362

0.696121

0.669788

0.660571

0.656305

0.653988

0.652590

0.651684

精确

解I 0.648721 0.648721 0.648721 0.648721 0.648721 0.648721 0.648721 0.648721

通过上表容易看出,当步长h 逐渐变小时,不论是复化公式还是递推公式,它们对准确值的逼近效果都显著提高,即h 越小,逼近效果越好;另一方面容易看出,中矩形公式比左矩形对准确值的近似程度更高,当然其复化公式的近似程度也比左矩形复化公式的精确度高;还有我们最后推出的(7)式与(8)式,它比起各自的复化公式来,逼近效果也相对较好,同样地中矩形公式的复化公式比(7)式的逼近效果要好.由(11)的结果可知在除1 n 之外,它的计算结果是比较理想的;明显的问题是(12)式的计算结果与准确值的差距特别大,因为对于复化的中矩形公式而言,精确度已经是比较好的了,那么,如果我们再去作(12)式那样的逼近,势必导致出现大的波动.这样的公式是不完美的,所以对这样的公式完全可以舍去.只要我们选取合适的步长,分别利用它们各自的递推公式算出的近似值比它们自己的复化公式精确度要高很多.

6结论:

通过本文的论述,得出复化求积公式比原近似公式的精确度高;同样地,复化中矩形公式的逼近效果比复化左矩形公式对准确值的逼近效果好;另外,通过公式的递推化之后,我们得出递推化的公式比复化求积公式的精确度高;理所当然,随着n 的不断增大,误差逐渐减小,当n 到一定程度大时,会无限接近准确值.

参考文献:

[1]李庆杨,王能超,易大义.数值分析[M].4版.武汉:华中科技大学出版社,2006. [2]王仁宏.数值逼近[M].北京:高等教育出版社,1999.

[3]李岳生,黄友谦.数值逼近[M]. 北京:人民教育出版社,1978.

[4]李晓红,堵秀风,张永胜,王延臣.计算方法[M]. 北京:北京航空航天大学出版社,2006.

[5]马东升,雷永军.数值计算方法[M].2版. 武汉:机械工业出版社,2001.

[6]张韵华,奚梅成,陈效群.数值计算方法与算法[M].2版.北京:科学出版社,2000.

Numerical integration of rectangular complex formula and error analysis

Zhang Xiaoxia

(College of Mathematics and Information Sciences Northwest Normal University LanzhouGansu 730070)

Abstract: Firstly, we deduced in the rectangle formula, the left rectangle formula, and then carry out restoration of them. Because the result is not satisfied with our expectations, so we try to find their recursive formulas and analyze their errors. Finally, we give an example of the some appropriate formulas for the change of error;

Keywords: the rectangle formula;the left rectangle formula; error analysis; complex formula; the formula of recurrence

复化梯形公式及复化辛普森公式的精度比较

实验四、复化梯形公式和复化Simpson公式的精度比较 (2学时) 一、实验目的与要求 1、熟悉复化Simpson公式和复化梯形公式的构造原理; 2、熟悉并掌握二者的余项表达式; 3、分别求出准确值,复化梯形的近似值,复化Simpson的近似值,并比较后两 者的精度; 4、从余项表达式,即误差曲线,来观察二者的精度,看哪个更接近于准确值。 二、实验内容: 对于函数 sin () x f x x =,试利用下表计算积分1 sin x I dx x =?。 表格如下: 注:分别利用复化梯形公式和复化Simpson公式计算,比较哪个精度更好。其中:积分的准确值0.9460831 I=。 三、实验步骤

1、熟悉理论知识,并编写相应的程序; 2、上机操作,从误差图形上观察误差,并与准确值相比较,看哪个精度更好; 3、得出结论,并整理实验报告。 四、实验注意事项 1、复化梯形公式,程序主体部分: for n=2:10 T(n)=0.5*T(n-1) for i=1:2^(n-2) T(n)=T(n)+(sin((2*i-1)/2^(n-1))/((2*i-1)/2^(n-1)))/2^(n-1); end end 2、复化Simpson公式,程序主体部分: for i=1:10 n=2.^i x=0:1/n:1 f=sin(x)./x f(1)=1 s=0 for j=1:n/2

s=s+f(2*j) end t=0 for j=1:(n/2-1) t=t+f(2*j-1) end S(i)=1/3/n*(f(1)+4*s+2*t+f(n+1)) end 五.实验内容 复化梯形公式和复化辛普森公式的引入 复化梯形公式: 1 10[(()]2 n n k k k h T f x f x -+==+∑; 复化辛普森公式: 1 1102 [(4()()]6n n k k k k h S f x f x f x -++ ==++∑; 根据题意和复化梯形公式、复化辛普森公式的原理编辑程序求解代码如下: Matlab 代码 clc s=quad('sin(x)./x',0,1) p1=zeros(10,1);

