当前位置:文档之家› 利用高电压音频驱动器设计高性能音频放大器的准则与思考

利用高电压音频驱动器设计高性能音频放大器的准则与思考

利用高电压音频驱动器设计高性能音频放大器的准则与思考
利用高电压音频驱动器设计高性能音频放大器的准则与思考

利用高电压音频驱动器设计高性能音频放大器的准则与思考

作者:Kenneth Lee

引言:

无论是外观、款式、系统控制还是音质,音频放大器产品越来越先进。经验丰富的电子工程师正采用不同的电路来设计其理想的音频放大器。

现在许多传统高功率音频放大器的每通道输出功率在100瓦以上,并且大多采用离散的电路元件。因此,为了确保输出的稳定性和音效,工程师需要花很大精力对高保真音频放大器进行匹配和调节。

产品应用:

美国国家半导体向来擅长开发创新性的音频技术,并且将突破性的技术应用于新产品。最新推出的高电压的音频驱动器LME49810,可以协助设计人员更容易的开发出高性能音频系统。

高性能音频放大器LME49810可提供一个200V的峰峰值输出电压摆幅,并可驱动不同类型的输出级。这款设计简洁的集成电路可为音频系统提供更精简的设计,更高的稳定性和一致性。因此,可以极大的减少系统研发和生产时的离散组件匹配及调节工作。换句话说,LM49810能够提升效率和降低生产成本。

TO-247 15引线封装

LME49810最适合使用在高端的消费和专业级音频应用中,包括有源录音室监视器、超重低音扬声器、音频/视频接收器、商用扩音系统、非原厂音响、专业级混音器,分布式音频和吉他放大器等。此外,这款芯片也适用于各类高电压及低失真要求的工业用音频系统。

主要规格

·宽阔的工作电压范围±20V到±100V

·压摆率50V/μs(典型值)

·输出驱动电流600mA(典型值)

·电源纹波抑制比(f=DC) 110dB(典型值)

·总谐波失真及噪声(f=1KHz) 0.0007(典型值)

利用LME49810设计音频放大器的建议

采用美国国家半导体的音频驱动器来设计高品质音频系统的方法有很多。在此,仅列举若干重要的建议。

输入级

输入级设计是放大器最关键的一环。通过来自反馈的信号进行相减,输入级会产生一个误差信号,然后把这个误差信号驱动到输出。该误差信号通常很小,足以为放大器提供足够的线性度。

LME49810是一款双极输入放大器,其输入阻抗的匹配性相当重要。受来自正输入端口和

负输入端口的偏置电流的影响,输入阻抗的失配会导致输入偏移电压。该输入偏移电压将按照闭环增益放大,在输出端出现。

当然,LME49810的输入偏置电流很低,对于一般的应用来说,出现在输出的偏移电压可以忽略。

例如,LME49810的典型偏置电流为100nA,而输入阻抗失配为1KΩ。

对于一个典型有30倍闭环增益的放大器

由于LME49810的输入偏置电流很低,出现在输出的偏移电压在一般应用下都不会很明显。

假如希望进一步减少输出的偏移电压,便需要降低反馈和输入信号路径上的阻抗。这样就可以减少由输入偏置电流失衡引起的偏移。,但前提是必须确保前端有足够的驱动能力。

一般来说,通常采用的的音频输入设计有两种:交流或直流耦合输入。根据应用要求来选用合适的输入设计:

交流耦合输入的优点:

1. 来自前置放大器、滤波器级或编解码器级的放大器输入直流偏移一般都是零。

2. 无需在放大器中加入任何的直流伺服电路来防止直流故障。

直流耦合输入的优点:

1. 无需使用大尺寸和昂贵的交流耦合电容器。

2. 不会出现由交流耦合电容器所产生的低频失真。

3. 可减轻交流耦合RC网络的噪声。

负反馈系数

功率放大器的负反馈设置可为系统带来较高的稳定性和线性度。采用负反馈可防止放大器直流偏移电压出现饱和。一般来说,当放大器在高频工作时会出现相位位移,而较大的负反馈系数可减轻在高频时的不稳定性和振荡。

在离散的放大器系统中,高反馈系数将会引起很差的瞬态响应或高频不稳定性。然而,LME49810拥有一个较高的开环增益,因此它的闭环增益误差和电源纹波抑制会较小,可以最大化电路中的负反馈,从而提高系统的线性度。通常,建议采用30dB至40dB的电压增益。

通过设置输入电阻和反馈电阻,很容易就可以设定出负反馈系数

补偿

放大器的补偿是用来调节开环增益和相位性能,以便当反馈被关闭时能把系统稳定下来。一般来说,要获得较高的稳定性补偿越大越好。可是,补偿越大,音频芯片的带宽和压摆率就越低,而较低的压摆率会使系统产生出较柔和的音频特性,相反较高的压摆率则可产生较清晰和真实的音频特性。

LME49810的密勒补偿是通过在“Comp” 和“BiasM” 引脚之间加插一个电容器来实现的。

压摆率与补偿电容器的关系压摆率、补偿电容器

通过增加这两根引脚之间的电容值,补偿量和相位裕度便可获得提升。可是,这里不建议采用过高或过低电容值的电容器,最适合的电容范围是10p 到100p。

此外,补偿电容器的等效串联电阻(ESR)应处于低水平,以避免电容器的等效串联电阻引发出潜在零点。在一般情况下,采用陶瓷电容器要比采用电解电容器的效果更好。

静音

MUTE引脚是由流进的电流量所控制。方法是用一个电阻器将参考电压连接到MUTE引脚以控制电流的大小。从50uA 到100uA为“PLAY”模式,而低于50uA的为“MUTE”模式。静音电流可从以下的算式计算出来:

可是,建议不要让流进MUTE引脚的电流超出200 uA。

静音控制、静音

输出偏置及输出级

输出偏置电路

LME49810有两根用来设定偏置的专用引脚(BIASP和BIASM),可以提供一定的输出偏置电流。可变电阻器R pot 可用来调节输出级的偏置电流,将R pot+Rb1的电阻降低可以提高偏置电压。倍增器QMULT用来补偿偏置电压以防止双极输出晶体管出现热漂移。

QMULT必须与输出晶体管连接在相同的散热器上。当温度上升时,Vbe会减小以降低偏置电压,较高的偏置电流可减少输出的交越失真,但同时会消耗较大的电流。

输出电晶体

音频功率放大器中最常见的输出级是下图所示的射极跟随器。它通常都被称为双射极跟随器或达林顿复合晶体管对。其中第一个跟随器会作为一个输出器件的驱动器。

射极跟随器的大信号线性度主要取决于负载的大小。随着负载增加(即负载电阻减少),输出电流亦同时会增加。受RE(射极电阻)和位于高电流密度的beta 滚降的影响,BJT电流增益会减少。

这种情况下,可能会降低线性度并增加在输出级的失真。对于比较高功率的应用来说,建议采用多级输出来维持高电流和更佳的线性度。

LME49810音频驱动器拥有约50mA的输出电流,它可以根据要求配置成达林顿复合晶体管对或并行晶体管输出。

输出级晶体管放大匹配

双射极-跟随器或达林顿复合晶体管对通常都拥有一个高的电流增益系数Ic=?Ib

例如:MN2488 和MP1620

为了提高输出级的稳定性,负极端和正极端的电流放大必须匹配。

输出级晶体管的电流匹配

对于并行晶体管配置来说,必须确定中等功率晶体管的驱动能力。中等功率晶体管的输出电流(Ic)必须大于高功率晶体管的最小驱动电流(Ib)以免在中等功率晶体管级上出现过载。

