当前位置:文档之家› 球墨铸铁管的水力计算

球墨铸铁管的水力计算

球墨铸铁管的水力计算
球墨铸铁管的水力计算

球墨铸铁管的水力计算的探讨

圣戈班管道系统有限公司李华成

一、前言

在二十世纪九十年代以前,绝大多数供水管材都是灰口铸铁管,依据我国27个大中城市的给水管材的调查数据,灰口铸铁管所占的比例为84.72%。在长期的使用过程中,灰口铸铁管有着十分成熟的设计规范、设计标准图集和施工规范。这些都给管道生产商、设计单位、施工单位带来了很大的便利。

球墨铸铁管是在灰口铸铁管基础上的一次新的革命。它不但继承了灰口管抗腐蚀、耐磨等优点,而且其机械性能远大于灰口管,更接近于钢管。随着球墨铸铁管进入中国市场,越来越多的自来水公司和建设单位了解和掌握球墨铸铁管的性能,球墨铸铁管成为供水管材的主导产品,并逐步取代灰口铸铁管,这已成为不争的事实。

但是遗憾的是,我国许多关于球墨铸铁管的设计、施工、验收规范都没有及时地推出,给管线的建设带来了无法可依的局面。由于标准的缺乏,现行的做法是只能套用灰口铸铁管的规范。我们知道,球墨铸铁管与灰口铸铁管相比,无论是管材的本身、接口防腐层、管线设计、安装、验收都有很大的不同,直接套用所产生的误差也是相当大的,对管线的正常运行,经济效益都带来了重大影响。

主要的问题如下:

-管线的设计,由于球墨铸铁管内喷涂一层光滑的水泥内衬,粗糙度k约为0.03;而灰口铸铁管没有内衬保护,在管线运行一段时间后,会有一层腐蚀,粗糙度k约为0.2 ~ 0.3。

由此,两种管道的水力阻力系数会有很大的不同。由于这类的问题非常突出,本文就此进行了详细的阐述,并进行了技术、经济上的比较。

-管道的安装,球墨铸铁管一般采用T型滑入式柔性接口,灰口铸铁管接口比较多,如,青铅接口、膨胀水泥接口、石棉水泥接口等,这些均属于刚性接口。球墨铸铁管的安装相对简单得多,在生产厂家提供技术安装手册或技术人员亲临指导下,很容易掌握,所以安装问题并没有给建设单位造成多大的困难。但应当说明是,球墨铸铁管的安装标准,包括一些特殊接头的安装,在现行的大多数设计施工规范中都没有体现,这样的形势是无法另人满意的。

-水泥支墩,我国给排水标准图集S3中,有对水泥支墩的定义,它的设计依据是由1965年北京、上海、成都三个地区灰口铸铁管的试验做出的。由于管材、接口形式等不同,图集中的支墩尺寸并不适合于球墨铸铁管。如果能推出一系列球墨铸铁管水泥支墩的安装图集,将给管线的设计、施工带来很大的便利。

-工程的水压试验,现行的GB50268-97《给水排水管道工程施工及验收规范》的水压试验中一些方法及一些参数的取值均不合理,已经不适应于球墨铸铁管的验收要求。目前,郑州自来水公司在工程建设中积累了大量的试验数据,对水压试验的修订提供了许多宝贵的建议,这些都为球墨铸铁管在中国的发展有着积极地推动作用。

-产品标准的陈旧与错误,GB13295-91及GB13294-91历经了十几年没有更新,已不能跟上球墨铸铁管的发展。另外,GB13295-91还包含着一些错误,例如,DN700管道的重量(K9级,标准工作长度6m)为1126kg,如果按照承口部分的重量加上直管部分的重量计算,其结果是1123kg。两者的结果相差3kg,显然是不合理的。新的国家标准GB/T13295-200X已经出台了报批稿,那么新版本也将正式推出,这无疑是个值得庆贺的好消息。