复变函数与积分变换重点公式归纳

复变函数与积分变换复习提纲 第一章 复变函数 一、复变数和复变函数 ()()()y x iv y x u z f w ,,+== 二、复变函数的极限与连续 极限 A z f z z =→)(lim 0 连续 )()(lim 00 z f z f z z =→ 第二章 解析函数 一、复变函数),(),()(y x iv y x u z f w +==可导与解析的概念。 二、柯西——黎曼方程 掌握利用C-R 方程?????-==x y y x v u v u 判别复变函数的可导性与解析性。 掌握复变函数的导数: y x y x y y x x v iv iu u v iu y f i iv u x f z f +==-=+-=??=+=??= ΛΛ1)(' 三、初等函数 重点掌握初等函数的计算和复数方程的求解。 1、幂函数与根式函数 θθθθθin n n n n n e r n i n r i r z w =+=+==)sin (cos )sin (cos 单值函数 n k z i n n e r z w π2arg 1+== (k =0、1、2、…、n-1) n 多值函数 2、指数函数:)sin (cos y i y e e w x z +== 性质:(1)单值.(2)复平面上处处解析,z z e e =)'((3)以i π2为周期 3、对数函数 ππk i z k z i z Lnz w 2ln )2(arg ln +=++== (k=0、±1、±2……) 性质:(1)多值函数,(2)除原点及负实轴处外解析,(3)在单值解析分枝上:k k z z 1 )'(ln = 。 4、三角函数:2cos iz iz e e z -+= i e e z iz iz 2sin --= 性质:(1)单值 (2)复平面上处处解析 (3)周期性 (4)无界 5、反三角函数(了解) 反正弦函数 )1(1 sin 2z iz Ln i z Arc w -+= =

三种复化求积分算法的精度分析

【摘要】分别利用复化梯形公式、复化simpson公式和复化gauss-legendre i型公式对定积分进行运算,得到近似数值解,并对各算法的精度和计算复杂度进行了比较与分析。数值举例结果表明,三种复化求积分算法的运算结果均在绝对误差限ε=5e-8内,并且在相同的精度下,复化gauss-legendre i型公式的步长和计算量最小。 【关键词】复化梯形公式;复化simpson公式;gauss-legendre公式 1 引言 数值积分是计算数学的基本内容,在工程技术和科学计算中起着十分重要的作用,当积分的精确值不能不能求出时,数值积分就变得越来越重要。通常数值积分的计算常利用机械积分来实现,其基本思想为: (1) 2 理论模型 复化梯形求积公式 将区间[a,b]划分成n等分,分点xk=a+kh(,k=1,2,3…n),在每个子区间[xk,xk+1] (k=1,2,3 …n-1)上采用梯形式,则得到 (2) 记 (3) 上式(3)为复化梯形公式,其余项可由式 ,(a≤η≤b)(4) 得 ,ηk∈[xk,xk+1] (5) 由于 f(x)∈c2[a,b] 且 ,(0≤k≤n-1)(6) 所以∈(a,b),使 (7) 于是复化梯形公式余项为 (8) 复化simpson求积公式 将区间[a,b]划分为n等分,在每个子区间[xk,xk+1]上采用simpson式,若记,则得 (9) 记 (10) 上式(10)为复化simpson求积公式,其余项可由式 ,(a≤η≤b)(11) 得 ,ηk∈[xk,xk+1] (12) 于是当f(x)∈c4[a,b]时,与复化梯形公式相似有 ,η∈[a,b] (13) 复化gauss-legendre i型求积公式 gauss型求积公式是具有最高代数精度的插值求积公式。通过适当选取求积公式(1)的节点ε=5e-8和求积系数ak≥0和xk∈[a,b] (k=1,2,3…n),可使其代数精度达到最高的2n+1次。利用特殊区间[-1,1]上n+1次legendre正交多项式的根作为节点,我们可以建立gauss-legendre型求积公式。将区间[a,b]划分成n等分,分点xk=a+kh(,

数值计算中误差的传播规律

数值计算方法 实 验 报 告 实验序号:实验一 实验名称:数值计算中误差的传播规律 实验人: 专业年级: 教学班: 学号: 实验时间:

实验一 数值计算中误差的传播规律 一、实验目的 1.观察并初步分析数值计算中误差的传播; 2.观察有效数字与误差传播的关系. 二、实验内容 1.使用MATLAB 的help 命令学习MATLAB 命令digits 和vpa 的用途和使用格式; 2.在4位浮点数下解二次方程01622=++x x ; 3.计算下列5个函数在点2=x 处的近似值 (1)60)1(-=x y , (2)61) 1(1+=x y , (3)32)23(x y -=, (4)3 3)23(1x y +=, (5)x y 70994-=. 三、实验步骤 本次实验包含三个相对独立的内容. 1.在内容1中,请解释两个命令的格式和作用; 在matlab 中采用help 语句得到:

1、digits用于规定运算精度,比如: digits(20); 这个语句就规定了运算精度是20位有效数字。但并不是规定了就可以使用,因为实际编程中,我们可能有些运算需要控制精度,而有些不需要控制。vpa就用于解决这个问题,凡是用需要控制精度的,我们都对运算表达式使用vpa函数。 例如: digits(5); a=vpa(sqrt(2)); 这样a的值就是1.4142,而不是准确的1.4142135623730950488016887242097 又如: digits(11); a=vpa(2/3+4/7+5/9); b=2/3+4/7+5/9; a的结果为1.7936507936,b的结果为1.793650793650794......也就是说,计算a的值的时候,先对2/3,4 /7,5/9这三个运算都控制了精度,又对三个数相加的运算控制了精度。而b的值是真实值,对它取11位有效数字的话,结果为1.7936507937,与a不同,就是说vpa 并不是先把表达式的值用matlab本身的精度求出来,再取有效数字,而是每运算一次都控制精度。 2.求解方程时,分别使用求根公式和韦达定理两种方法,并比较其有效数字和相对误差; 用求根公式解得:x1=-0.015,x2=-62.00 用韦达定理解得:x11=-0.016,x22=-62.00 x22=x2,x11=1/x22