例子:KSC2073(中等功率级)

例子:. FJL3415 (高功率级)

集电极电流、基极电流

输出晶体管的电压范围

采用输出晶体管首先要考虑到其电压范围,这样可确保系统的稳定性,并防止系统受到任何形式的损坏。

VCBO和VCEO 电压的最大范围必须大于电源电压的轨到轨范围。对于一个有+/-100V电压供应的放大器,晶体管的电压额定应该高一点以保证它能够在规定以内正常地运作。

集电极-基极电压、集电极-射极电压

从上表可看到,中等功率晶体管的基极和集极引脚在工作期间的电压约为Vee 或Vcc的两倍。因此在选择晶体管时,必须确保晶体管的电压额定够高。

电阻器RE

在高功率的音频放大器应用中,输出晶体管的匹配性、电流平衡和保护对于功率放大器的线性度来说非常重要。

这里建议采用射极负反馈电阻器RE来改善输出晶体管的匹配性和电流平衡能力。因此,我们建议在实际的高功率音频放大器应用中加入这种电阻。

然而,将RE与输出晶体管串联在一起会降低放大器的线性度。电阻RE是交越失真的主要失真来源。当输出电晶体的一端关闭而另一端开启时便会出现这种失真。

因此,必须优化RE值并且尽可能的将RE值维持在较低水平,这样可以降低对非线性度的影响。

因此,改善交越失真的最有效方法便是减少RE的电阻。对于相同数值的RE,一个并行形式的输出可降低用来改善线性度的整体RE电阻值。同时,假如每一个级的RE都较大,那便可为输出晶体管带来更佳的匹配性和电流平衡。

此外,RE也关系到输出的功率损耗。对于一个相同的RE,较大的输出电流会导致较大的功率损耗。RE的值取决于并联输出晶体管的数量和扬声器的负载。

一般来说,可采用有足够功率的0.1到0.5Ω电阻器。

RE 的消耗功率可从这条数式计算出来:RxI2=W Eg. 0.1Ohm x 5A2 =2.5W

等效RE

此外,RE电阻是开环输出阻抗的主要成份。闭环输出阻抗由开环输出阻抗和负反馈系数来定义,其关系如下:

例如:平均开环输出阻抗为200mΩ,负反馈系数为29dB或28倍。这样,我们便可预期闭环输出阻抗约为7mΩ。在一般情况下,闭环阻抗最好比扬声器系统的阻抗低很多,以便尽量提升线性度。

典型的功率放大器闭环输出阻抗可低至10mΩ到50mΩ,对于某些负反馈系数来说,需要把RE尽量调低。

输出网络

功率放大器最常用的输出网络为“Zobel”,下图表示出其典型的元件数值。

所有的输出网络都只有一个目标,这便是改善系统的稳定性。这里建议的“Zobel” 网络中电阻器和电容器串联在一起,并且从放大器的输出连接到接地。

图中电阻器的作用是在一个较高的频率下将电流限制,以减轻对电容器的额定值要求。电阻器的电阻值范围从4.7Ω 到10Ω。大部份的情况下,电容器的值选定为0.1μF以减轻输出扬声器在高频时的负载效应。

随着输出的电平增加,被提取进入“Zobel”网络的电流也随之会上升。因此,在任何条件下输出网络中元件的额定参数都必须足够。

例如:假设输出摆幅为20 Vrms,那“Zobel” 网络在20kHz下应会消耗248mA或0.62W。可是,为了确保组件能在一段短时间的高功率和高频下工作,因此“Zobel”组件的功率额定

一般都建议为3W到5W。

“Zobel”网络的另一个功能是保护放大器的输出以免受到扬声器线圈内电感所影响。

由于一个扬声器的真实负载阻抗比起一个简单的并行电阻器和电容器要复杂得多。受到串联在一起的放大器输出阻抗、电缆阻抗及电感的影响,一个真实的扬声器的频率响应会出呈现不平稳的特性。这种现象可能导致高频不稳定性。

在放大器的输出串联一个小线圈电感器会增加稳定性。这种做法可以将放大器与关联电容器隔离,并且不会在音频的频率下引致明显的损耗。

电感器的值一般是1到7μH。选用合适的电感器值便可避免在某一负载阻抗下出现高频滚降。

这里建议采用空心电感器来避免出现磁饱和的潜在问题。

此外,还建议加入一个跨越输出线圈的阻尼电阻以降低输出LC网络的Q系数、过冲和振铃现象。

传统上会采用有几个欧姆的绕线型阻尼电阻器来避免自感。电阻器越低,过冲和振铃的效果便越小。

由于输出电流的大小取决于输出功率和负载阻抗。因此应选用1W到5W额定的阻尼电阻器。

这是LME49810的参考电路设计

电路参考信息:

负反馈系数请参考数式1

6.8k/249 = 2

7.8V/V→29dB.

补偿电容器为12p 压摆率约为40V/us.

静音控制请参考数式2 12V Zener 二极管钳位静音电压(12-0.7)/120k+10k = 96uA ,用以控制流入静音引脚的电流通过改动200k RP1来调节偏置电压

晶体管NTE373

集电极电流、连续、峰值

晶体管MJW1302/2381

电阻器RE,

一般来说可采用由0.1欧姆到0.5欧姆并带有足够额定功率的电阻器。对于2到3级的并行录音带驱动器建议采用0.25欧姆的电阻。

输出RC,, 通过1/2пRC 1/2п(4.44)(0.1u) = 358kHz, 执行高频滤波

参考电路板

使用输出晶体管NTE373/374和MJW3281A/1302A的LME49810驱动电路板的正面

电路板的前端:

参考图表

总谐波失真及噪声与输出功率的参考图表,输入电源范围为+/-70V 。(在150W时的总谐波失真及噪声为0.002%,而在50W至200W的总谐波失真及噪声为0.005% 以下)

配合输出晶体管NTE373/374和MJW3281A/1302A

总谐波失真与频率的参考图表,输入电源范围为+/-70V 。(180W输出,在整个音频频率的范围内的总谐波失真低于0.005%)

配合输出晶体管NTE373/374和MJW3281A/1302A

结论

在业内有几种不同的配置方法用来设计音频放大器。美国国家半导体特别针对这个应用提供了一系列的音频驱动器芯片。采用这些芯片,系统设计简单,性能强、稳定性高,特别适合音频系统应用。此外,在芯片的设计上兼顾了理论和实际应用的需求,可以为音频系统带来全新的高性能和高稳定性。

随着高端的音频系统的市场发展,专业级的放大器要求有更大的输出功率、更高的线性度和更高的稳定性。美国国家半导体音频驱动可为工程师们带来更有价值的设计,使他们可创造出更多高性能和高度稳定的音频放大器系统。(end)

音频功率放大器设计详解

音频功率放大器设计 一、设计任务 设计一个实用的音频功率放大器。在输入正弦波幅度≤5mV,负载电阻等于8Ω的 条件下,音频功率放大器满足如下要求: 1、最大输出不失真功率P OM≥8W。 2、功率放大器的频带宽度BW≥50Hz~15KHz。 3、在最大输出功率下非线性失真系数≤3%。 4、输入阻抗R i≥100kΩ。 5、具有音调控制功能:低音100Hz处有±12dB的调节范围,高 音10kHz处有±12dB的调节范围。 二、设计方案分析 根据设计课题的要求,该音频功率放大器可由图所示框图实现。 下面主要介绍各部 分电路的特点及要求。 图1 音频功率放大器组成框图 1、前置放大器 音频功率放大器的作用是将声音源输入的信号进行放大,然后输