总之,一方面,球墨铸铁管的使用得到了供水行业决大多数技术专家的认同;另一方面,

由于球墨铸铁管规范没有跟上,使得球墨铸铁管的建设出现了一种无所适从的窘况,阻碍了球墨铸铁管的发展。因此,及时更新我国的设计、施工、验收规范及产品标准的要求显得十分急迫,也势在必行。

二、供水管线的水力计算的原理

依据《给排水设计手册》,城市供水输配水管道的水流速度限定为:V = 0.6 ~ 2.5m/s 。 依据ISO2531,球墨铸铁管的管径范围为:DN40 ~ DN2600。 水温为10℃的运动粘滞系数为:1.301×10-6

m 2

/s

经计算得出管线的雷诺数的范围为:Re = VD/μ= 1.84×104 ~ 5×106

根据尼古拉兹的试验成果,可以将供水管线的水流状态划归为光滑区转变为粗糙区的过渡区,亦称过渡粗糙区。在这个区域,阻力系数λ随着Re 和 k/D 而变化,即λ= ?(Re ,k/D )。这是因为随着雷诺数的增大,液体紊动加剧,粘滞底层逐渐减薄,以至不能覆盖壁面绝对粗糙度k ,因此壁面粗糙对λ发生影响。

过渡粗糙区的阻力系数计算公式为柯尔勃洛克 – 怀特(Colebrook - White )公式,圣戈班穆松桥的水力计算也正是采用了这一公式。

关于压力管线上的水头损失有如下三点说明:

在管线输水过程中必须增加能量来克服水头损失。它有三个因素: a – 水的内部摩擦(与粘性有关), b – 水沿着管壁的摩擦,

c – 地形改变水流(弯头、接头等)。

实际中,水头损失的大小主要是水的内部摩擦引起的(因素a )。水与管壁的摩擦是唯一的与管道类型有关的因素,它所占的比例非常小:涂有水泥内衬的球墨铸铁管道(k = 0.03),因素b 的比例最多只有7%;但灰口铸铁管的粗糙度相对要大得多(k = 0.2 ~ 0.3),因素b 的影响也就相对大得多。

地形改变水流(因素c )在与因素a 比较时也扮演一个很小的角色,但针对不同的管线(如,输水管线,配水管线)、不同的地形(转弯、分支),应适当考虑局部水头损失的取值。

三、中国与圣戈班穆松桥计算公式之间的比较

1. 中国的输送管线的计算方法:采用的是舍维列夫公式,参见《给排水设计手册》第1册——常用资料。

1)当流速≥1.2 m/s ,

2)当流速<1.2 m/s ,

这里,

J :水力坡度(m/m ) V :流速 (m/s) D :管道内径(m )

2. 圣戈班穆松桥的水力计算方法:采用达西公式和柯尔勃洛克 – 怀特公式,参见圣戈班穆松桥的技术手册《供水管线》。

这里,

J:水力坡度(每米长管道的水头损失,以m计)

λ:阻力系数

D:管道内径(m)

V:流速(m/s)

g:重力加速度(m/s2)

Re= VD/μ(雷诺数)

μ:在一定温度下的液体的运动粘滞系数(m2/s)

k:管道粗糙度(m)

在水力计算时,其他的参数很容易就可以确定,管道粗糙度k的取值尤为关键。

球墨铸铁管采用旋转喷涂的工艺,得到一个光滑的、均匀的水泥砂浆内衬。圣戈班穆松桥进行了一系列的试验,已经得出了内衬的粗糙度k值。其平均值为 0.03 mm,当和绝对光滑的管道k = 0比较时(计算流速为1 m/s),对应的额外水头损失为 5 ~ 7%。

不管怎样,管道的相关表面粗糙度不仅依赖于管道表面的均匀性,而且特别依赖于弯头、三通和其他连接形式的数量,如管线纵剖面的不规则性。经验显示k = 0.1对于配水管线来说是一个合理的数值。对于每公里只有几个管件的长距离的管线来说,k 的取值可以稍微地降低(= 0.6 ~ 0.8)。

当然,k的取值还应当包括其它因素的影响,如,水质的不同。

下列表格为圣戈班穆松桥进行k值试验时的部分管道数据:

