当前位置:文档之家› 第十二章 理想气体混合物及湿空气

第十二章 理想气体混合物及湿空气

仅适用于理想气体

混合气体的总体积等于各组成气体分体积之和

(Mixture of Ideal Gases)

质量分数:体积分数:i

i m w m

=

i i

n x n

=

i i V V ?=i

i

n x n

==

∑,,,1i i g i i i i g g eq g i i

x n V M n M R w R R R w ?====∴=

∑∑∑∑

Q

i i i i i i i i

c w c u w u h w h s w s ====∑∑∑∑,,m i m i i m i

C x C C ?==∑∑

湿空气=(干空气+水蒸气)

空调、通风、烘干、冷却塔

湿空气与一般理想混合气体的最大区别是水蒸气的成分可能变化。理想混合气体

v

a p p p =+Dry air Atmospheric air

饱和蒸汽

一、未饱和湿空气和饱和湿空气

过热蒸汽干空气+过热水蒸气

p v < p s (T)

T

s

p p s

加入水蒸气,p v

Insaturated air

2、饱和湿空气

干空气+饱和水蒸气

v s T

s

p s

温度一定,不能再加入水蒸气

Saturated air

二、从未饱和到饱和的途径

T

s

p p s

1、T 加水蒸气p v

a

b

a b a d

d

c a c 4、v

a e

e

T 露点温度

T d = T s (p v )

冷水管t =20o C

T

s

d p v 大气温度t =30o C t d =28.98o C 干燥的冬天p v 小,t < 0.0o 结雾?fog

湿空气中所含水蒸气的量2、3、含湿量Humidity ratio

d

1、绝对湿度

ρ

1m 湿空气中所含水蒸气的质量

1、绝对湿度

v

2、相对湿度relative humidity

?=1饱和湿空气

v s 0()

p p T ≤≤v

s

v s p p ρ?ρ==

干空气

0 < < 1

未饱和湿空气含义:表明湿空气与同温下饱和湿空气的偏

离程度,反映所含水蒸气的饱和程度

?

越湿润,吸水能力低

3、比湿度(含湿量)Specific humidity

v 461.9

a a a a a p V m p R p R T

p p p p p p ??×??含1kg干空气的湿空气中所含水蒸汽的质量

以单位质量干空气为基准,理想混合气体

v v

v a a a a a

m h m h H h h d h m m +===+? 1.005(2501 1.863)

h t d t =++干空气的焓2501 1.863h t

=+水蒸气的焓温度t 下

0时,饱和水蒸汽的焓值

?湿球温度定义

湿空气的参数很多,有多少独立的变量

根据相律

组元数

2

p b , h , d

焓湿图2r k f =?+相数1

3

=固定

p b = 0.1MPa Psychrometric charts

焓湿图的结构

d =0 干空气

d

1、d 线h 与t 很接近人为将

h 旋转135度

h

d

2501 1.8630

t

h d t Const ???=?????+=>3、t 线

正斜率的直线

h

d

是一组向上凸的线

h

等相对湿度线

4、线φ饱和线100%φ=上部未饱和线下部无意义

干空气d =0

0φ=

物化,第1章 热力学第一定律---补充练习题

第二章 热力学第一定律 (一) 填空题 1. 在一绝热容器中盛有水,将一电阻丝浸入其中,接上电源一段时间(见下左图)当选择 不同系统时,讨论Q 和W 的值大于零、小于零还是等于零。 系统 电源 电阻丝 水 电源+电阻丝 水+ 电阻丝 水+电阻丝+电源 Q W U 参考答案 2. 298K 时,反应CH 3CHO(g) = CH 4(g) + CO(g)的反应热 r H m 0 = mol -1,若反应恒压的热容r C p,m = Jmol -1K -1,则在温度为 时,反应热将为零。(设:r C p,m 与温度无关)。 3. 对理想气体的纯PVT 变化,公式dU=nC V,m dT 适用于 过程;而真实气体 的纯PVT 变化,公式dU=nC V,m dT 适用于 过程。 4. 物理量Q 、W 、U 、H 、V 、T 、p 属于状态函数的有 ;属于途 径函数的有 。状态函数中属于强度性质 的 ;属于容量性质的有 。 5. 已知反应 C(S)+O 2CO 2 r H m 0<0 若该反应在恒容、绝热条件下进行,则ΔU 于 零、ΔT 于零、ΔH 于零;若该反应在恒容、恒温条件下进行,则ΔU 于零、 ΔT 于零、ΔH 于零。(O 2、CO 2可按理想气体处理) 6. 理想气体绝热向真空膨胀过程,下列变量ΔT 、ΔV 、ΔP 、W 、Q 、ΔU 、ΔH 中等于零的 有: 。 7. 1mol 理想气体从相同的始态(p 1、T 1、V 1),分别经过绝热可逆膨胀至终态(p 2、T 2、V 2)和经绝 热不可逆膨胀至终态('2'22V T p 、、)则’‘,2222 V V T T (填大于、小于或等 于)。 8. 某化学在恒压、绝热只做膨胀功的条件下进行,系统温度由T 1升高至T 2,则此过程ΔH 零,如果这一反应在恒温(T 1)恒压和只做膨胀功的条件下进行,则其ΔH 于零。 9.范德华气体在压力不太大时,有b RT a V T V T m p m -=-??2)(且定压摩尔热容为C P,m 、则此气体的焦——汤系数μJ-T = ,此气体节流膨胀后ΔH 0。 10. 1mol 单原子理想气体(C V,m =)经一不可逆变化,ΔH =,则温度变化为ΔT = ,内能变化为ΔU = 。 11. 已知298K 时H 20(l)、H 20(g)和C02(g)的标准摩尔生成焓分别为、 –和mol -1,那么C(石墨)、H 2 (g)、02(g)、H 20(l)、H 20(g)和C02(g)的标准摩尔燃烧焓分别 为 。 系统 电源 电阻丝 水 电源+电阻丝 水+ 电阻丝 水+电阻丝+电源 Q = < > < = = W < > = = > = U < > > < > =