出驱动扬声器。声音源 的种类有多种,如传声器(话筒)、电唱机、录音机(放音磁头)、CD唱机及线路传输等,这些声音源的输出信号的电压差别很大,从零点几毫伏到几百毫伏。一般功率放大器的输入灵敏度是一定的,这些不同的声音源信号如果直接输入到功率放大器中的话,对于输入过低的信号,功率放大器输出功率不足,不能充分发挥功放的作用;假如输入信号的幅值过大,功率放大器的输出信号将严重过载失真,这样将失去了音频放大的意义。所以一个实用的音频功率放大系统必须设置前置放大器,以便使放大器适应不同的的输入信号,或放大,或衰减,或进行阻抗变换,使其与功率放大器的输入灵敏度相匹配。另外在各种声音源中,除了信号的幅度差别外,它们的频率特性有的也不同,如电唱机输出信号和磁带放音的输出信号频率特性曲线呈上翘形,即低音被衰减,高音被提升。对于这样的输入信号,在进行功率放大器之前,需要进行频率补偿,使其频率特性曲线恢复到接近平坦的状态,即加入频率均衡网络放大器。 对于话筒和线路输入信号,一般只需将输入信号进行放大和衰减,不需要进行频率均衡。前置放大器的主要功能一是使话筒的输出阻抗与前置放大器的输入阻抗相匹配;二是使前置放大器的输出电压幅度与功率放大器的输入灵敏度相匹配。由于话筒输出信号非常微弱,一般只有100μV~几毫伏,所以前置放大器输入级的噪声对整个放大器的信噪比影响很大。前置放大器的输入级首先采用低噪声电路,对于由晶体管组成的分立元件组成的前置放大器,首先要选择低

放大电路的组成及工作原理

2、4 放大电路的组成及工作原理 参考教材:《模拟电子技术基础》孙小子张企民主编西安:西安电子科技大学出版社 一、教学目标及要求 1、通过本次课的教学,使学生了解晶体管组成的基本放大电路的三种类型,掌 握放大电路的组成元器件及各元器件的作用,理解放大电路的工作原理。 2、通过本节课的学习,培养学生定性分析学习意识,使学生掌握理论结合生活 实际的分析能力。 二、教学重点 1、共发射极放大电路的组成元器件及各元器件作用; 2、共发射极放大电路的工作原理。 三、教学难点 1、共发射极放大电路的组成元器件及各元器件作用; 2、共发射极放大电路的工作原理。 四、教学方法及学时 1、讲授法 2、1个学时 五、教学过程 (一)导入新课 同学们,上节课我们已经学习了晶体管内部载流子运动的特性以及由此引起的晶体管的一些外部特性,比如说晶体管的输入输出特性等,在这里,我要强调一下,我们需要把更多的注意力放在关注晶体管的外部特性上,而没有必要细究内部载流子的特点。由晶体管的输出特性,我们知道,当晶体管的外部工作条件不同时,晶体管可以工作在三个不同的区间。分别为:放大区、截止区、饱与区,其中放大区就是我们日常生活中较为常用的一种工作区间。大家就是否还记得,晶体管工作在放大区时所需要的外部条件就是什么不(发射结正偏,集电结反偏)?这节课,我们将要进入一个晶体管工作在放大区时,在实际生活中应用的新内容学习。 2、4放大器的组成及工作原理 一、放大的概念 放大: 利用一定的外部工具,使原物体的形状或大小等一系列属性按一定的比例扩大的过程。日常生活中,利用扩音机放大声音,就是电子学中最常见的放大。其原理框图为: 声音声音 扩音器原理框图 由此例子,我们知道,放大器大致可以分为:输入信号、放大电路、直流电源、输出信号等四部分,它主要用于放大小信号,其输出电压或电流在幅度上得到了放大,输出信号的能量得到了加强。对放大电路的基本要求:一就是信号不失真,二就是要放大。 二、基本放大电路的组成

音频功率放大器设计说明书要点

音频功率放大器的设计任务书 1 设计指标 (1)直接耦合的功率放大器,额定输出功率10W,负载阻抗8Ω;(2)具有频响宽、保真度度、动态特性好及易于集成化; (3)采用分立元件设计; (4)所设计的电路具有一定的抗干扰能力。 2 设计要求 (1)画出电路原理图; (2)确定元器件及元件参数; (3)进行电路模拟仿真; (4)S C H文件生成与打印输出。 3 编写设计报告 写出设计的全过程,附上有关资料和图纸,有心得体会。 4 答辩 在规定时间内,完成叙述并回答问题。

音频功率放大器设计 摘要:这款功放采用了典型的OC L 功放电路,为全互补对称式纯甲类DC 结构,功放的每一级放大均工作于甲类状态。输入级和电压放大级采用线性较好的沃尔漫电路,差分管及电流推动管分别为很出名的K170、J 74(可用K389、J 109孪生对管对换)对管和K214、J77中功率M OS 管,功率输出级为2SC 5200和2S A1943大功率东芝管并联输出,功率强劲,驱动阻抗2Ω的喇叭也轻松自如,毫不费力。综合运用了我们前面所学的知识。设计完全符合要求。 关键字:沃尔漫电路 T IM 共源-共基电路 共射-共基电路 1 引言 在现代音响普及中,人们因生活层次、文化习俗、音乐修养、欣赏口味的不同,令对相同电气指标的音响设备得出不同的评价。所以,就高保真度功放而言,应该达到电气指标与实际听音指标的平衡与统一。 2 设计思路 甲类放大器作为一种最古老,效率最低,最耗电,最笨重,最耗资,失真最小的放大器它有吸引人的音质。甲类放大器输出电路 本身具有抵消奇次谐波失真,且甲类放大器管子始终工作在线性曲线内,晶体管自始自终处于导通状态。因此,不存在开关失真和交越失真等问题。甲类放大器始终保持大电流的工作状态。所以对猝发性声音瞬间升降能迅速反映。因而输出功率发生急剧变化时,电 输入音 频信号 前置放大级电路 共射-共基电路 共射-共基电路 恒压源电路 推动级 反馈电路 至末级 功放 沃 尔漫电路 图1 前置放大电路框图

音频功率放大器设计实验报告

题目:音频功率放大器电路 音频功率放大器设计任务 1、基本要求 (1)频带范围 200Hz —— 10KHz,失真度 < 5%。 (2)电压增益 >= 20dB。 (3)输出功率 >= 1 W (8欧姆负载)。 (4)功率放大电路部分使用分立元件设计。 发挥部分 (1)增加音调控制电路。 (2)增加话筒输入接口,灵敏度 5mV,输入阻抗 >> 20 欧姆。 (3)输出功率 >= 10W (8欧姆负载)。 (4)其他。 目录 1 引言····························································· 2 总体设计方案·····················································2.1 设计思路······················································· 2.2 总体设计框图··················································· 3 设计原理分析·····················································3.1设计总原理图 3.2设计的PCB电路图 ··· 1 引言 在现代音响普及中,人们因生活层次、文化习俗、音乐修养、欣赏口味的不同,令对相同电气指标的音响设备得出不同的评价。所以,就高保真度功放而言,应该达到电气指标与实际听音指标的平衡与统一。