四、两种水力计算方法结果的比较

假设条件:输送城镇自来水的球墨铸铁管,管线长度为10公里,管线使用时间为10年,水温为10℃,局部水头损失为沿程水头损失的10%。

从表中的数据可以看出,国内与圣戈班穆松桥的计算方法的结果差异很大。

两种水力计算方法的比较:

1)国内的方法适用于旧钢管和旧铸铁管,圣戈班穆松桥的方法主要针对的是供水用球墨铸铁管。

2)国内的方法并没有考虑水泥内衬,其考虑的是管壁腐蚀或沉垢之后的粗糙度,圣戈班穆松桥的方法考虑了水泥内衬,其中k值的选取就是水泥内衬粗糙度。

3)圣戈班穆松桥的方法中参数的取值是在大量试验和实际工程跟踪检测的基础上得出的。

所以,对于球墨铸铁管的计算,圣戈班穆松桥的方法更接近于实际值;而套用旧钢管和旧灰口管的方法来计算球墨铸铁管,其结果是不准确的,也是不可取的。

五、管线实际运行效益影响的估算

由于计算方法的选用不当,对水泵的选型及管线的实际运行都带来很大影响,这一点应当引起足够的重视。

1.水泵的选型

由于国内还缺乏球墨铸铁管的标准计算方法,设计部门往往采用舍维列夫公式,由此计算出的管线的水头损失要高出实际值很多,选用的水泵扬程也就偏高很多,所以,水泵的运行严重偏离最佳工况点,水泵的运行效率也不可能在最佳运行区间范围内,造成能源浪费。

2.动力差额的估算

假设条件:

-圣戈班穆松桥的方法接近于实际值,两种方法的差异假定为国内计算方法与实际值的差异。

-流量恒定,多余的扬程通过调节消耗在管线的损失上。

一年管线运行后,所产生的动力差额的计算公式:

M = 24 ×365×Q·Δh/(102η)

M:一年动力差额,kW·h

Q:管道流量,l/s

Δh:水头损失差,m,Δh = h1 – h2

η:水泵效率,这里取值为0.8

上表可知,由于计算公式的不正确,造成水泵的选型不当,导致多余的动力输出也是相当巨大的。

六、结论

通过本文分析可以得出,水力计算公式的选用不当,会给管径的选择、水泵的选型、管线的运行带来很大的不合理性,同时也造成能源的巨大浪费。这种状况不可以听之任之下去,及时的更正和解决才能促进球墨铸铁管更健康的发展。

圣戈班穆松桥的球墨铸铁管的计算方法可以做为一个很好的借鉴。圣戈班穆松桥生产球墨铸铁管已经有五十多年的历史,也是世界上最早、最大的球墨铸铁管的生产厂家,为球墨铸铁管的发展作出了巨大的贡献。其水力计算方法在大量的试验和工程实践中得出的,结果也是十分真实可信的。

有关规范的制定部门应当十分正视球墨铸铁管的水力计算的问题。套用灰口铸铁管的做法,由于差距过大,已不适用。由此产生的实际后果也是相当严重的,这一问题的解决是颇为急切的。当然,水力计算的方法仍需要慎之又慎,大量的科学试验是成功的基础。

圣戈班穆松桥的方法有着十分有用的参考价值,其参数的取值应是科学的,可信的。在我国新的球墨铸铁管的水力计算公式出台之前,在圣戈班穆松桥的计算公式的基础上,设计施工单位进行适当的安全系数的调整,也许是一种最切实可行的做法。圣戈班穆松桥来到中国,不是来垄断中国的球墨铸铁管的市场,而是带来先进的生产工艺、先进工程技术、先进的管理经验,与国内生产厂家、供水企事业协心合作,共同促进球墨铸铁管在中国的繁荣与发展。