工程热力学思考题答案,第十二章#试题

第十二章 理想气体混合物及湿空气 1.处于平衡状态的理想气体混合气体中,各种组成气体可以各自互不影响地充满整个体积,他们的行为可以与它们各自单独存在时一样,为什么? 答:混合气体的热力学性质取决于各组成气体的热力学性质及成分,若各组成气体全部处在理想气体状态,则其混合物也处在理想气体状态,具有理想气体的一切特性。 2.理想气体混合物中各组成气体究竟处于什么样的状态? 答:若各组成气体全部处在理想气体状态,遵循状态方程pV nRT =。 3.道尔顿分压定律和亚美格分体积定律是否适用于实际气体混合物? 答:否。只有当各组成气体的分子不具有体积,分子间不存在作用力时,处于混合状态的各组成气体对容器壁面的撞击效果如同单独存在于容器时的一样,这时道尔顿分压力定律和亚美格分体积定律才成立,所以道尔顿分压定律和亚美格分体积定律只适用于理想气体混合物。 4.混合气体中如果已知两种组分A 和B 的摩尔分数x A >x B ,能否断定质量分数也是ωA >ωB ? 答:否。i i i eq x M M ω=?,质量分数还与各组分的摩尔质量有关。 5.可以近似认为空气是1 mol 氧气和3.76 mol 氮气混合构成(即x O2=0.21、 x N2=0.79),所以0.1 MPa 、20°C 的4.76 mol 空气的熵应是0.1 MPa 、20°C 的1 mol 氧气的熵和0.1 MPa 、20°C 的3.76 mol 氮气熵的和,对吗?为什么? 答:不对。计算各组分熵值时,应该使用分压力,即(,)i i s f T p =。 6.为什么混合气体的比热容以及热力学能、焓和熵可由各组成气体的性质及其在混合气体中的混合比例来决定?混合气体的温度和压力能不能由同样方法确定? 答:根据比热容的定义,混合气体的比热容是1kg 混合气体温度升高1°C 所需热量。理想气体混合物的分子满足理想气体的两点假设,各组成气体分子的运动不因存在其他气体而受影响。混合气体的热力学能、焓和熵都是广延参数,具有可加性。所以混合气体的比热容以及热力学能、焓和熵可由各组成气体的性质及其在混合气体中的混合比例来决定。 混合气体的温度和压力是强度参数,不能由同样方法确定。 7.为何阴雨天晒衣服不易干,而晴天则容易干? 答:阴雨天空气的湿度大,吸取水蒸气的能力差,所以晒衣服不易干。晴天则恰恰相反,所以容易干。

大学物理第06章习题分析与解答.doc

6-1某一热力学系统经历一个过程后,吸收了400J的热量,并对环境做功300J,则系统的内能()o (A)减少了100J (B)增加了100J (C)减少了700J (D)增加了700J 解:由热力学第一定律2 = AE + W可得 AE = 2 - VV = 400 - 300=100J 故选B 6-2对于理想气体系统来说,在下列过程中,哪个过程中系统所吸收的热量、内能的增量和对外做功三者均为负值( )? (A) 等容降压过程(B)等温膨胀过程(C)绝热膨胀过程(D)等压压缩过程 解:等容过程不做功,故A不正确;等温过程内能不变,故B不正确;绝热过程与外界不交换热量,故C不正确; 对于等压压缩过程:体积减小,系统对外界做负功,表现为外界对系统做功;易知压缩过程温度降低,则内能减少;等压过程e p = vC^T ,温度降低,则必放热。故选D 6-3系统分别经过等压过程和等体过程,如果两过程中的温度增加值相等,那么()o (A)等压过程吸收的热量小于等体过程吸收的热量 (B)等压过程吸收的热量等于等体过程吸收的热量 (C)等压过程吸收的热量大于等体过程吸收的热量 (D)无法确定 解:等压过程吸收的热量Q p = vC^T ;等容过程吸收的热量e v=^c v Ar,由于 C p > C v ,故选 C 6-4 一台工作于温度分别为327°C和27°C的高温热源与低温热源之间的卡诺热机,每经历一次 循环吸热2000J ,则对外界做功( )o (A) 2000J ( B ) 1000J ( C ) 4000J ( D ) 500J 解:卡诺热机循环效率?/= —=1-^=1- —则W = 1000J,故选B Q吸心600 2 6?5系统从外界获得的能量,一部分用来_______ ,另一部分用来对外界做功。 解:详见热力学第一定律 6-6空气压缩机在一次压缩过程中,活塞对气缸内的气体做功为2xlO4J,同时气体的 内能增加了1.5X104J O试问:此压缩过程中,气体_______________ (填“吸收”或“放出”) 的热量等于 ___________ J。 解:由热力学第一定律Q = A£ + W 可得Q=1.5X104+(-2X104)=-0.5X104J负号表示放出热量。 6-7 一定量的空气,吸收了2xK)3j的热量,并保持在1.013xl05Pa的压强下膨胀,体 积从1.0xl0-2m3增加到2.0x1031?,空气对外做功为,内能改变量为。

大学物理习题解答3第三章热力学

第三章热力学 本章提要 1.准静态过程 系统连续经过的每个中间态都无限接近平衡态的一种理想过程。 准静态过程可以用状态图上的曲线表示。 2.内能 系统内所有分子热运动动能和分子之间相互作用势能的和,其数学关系式为 (,) E E V T = 内能是态函数。 3.功 功是过程量。 微分形式: V p A d d= 积分形式: ?=2 1d V V V p A 4.热量 两个物体之间或物体内各部分之间由于温度不同而交换的热运动能量。热量也是过程量。 5.热力学第一定律 热力学第一定律的数学表达式: Q E A =?+ 热力学第一定律的微分表达式: d d d Q E A =+ 由热力学第一定律可知,第一类永动机是不可能造成的。 6.理想气体的热功转换