复变函数积分方法总结

复变函数积分方法总结
[键入文档副标题]
acer [选取日期]

复变函数积分方法总结
数学本就灵活多变,各类函数的排列组合会衍生多式多样的函数新
形势,同时也具有本来原函数的性质,也会有多类型的可积函数类型,
也就会有相应的积分函数求解方法。就复变函数:
z=x+iy i2=-1 ,x,y 分别称为 z 的实部和虚部,记作
x=Re(z),y=Im(z)。 arg z=θ? θ?称为主值 -π<θ?≤π ,
Arg=argz+2kπ 。利用直角坐标和极坐标的关系式 x=rcosθ ,
y=rsinθ,故 z= rcosθ+i rsinθ;利用欧拉公式 eiθ=cosθ+isinθ。
z=reiθ。
1.定义法求积分:
定义:设函数 w=f(z)定义在区域 D 内,C 为区域 D 内起点为 A 终点
为 B 的一条光滑的有向曲线,把曲线 C 任意分成 n 个弧段,设分点为
A=z0 ,z1,…,zk-1,zk,…,zn=B,在每个弧段 zk-1 zk(k=1,2…n)上任
取一点?k 并作和式 Sn=
(zk-zk-1)=
?zk 记?zk= zk-
zk-1,弧段 zk-1 zk 的长度 =
{?Sk}(k=1,2…,n),当
0 时,
不论对 c 的分发即?k 的取法如何,Sn 有唯一的极限,则称该极限值为
函数 f(z)沿曲线 C 的积分为:
=
?zk
设 C 负方向(即 B 到 A 的积分记作)
.当 C 为闭曲线时,f(z)
的积分记作
(C 圆周正方向为逆时针方向)
例题:计算积分
,其中 C 表示 a 到 b 的任一曲

利用复化梯形公式、复化simpson 公式计算积分

实验 目 的 或 要 求1、利用复化梯形公式、复化simpson 公式计算积分 2、比较计算误差与实际误差 实 验 原 理 ( 算 法 流 程 图 或 者 含 注 释 的 源 代 码 ) 取n=2,3,…,10分别利用复化梯形公式、复化simpson 公式计算积分1 20I x dx =?,并与真值进行比较,并画出计算误差与实际误差之间的曲线。 利用复化梯形公式的程序代码如下: function f=fx(x) f=x.^2; %首先建立被积函数,以便于计算真实值。 a=0; %积分下线 b=1; %积分上线 T=[]; %用来装不同n 值所计算出的结果 for n=2:10; h=(b-a)/n; %步长 x=zeros(1,n+1); %给节点定初值 for i=1:n+1 x(i)=a+(i-1)*h; %给节点赋值 end y=x.^2; %给相应节点处的函数值赋值 t=0; for i=1:n t=t+h/2*(y(i)+y(i+1)); %利用复化梯形公式求值 end T=[T,t]; %把不同n 值所计算出的结果装入 T 中 end R=ones(1,9)*(-(b-a)/12*h.^ 2*2); %积分余项(计算误差) true=quad(@fx,0,1); %积分的真实值 A=T-true; %计算的值与真实值之差(实际误差) x=linspace(0,1,9); plot(x,A,'r',x,R,'*') %将计算误差与实际误差用图像画出来 注:由于被积函数是x.^2,它的二阶倒数为2,所以积分余项为:(-(b-a)/12*h.^ 2*2)

实 验 原 理 ( 算 法 流 程 图 或 者 含 注 释 的 源 代 码)利用复化simpson 公式的程序代码如下: 同样首先建立被积函数的函数文件: function f=fx1(x) f=x.^4; a=0; %积分下线 b=1; %积分上线 T=[]; %用来装不同n值所计算出的结果 for n=2:10 h=(b-a)/(2*n); %步长 x=zeros(1,2*n+1); %给节点定初值 for i=1:2*n+1 x(i)=a+(i-1)*h; %给节点赋值 end y=x.^4; %给相应节点处的函数值赋值 t=0; for i=1:n t=t+h/3*(y(2*i-1)+4*y(2*i)+y(2*i+1)); %利用复化simpson公式求值end T=[T,t] ; %把不同n值所计算出的结果装入T中 end R=ones(1,9)*(-(b-a)/180*((b-a)/2).^4*24) ; %积分余项(计算误差) true=quad(@fx1,0,1); %积分的真实值 A=T-true; %计算的值与真实值之差(实际误差) x=linspace(0,1,9); plot(x,A,'r',x,R,'*')