给水排水管道系统水力计算汇总

第三章给水排水管道系统水力计算基础 本章内容: 1、水头损失计算 2、无压圆管的水力计算 3、水力等效简化 本章难点:无压圆管的水力计算 第一节基本概念 一、管道内水流特征 进行水力计算前首先要进行流态的判别。判别流态的标准采用临界雷诺数Re k,临界雷诺数大都稳定在2000左右,当计算出的雷诺数Re小于2000时,一般为层流,当Re大于4000时,一般为紊流,当Re介于2000到4000之间时,水流状态不稳定,属于过渡流态。 对给水排水管道进行水力计算时,管道内流体流态均按紊流考虑 紊流流态又分为三个阻力特征区:紊流光滑区、紊流过渡区及紊流粗糙管区。 二、有压流与无压流 水体沿流程整个周界与固体壁面接触,而无自由液面,这种流动称为有压流或压力流。水体沿流程一部分周界与固体壁面接触,另一部分与空气接触,具有自由液面,这种流动称为无压流或重力流 给水管道基本上采用有压流输水方式,而排水管道大都采用无压流输水方式。 从水流断面形式看,在给水排水管道中采用圆管最多 三、恒定流与非恒定流 给水排水管道中水流的运动,由于用水量和排水量的经常性变化,均处于非恒定流状态,但是,非恒定流的水力计算特别复杂,在设计时,一般也只能按恒定流(又称稳定流)计算。 四、均匀流与非均匀流 液体质点流速的大小和方向沿流程不变的流动,称为均匀流;反之,液体质点流速的大小和方向沿流程变化的流动,称为非均匀流。从总体上看,给水排水管道中的水流不但多为非恒定流,且常为非均匀流,即水流参数往往随时间和空间变化。 对于满管流动,如果管道截面在一段距离内不变且不发生转弯,则管内流动为均匀流;而当管道在局部有交汇、转弯与变截面时,管内流动为非均匀流。均匀流的管道对水流的阻力沿程不变,水流的水头损失可以采用沿程水头损失公式进行计算;满管流的非均匀流动距离一般较短,采用局部水头损失公式进行计算。

PPR水力计算表

建筑给水聚丙烯管道(PP—R)应用技术规程 前言 建筑给水聚丙烯管道(PP—R)是国际上九十年代发展起来的化学建材,它与钢管、铜管相比,具有卫生、质轻、耐压、耐腐蚀、阻力小、隔热保温、连接方便可靠、使用寿命长、废料可回收利用等特点,可广泛用于冷、热水供应系统和纯净水系统,有良好的推广应用前景和显著的社会效益、经济效 益。 本规程是参照国外有关资料和上海市建筑产品推荐性应用标准《建筑给水聚丙烯管道(PP—R)工程技术规程》DBJ/CT501—99基础上编制的。由于经验有限,难免有不足之处,有待在实践中不断完 善。在使用中如有意见和建议,请寄至:广东省南海市松岗镇沙水工业区,南海市彩虹塑胶实业有限公司,邮政编码528234,以便修订时采用。 本规程编写单位及起草人名单如下: 主编单位:广州市建设委员会广东省土木建筑学会广东省给排水技术专业委员会 参编单位:南海市彩虹塑胶实业有限公司广西省土木建筑学会 主要起草人:曲申酉、李大鹏、何枫,郭秀英 参加起草人:劳锦华、陈永昌、杜吉军、张海忠、刘勇、余敏 第一章总则 1.0.1 为了使建筑给水系统中采用聚丙烯管道的工程,在设计、施工及验收中做到技术先进、安全卫生、经济合理、保证质量,特制订本规程。 1.0.2 本规程适用于各种民用建筑和工业建筑中生活给水、生活热水和饮用洁净水的管道系统的设计、施工及验收。本规程规定的系统工作压力不大于0.6MPa,水温不大于70℃。 1.0.3 聚丙烯管道不得用作消防管道。聚丙烯管道用于输送化工流体介质时,应探讨其化学稳定性,应参考有关资料或做试验确定。