(1)等体过程:d 0A = 热量增量为 m m (d )d d V V M Q E C T μ ,,== 或 m 21m 21V ,V ,M Q E E C (T T )μ =-= - (2)等压过程: 热量增量为 (d )d d d d p Q E A E p V =+=+ 因 m 21()V M E C T T μ ?,-= 2 1 2121()()V V M A p V p V V R T T μ d = =-= -? 则 )()(21212T T R M T T R i M Q P -+-= μ μ (3)等温过程:d 0E = 热量增量为 (d )d d V Q A p V == 因 2 1 21 d ln V T V V M V M A RT RT V V μ μ= =? 则 2112 ln ln T T V p M M Q A RT RT V p μ μ== = (4)绝热过程:d 0Q = 根据热力学第一定路可得 d d 0E A += 则 m d d d d V ,M A p V E C T μ ==-=-

热工基础思考题答案(第1-6章)

思考题 第一章 1.平衡状态与稳定状态有何区别热力学中为什幺要引入平衡态的概念 答:平衡状态是在不受外界影响的条件下,系统的状态参数不随时间而变化的状态。而稳定状态则是不论有无外界影响,系统的状态参数不随时间而变化的状态。可见平衡必稳定,而稳定未必平衡。热力学中引入平衡态的概念,是为了能对系统的宏观性质用状态参数来进行描述。 2.表压力或真空度能否作为状态参数进行热力计算若工质的压力不变,问测量其压力的压 力表或真空计的读数是否可能变化 答:不能,因为表压力或真空度只是一个相对压力。若工质的压力不变,测量其压力的压力表或真空计的读数可能变化,因为测量所处的环境压力可能发生变化。 3.当真空表指示数值愈大时,表明被测对象的实际压力愈大还是愈小 答:真空表指示数值愈大时,表明被测对象的实际压力愈小。 4. 准平衡过程与可逆过程有何区别 答:无耗散的准平衡过程才是可逆过程,所以可逆过程一定是准平衡过程,而准平衡过程不一定是可逆过程。 5. 不可逆过程是无法回复到初态的过程,这种说法是否正确 答:不正确。不可逆过程是指不论用任何曲折复杂的方法都不能在外界不遗留任何变化的情况下使系统回复到初态,并不是不能回复到初态。 6. 没有盛满水的热水瓶,其瓶塞有时被自动顶开,有时被自动吸紧,这是什幺原因 答:水温较高时,水对热水瓶中的空气进行加热,空气压力升高,大于环境压力,瓶塞被自动顶开。而水温较低时,热水瓶中的空气受冷,压力降低,小于环境压力,瓶塞被自动吸紧。 7. 用U形管压力表测定工质的压力时,压力表液柱直径的大小对读数有无影响 答:严格说来,是有影响的,因为U型管越粗,就有越多的被测工质进入U型管中,这部分工质越多,它对读数的准确性影响越大。 第二章

理想气体和真实气体

第二节理想气体和真实气体 在空分装置中,其工质为气态物质,分子在不断地作热运动:移动、转动和振动,分子的数量是巨大的,运动是不规则的。因此,气体的性质是很复杂,很难找出其运动规律。为了便于分析,提出了理想气体这一概念。 凡能满足以下三个条件的气体称为理想气体: 1. 分子本身的体积忽略不计; 2. 分子相互没有作用力; 3. 分子间不发生化学反应。 理想气体虽然是一种实际上不存在的假想气体,但是在上述假设条件下,气体分子运动的规律就可大大简化,能得出简单的数学关系式。为区别理想气体把自然界中的实际气体叫做真实气体。真实气体 在通常压力下,大多数符合理想气体的假设条件。例如O 2.N 2 .H 2 等气体均符合上述条件。 1.2.1 气体的基本状态参数 描写物质的每一聚集状态下的特性的物理量,称为物质的状态参数。物质的每一状态都有确定数值的状态参数与其对应,只要有一个状态参数发生变化,就表示物质状态在改变。描写气体状态的基本参数是温度、压强和比容。 1.温度,它表示物体冷热的程度。从分子运动论的观点看,温度是分子热运动平均动能的量度,温度愈高,分子的热运动平均动能就愈大,为了具体地确定分子运动的数值,在工程上常用的测温标尺有摄氏温标和热力学温标。 摄氏温标规定在一个标准大气压下,冰的熔点为0度,水的沸点为100度,将它分成100等分,每一等分1度。用摄氏温度表示的温度叫做摄氏温度,量的符号t,单位名称摄氏度,单位符号℃,低于冰点温度,用负值表示,例如在6at下,空气液化温度为-173℃。 实践证明,-273℃是实际能够接近而不可能达到的最低温度。如果-273℃作为温度的起算点,就不为出现负温度值,把-273℃叫做绝对零度。从绝对零度起算,温度测度与摄氏温度相同,这种计算温度的标尺叫热力学温标,也称绝对温标。热力学温度量的符号T,单位名称开尔文,单位符号K。 两种温标的关糸是; T=273.15+(K) ,通常简化为T=273+t(K) t=T-273.15(℃)通常简化为t=T-273(℃) 例如,在标准大气压下,冰的熔点为0℃即273Κ。 测量温度的仪器有水银温度计、铂电阻温度计、热电偶温度计等。仪表指示的温度常用℃,而工程计算中常用K,为此应熟悉这两种温标的换算。由于摄氏温度和绝对温度所示的温标每一个刻度值大小一样,不论是采用那种温标,它们的数值是相同的。