误差基本知识及中误差计算公式

测量误差按其对测量结果影响的性质,可分为: 一.系统误差(system error) 1.定义:在相同观测条件下,对某量进行一系列观测,如误差出现符号和大小均相同或按一定的规律变化,这种误差称为系统误差。 2.特点:具有积累性,对测量结果的影响大,但可通过一般的改正或用一定的观测方法加以消除。 二.偶然误差(accident error) 1.定义:在相同观测条件下,对某量进行一系列观测,如误差出现符号和大小均不一定,这种误差称为偶然误差。但具有一定的统计规律。 2.特点: (1)具有一定的范围。 (2)绝对值小的误差出现概率大。 (3)绝对值相等的正、负误差出现的概率相同。 (4)数学期限望等于零。即: 误差概率分布曲线呈正态分布,偶然误差要通过的一定的数学方法(测量平差)来处理。 此外,在测量工作中还要注意避免粗差(gross error)(即:错误)的出现。 §2衡量精度的指标 测量上常见的精度指标有:中误差、相对误差、极限误差。 一.中误差 方差 ——某量的真误差,[]——求和符号。 规律:标准差估值(中误差m)绝对值愈小,观测精度愈高。 在测量中,n为有限值,计算中误差m的方法,有: 1.用真误差(true error)来确定中误差——适用于观测量真值已知时。 真误差Δ——观测值与其真值之差,有: 标准差 中误差(标准差估值),n为观测值个数。 2.用改正数来确定中误差(白塞尔公式)——适用于观测量真值未知时。 V——最或是值与观测值之差。一般为算术平均值与观测值之差,即有: 二.相对误差 1.相对中误差=

2.往返测较差率K= 三.极限误差(容许误差) 常以两倍或三倍中误差作为偶然误差的容许值。即:。§3误差传播定律 一.误差传播定律 设、…为相互独立的直接观测量,有函数 ,则有: 二.权(weight)的概念 1.定义:设非等精度观测值的中误差分别为m 1、m 2 、…m n ,则有: 权其中,为任意大小的常数。 当权等于1时,称为单位权,其对应的中误差称为单位权中误差(unit weight mean square error) m ,故有:。 2.规律:权与中误差的平方成反比,故观测值精度愈高,其权愈大。

利用Matlab实现Romberg数值积分算法----系统建模与仿真结课作业

利用Matlab 实现Romberg 数值积分算法 一、内容摘要 针对于某些多项式积分,利用Newton —Leibniz 积分公式求解时有困难,可以采用数值积分的方法,求解指定精度的近似解,本文利用Matlab 中的.m 文件编写了复化梯形公式与Romberg 的数值积分算法的程序,求解多项式的数值积分,比较两者的收敛速度。 二、数值积分公式 1.复化梯形公式求解数值积分的基础是将区间一等分时的Newton —Cotes 求积公式: I =(x)[f(a)f(b)]2 b a b a f dx -≈ +? 其几何意义是,利用区间端点的函数值、与端点构成的梯形面积来近似(x)f 在区间[a,b]上的积分值,截断误差为: 3" (b a)()12 f η-- (a,b)η∈ 具有一次的代数精度,很明显,这样的近似求解精度很难满足计算的要求,因而,可以采用将积分区间不停地对分,当区间足够小的时候,利用梯形公式求解每一个小区间的积分近似值,然后将所有的区间加起来,作为被求函数的积分,可以根据计算精度的要求,划分对分的区间个数,得到复化梯形公式: I =1 1 (b a)(b a) (x)dx [f(a)f(b)2(a )]2n b a k k f f n n -=--≈+++∑? 其截断误差为:

2" (b a)h ()12 R f η--= (a,b)η∈ 2.Romberg 数值积分算法 使用复化的梯形公式计算的数值积分,其收敛速度比减慢,为此,采用Romberg 数值积分。其思想主要是,根据I 的近似值2n T 加上I 与2n T 的近似误差,作为新的I 的近视,反复迭代,求出满足计算精度的近似解。 用2n T 近似I 所产生的误差可用下式进行估算: 12221 ()3 n n n I T T T -?=-=- 新的I 的近似值: 122 n n j T T -=?+ j =(0 1 2 ….) Romberg 数值积分算法计算顺序 i=0 (1) 002T i=1 (2) 102T (3) 012T i=2 (4) 202T (5) 112T (6) 022T i=3 (7) 302T (8) 212T (9) 122T (10) 032T i=4 (11) 402T (12) 312T (13) 222T (14) 132T … … … … 其中,第一列是二阶收敛的,第二列是四阶收敛的,第三列是六阶收敛的,第四列是八阶收敛的,即Romberg 序列。

定位误差计算方法

定位误差的计算方法: (1)合成法 为基准不重合误差和基准位移误差之和; (2)极限位置法 工序基准相对于刀具(机床)的两个极限位置间的距离就是定位误差; (3)微分法 先用几何方法找出工序基准到定位元件上某一固定点的距离,然后对其全微分,用微小增量代替微分,将尺寸误差视为微小增量代入,就可以得到某一加工尺寸的定位误差。 注:基准不重合误差和基准位移误差它们在工序尺寸方向上的投影之和即为定位误差。 例如:用V 型块定位铣键槽,键槽尺寸标注是轴的中心到键槽底面的尺寸H 。T D 为工件定位外圆的公差;α为V 型块夹角。 1. 工序基准为圆柱体的中心线。 表示一批工件依次放到V 型块上定位时所处的两个极端位置情形,当工件外圆直径尺寸为极大和极小时,其工件外圆中心线分别出于点 O '和点O ''。 因此工序基准的最大位置变动量O O ''',便是对加工尺寸 H 1所产生的定位误差: 故得: O E O E H H O O 11DH 1 ''-'='-''='''=ε O A E Rt 1''?中: max 1 D 2 1A O ='' 2 sin A O O E 1α''= ' O A E Rt 1''''?中:min 1 D 2 1 A O ='''' 2 sin A O O E 1α''''= '' 2 sin 2T 2sin 2T 2sin A O A O O E O E D D 11DH 1 α=α=α''''-''=''-'=ε 2. 工序基准为圆柱体的下母线:

工件加工表面以下母线C 为其工序基准时,工序基准的极限位置变动量 C C '''就是加工尺寸H2所产生的定位误差。 C S C S C O O O H H 22DH 2 '-''=''-'''='-''=ε C O C O O O ) C O O S ()C O O S (' '-''''+'''=''+'-'''+'= 而 2 sin 2T O O D α= ''' min D 2 1C O ='''' max D 2 1C O ='' 所以: C O C O O O 2 DH ''-''''+'''=ε ) 12 sin 1(2T 2T 2sin 2T 2D D 2 sin 2T )D (21 )D (212sin 2T D D D max min D max min D DH 2 -α=-α=-+ α=-+α=ε 3. 工序基准为上母线 如果键槽的位置尺寸采用上母线标注时,上母线K 的极限位置变动量为 K K ''',就是对加工尺寸H 3 所产生的定位误差。

复变函数与积分变换公式

复变函数与积分变换公 式 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

复变函数复习提纲 (一)复数的概念 1.复数的概念:z x iy =+,,x y 是实数, ()()Re ,Im x z y z ==.21i =-. 注:两个复数不能比较大小. 2.复数的表示 1 )模:z = 2)幅角:在0z ≠时,矢量与x 轴正向的夹角,记为()Arg z (多值函数);主值 ()arg z 是位于(,]ππ- 中的幅角。 3)()arg z 与arctan y x 之间的关系如下: 当0,x > arg arctan y z x =; 当0,arg arctan 0,0,arg arctan y y z x x y y z x ππ? ≥=+??

辛普森求积公式

摘要 在工程实验及研究中,实际工作中,变量间未必都有线性关系,如服药后血药浓度与时间的关系;疾病疗效与疗程长短的关系;毒物剂量与致死率的关系等常呈曲线关系。曲线拟合是指选择适当的曲线类型来拟合观测数据,并用拟合的曲线方程分析两变量间的关系.可以说,曲线拟合模型与我们的生活生产密切相关. 本课题着重介绍曲线拟合模型及其应用,其中包括它的基本思想、模型的建立、以及具体应用.为了更好的了解曲线拟合模型,可以将它分为线性与非线性模型,在模型建立的基础上我们可以用最小二乘法来解决一些我们日常所应用的问题. 关键词曲线拟合;线性与非线性模型;最小二乘发

目录 引言 (1) 第一章曲线拟合 (2) §1.1 基本思想及基本概念 (2) §1.1.1 方法思想 (2) §1.1.2几个基本概念 (2) §1.2辛普森算法基本定义及其应用 (4) §1.2.1辛普森求积公式的定义 (4) §1.2.2辛普森求积公式的几何意义 (5) §1.2.3辛普森求积公式的代数精度及其余项 (5) §1.2.4辛普森公式的应用 (6) 第二章辛普森求积公式的拓展及其应用 (7) §2.1 复化辛普森求积公式 (7) §2.1.1问题的提出 (7) §2.1.2复化辛普森公式及其分析 (7) §2.1.3复化辛普森公式计算流程图 (8) §2.1.4复化辛普森公式的应用 (9) §2.2 变步长辛普森求积公式 (10) §2.2.1变步长辛普森求积公式的导出过程 (10) §2.2.2变步长辛普森求积公式的加速过程 (12) §2.2.3变步长辛普森求积公式的算法流程图 (13) §2.2.4变步长辛普森公式算法程序代码 (14) §2.2.5变步长辛普森求积公式的应用 (14) §2.2.6小结 (14) §2.2.7数值求积公式在实际工程中的应用 (14) 参考文献 (16) 附录A (17)

复变函数与积分变换重点公式归纳

复变函数与积分变换 第一章 复变函数 一、复变数和复变函数 ()()()y x iv y x u z f w ,,+== 二、复变函数的极限与连续 极限 A z f z z =→)(lim 0 连续 )()(lim 00 z f z f z z =→ 第二章 解析函数 一、复变函数),(),()(y x iv y x u z f w +==可导与解析的概念。 二、柯西——黎曼方程 掌握利用C-R 方程?????-==x y y x v u v u 判别复变函数的可导性与解析性。 掌握复变函数的导数: y x y x y y x x v iv iu u v iu y f i iv u x f z f +==-=+-=??=+=??= 1)(' 三、初等函数 重点掌握初等函数的计算和复数方程的求解。 1、幂函数与根式函数 θθθθθin n n n n n e r n i n r i r z w =+=+==)sin (cos )sin (cos 单值函数 n k z i n n e r z w π2arg 1+== (k =0、1、2、…、n-1) n 多值函数 2、指数函数:)sin (cos y i y e e w x z +== 性质:(1)单值.(2)复平面上处处解析,z z e e =)'((3)以i π2为周期 3、对数函数 ππk i z k z i z Lnz w 2ln )2(arg ln +=++== (k=0、±1、±2……) 性质:(1)多值函数,(2)除原点及负实轴处外解析,(3)在单值解析分枝上:k k z z 1 )'(ln = 。 4、三角函数:2cos iz iz e e z -+= i e e z iz iz 2sin --= 性质:(1)单值 (2)复平面上处处解析 (3)周期性 (4)无界 5、反三角函数(了解) 反正弦函数 )1(1 sin 2z iz Ln i z Arc w -+== 反余弦函数 )1(1 cos 2-+= =z z Ln i z Arc w