音频功率放大器是一个技术已经相当成熟的领域,几十年来,人们为之付出了不懈的努力,无论从线路技术还是元器件方面,乃至于思想认识上都取得了长足的进步。本次设计旨在熟悉设计流程,达到基本指标。 2 总体方案 根据实验要求,本次设计主要是也能够是用集成功放TDA2030为主的电路 一、电路工作原理 图1所示电路为音频功率放大器原理图,其中TDA2030是高保真集成功率放大器芯片,输出功率大于10W,频率响应为10~1400Hz,输出电流峰值最大可达3.5A。其内部电路包含输入级、中间级和输出级,且有短路保护和过热保护,可确保电路工作安全可靠。TDA2030使用方便、外围所需元器少,一般不需要调试即可成功。 RP是音量调节电位器,C1是输入耦合电容,R1是TDA2030同相输入端偏置电阻。 R2、R3决定了该电路交流负反馈的强弱及闭环增益。该电路闭环增益为 (R2+R3)/R2=(0.68+22)/0.68=33.3倍,C2起隔直流作用,以使电路直流为100%负反馈。静态工作点稳定性好。 C4、C5为电源高频旁路电容,防止电路产生自激振荡。R4、R5称为茹贝网路,用以在电路接有感性负载扬声器时,保证高频稳定性。VD1、VD2是保护二极管,防止输出电压峰值损坏集成块TDA2030。 2.电流反馈 电流反馈是指在一个反馈电路中,若反馈量与输出电流成正比则为电流反馈;若反馈量与输出电压成正比则为电压反馈。通常可以采用负载短路法来判断。 从概念上说,若反馈量与输出电压(有时不一定是输出电压,而是取样处的电压)成正比则为电压反馈;若反馈量与输出电流(有时不一定是输出电流,而是取样处的电流)成正比则为电流反馈。在判断电压反馈和电流反馈时,除了上述方法外,也可以采用负载短路法。负载短路法实际上是一种反向推理法,假设将放大电路的负载电阻RL短路(此时,),若

一个简单功放设计制作与电路图分析

一个简单功放设计制作与电路图分析|电路图 - dickmoore的日志 - 网易博客 默认分类 2009-11-09 19:01 阅读32 评论0 字号:大中小 一个简单功放设计制作与电路图分析|电路图 电子资料 2009-11-06 11:15 功放电路图 一个简单功放设计制作与电路图分析 我的电脑音响坏了快一年了,每次看电影都用耳机,每次用的耳朵都痛,很不爽.因此就想亲手做一个小功放用用,前几天又去了趟电子市场发现有LM386,很便宜,所以干脆用386做了一个单声道的功放先用着,有时间把另外一个声道也加上.在这里把功放设计到调试基本完成的过程写写,纪念这个过程. 1.设计 我们是听听就算的门外汉,对20~20K的音域也不是完全敏感.所以幅频特性不用考虑太多,但是自己要用得爽声音一定要大,因此LM386一般的输出功率肯定是不够拉(好像极限功率也就1W左右,具体还是看芯片资料吧),所以就浪费些多加个LM386做成BTL电路,提高一倍再说.设计出来的电路就是这个样子,原理很简单,就不说了 2.调试 a. 两个104的电容本来是用来隔直的,不过好像电脑主板和声卡上出来的音频都不带直流成份,而且用104时输入电平 比较高的时候声音有失真,(估计是低频过滤在输入电平高的时候人听起来比较明显).于是去掉两个104的电容. b. 在这个时候上电(我用的是12V),接上我的MP3一听,嗯!还不错,可是就是杂声比较厉害,调了调R1的大小,当R1被 调到最大的时候杂声没有了,最小的时候也没有了(这不是废话么,最小的时候输入都没有了 .把连接到功放的音频线拔了也没杂音了,原因可能有两个音频线上有电容在输入电阻R1比较小的时候,和LM386自激产生杂音,一放大就不得了了.于是决定R1就直接调到50K,音量就让MP3调去吧. c. 好像一切都没有问题了,拿到电脑上吧,刚接上去,嗯声音停大,不错!!刚以为要完事,电脑里一首歌就放完了,本来该是安静的却听见喇叭里噼噼啪啪,这个噪声奇了怪了,开始还是以为是R1的问题,索性就把R1去掉(反正LM386也不希罕从前级得到能量),噪音仍然存在,怀疑是主板上的高频噪声,于是在输入端并上一个102的电容---不起作用.这个电容也不敢并大了,大了要影响高频特性.又怀疑是功率大了C1吃不消,于是又在电源上并了一个100uF的电容,还是不行....... d. 就在这个时候用手一抓我的功放输入端的焊点,好了!没杂音了,仔细一想,原来是这样:我从电脑接出来的线是一个声

运算放大器构造及原理

万联芯城销售TI,ADI,ST等原装品牌运算放大器IC。全现货库存,提供一站式配套服务,万联芯城,三十年电子元器件销售经验,是您的BOM配单专家,为您节省采购成本。点击进入万联芯城 点击进入万联芯城

运算放大器的工作原理 放大器的作用: 1、能把输入讯号的电压或功率放大的装置,由电子管或晶体管、电源变压器和其他电器元件组成。用在通讯、广播、雷达、电视、自动控制等各种装置中。原理:高频功率放大器用于发射机的末级,作用是将高频已调波信号进行功率放大,以满足发送功率的要求,然后经过天线将其辐射到空间,保证在一定区域内的接收机可以接收到满意的信号电平,并且不干扰相邻信道的通信。高频功率放大器是通信系统中发送装置的重要组件。按其工作频带的宽窄划分为窄带高频功率放大器和宽带高频功率放大器两种,窄带高频功率放大器通常以具有选频滤波作用的选频电路作为输出回路,故又称为调谐功率放大器或谐振功率放大器;宽带高频功率放大器的输出电路则是传输线变压器或其他宽带匹配电路,因此又称为非调谐功率放大器。高频功率放大器是一种能量转换器件,它将电源供给的直流能量转换成为高频交流输出在“低频电子线路”课程中已知,放大器可以按照电流导通角的不同,运算放大器原理 运算放大器(Operational Amplifier,简称OP、OPA、OPAMP)是一种直流耦合﹐差模(差动模式)输入、通常为单端输出(Differential-in, single-ended output)的高增益(gain)电压放大器,因为刚开始主要用于加法,乘法等运算电路中,因而得名。一个理想的运算放大器必须具备下列特性:无限大的输入阻抗、等