理想气体混合熵的计算

理想气体混合熵 求混合过程的熵变,原则是把混合前的每种气体看成子体系, 混合后的体系 为总体系,总体系的混合熵等于各子体系混合熵变之和 ,AS 总=工△子。 为了讨论方便,我们先看两种理想气体的混合过程。 B(g)(nB,pB,VB,TB)。 抽开隔板,开始混合,混合后的总体系,其状态(终态)为n=nA + nB, V=VA + VB 。现在还有T 和p 不知道。 先求T 。一般混合,可以看成绝热过程,即 AB 只是互相交换能量,而与环 境没有能量(热量)的交换。所以, A 气体放的热量,等于B 气体吸收的热量, 反之亦然。 设混合后的体系的温度为T _ nACp.m (A )(T - T A ) - _ T B ) nRT P 二 --------- 求出T 之后,据 1 ,可以计算出混合后总体系的压强。求出总压 强之后,再根据分压定律,求出气体 A 和B 在总体系中的分压强PA '和PB : 加 Cpm(⑷% + HB C"⑻ T E 设有两种气体A(g)、 A(g)(nA,pA,VA,TA)和 现在就可以求混合熵了: 幻+勿

从此式中,可以看出,二组分理想气体的混合熵,是各自pVT 变化熵的加 和。 特别是,化学反应中的混合,常常是等温等压条件下的混合,即混合前后子 体系与总体系的温度和压强均不发生变化,这种情况下求混合熵就更简单。 E4 式中,(A 气体的体积分数)在定压条件下等于 A 气体的摩尔分数yB 所以,若有k 种理想B 气体定温定压混合,过程的混合熵为 仏二-R 若血1吨) =^A AS4 + AS 二 T Cp r m (j4) 111 ■ P A ■ 3启 T 4用(£)hi —— T ? T Cv r m (A )In — T A ■ + /?ln — V A ■ ■ T Cv, ill — T B ■ ■ v + 7?ln — V B ■ 6S =

大学物理题库热力学

热力学选择题 1、在气缸中装有一定质量的理想气体,下面说法正确的是:( ) (A ) 传给它热量,其内能一定改变。 (B ) 对它做功,其内能一定改变。 (C ) 它与外界交换热量又交换功,其内能一定改变。 (D ) 以上说法都不对。 (3分) 答案:D 2、理想气体在下述过程中吸收热量的是( ) (A )等容降压过程 (B )等压压缩过程 (C )绝热膨胀过程 (D )等温膨胀过程 (3分) 答案:D 3、理想气体卡诺循环过程的两条绝热线下的面积大小分别为1S 和2S ,二者的关系是( ) (A ) 21S S > (B )21S S < (C )S 1 =S 2 (D )不能确定 (3分) 答案:C 4、有两个可逆的卡诺循环,ABCDA 和11111A B C D A ,二者循环线包围的面积相等,如图所示。设循环ABCDA 的热效率为η,每次循环从高温热源吸收热量Q ,循环11111A B C D A 的热效率为η,每次循环从高温热源吸收热量1Q ,则( ) (A )11,Q Q <<ηη (B )11,Q Q ><ηη (C )11,Q Q <>ηη (D ) 11,Q Q >>ηη (3分) 答案:B 5、一定量的理想气体,分别经历如图所示的abc 过程(图中虚线ac 为等温线)和 def 过程(图中虚线 df 为 绝热线)。试判断这两种过程是吸热还是放热( ) (A )abc 过程吸热,def 过程放热。(C )abc 过程和 def 过程都吸热。 (B )abc 过程放热 def 过程吸热 (D )abc 过程和 def 过程都放热。 V P

V V (3分) 答案:A 6、对于理想气体系统来说,在下列过程中,哪个过程系统所吸收的热量、内能的增量和对外做得功三者均为负值?( ) (A )等容降压过程。 (B) 等温膨胀过程。 (C) 绝热膨胀过程。 (D) 等压压缩过程。 (3分) 答案:D 7、关于可逆过程,下列说法正确的是( ) (A ) 可逆过程就是可以反向进行的过程。 (B ) 凡是可以反向进行的过程均为可逆过程。 (C ) 可逆过程一定是准静态过程。 (D ) 准静态过程一定是可逆过程。 (3分) 答案:C 8、下面正确的表述是( ) (A) 功可以全部转化为热,但热不能全部转化为功。 (B )热量能从高温物体传到低温物体,但不能从低温物体传到高温物体。 (C )开尔文表述指出热功转换的可逆性。 (D )克劳修斯表述指出了热传导的不可逆性。 (3分) 答案:D 9、一台工作于温度分别为327 ℃和27 ℃的高温热源与低温源之间的卡诺热机,每经历一个循环吸热2 000 J ,则对外作功( ) (A) 2 000J (B) 1 000J (C) 4 000J (D) 500J (3分) 答案:B 10、“理想气体和单一热源接触作等温臌胀时,吸收的热量全部用来对外作功。”对此说法,有如下几种评论,哪种是正确的( ) (A )不违反热力学第一定律,但违反热力学第二定律 (B )不违反热力学第二定律,但违反热力学第一定律 (C )不违反热力学第一定律,也不违反热力学第二定律 (D )违反热力学第二定律,也违反热力学第二定律 (3分) 答案:C 热力学简答题