1.0.4 本规程采用的聚丙烯管材、管件的规格、尺寸及性能,均应符合南海市彩虹塑胶实业有限公司产品企业标准Q/CHl.1— 1999、Q/CHl.2—1999的要求,该企业标准中管材等同采用德国工业标准 DIN8077—1996及DIN8078—1996中第三类型管的要求。管件等同采用德国工业标准DINl6962E中第5、6、7、8部分的规定。 1.0.5给水聚丙烯管道工程的设计、施工及验收,除执行本规程外,还应符合国家有关标准、规范的规定。 第二章术语 2.0.1 热熔连接由相同热塑性塑料制作的管材与管件互相连接时,采用专用热熔机具将连接部位表面加热,连接接触面处的本体材料互相熔合,冷却后连接成为一个整体。热熔连接有对接式热熔连接、承插式热熔连接和电熔连接。 2.0.2 公称压力管材在介质温度为20℃,使用期限为50年,以MPa为单位的允许压力称为公称压力。 2.0.3 允许压力在某一介质温度下,对应一定的使用年限,管道系统可以承受的最大压力,称为允许压力。 2.0.4 工作压力为确保管道系统在使用期限内安全运行,各公称压力等级的管道,将其允许压力乘以安全系数后确定的压力,称为工作压力。 2.0.5 自然补偿利用管道敷设中自然存在的曲折或加设的曲折,吸收管道因温差产生的变形,称为自然补偿。 2.0.6 自由臂自然补偿时,利用折角管段的悬臂位移,吸收管道自固定点起至转弯处的伸缩变形,该对应的转弯管段称为自由臂。 2.0.7 电熔连接由相同的热塑性塑料管道连接时,插入特制的电熔管件,由电熔连接机具对电熔管件通电,依靠电熔管件内部预先埋设的电阻丝产生所需要的热量进行熔接,冷却后管道与电熔管件连接成为一个整体。 2.0.8 法兰连接件由金属法兰盘及PP—R过渡接头组成,过渡接头与管材用热熔连接套入法兰盘形成法兰连接件。法兰连接件是PP—R管道法兰连接的专用型式,构造示意图如下:

鸿业暖通-风管水力计算使用说明

目录 目录 目录 (1) 第 1 章风管水力计算使用说明 (2) 1.1 功能简介 (2) 1.2 使用说明 (3) 1.3 注意 (8) 第 2 章分段静压复得法 (9) 2.1 传统分段静压复得法的缺陷 (9) 2.2 分段静压复得法的特点 (10) 2.3 分段静压复得法程序计算步骤 (11) 2.4 分段静压复得法程序计算例题 (11)

鸿业暖通空调软件 第 1 章 风管水力计算使用说明 1.1 功能简介 命令名称: FGJS 功 能: 风管水力计算 命令交互: 单击【单线风管】【水力计算】,弹出【风管水力计算】对话框,如图1-1所示: 图1-1 风管水力计算对话框 如果主管固定高度值大于0,程序会调整风系统中最长环路 的管径的高度为设置值。

第 1 章风管水力计算使用说明 如果支管固定高度值大于0,程序会调整风系统中除开最长 环路管段外的所有管段的管径的高度为设置值。 控制最不利环路的压力损失的最大值,如果程序算出的最不 利环路的阻力损失大于端口余压,程序会提醒用户。 当用户需要从图面上提取数据时,点取搜索分支按钮,根据 程序提示选取单线风管。当成功搜索出图面管道系统后,最 长环路按钮可用,单击可以得到最长的管段组。 计算方法程序提供的三种计算方法,静压复得法、阻力平衡法、假定 流速法,可以改变当前的选项卡,就会改变下一步计算所用 的方法,而且在标题栏上会有相应的提示。 计算结果显示包含搜索分支里面选取的管段的一条回路的各个管段数 据。 1.2使用说明 1.从图面上提取数据 单击按钮 2.从文件中提取数据(如果是从图面上提取数据则这步可以跳过) 单击按钮 从打开文件对话框从选取要计算的文件,确定即可。