高效率音频功率放大器设计文献综述【文献综述】

文献综述 电子信息工程 高效率音频功率放大器设计文献综述 一、前言 为了节约电路的成本,提高放大器的效率,采用普通的电子元器件设计高 效率音频功率放大器的方法,使用基本的运算放大器,构成PWM路,形成D 类功率放大器,实现了高效率,低失真的设计要求。为了提高电路的抗干扰性能,在设计中使用了电压跟随器,差动放大器,有源带通滤波器等。使设计获 得了良好的效果。 二、主题 在现代音响普及中,人们因生活层次、文化习俗、音乐修养、欣赏口味的 不同,令对相同电气指标的音响设备得出不同的评价。所以,就高保真度功放 而言,应该达到电气指标与实际听音指标的平衡与统一。 音频功率放大器是一个技术已经相当成熟的领域,几十年来,人们为之付出了不懈的努力,无论从线路技术还是元器件方面,乃至于思想认识上都取得了长足的进步。 (一)早期的晶体管功放 半导体技术的进步使晶体管放大器向前迈进了一大步。自从有了晶体管,人们就开始用它制造功率放大器。  早期的放大器几乎全用锗管来制作,但由于锗管工艺上的一些原因,使得放大器中所用的晶体管,尤其是功放管性能指标不易做得很高,例如,共发射极截止频率fh的典型值为4kHz,大电流管的耐压值一般在30V一40V左右。这样,放大器的频率响应也就很狭窄,其3dB截止频率通常在10kHz左右,大大影响了音乐中高频信号的重现。再加上功放管的耐压、电流和功耗三个指标相互制约,制作较大功率的OTL或OCL放大器不易寻到三个指标都满足要求的管子,所以不得不采用变压器耦合输出。变压器的相移又使电路中加深度负反馈变得很困难,谐波失真得不到充分的抑制,因此这一时期的晶体管放大器音质是很差的。“还

音频放大器课程设计

电子课程设计 课程设计名称 : 电子课程设计 课程设计题目 : 音频放大器设计学院名称:工学院 班级:11级通信工程 学号:201101030119 姓名:陶媛 指导教师:朱家兴 2013年 8 月 25

摘要 进入21世纪以后,各种便携式的电子设备成为了电子设备的一种重要的发 展趋势。从作为通信工具的手机,到作为娱乐设备的MP3播放器,已经成为差不 多人人具备的便携式电子设备。在一些电子设备中,常常要求放大电路的输出级 能够带动较重负载,因而要求放大电路具有较高的效率,能够根据负载的要求提 供足够的输出功率。 本系统是基于三极管元件设计而成的一种音频放大器,由前置放大电路、 带通滤波电路、混频电路、电源电路四部分构成。前置放大电路主要由差分放大 电路构成,外加恒流源提供偏置,抑制电路的温漂,提高共模增益比。然后通过 由一个二阶压控电压源高通滤波器和一个二阶压控电压源低通滤波器构成的带 通滤波器,再接入一个混频电路(可加入背景音乐),最后通过电容耦合到功率 放大电路中除去了直流对后级放大电路的影响。混频电路由一个简单的加法器构 成。本次课程设计整个过程涉及到理论计算,电路板布局,焊接技术,电子仪器 的使用等一系列知识要点。 本方案使用MIC驻级体话筒收集人说话的微弱信号,并由话筒变成电信号,经过音频放大电路的多级放大,最后由耳机插座X2输出,输出的信号由外接的耳机 或扬声器发出声音 关键字:电子设备声音信号电信号放大 目录 前言 (1) 一、设计内容及要求 (2) 二、系统组成及工作原理 2.1 系统组成 (3) 2.2 工作原理 (4) 三、功率放大电路设计

音频放大器原理图

音频放大器原理图 音频放大器已经有快要一个世纪的历史了,最早的电子管放大器的第一个应用就是音频放大 器。然而直到现在为止,它还在不断地更新、发展、前进。主要因为人类的听觉是各种感觉中的相当重要的一种,也是最基本的一种。为了满足它的需要,有关的音频放大器就要不断地加以改进。 音频放大器简介 进入21世纪以后,各种便携式的电子设备成为了电子设备的一种重要的发展趋 势。从作为通信工具的手机,到作为娱乐设备的MP3播放器,已经成为差不多人人 具备的便携式电子设备。陆续将要普及的还有便携式电视机,便携式DVD等等。所 有这些便携式的电子设备的一个共同点,就是都有音频输出,也就是都需要有一个音频放大器;另一个特点就是它们都是电池供电的。都希望能够有较长的使用寿命。就是在这种需求的背景下,D类放大器被开发出来了。它的最大特点就是它能够在保持 最低的失真情况下得到最高的效率。 高效率的音频放大器不只是在便携式的设备中需要,在大功率的电子设备中也需 要。因为,功率越大,效率也就越重要。而随着人们的居住条件的改善,高保真音响设备和更高档的家庭影院也逐渐开始兴起。在这些设备中,往往需要几十瓦甚至几百瓦的音频功率。这时,低失真、高效率的音频放大器就成为其中的关键部件。 音频放大器背景 音频放大器的目的是在产生声音的输出元件上重建输入的音频信号,信号音量和 功率级都要理想一一如实、有效且失真低。音频范围为约20Hz?20kHz,因此放大 器在此范围内必须有良好的频率响应(驱动频带受限的扬声器时要小一些,如低音喇 叭或高音喇叭)。根据应用的不同,功率大小差异很大,从耳机的毫瓦级到TV或PC 音频的数瓦,再到迷你”家庭立体声和汽车音响的几十瓦,直到功率更大的家用和商 用音响系统的数百瓦以上,大到能满足整个电影院或礼堂的声音要求。 音频放大器的一种简单模拟实现方案是采用线性模式的晶体管,得到与输入电压 成比例的输出电压。正向电压增益通常很高(至少40dB)。如果反馈环包含正向增益, 则整个环增益也很高。因为高环路增益能改善性能,即能抑制由正向路径的非线性引起的失真,而且通过提高电源抑制能力(PSR)来降低电源噪声,所以经常采用反馈。 音频放大器类别 长期以来,高品质音频放大器的工作类别,只限于A类(甲类)和AB类(甲乙类)。

模电音频功率放大器课程设计

课程设计报告 学生姓名:张浩学学号:201130903013 7 学 院:电气工程学院 班 级: 电自1116(实验111) 题 目: 模电音频功率放大电路设计 指导教师:张光烈职称: 2013 年 7月 4 日

1、设计题目:音频功率放大电路 2、设计任务目的与要求: 要求:设计并制作用晶体管和集成运算放大器组成的音频功率放大电路,负载为扬声器,阻抗8。 指标:频带宽50HZ~20kHZ,输出波形基本不失真;电路输出功率大于8W;输入灵敏度为100mV,输入阻抗不低于47KΩ。 模电这门课程主要讲了二极管,三极管,几种放大电路,信号运算与处理电路,正弦信号产生电路,直流稳压电源。功率放大器的作用是给音响放大器的负载RL(扬声器)提供一定的输出频率。当负载一定时,希望输出的功率尽可能大,输出的信号的非线性失真尽可能小,效率尽可能高。功率放大器的常见电路形式有OTL电路和OCL电路。有用继承运算放大器和晶体管组成的功率放大器,也有专集成电路功率放大器。本实验设计的是一个OTL功率放大器,该放大器采用复合管无输出耦合电容,并采用单电源供电。主要涉及了放大器的偏置电路克服交越失真,复合管的基本组合提高电路功率,交直流反馈电路,对称电路,并用multism软件对OTL 功率放大器进行仿真实现。根据电路图和给定的原件参数,使用multism 软件模拟电路,并对其进行静态分析,动态分析,显示波形图,计算数据等操作。 3、整体电路设计: ⑴方案比较: ①利用运放芯片 LM1875和各元器件组成音频功率放大电路,有保护电路,电源分别接+30v和-30v并且电源功率至少要50w,输出功率30w。 ②利用运放芯片TDA2030和各元器件组成音频功率放大电路,有保护电路,电源只需接+19v,另一端接地,负载是阻抗为8Ω的扬声器,输出功率大于8w。 通过比较,方案①的输出功率有30w,但其输入要求比较苛刻,添加了实验难度。而方案②的要求不高,并能满足设计要求,所以选取方案②来进行设计。 ⑵整体电路框图:

毕业设计-音频功率放大器

音频功率放大器的设计 内容提要: 本文介绍了音频功率放大器构成、功能、及工作原理等。关键词:LM1875 功率芯片音频功率放大器 Audio power amplifier Abstract: Keywords: LM1875 power chip Audio amplifier

目录 一、音频功率放大器简介 (1) (一)早期的晶体管功放 (1) (二)晶体管功放的发展和互调失真 (1) (三)功放输入级——差动与共射-共基 (3) (四)放大器的电源与甲类放大器 (4) (五)其他类型的放大器 (5) 二、放大器常见名词 (6) (一)灵敏度 (6) (二)阻尼系数 (6) (三)反馈 (6) (四)动态范围 (6) (五)响应 (6) (六)信噪比(S/N) (7) (七)屏蔽 (7) (八)阻抗匹配 (7) 三、音频放大器的设计 (7) (一)设计要求: (7) (二)设计过程 (7) 四、LM1875的简介 (16) (一)LM1875的参数简介 (16) (二)LM1875的工作原理: (16) (三)LM1875的电路特点 (17) 五、电路设计 (17) (一)典型应用电路 (17) (三)双电源音频功率放大器PCB图 (19) 六、电路制作与调试 (20) (一)利用PCB制作电路板 (20) (二)装配与调试: (20) 七、电路图的绘制与制板中应注意的问题 (21) (一)Sch原理图应注意常见问题 (21) (二)PCB设计中应注意的问题 (22) (三)焊盘应注意的常见问题 (23) 八、总结 (23) 参考文献 (25)

音频功率放大器的设计 一、音频功率放大器简介 在现代音响普及中,人们因生活层次、文化习俗、音乐修养、欣赏口味的不同,令对相同电气指标的音响设备得出不同的评价。所以,就高保真度功放而言,应该达到电气指标与实际听音指标的平衡与统一。 音频功率放大器是一个技术已经相当成熟的领域,几十年来,人们为之付出了不懈的努力,无论从线路技术还是元器件方面,乃至于思想认识上都取得了长足的进步。(一)早期的晶体管功放 半导体技术的进步使晶体管放大器向前迈进了一大步。自从有了晶体管,人们就开始用它制造功率放大器。 早期的放大器几乎全用锗管来制作,但由于锗管工艺上的一些原因,使得放大器中所用的晶体管,尤其是功放管性能指标不易做得很高,例如,共发射极截止频率fh的典型值为4kHz,大电流管的耐压值一般在30V一40V左右。这样,放大器的频率响应也就很狭窄,其3dB截止频率通常在10kHz左右,大大影响了音乐中高频信号的重现。再加上功放管的耐压、电流和功耗三个指标相互制约,制作较大功率的 OTL或OCL放大器不易寻到三个指标都满足要求的管子,所以不得不采用变压器耦合输出。变压器的相移又使电路中加深度负反馈变得很困难,谐波失真得不到充分的抑制,因此这一时期的晶体管放大器音质是很差的。“还是胆机规声”,这种看法的确事出有因。 (二)晶体管功放的发展和互调失真 随着半导体工艺的逐渐成熟,大电流、高耐压的晶体管品种日益增加,越来越多的功率放大器采用了无输出变压器的 OCL电路或 OTL电路(图一)。最初的大功率 PNP 管是锗管,而 NPN管是硅管,两者的特性差别非常显著,电路的对称性很差,人们更多采用的是图二所示的准互补电路,通过小功率硅管 Q1与一只大功率的 NPN硅管 Q2复合,得到一只极性与PNP管类似的大功率管,降低了电路因对称性差而招至的失真。 到了六十年代末,大功率的 PNP硅管商品化的时候,互补对称电路才得到 广泛的应用。元器件的进步使晶体管功率放大器的技术指标产生了质的飞跃,在主观音质评价方面,也改变了过去人们对晶体管功放的看法,无论是在厅堂扩音、电台节目制作还是家庭重放,晶体管功放都被大量地采用,首次在数量上以压倒性的优势超过了电子管功放。在商品化的晶体管扩音机中,相继出现了一些摧琛夺目的名机,如 JBL的SA600,Marantz互补对称电路MOdel15等等。

音频功率放大器设计(明细)

电气与电子信息工程学院《电子线路设计与测试B》报告 设计题目:多级音频放大电路的设计与测试专业班级:电子信息工程技术2013(1)班学号: 201330230118 姓名: 指导教师: 设计时间: 2015/07/13~2015/07/17 设计地点:K2—306

电子线路设计与测试B成绩评定表 姓名学号 专业班级电子信息工程技术2013级(1)班 课程设计题目:多级音频放大电路的设计与测试 课程设计答辩或质疑记录: 1、对一个音频功率放大器的前置级有什么要求? 答:要求:一是使话筒的输出阻抗与前置放大器的输入阻抗相匹配;二是使前置放大器的输出电压幅度与功率放大器的输入灵敏度相匹配。 2、试画出利用TDA2030/2030A实现的OTL功率放大器电路? 答: 3、何为D类功率放大器?D类功率放大器有什么特点? 答:(1)D类功放也叫丁类功放,是指功放管处于开关工作状态的功率放大器。 (2)特点:效率高、功率大、失真小、体积小。 成绩评定依据: 实物制作(40%): 课程设计考勤情况(10%): 课程设计答辩情况(20%): 完成设计任务及报告规范性(30%): 最终评定成绩: 指导教师签字: 年月日

目录 《电子线路设计与测试B》课程设计任务书 (4) 一、课程设计题目:多级音频放大电路的设计与测试 (4) 二、课程设计内容 (4) 三、进度安排 (4) 四、基本要求 (5) 五、课程设计考核办法与成绩评定 (5) 六、课程设计参考资料 (5) 多级音频功率放大电路的设计与测试 (6) 一、设计任务 (6) 二、设计方案分析 (6) 1、前置放大器 (6) 2、音调控制电路 (7) 3、功率放大器 (11) 三、主要单元电路参考设计 (11) 1、前置放大器电路 (12) 2、音调控制器电路 (12) 3、功率放大器电路 (14) 四、软件的仿真与调试 (15) 五、原理图与PCB的制作 (16) 六、音频功率放大器的调试 (17) 七、心得体会 (18) 八、附录 (19) 1、元件清单 (19) 2、实物图 (19) 3、文献 (19)

音频放大器的设计

四川师范大学成都学院电路与电子技术课程设计数字音频放大器的设计 学生姓名 学号 所在学院通信工程学院 专业名称通信工程 班级 指导教师 成绩 四川师范大学成都学院 二○一四年十二月

课程设计任务书

数字音频放大器的设计 内容摘要:数字音频放大器是将输入音频模拟信号或PCM数字信息变换成PWM 或PDM的脉冲信号用来控制大功率开关电路,经过低通滤波器整形实现数字信号的放大输出。数字音頻放大器也看上去成是一个一比特的功率数模变换器。放大器由由三角波振荡器、前置放大电路、PWM比较器、驱动电路、功率放大电路和 低通滤波器电路组成。 输入信号形成电路分PWM处理器和PDM处理两种,将输入信号的振幅变化变 换成脉冲宽度的变化或脉冲密度的变化。 低通滤波器的作用是将脉冲波形整形成漂亮的模拟波形,即滤除PWM或PDM 信号的载波成分。常采用功率损耗小的LC型滤波器。 本设计介绍了数字音频放大器的组成及原理,然后用QuartusⅡ软件进行仿真和模拟,用以验证实验。 关键词:PWM调制低通滤波数字音频 The design of digital audio amplifier Abstract:Digital audio amplifier is an analog input audio signal or the PCM digital information into a PWM or PDM pulse signal for controlling the power switching circuit, low-pass digital filter shaping to achieve an amplified output signal.Also appears as a digital audio amplifier is a one bit digital to analog converter power. Amplifier by the triangular wave oscillator, preamplifier circuit, PWM comparator, the driving circuit, power amplifier and a low pass filter circuit. Input signal forming circuit of two PWM processor and sub-processor PDM, the amplitude of the input signal is converted into a variation or change in the pulse density of the pulse width changes. Low-pass filter is shaped to the pulse waveform beautiful analog waveform, i.e. the carrier component was filtered PWM or PDM signal. Often with a small power loss LC filter.