第3&6章理想气体和实际气体的性质

注意点:
? 机械能转化为热能可以由摩擦、碰撞和压 缩做功来实现,但只有后者具有可逆性, 所以机械能和热能的可逆转换总是和工质 的膨胀和压缩分不开的。 ? 工质要吸热、膨胀做功,因此要求工质具 有很好的涨缩能力,因此热机中一般采用 气体为其工质(气体和蒸气)。
第3&6章 气体的性质
Properties of gas
-6-
§3-1 理想气体 (perfect gas、ideal gas、permanent gas)
一、理想气体的基本假设
分子为不占体积的弹性质点; 除碰撞外分子间无其它作用力。
1
? u = u (T )
理想气体是实际气体在低压高温时的抽象,常温下空 气、氧气、氮气、湿空气等可以看作理想气体计算。2
二、理想气体的状态方程—ideal-gas equation 二、理想气体的状态方程— idealkg K
pV = mRgT ? pV = nRT
m3
pv = RgT
1kg n mol pVm = RT
Solid Gas “Low ρ or high v” intermolecular forces small – usually latent heat is required to overcome these forces.
Liquid
Under these condition the relationship between pressure, temperature and specific volume simplifies to what is known as IDEAL GAS. P=f(T,v) 3
p0V0 = RT0 1mol标准状态 Pa 气体常数:J/(kg.K),与气体种类有关 R=MRg=8.3145J/(mol·K) ? h = u (T ) + pv = u (T ) + RgT = h(T ) 例 试按理想气体状态方程求空气在表列温度、压力 条件下的比体积v,并与实测值比较。已知:空气气 体常数Rg=287.06J/(kg·K)
解:
v= RgT p =
287.06 × 300 = 0.84992m3 / kg 101325
4
考察按理想气体状态方程求得的空气在表列温度、压力条件下 的比体积v,并与实测值比较。空气气体常数Rg=287.06 J/(kg·K)
T/K
300 300 300 200 90
计算依据
p/atm
1 10 100 100 1
v/
m3 /kg
v 测/ m /kg 误差(%)
3
(1)温度较高,随压力增大,误差增大; (2)虽压力较高,当温度较高时误差还不大,但温度较低, 则误差极大; (3)压力低时,即使温度较低误差也较小。 本例说明:低温高压时,应用理想气体假设有较大误差。
0.84992 0.084992 0.0084992 0.005666 0.25498
0.84925 0.08477 0.00845 0.0046 0.24758
0.02 0.26 0.58 23.18 2.99
v=
RgT p
=
287.06 × 300 = 0.84992m3 / kg 101325
5
例题\第三章\A411133.ppt *讨论题\理想气体状态方程式.ppt
6
相对误差=
v ? v测 0.84992 ? 0.84925 = = 0.02% 0.84925 v测
1

工程热力学思考题答案整理完成版

⒉有人认为,开口系统中系统与外界有物质交换,而物质又与能量不可分割,所以开口系不可能是绝热系。这种观点对不对,为什么? 答:不对。“绝热系”指的是过程中与外界无热量交换的系统。热量是指过程中系统与外界间以热的方式交换的能量,是过程量,过程一旦结束就无所谓“热量”。物质并不“拥有”热量。一个系统能否绝热与其边界是否对物质流开放无关。 ⒊平衡状态与稳定状态,平衡状态与均匀状态有何区别和联系? 答:“平衡状态”与“稳定状态”的概念均指系统的状态不随时间而变化,这是它们的共同点;但平衡状态要求的是在没有外界作用下保持不变;而平衡状态则一般指在外界作用下保持不变,这是它们的区别所在。 ⒋倘使容器中气体的压力没有改变,试问安装在该容器上的压力表的读数会改变吗?在绝对压力计算公式 ) ()(b v b b e b P P P P P P P P P P ;中,当地大气压是否必定是环境大气压? 答:可能会的。因为压力表上的读数为表压力,是工质真实压力与环境介质压力之差。环境介质压力,譬如大气压力,是地面以上空气柱的重量所造成的,它随着各地的纬度、高度和气候条件不同而有所变化,因此,即使工质的绝对压力不变,表压力和真空度仍有可能变化。 “当地大气压”并非就是环境大气压。准确地说,计算式中的P b 应是“当地环境介质”的压力,而不是随便任何其它意义上的“大气压力”,或被视为不变的“环境大气压力”。 ⒌温度计测温的基本原理是什么? 答:温度计对温度的测量建立在热力学第零定律原理之上。它利用了“温度是 相互热平衡的系统所具有的一种同一热力性质”,这一性质就是“温度”的概念。⒍经验温标的缺点是什么?为什么? 答:由选定的任意一种测温物质的某种物理性质,采用任意一种温度标定规则所得到的温标称为经验温标。由于经验温标依赖于测温物质的性质,当选用不同测温物质制作温度计、采用不同的物理性质作为温度的标志来测量温度时,除选定的基准点外,在其它温度上,不同的温度计对同一温度可能会给出不同测定值(尽管差值可能是微小的),因而任何一种经验温标都不能作为度量温度的标准。这便是经验温标的根本缺点。 ⒎促使系统状态变化的原因是什么?举例说明。 答:分两种不同情况: ⑴若系统原本不处于平衡状态,系统内各部分间存在着不平衡势差,则在不平衡势差的作用下,各个部分发生相互作用,系统的状态将发生变化。例如,将一块烧热了的铁扔进一盆水中,对于水和该铁块构成的系统说来,由于水和铁块之间存在着温度差别,起初系统处于热不平衡的状态。这种情况下,无需外界给予系统任何作用,系统也会因铁块对水放出热量而发生状态变化:铁块的