关于辛普森(simpson)公式在线路坐标计算中的应用

关于复化辛普森(simpson)公式在线路坐标计算中的应用 天津西站项目部刘思传 摘要:本文里利用辛普森公式导证了线路坐标计算的公式,并在卡西欧FX-4800P计算器中编写了中边线坐标计算的源程序。 关键词:复化辛普森公式,线路坐标计算,曲率。 一.引言 随着我国道路建设等级和质量水平的飞速发展,公路、铁路建设的机械化和日产量日益提高,促使施工中在满足设计精度的前提下,尽可能快速、准确地进行测量放样和检查工作,本文线路曲率变化的特点,利用复化辛普森公式导证了线路坐标计算的通用公式,并利用卡西欧FX-4800P计算器编写了计算线路中边线坐标的源程序。 二.复化辛普森公式数学模型 把积分区间分成偶数等分,记,其中是节点总数,是积分子区间的总数。 记,,在每个区间上用辛普森数值积分公式计算,则得到复化辛普森公式,记为。 复化辛普森积分计算公式 而,称

(1) 式(1)即为辛普森复化公式。 三.线路坐标计算 2. 回旋曲线上点位坐标方位角的计算 如图1,设回旋曲线起点A 的曲率为A ρ,其里程为DK A ;回旋曲线终点B 的曲率为B ρ,其里程为DK B ,Ax ’'y 为以A 为坐标原点,以A 点切线为'x 轴的局部坐标系;Axy 为线路坐标系。 由此回旋曲线上各点曲率半径为R i 和该点离曲线起点的距离?i 成反比,故此任意点的曲率为 c l R i i i /1==ρ(=为常数). (2) y ' Y B 图1 由式(2)可知,回旋曲线任意点的曲率按线性变化,由此回旋曲线上里程为DK i 点的曲率为

)(A i A B A B A i DK DK DK DK ---+=ρρρρ (3) 当曲线右偏时,取正;当曲线左偏时取负。在图1中有 ???????=== ?I A DK DK i i i dl dl dl R d ρβρβ1 (4) 将式(3)代入式(4)得 πρρβ180 *)(2A i A i i DK DK -+= (5) 若已知回旋曲线起点A 在线路坐标系下切线坐标方位角αA ,则里程为Dk i 点切线坐标方位角为 i A i βαα+= π180 (6) 将式(5)代入式(6)得 *)(2A i A i A i DK DK -++=ρραα π180 (7) 对于式(7) ,当,时,,则a i =a A ,式(7)变成计算直线段上任意点切线坐标方位角计算公式;当,时,, ,则式(7)代表圆曲线上任意点切线坐标方位角 计算公式。 可见,若已知曲线段起点和终点的曲率及起点的切线坐标方位角,式(7)便能计算任意线型点位切线坐标方位角。 3、回旋曲线点位坐标计算 由图1可得回旋曲线上点位在坐标系下坐标计算公式:

数值分析误差一点总结

数值分析学习报告 邹凡峰1329010062 作为这学期的必修课,我从内心深处来讲,数值分析真的有点难。感觉它是在高等数学和线性代数的基础上,又加深了探讨。虽然这节课很难,我学的很差。 学习数值分析,我们首先得知道一个软件——MATLAB。数值分析所用的语言中,最重要的成分是函数,其一般形式为:Function[a,b,c,……]=fun(d,e,f,……),对于数值分析这节课,我的理解是:只要学习并掌握好MATLAB,你就已经成功了。 因为学的不是很好对于后面的章节不能很好把握,就只能简单的对第一章中的误差总结下。通过第一章的学习,我们能够初窥数学的又一个新领域。数值分析这门课,与我之前所学联系紧密,区别却也很大。在第一章中,我们学到的是对数据误差计算,对误差的分析。以及关于向量和矩阵的范数的相关内容。 误差的计算方法很多,对于不同的数据需要使用不同的方法,或直接计算,或用泰勒公式。而对于二元函数的误差计算亦有其独自的方法。无论是什么方法,其目的都是为了能够通过误差的计算,发现有效数字、计算方法等对误差的影响。而对误差的分析,则是通过对大量数据进行分析,从而选择出相对适合的算法,尽可能减少误差。如果能够找到一个好的算法,不仅能够减少计算误差,同时也可以减少计算次数,提高计算效率。 本章的困惑主要有两方面。一方面是如何能够寻找一个可靠而高效的算法。虽然知道算法选择的原则,但对于很多未接触的问题,真正寻找一个好的算法还是很困难。另一方面困惑来源于范数,不明白范数的意义和用途究竟算什么。希望通过以后的学习能够渐渐解开自己的疑惑。 一.数值分析的研究对象 数值分析是计算数学的一个重要分支,研究各种数学问题的数值解法,包括方法的构造和求解过程的理论分析。它致力于研究如何用数值计算的方法求解各种基本数学问题以及在求解过程中出现的收敛性,数值稳定性和误差估计等内容。 二.误差知识与算法知识 (1)误差来源 误差按来源分为模型误差、观测误差、截断误差、舍入误差与传播误差五种。其中模型误差与观测误差属于建模过程中产生的误差,而截断误差、舍入误差与传播误差属于研究数值