音频放大电路的组成及原理

第二章高保真电路的组成及基本原理 2.1电路整体方案的确定 音频功率放大器的基本功能是把前级送来的声频信号不失真地加以放大,输出足够的功率去驱动负载(扬声器)发出优美的声音。放大器一般包括前置放大和功率放大两部分,前者以放大信号振幅为目的,因而又称电压放大器;后者的任务是放大信号功率,使其足以推动扬声器系统。 功率放大电路是一种能量转换电路,要求在失真许可的范围内,高效地为负载提供尽可能大的功率,功放管的工作电流、电压的变化范围很大,那么三极管常常是工作在大信号状态下或接近极限运用状态,有甲类、乙类、甲乙类等各种工作方式。为了提高效率,将放大电路做成推挽式电路,功放管的工作状态设置为甲乙类,以减小交越失真。常见的音频功放电路在连接形式上主要有双电源互补推挽功率放大器OCL(无输出电容)、单电源互补推挽功率放大器OTL(无输出变压器)、平衡(桥式)无变压器功率放大器BTL等。由于功放管承受大电流、高电压,因此功放管的保护问题和散热问题也必须要重视。 OCL电路由于性能比较好,所以广泛地应用在高保真扩音设备中。本课题输出级选用OCL功率放大器,偏置电路选用甲乙类功放电路。为了使电路简单,信号失真小,本电路选用反馈型音调控制电路。为了不影响音调控制电路,要求前置输入阻抗比较高,输出阻抗低,本级电路选用场效应管共源放大器和源级跟随器组成。 高保真音频放大器组成框图 2.2 OCL功率放大器的原理 OCL功率放大器电路通常可分成:功率输出级、推动级和输入级三部分。根据给定技术指标,选择下图所示电路 功率输出级是由四个三极管组成的复合管准互补对称电路,可以得到较大的输出功率。再用一些电阻来减小复合管的穿透电流,增加电路的稳定性。前置电路用NPN型三极管组成恒压电路,保证功率输出管有合适的初始电流,以克服交越失真。 推动级采用普通共射放大电路。 输入级部分由三极管组成差动放大电路,减小电路直流漂移。 2.3音调控制电路的原理 常用的音调控制电路有三种:一种是衰减式RC音调控制电路,其调节范围

音频功率放大器课程设计--OTL音频功率放大器的设计与制作-精品

学号: 课程设计 题目OTL音频功率放大器的设计与制作 学院信息工程学院 专业通信工程 班级通信1302 姓名 指导教师 2014 年 1 月23 日

课程设计任务书 题目:OTL音频功率放大器的设计与制作 初始条件: 元件:集成功放TDA2030A、集成稳压器LM7812、电阻、电容、电位计若干。 仪器:万用表、示波器、交流毫伏表、函数信号发生器、学生电源要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求) 1、课程设计工作量:1周。 2、技术要求: ①要求设计制作一个音频功率放大器频率响应20~20KHZ,效率>60﹪,失真小。完成对音频功率放大器的设计、仿真、装配与调试,并自制直流稳压电源。 ②确定设计方案以及电路原理图并用multisim进行电路仿真。 时间安排: 序号设计内容所用时间 1 布置任务及调研1天 2 方案确定0.5天 3 制作与调试 1.5天 4 撰写设计报告书1天 5 答辩1天 合计1周 指导教师签名: 系主任(或责任教师)签名:年月日

目录 摘要 (1) Abstract (2) 音频功率放大器的设计与制作 (3) 1. 设计原理及参数 (3) 1.1音频功放电路的设计 (3) 1.1.1设计原理 (3) 1.1.2 参数计算 (5) 1.2直流稳压电源的设计 (6) 1.2.1设计原理 (6) 1.2.2参数计算 (7) 2.仿真结果及分析 (8) 2.1音频功率放大电路 (8) 2.1.1仿真原理图 (8) 2.1.2仿真效果图 (9) 2.2直流稳压电源电路 (11) 2.2.1电路原理图仿真 (11) 2.2.2仿真效果图 (11) 3.实物制作与性能测试 (12) 3.1音频功放实物制作 (12) 3.2性能测试 (13) 3.2.1功率性能测试 (13) 3.2.2频率响应测试 (14) 3.3直流稳压电源制作 (14) 3.4直流稳压电源的测试 (15) 4.收获以及体会 (15)

音响放大器的设计分析

电子技术(综合)课程设计 题目名称:音响放大器的设计 班级:电气1302班 学号: 姓名: 指导教师:吴建国 日期:2015.6.27

音响放大器的设计 1. 设计任务和要求: (1) 具有对话筒与录音机输出信号进行扩音、音调控制、卡拉OK 伴唱等功能。 (2) 主要技术指标:额定功率O W P ≥1(γ<3%);负载阻抗L 8R =Ω;截止频率 L 40f z =H ,H k 10f z =H ;音调控制特性:k 1z H 处增益为0dB ;z H 100处和k 10z H 处有12±dB 的调节范围;VL LH 20A A =≥dB ;话筒放大级输入灵敏度mV 5;录音机的输出信号电压为mV 100;输入阻抗i 20R >>Ω。(为了保证设计内容的多样性,技术指标部分可另取值)。 (3) 主要器件:CC V =+9V ;话筒(低阻20Ω)电子混响模块一个;集成功放LA4102一只;集成运放LM324一只(或μA741 3只);W 8/2Ω负载电阻L R 一只;W 8/4Ω扬声器一只。 题目分析或内容摘要: 这个音响放大器的设计过程为:首先确定整机电路的级数,再根据各级的功能及技术指标要求分配电压增益,然后分别计算各级电路参数,通常从功放级开始向前级逐级计算。只需给定电子混响器电路模块,需要设计的电路为话筒放大器,混合前置放大器,音调控制器及功率放大器。根据题意要求,输入信号为5mV 时输出功率的最大值为lW , 因此电路系统的总电压增益∑u A =L PoP /Ui=566(55dB),由于实际电路中会有损耗,故取∑u A =600(55·6dB),各级增益分配如图4所示。功放级增益4u A 由集成功放块决定,取4u A =100(40dB),音调控制级在fo=lkHz 时,增益应为1(0dB),但实际电路有可能产生衰减,取3u A =0.8 (一2dB)。话放级与混合级一般采用运算放大器,但会受到增益带宽积的限制,各级增益不宜太大,取1u A =7.5(17.5dB),2u A =l(OdB)。 2. 设计方案 甲类放大器作为一种最古老,效率最低,最耗电,最笨重,最耗资,失真最小的放大器 输入音 频信号 前置放大级电路 共射-共基电路 共射-共基电路 恒压源电路 推动级 反馈电路 至末级 功放 沃尔漫电路