高中物理气体动理论和热力学题库8370004

气体动理论和热力学 卷面总分188 期望值0 入卷题数44 时间 分钟 第1大题: 选择题(57分) 1.1 (3分) 两个体积相等的容器中,分别储有氦气和氢气,以1E 和2E 分别表示氦气和氢气的内能,若他们的压强相同,则( ) (A )1E =2E (B )1E >2E (C )1E <2E (D )无法确定 1.2 (3分) 一瓶氮气和一瓶氦气密度相同,分子平均平动动能相同,而且它们都处于平衡状态,则它们 ( ) (A)温度相同、压强相同 (B)温度、压强都不相同 (C)温度相同,但氦气的压强大于氮气的压强 (D)温度相同,但氦气的压强小于氮气的压强 1.3 (3分) 不同种类的两瓶理想气体,它们的体积不同,但温度和压强都相同,则单位体积内的气体分子数n ,单位体积内的气体分子的总平动动能(V E K /),单位体积内的气体质量 p ,分别有如下关系:( ) (A)n 不同,(V E K /)不同,p 不同 (B)n 不同,(V E K /)不同,p 相同 (C)n 相同,(V E K /)相同, p 不同 (D)n 相同,(V E K /)相同, p 相同 1.4 (3分) 设M 为气体的质量,m 为气体分子质量,N 为气体分子总数目,n 为气体分子数密度,0N 为阿伏伽德罗常数,则下列各式中哪一式表示气体分子的平均平动动能?( ) (A) pV M m 23 (B) pV M m mol 23 (C) npV 2 3 (D) pV N M M mol 023 1.5 (3分) 置于容器内的气体,如果气体内各处压强相等,或气体内各处温度相同,则这两种情况下气体的状态 ( ) (A)一定都是平衡态 (B)不一定都是平衡态 (C)前者一定是平衡态,后者一定不是平衡态 (D)后者一定是平衡态,前者一定不是平衡态

理想气体和真实气体

第二节理想气体和真实气体在空分装置中,其工质为气态物质,分子在不断地作热运动:移动、转动和振动,分子的数量是巨大的,运动是不规则的。因此,气体的性质是很复杂,很难找出其运动规律。为了便于分析,提出了理想气体这一概念。 凡能满足以下三个条件的气体称为理想气体: 1. 分子本身的体积忽略不计; 2. 分子相互没有作用力; 3. 分子间不发生化学反应。 理想气体虽然是一种实际上不存在的假想气体,但是在上述假设条件下,气体分子运动的规律就可大大简化,能得出简单的数学关系式。为区别理想气体把自然界中的实际气体叫做真实气体。真实气体在通常压力下,大多数符合理想气体的假设条件。例如O2.N2.H2 等气体均符合上述条件。 1.2.1 气体的基本状态参数描写物质的每一聚集状态下的特性的物理量,称为物质的状态参数。物质的每一状态都有确定数值的状态参数与其对应,只要有一个状态参数发生变化,就表示物质状态在改变。描写气体状态的基本参数是温度、压强和比容。 1. 温度,它表示物体冷热的程度。从分子运动论的观点看,温度是分子热运动平均动能的量度,温度愈高,分子的热运动平均动能就愈大,为了具体地确定分子运动的数值,在工程上常用的测温标尺有摄氏温标和热力学温标。 摄氏温标规定在一个标准大气压下,冰的熔点为0度,水的沸点为100度,将它分成100等分,每一等分1度。用摄氏温度表示的温度叫做摄氏温度,量的符号t,单位名称摄氏度,单位符号c,低于冰点温度,用负值表示,例如在6at下,空气液化温度为-173Co 实践证明,-273 C是实际能够接近而不可能达到的最低温度。如果-273 C作为温度的起算点,就不 为出现负温度值,把-273 C叫做绝对零度。从绝对零度起算,温度测度与摄氏温度相同,这种计算温度的标尺叫热力学温标,也称绝对温标。热力学温度量的符号T,单位名称开尔文,单位符号K o 两种温标的关糸是; T= 273.15+(K),通常简化为T=273+t (K) t=T-273.15( C )通常简化为t=T-273( C) 例如,在标准大气压下,冰的熔点为0C即273Ko 测量温度的仪器有水银温度计、铂电阻温度计、热电偶温度计等。仪表指示的温度常用C,而工程 计算中常用K,为此应熟悉这两种温标的换算。由于摄氏温度和绝对温度所示的温标每一个刻度值大小一样,不论是采用那种温标,它们的数值是相同的。

沈维道《工程热力学》(第4版)课后习题-理想气体混合物及湿空气(圣才出品)

第12章理想气体混合物及湿空气 12-1 混合气体中各组成气体的摩尔分数为:混合气体的温度t=50℃,表压力p e=0.04MPa,气压计上水银柱高度为p b=750mmHg。求:(1)体积V=4m3混合气体的质量; (2)混合气体在标准状态下的体积V0。 解:(1)由题可得混合气体折合摩尔质量为 折合气体常数为 12-2 50kg废气和75kg的空气混合,废气中各组成气体的质量分数为: 。空气中的氧气和氮气的质量分数为: 。混合后气体压力p=0.3MPa,求: (1)混合气体各组分的质量分数; (2)折合气体常数; (3)折合摩尔质量; (4)摩尔分数; (5)各组成气体分压力。 解:(1)由题意可知,混合后气体质量m=75+50=125kg

(4)由摩尔分类可知 (5)由p i=x i p可知 12-3 烟气进入锅炉第一段管群时温度为1200℃,流出时温度为800℃,烟气的压力几乎不变。求每1kmol烟气的放热量Q p。可借助平均摩尔定压热容表计算。已知烟气的体积分数为:,其余为N2。

解:因φi=x i,所以有 由附表查得平均摩尔定压热容如表12-1: 表12-1 混合气体的热容 12-4 流量为3mol/s的CO2,2mol/s的N2和4.5mol/s的O2三股气流稳定流入总管道混合,混合前每股气流的温度和压力相同,都是76.85℃,0.7MPa,混合气流的总压力p=0.7MPa,温度仍为t=76.85℃。借助气体热力性质表试计算: (1)混合气体中各组分的分压力;. (2)混合前后气流焓值变化△H及混合气流的焓值; (3)导出温度、压力分别相同的几种不同气体混合后,系统熵变为:△S=-RΣn i lnx i,并计算本题混合前后熵的变化量△S; (4)若三股气流为同种气体,熵变如何?