标准偏差与相对标准偏差公式

标准偏差 数学表达式: S-标准偏差(%) n-试样总数或测量次数,一般n值不应少于20-30个 i-物料中某成分的各次测量值,1~n; 标准偏差的使用方法 六个计算标准偏差的公式[1] 标准偏差的理论计算公式 设对真值为X的某量进行一组等精度测量, 其测得值为l1、l2、……l n。令测得值l与该量真值X之差为真差占σ, 则有σ1 = l i?X σ2 = l2?X …… σn = l n?X 我们定义标准偏差(也称标准差)σ为

(1) 由于真值X都是不可知的, 因此真差σ占也就无法求得, 故式只有理论意义而无实用价值。标准偏差σ的常用估计—贝塞尔公式 由于真值是不可知的, 在实际应用中, 我们常用n次测量的算术平均值 来代表真值。理论上也证明, 随着测量次数的增多, 算术平均值最接近真值, 当时, 算术平均值就是真值。 于是我们用测得值l i与算术平均值之差——剩余误差(也叫残差)V i来代替真差σ , 即 设一组等精度测量值为l1、l2、……l n 则 …… 通过数学推导可得真差σ与剩余误差V的关系为 将上式代入式(1)有

(2) 式(2)就是著名的贝塞尔公式(Bessel)。 它用于有限次测量次数时标准偏差的计算。由于当时, ,可见贝塞尔公式与σ的定义式(1)是完全一致的。 应该指出, 在n有限时, 用贝塞尔公式所得到的是标准偏差σ的一个估计值。它不是总体标准偏差σ。因此, 我们称式(2)为标准偏差σ的常用估计。为了强调这一点, 我们将σ的估计值用“S ” 表示。于是, 将式(2)改写为 (2') 在求S时, 为免去求算术平均值的麻烦, 经数学推导(过程从略)有 于是, 式(2')可写为 (2") 按式(2")求S时, 只需求出各测得值的平方和和各测得值之和的平方艺 , 即可。 标准偏差σ的无偏估计 数理统计中定义S2为样本方差

复变函数积分方法总结

复变函数积分方法总结 经营教育 乐享 [选取日期] 复变函数积分方法总结 数学本就灵活多变,各类函数的排列组合会衍生多式多样的函数新形势,同时也具有本来原函数的性质,也会有多类型的可积函数类型,也就会有相应的积分函数求解方法。就复变函数: z=x+iy i2=-1 ,x,y分别称为z的实部和虚部,记作x=Re(z),y=Im(z)。arg z=θ? θ?称为主值-π<θ?≤π,Arg=argz+2kπ。利用直角坐标和极坐标的关系式x=rcosθ,y=rsinθ,故z= rcosθ+i rsinθ;利用欧拉公式 e iθ=cosθ+isinθ。z=re iθ。 1.定义法求积分: 定义:设函数w=f(z)定义在区域D内,C为区域D内起点为A终点为B 的一条光滑的有向曲线,把曲线C任意分成n个弧段,设分点为A=z0,z1,…,

z k-1,z k,…,z n=B,在每个弧段z k-1 z k(k=1,2…n)上任取一点?k并作和式S n=?(z k-z k-1)=??z k记?z k= z k- z k-1,弧段z k-1 z k的长度 ={?S k}(k=1,2…,n),当0时,不论对c的分发即?k的取法如何,S n 有唯一的极限,则称该极限值为函数f(z)沿曲线C的积分为: =??z k 设C负方向(即B到A的积分记作).当C为闭曲线时,f(z)的积分记作(C圆周正方向为逆时针方向) 例题:计算积分,其中C表示a到b的任一曲线。(1)解:当C为闭合曲线时,=0. ∵f(z)=1 S n=?(z k-z k-1)=b-a ∴=b-a,即=b-a. (2)当C为闭曲线时,=0. f(z)=2z;沿C连续,则积分存在,设?k=z k-1,则 ∑1= ()(z k-z k-1) 有可设?k=z k,则 ∑2= ()(z k-z k-1) 因为S n的极限存在,且应与∑1及∑2极限相等。所以 S n= (∑1+∑2)==b2-a2 ∴=b2-a2 1.2 定义衍生1:参数法: f(z)=u(x,y)+iv(x,y), z=x+iy带入得:

辛普森公式

Simpson算法及其推广形式 摘要:本文研究了辛普森公式的数值积分的计算方法问题,并且更进一步研究了变步长复化的辛普森公式和二重积分的辛普森公式的问题。首先是对 一维辛普森公式和变步长复化辛普森公式以及二维辛普森公式的推导及 其算法,进行误差分析,并且列举了实例。然后,对辛普森公式进行改 进,这里的改进最主要是对辛普森公式的代数精度进行提高,从而使辛 普森公式对积分的计算更加精确。另外,还研究了辛普森公式的推广形 式。最后,在结论的当中列举了一个例子。 关键词:辛普森公式算法改进推广形式二重积分的辛普森公式

Abstract:This paper first studies the calculation methods of the numerical integration in simpson formula, and then study of the long-simpson formula and the double integral simpson formula problem. First, study the algorithm and derived of one-dimensional simpson formula and step-change in simpson formula, as well as two-dimensional simpson formula, and then analysis the error. Finally , list the example. In this , improve the simpson formula. This improved the most important is to incre ase the simpson formula’s accuracy of algebra. Besides, we study the simpson formula’s promotion of forms. At the last, we list a example in the conclusion. Key word:The simpson formula, Algorithm, Improve, Promotion of forms, The simpson formula of the two-dimensional integral.