运算放大器基本原理

运算放大器基本原理及应用 一. 原理 (一) 运算放大器 1.原理 运算放大器是目前应用最广泛的一种器件,当外部接入不同的线性或非线性元器件组成输入和负反馈电路时,可以灵活地实现各种特定的函数关系。在线性应用方面,可组成比例、加法、减法、积分、微分、对数等模拟运算电路。 运算放大器一般由4个部分组成,偏置电路,输入级,中间级,输出级。 图1运算放大器的特性曲线 图2运算放大器输入输出端图示 图1是运算放大器的特性曲线,一般用到的只是曲线中的线性部分。如图2所示。U -对应的端子为“-”,当输入U -单独加于该端子时,输出电压与输入电压U -反相,故称它为反相输入端。U +对应的端子为“+”,当输入U +单独由该端加入时,输出电压与U +同相,故称它为同相输入端。 输出:U 0= A(U +-U -) ; A 称为运算放大器的开环增益(开环电压放大倍数)。 在实际运用经常将运放理想化,这是由于一般说来,运放的输入电阻很大,开环增益也很大,输出电阻很小,可以将之视为理想化的,这样就能得到:开环电压增益A ud =∞;输入阻抗r i =∞;输出阻抗r o =0;带宽f BW =∞;失调与漂移均为零等理想化参数。 2.理想运放在线性应用时的两个重要特性 输出电压U O 与输入电压之间满足关系式:U O =A ud (U +-U -),由于A ud =∞,而U O 为有限值,因此,U +-U -≈0。即U +≈U -,称为“虚短”。

由于r i =∞,故流进运放两个输入端的电流可视为零,即I IB =0,称为“虚断”,这说明运放对其前级吸取电流极小。 上述两个特性是分析理想运放应用电路的基本原则,可简化运放电路的计算。 3. 运算放大器的应用 (1)比例电路 所谓的比例电路就是将输入信号按比例放大的电路,比例电路又分为反向比例电路、同相比例电路、差动比例电路。 (a) 反向比例电路 反向比例电路如图3所示,输入信号加入反相输入端: 图3反向比例电路电路图 对于理想运放,该电路的输出电压与输入电压之间的关系为: 为了减小输入级偏置电流引起的运算误差,在同相输入端应接入平衡电阻 R ’=R 1 // R F 。 输出电压U 0与输入电压U i 称比例关系,方向相反,改变比例系数,即改变两个电阻的阻值就可以改变输出电压的值。反向比例电路对于输入信号的负载能力有一定的要求。 (b) 同向比例电路 同向比例电路如图4所示,跟反向比例电路本质上差不多,除了同向接地的一段是反向输入端: i 1 f O U R R U - =

高保真音频功率放大器设计

电子技术课程设计报告——高保真音频功率放大器 上海大学机自学院自动化系 自动化 姓名:吴青耘 学号:16121324 指导老师: 李智华 2018年6月29日

一、项目名称 高传真音频功率放大器 二、用途 家庭、音乐中心装置中作主放大器 三、主要技术指标 1. 正弦波不失真输出功率Po>5W (f=1kHz,RL=8Ω) 2. 电源消耗功率P E<10W ( Po>5W ) 3. 输入信号幅度VS=200~400mV (f=1kHz,RL=8Ω, Po>5W ) 4. 输入电阻Ri>10kΩ( f=1kHz ) 5. 频率响应BW=50Hz~10kHz ( R L=8Ω,Po>5W) 四、设计步骤 1.电路形式

电路特点分析: 较典型的OTL 电路,局部反馈稳定了工作点,总体串联电压负反馈控制了放大倍数并提高输入电阻和展宽频带,退耦滤波电容及校正电容是为防止寄生振荡而设。 功率放大器通常由功率输出级、推动级(中间放大级)和输入级三部分组成。 功率输出级由互补对称电路组成。推动级(中间放大级)一般都是共射极放大电路,具有一定的电压增益。输入级的目的是为了增大开环增益,以便引入深度负反馈,改进电路的各项指标。 2.设计计算: 设计计算工作由输出级开始,逐渐反推到推动级、输入级。 (1) 电源电压的确定 输出功率 W P 50> )(228588 .01 V V cc =??= (2) 输出级(功率级)的计算 W P P V Vcc V A RL V I M M C ce cc CM 12.0112 1 375.18/112/0======= 功率管需推动电流:mA I I CM M b 5.2750/375.1/3===β 耦合电容:uF R f C L L 200021 ) 5~3(6≈=π,现取2200uF/25V 稳定电阻R 12:过大则损失功率过大,过小温度稳定性不良,通常取0.5~1欧姆。

简易音频功率放大器

闽南师范大学《模拟电子技术》课程设计 设计题目:简易音频功率放大器 姓名:庄伟彬 学号:1205000425 系别:物理与信息工程学院 专业电气工程及其自动化 年级:12级 指导教师:周锦荣老师 2014年 5月 1 日

目录 一系统设计┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄ 2 1.设计任务┄┄┄┄┄┄┄┄┄┄┄┄┄ 2 2.设计要求┄┄┄┄┄┄┄┄┄┄┄┄┄ 2 二电路设计原理┄┄┄┄┄┄┄┄┄┄┄┄ 3 1.系统原理┄┄┄┄┄┄┄┄┄┄┄┄┄ 3 2.方案比较┄┄┄┄┄┄┄┄┄┄┄┄┄ 3 3.芯片介绍┄┄┄┄┄┄┄┄┄┄┄┄┄┄8 三PCB布板┄┄┄┄┄┄┄┄┄┄┄┄┄┄ 10 四实物安装与调试┄┄┄┄┄┄┄┄┄┄┄┄ 11 1.实物图┄┄┄┄┄┄┄┄┄┄┄┄┄11 2.测试的波形┄┄┄┄┄┄┄┄┄┄┄12 3.实验结果分析及与理论对比┄┄┄┄┄ 15 五附录┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄ 15 1.设计总结┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄15 2. 原件清单┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄15 3.参考文献┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄ 16

摘要:本方案采用LM358,LM386集成运放芯片,外加电阻、电容等元器件调整、滤波,滑动变阻器实现音量可调,构成简易音频功率放大器,音频功率放大器主要用于推动扬声器发声。 关键词:LM358;LM386;音频放大 一系统设计 1 设计任务 利用集成运算放大器LM358,LM386设计一个简易音频功率放大器。 2 设计要求 设计一个简易的音频功率放大器,要求如下: (1)系统主要由前置放大电路和后级功率放大器电路构成,电路具有音量可调; (2)前置放大电路主要有集成芯片LM358构成;后级功率放大器电路主要由集成芯片LM386音频功率放大芯片构成; (3)要求输入音频信号在10mV/1kHz时,输出功率1 (负载:8Ω),输出音频信号无 Po W 明显失真,输出功率大小可调; (4)系统测试可以由函数信号发生器产生音频信号,系统所需电源可由实验室现有学生电源提供; (5)完成相应的电路原理图设计、硬件电路设计和调试及相关结果测试; (6)完成课程设计报告撰写。

相关主题
文本预览
相关文档 最新文档