理想气体及其混合物的热力性质

第四章理想气体及其混合物的热力性质 一、判断题 1.不论何种理想气体都可用pV=mRT计算,其中p的单位是Pa;V的单位是m3;m的单位是kg;R的单位是(J/mol?k);T的单位是K。( ) 2.理想气体常数R仅取决于气体的性质,而与气体的状态无关。( ) 3.理想气体只有取定比热容时,才能满足迈耶公式c p-c v=R。( ) 4.对同一种理想气体,其c p>c v。( ) 5.如两种理想气体的质量比热相等,则它们的体积比热也相等。( ) 6.双原子理想气体的绝热指数k=1.4。( ) 7.理想气体的c p和c v都是温度的单值函数,所以两者之差也是温度的单值函数。( ) 8.?h=c p?T适用于理想气体的任何过程;对于实际气体仅适用于定压过程。( ) 9.公式du= c v dT不仅适用于理想气体,也适用于实际气体的定容过程。() 10.理想气体的内能、焓和熵都只是温度的单值函数。() 11.工质完成某一个过程,热力学能不变,则焓也不变。() 12.理想气体温度升高后热力学能、焓一定升高。( ) 13.理想气体的熵增计算式是根据可逆过程推导所得,但适用于任意过程。()14.理想气体混合物的定压比热与定容比热之差等于其折合气体常数R。( ) 15.理想气体混合物的总压力一定时某组成气体的含量份额越大,其分压力越大。( ) 16.若无化学反应,理想混合物的体积成分不随其状态而发生变化。( ) 二、选择题 1. 理想气体的比热是( )。 A 常数; B 随气体种类不同而异,但对某种理想气体而言,比热容为常数; C 随气体种类不同而异,但对某种理想气体某中过程而言,比热容为常数; D 随气体种类不同而异,但对某种理想气体某中过程而言,比热容是温度的函常数。 2. 迈耶公式c p-c v=R仅适用于( )。 A 理想气体,定比热; B 任意气体,但要求定比热; C 理想气体,是否定比热不限; D 任意气体。 3. 对于( )的理想气体,其状态方程为pV=mRT。 A 1kg; B m kg; C 1kmol; D n kmol 4. 参数关系式du=c v dT适用于()。 A 理想气体的任何过程; B 理想气体的可逆过程; C 任何气体的可逆过程; D 任何气体的任何过程。 5. 理想气体混合物中组成气体的()可以确定其所处的状态。 A 分压力与分容积; B 分压力与混合物的温度; C 分容积与混合物的温度; D 任何两个参数。 三、思考题 1.理想气体的假设条件是什么?实际气体能否作为理想气体处理,其主要依据是什么?

热力学 习题 答案

第9章热力学基础 一. 基本要求 1. 理解平衡态、准静态过程的概念。 2. 掌握内能、功和热量的概念。 3. 掌握热力学第一定律,能熟练地分析、计算理想气体在各等值过程中及绝热过程中的功、热量和内能的改变量。 4. 掌握循环及卡诺循环的概念,能熟练地计算循环及卡诺循环的效率。 5. 了解可逆过程与不可逆过程的概念。 6. 解热力学第二定律的两种表述,了解两种表述的等价性。 7. 理解熵的概念,了解热力学第二定律的统计意义及无序性。 二. 内容提要 1. 内能功热量 内能从热力学观点来看,内能是系统的态函数,它由系统的态参量单值决定。对于理想气体,其内能E仅为温度T的函数,即 当温度变化ΔT时,内能的变化 功热学中的功与力学中的功在概念上没有差别,但热学中的作功过程必有系统边界

的移动。在热学中,功是过程量,在过程初、末状态相同的情况下,过程不同,系统作的 功A 也不相同。 系统膨胀作功的一般算式为 在p —V 图上,系统对外作的功与过程曲线下方的面积等值。 热量 热量是系统在热传递过程中传递能量的量度。热量也是过程量,其大小不仅与 过程、的初、末状态有关,而且也与系统所经历的过程有关。 2. 热力学第一定律 系统从外界吸收的热量,一部分用于增加内能,一部分用于对外 作功,即 热力学第一定律的微分式为 3. 热力学第一定律的应用——几种过程的A 、Q 、ΔE 的计算公式 (1)等体过程 体积不变的过程,其特征是体积V =常量;其过程方程为 在等体过程中,系统不对外作功,即0=V A 。等体过程中系统吸收的热量与系统内 能的增量相等,即 (2) 等压过程 压强不变的过程,其特点是压强p =常量;过程方程为 在等压过程中,系统对外做的功 系统吸收的热量 )(12 T T C M M Q P mol P -=

热力学-习题与答案

一、9选择题(共21分,每题3分) 1、1.1mol理想气体从p-V图上初态a分别经历如图所示的(1)或(2)过程到达末态 b.已知TaQ2>0; (B) Q2>Q1>0; (C) Q20. 2、图(a),(b),(c)各表示连接在一起的两个循环过程,其中(c)图是两个半径相等的圆构成的两个循环过程, 图(a)和(b)则为半径不相等的两个圆.那么: [ C ] (A) 图(a)总净功为负,图(b)总净功为正,图(c)总净功为零; (B) 图(a)总净功为负,图(b)总净功为负,图(c)总净功为正; (C) 图(a)总净功为负,图(b)总净功为负,图(c)总净功为零; (D) 图(a)总净功为正,图(b)总净功为正,图(c)总净功为负. 3、如果卡诺热机的循环曲线所包围的面积从图中的abcda增大为ab’c’da,那么循环abcda 与ab’c’da所做的净功和热机效率变化情况是: (A)净功增大,效率提高; [ D ] (B)净功增大,效率降低; (C) 净功和效率都不变; (D) 净功增大,效率不变. 4、一定量的理想气体分别由图中初态a经①过程ab和由初态a’经②过程初态

a ’c b 到达相同的终态b, 如图所示,则两个过程中气体从外界吸收的热量Q 1,Q 2的关系为 [ B ] (A) Q 1<0,Q 1>Q 2 ; (B) Q 1>0, Q 1>Q 2 ; (C) Q 1<0,Q 10, Q 1