通风管道设计计算

通风管道系统的设计计算 在进行通风管道系统的设计计算前,必须首先确定各送(排)风点的位置和送(排)风量、管道系统和净化设备的布置、风管材料等。设计计算的目的是,确定各管段的管径(或断面尺寸)和压力损失,保证系统内达到要求的风量分配,并为风机选举和绘制施工图提供依据。 进行通风管道系统水力计算的方法有很多,如等压损法、假定流速法和当量压损法等。在一般的通风系统中用得最普遍的是等压法和假定流速法。 等压损法是以单位长度风管有相等的压力损失为前提的。在已知总作用压力的情况下,将总压力按风管长度平均分配给风管各部分,再根据各部分的风量和分配到的作用压力确定风管尺寸。对于大的通风系统,可利用等压损法进行支管的压力平衡。 假定流速法是以风管内空气流速作为控制指标,计算出风管的断面尺寸和压力损失,再对各环路的压力损失进行调整,达到平衡。这是目前最常用的计算方法。 一、通风管道系统的设计计算步骤 800m /h 3 1500m /h 31 2 3 4000m /h 3 4 除尘器 6 5 7

图6-8 通风除尘系统图 一般通风系统风倌管内的风速(m/s)表6-10 除尘通风管道最低空气流速(m/s)表6-11 1、绘制通风系统轴侧图(如图6-8),对个管段进行编号,标注各管段的长度和风量。以风量和风速不变的风管为一管段。一般从距风机最远的一段开始。由远而近顺序编号。管段长度按两个管件中心线的长度计算,不扣除管件(如弯头、三通)本身的长度。 2、选择合理的空气流速。风管内的风速对系统的经济性有较大影响。流速高、风管断面小,材料消耗少,建造费用小;但是,系统压力损失增大,动力消

管道的水力计算及强度计算.

第三章管道的水力计算及强度计算 第一节管道的流速和流量 流体最基本的特征就是它受外力或重力的作用便产生流动。如图3—1所示装置,如把管道中的阀门打开,水箱内的水受重力作用,以一定的流速通过管道流出。如果水箱内的水位始终保持不变,那么管道中的流速也自始至终保持不变。管道中的水流速度有多大?每小时通过管道的流量是多少?这些都是实际工作中经常遇到的问题。 图3—1水在管道内的流动 为了研究流体在管道内流动的速度和流量,这里先引出过流断面的概念。图3—2为水通过管道流动的两个断面1—1及2—2,过流断面指的是垂直于流体流动方向上流体所通过的管道断面,其断面面积用符号A来表示,它的单位为m2或cm2。 图32管流的过流断面 a)满流b)不满流 流量是指单位时间内,通过过流断面的流体体积。以符号q v表示,其单位为m3/h,cm3/h或m3/s,cm3/s。 流速是指单位时间内,流体流动所通过的距离。以符号。表示,其单位为m/s或cm /s。 图3—3管流中流速、流量、过流断面关系示意图