定位误差计算方法

定位误差计算方法 皇甫彦卿 (杭州电子科技大学信息工程学院,浙江杭州310018) 摘要:分析了定位误差产生的原因和定位误差的本质,并结合具体的实例,对定位误差的计算提出了三种方法:几何法、微分法、组合法,并且为正确选择计算方法提供了依据。 关键词:定位误差;几何法;微分法;组合法 Position error calculation method Abstract:To analyze the causes of the positioning error and the nature of the positioning error, and combined with concrete examples, three methods are put forward for the calculation of position error: geometric method, differential method, group legal, and provide the basis for correct selection of calculation method. Key words: positioning error; Geometry method; Differentiation; Set of legal 1 引言 定位误差分析与计算,是机床夹具设计课程中的重点和难点。在机械加工中,能否保证工件的加工要求,取决于工件与刀具间的相互位置。而引起相互位置产生误差的因素有四个,定位误差就是重要因素之一(定位误差一般允许占工序公差的三分之一至五分之一)。定位误差分析与计算目的是为了对定位方案进行论证,发现问题并及时解决。 2 工件定位误差 2.1定位误差计算的概念 按照六点定位原理,可以设计和检查工件在夹具上的正确位置,但能否满足工件对工序加工精度的要求,则取决于刀具与工件之间正确的相互位置,而影响这个正确位置关系的因素很多,如夹具在机床上的装夹误差、工件在夹具中的定位误差和夹紧误差、机床的调整误差、工艺系统的弹性变形和热变形误差、机床和刀具的制造误差及磨损误差等。 因此,为保证工件的加工质量,应满足如下关系式: δ ?式中:?--各种因素产生的误差总和;δ--工件被加工尺寸的公差。 ≤ 2.2定位误差及其产生原因 所谓定位误差,是指由于工件定位造成的加工面相对工序基准的位置误差。因为对一批

复化梯形公式,辛普森公式的matlab程序

复化梯形公式与辛普森公式的matlab程序【程序代码】 cclc; disp('1.复化梯形公式求解'); disp('2.simpson公式求解'); disp('请进行选择:'); c=input(' '); if c==1 clc; disp('复化梯形公式'); disp('请输入积分下限'); a=input('a='); disp('请输入积分上限'); b=input('b='); disp('请输入等分的数目'); n=input('n='); h=(b-a)/n; s1=0; for i=1:n-1 s1=s1+fun1(i*h); end disp('复化梯形公式的结果:'); T=h/2*(fun1(a)+2*s1+fun1(b)) else if c==2 clc; disp('simpson公式'); disp('请输入积分下限'); a=input('a='); disp('请输入积分上限'); b=input('b='); disp('请输入等分的数目'); n=input('n='); h=(b-a)/n; s2=0; for i=0:n-1 s2=s2+fun1((i+0.5)*h); end disp('辛普森公式的结果:'); S=h/6*(fun1(a)+4*s2+2*s1+fun1(b)) end end disp('菜单选项'); disp('1.继续运算'); disp('2.退出程序!'); p=input(' '); if p==1 (fuhua); else if p==2 disp('正在退出,请稍候。。。');

误差基本知识及中误差计算公式

测量中误差 测量误差按其对测量结果影响的性质,可分为: 一.系统误差(system error) 1.定义:在相同观测条件下,对某量进行一系列观测,如误差出现符号和大小均相同或按一定的规律变化,这种误差称为系统误差。 2.特点:具有积累性,对测量结果的影响大,但可通过一般的改正或用一定的观测方法加以消除。 二.偶然误差(accident error) 1.定义:在相同观测条件下,对某量进行一系列观测,如误差出现符号和大小均不一定,这种误差称为偶然误差。但具有一定的统计规律。 2.特点: (1)具有一定的范围。 (2)绝对值小的误差出现概率大。 (3)绝对值相等的正、负误差出现的概率相同。 (4)数学期限望等于零。即: 误差概率分布曲线呈正态分布,偶然误差要通过的一定的数学方法(测量平差)来处理。 此外,在测量工作中还要注意避免粗差(gross error)(即:错误)的出现。

§2衡量精度的指标 测量上常见的精度指标有:中误差、相对误差、极限误差。 一.中误差 方差 ——某量的真误差,[]——求和符号。 规律:标准差估值(中误差m)绝对值愈小,观测精度愈高。 在测量中,n为有限值,计算中误差m的方法,有: 1.用真误差(true error)来确定中误差——适用于观测量真值已知时。 真误差Δ——观测值与其真值之差,有: 标准差 中误差(标准差估值), n为观测值个数。 2.用改正数来确定中误差(白塞尔公式)——适用于观测量真值未知时。 V——最或是值与观测值之差。一般为算术平均值与观测值之差,即有: 二.相对误差 1.相对中误差=

2.往返测较差率K= 三.极限误差(容许误差) 常以两倍或三倍中误差作为偶然误差的容许值。即: 。 §3误差传播定律 一.误差传播定律 设、…为相互独立的直接观测量,有函数 ,则有: 二.权(weight)的概念 1.定义:设非等精度观测值的中误差分别为m1、m2、…m n,则有: 权其中,为任意大小的常数。 当权等于1时,称为单位权,其对应的中误差称为单位权中误差 (unit weight mean square error)m0,故有:。 2.规律:权与中误差的平方成反比,故观测值精度愈高,其权愈大。

相关主题
文本预览
相关文档 最新文档