大学物理热学期末复习试卷卷

热学 1 对于理想气体系统来说,在下列过程中,哪个过程系统所吸 收的热量、内能的增量和对外作的功三者均为负值? (A) 等体降压过程. (B) 等温膨胀过程. (C) 绝热膨胀过程.(D) 等压压缩过 程.[(D) ] 在温度分别为 327℃和27℃的高温热源和低温热源之间工 作的热机,理论上的最大效率为 (A) 25% (B) 50% (C) 75%(D) 91.74% [ (B) ] 一定量的理想气体,起始温度为T,体积为V0.后经历绝热 过程,体积变为2V0.再经过等压过程,温度回升到起始温度.最 后再经过等温过程,回到起始状态.则在此循环过程中 (A) 气体从外界净吸的热量为负值. (B) 气体对外界净作的功为正值. (C) 气体从外界净吸的热量为正值. (D) 气体内能减 少.[ (A) ]

质量一定的某种理想气体, (1) 对等压过程来说,气体的密度随温度的增加而成反比地减小,并绘 出曲线. (2) 对等温过程来说,气体的密度随压强的增加而_成正比地增加_,并绘出曲线. 1 的单原子分子理想气体,在1 的恒定压强下,从0℃加热 到100℃,则气体的内能改变了_1.25×103 .(普适气体常量R =8.31 J ·1·K 1 ) 已知1 的某种理想气体(其分子可视为刚性分子),在等压过程中温度上升1 K ,内能增加了20.78 J ,则气体对外作功为_8.31 J _,气体吸收热量为29.09 J . (普适气体常量 11K mol J 31.8--??=R ) O T T O T T

两个相同的容器装有氢气,以一细玻璃管相连通,管中用一滴水银作活塞,如图所示.当左边容器的温度为 0℃、而右边容器的温度为20℃时,水银滴刚好在管的中央.试问,当左边容器温度由 0℃增到 5℃、而右边容器温度由20℃增到30℃时,水银滴是否会移动?如何移动? 解:据力学平衡条件,当水银滴刚好处在管的中央维持平衡时,左、右两边氢气的压强相等、体积也相等,两边气体的状态方程为: p 1V 1=(M 1 / )1 , p 2V 2=(M 2 / )2 . 由p 1= p 2得:V 1 / V 2= (M 1 / M 2)(T 1 / T 2) . 开始时V 1= V 2,则有M 1 / M 2= T 2/ T 1=293/ 273. 当温度改变为1T '=278 K ,2T '=303 K 时,两边体积比为 ()221121//T M T M V V ''=''=0.9847 <1. 即21V V '<'. 可见水银滴将向左边移动少许. 一容积为10 3 的电子管,当温度为300 K 时,用真空泵把管 内空气抽成压强为 5×10-6 的高真空,问此时管内有多少个空气分子?这些空气分子的平均平动动能的总和是多少?平均转动动能的总和是多少?平均动能的总和是多少?(760 =1.013×105 ,空气分子可认为是刚性双原子分子) (波尔兹曼常量1.38 ×10-23 ) 解:设管内总分子数为N . 由p = = / V (1) N = / () = 1.61×1012 个. (2) 分子的平均平动动能的总和= (3/2) = 108 J H 20℃ H 220℃

热学第二章习题课

热学第二章习题课

第二章分子动理论的平衡态理论 ◆本章学习目标 理解麦克斯韦速率分布函数和速率分布曲线的物理意义,掌握气体分子热运动的平均速率,方均根速率,最概然速率。理解等温大气压强公式、等温大气标高、能量均分定理、理想气体内能 ◆本章教学内容 1、气体分子的速率分布律 2、麦克斯韦速度分布律、相对最概然速率的速度分量分布于速率分布 3、重力场中微粒按高度的分布,等温大气压强公式、等温大气标高 4、能量按自由度均分定理,理想气体内能 ◆本章重点 麦克斯韦速率分布律和速度分布律、三种速率分布、能量均分定理、理想气体内能 一、气体分子的速率分布律 在平衡态下,气体分子速率的大小各不相同。由于分子的数目巨大,速率可以看作在0~之间连续分布的。此时分子的速率分布函数应该这

样来定义:假设系统的总分子数为,在速率v~ v+dv之间的分子数为,则我们用来表示 在速率v~v+dv之间的分子数占系统总分子数的比率;或者对于任意一个分子来说,这是它的速率处于v~v+dv之间的概率。由于和速率区间 dv的大小成正比(即dv越大则dw越大),通常用来反映气体分子的速率分布,它与所取区间dv的大小无关而仅与速率v有关。我们把这个比值定义为平衡态下的速率分布函数 速率分布函数的物理意义是:在速率v附 近,单位速率区间内的分子数占系统总分子数的比率;或者说,对于任意一个分子而言,它的速率刚好处于v值附近单位速率区间内的概率,故也称为分子速率分布的概率密度。对于任意一个分子来说,它的速率是多大是偶然的,但却具有一定的概率分布。只要给出了速率分布函数,整个分子的速率分布就完全确定了。由速率分布函数可求出: v~v+dv区间的分子数

相关主题
文本预览
相关文档 最新文档