流量、流速与过流断面之间的关系如下: 以水在管道中流动为例,如图3—3所示,在管段上取过流断面1—1,如果在单位时间内水从断面1—1流到断面2—2,那么断面1—1和断面2—2所包围的管段的体积即为单位时间内通过过流断面1—1时水的流量q v,而断面1—1和断面2—2之间的距离就是单位时间内水流所通过的路程,即流速。 由上可知,流量、流速和过流断面之间的关系式为 q v=vA (3—1) 式(3—1)叫做流量公式,它说明流体在管道中流动时,流速、流量和过流断面三者之间的相互关系,即流量等于流速与过流断面面积的乘积。如果在一段输水管道中,各过流断面的面积及所输送的水量一定,即在管道中途没有支管与其连接,既没有水流出,也没有水流入,那么管道内各过流断面的水流速度也不会变化;若管段的管径是变化的(即过流断面的面积A是变化的),那么管段中各过流断面处的流速也随着管径的变化而变化。当管径减小时,流速增大;而当管径增大时,流速即减小。然而,当流速一定时,流量的变化随管径成几何倍数变化,而不是按算术倍数变化。因为在管流中,管道的过流断面面积与管径的平方成正比。也就是说,管径扩大到原来的2倍、3倍、4倍时,面积增加到原来的4倍、9倍、16倍。如DN50mm的管子过流断面面积是DN25mm的管子的4倍,那么在流速相等的条件下,DN50mm管子中所通过的流量即是DN25mm管子的4倍;同理,DNlOOmm的管道内所通过的流量应是DN25mm管子的16倍。在日常施工中,常有人认为在流速一定时,管径之比就是所输送的流量之比,这无疑是错误的。 以上提到的以m3/h和cm3/s等为单位的流量又称为体积流量。如果指的是在单位时间内通过过流断面的流体质量时,该流量则称为质量流量,以符号qm表示,常采用的单位为kg/h或kg/s。质量流量与体积流量之间的关系为 qm=ρq v 而由式(3—1)知 q v=vA 则 q m=ρvA (3—2) 式中q m——质量流量(kg/s); ρ——流体的密度,即单位体积流体的质量(ks/m3); V——流体通过过流断面的平均流速(m/s); A——过流断面面积(m2)。 例管径为DNlOOmm的管子,输送介质的流速为lm/s时,其小时流量为多少? 解DNlOOmm管子的过流断面面积为 A=πD3/4=3.14×0.12/4=0.00785m2 则q v=1×0.00785×3600=28.3m3/h 答:该管道的小时流量为28.3m3/h。 第二节管道的阻力损失 流体在管渠中流动时,过流断面上各点的流速并不是相同的。例如在河沟中,靠近岸边的水,流动较慢;而河沟中心的水,流速就较大。管道内流动的流体也是如此,靠近管内壁面的流体流速较小,处在管中心的流体流速最大。产生这一现象的原因在于,流体流动时与管内壁面发生摩擦产生阻力,同时管内流体各流层之间由于流速的变化而引起相对运动所产生的内摩擦阻力,也阻挠流体的运动。流体在流动中,为了克服阻力就要消耗自身所具有的机械能,我们称这部分被消耗掉的能量为阻力损失。流体的性质不同,流动状态相同,流动时所产生的阻力损失大小也不同。流动是产生阻力损失的外部条件,流速越高,流体与管壁及流体自身之间的摩擦就越剧烈,阻力也就越大。相反,流速越小,摩擦减弱,阻力也就越

鸿业暖通_风管水力计算使用说明

目录 目录 (1) 第1 章风管水力计算使用说明 (2) 1.1 功能简介 (2) 1.2 使用说明 (3) 1.3 注意 (8) 第2 章分段静压复得法 (9) 2.1 传统分段静压复得法的缺陷 (9) 2.2 分段静压复得法的特点 (10) 2.3 分段静压复得法程序计算步骤 (11) 2.4 分段静压复得法程序计算例题 (11)

第 1 章风管水力计算使用说明 1.1功能简介 命令名称:FGJS 功能:风管水力计算 命令交互: 单击【单线风管】【水力计算】,弹出【风管水力计算】对话框,如图1-1所示: 图1-1 风管水力计算对话框 如果主管固定高度值大于0,程序会调整风系统中最长环路 的管径的高度为设置值。

如果支管固定高度值大于0,程序会调整风系统中除开最长 环路管段外的所有管段的管径的高度为设置值。 控制最不利环路的压力损失的最大值,如果程序算出的最不 利环路的阻力损失大于端口余压,程序会提醒用户。 当用户需要从图面上提取数据时,点取搜索分支按钮,根据 程序提示选取单线风管。当成功搜索出图面管道系统后,最 长环路按钮可用,单击可以得到最长的管段组。 计算方法程序提供的三种计算方法,静压复得法、阻力平衡法、假定 流速法,可以改变当前的选项卡,就会改变下一步计算所用 的方法,而且在标题栏上会有相应的提示。 计算结果显示包含搜索分支里面选取的管段的一条回路的各个管段数 据。 1.2使用说明 1.从图面上提取数据 单击按钮 2.从文件中提取数据(如果是从图面上提取数据则这步可以跳过) 单击按钮 从打开文件对话框从选取要计算的文件,确定即可。 3.选择要计算的方法,设置好相应的参数 静压复得法: 是最不利环路最末端的分支管(不是从最 后一根支管)的风速。

给排水水力计算工具集

给排水水力计算工具集 *********************************************************** ******************** 版本号:1.1 更新日期:2004.7.28 版本更新说明: 1.修正了给水水力计算默认管材下改变温度时计算报错的bug; 2.修正了排水水力计算铸铁管和PVC-U排水管管径变化时无法 自动调整坡度的bug,修正了PVC-U管材计算内径。 *********************************************************** ******************** 摘要依据国家最新规范及标准图等,并通过实际工程应用,设计开发的给排水计算工具。 关键词给排水设计计算软件开发Visual Basic 从事给排水设计过程中,使用过一些他人开发的计算软件,发现有些软件的操作不太方便,功能不全,毕业到现在2年来,机器上积攒了不少软件,存在功能交叉,管理不便,同时由于新规范的颁布,有些计算方法已不能满足新规范要求,为此决定开发一个功能相对集成的软件。部分版块参考相关软件进行界面设计,经过数月内部测试,目前v1版基本完成,主要包括如下版块:给水水力计算、满流非满

流水力计算、雨水水力计算、消火栓水力计算、灭火器配置计算、化粪池选型、钢制管件、防水套管、排水管件。下面将介绍各版块的设计依据及设计思路。https://www.doczj.com/doc/bb3218084.html, 中国最大的管理资料库下载 1. 给水水力计算 用于钢衬塑复合管、PP-R 冷、热水管、薄壁不锈钢管、衬树脂铸铁管、普通钢管、铸铁管、铜管的水力计算。 设计依据 《建筑给排水设计规范》 GB50015-2003 《给水排水设计手册》第二版 《2003全国民用建筑工程设计技术措施》给排水分册 沿程水头损失h i =k ·i ·L= k ·105C h -1.85d j -4.87q g 1.85·L, 流速v= 2g 4 1q j d S h i -沿程水头损失 i-单位长度水头损失 d j -管道计算内径

排水雨水管网设计计算说明书

仲恺农业工程学院实践教学 给水排水管网工程综合设计——排水管网计算书 (2013—2014 学年第二学期) 班级给排1x1 姓名 xxx 学号 201210524125 设计时间 2014.6.26 ~ 2014.7.3 指导老师 xxxxxxxxxxxxxxx 成绩 城市建设学院

目录 1 设计原始资料 (1) 1.1 城镇概况 (1) 1.2 气候情况 (1) 1.3 排水情况 (1) 2 排水管段设计流量计算 (1) 2.1 污水管道的布置 (1) 2.2 居民生活污水计算 (2) 2.3 街坊面积总面积计算 (2) 2.4集中用户污水计算 (4) 2.5面积比流量计算 (4) 2.6 污水干管设计流量 (4) 2.7污水管网主干管水力计算 (6) 3 管道总平面图及纵剖面计算成果图绘制 (8) 4 污水设计总结 (8) 5 雨水管段设计流量计算 (8) 5.1 主要设计参数 (8) 5.2 各设计管段的设计流量 (9) 5.3 计算步骤 (9) 5.4 雨水管网主干管水力计算 (10) 5.5 雨水设计总结 (11)

1 设计原始资料 1.1 城镇概况 A 城市位于我国华南地区,该城市是广东省辖县级市,自然资源丰富,交通便利。市区地势平坦,主要建在平原上,城市中间以铁路为界,分为两个生活区:Ⅰ区和Ⅱ区。均有给水排水设备,自来水普及率100%。 1.2 气候情况 ① 市内多年来的极端高温38.7℃,每年6~8月份的气温最高。而到了冬季(12~2月)温度较低,多年来的极端低温为0℃。 ② 年平均相对湿度为65%,春季湿度大,约为65~90%; ③ 雨季集中在4~9月份,这段时间的降雨量占全年降雨量的80%以上,4~9月份为受热带气旋影响的主要时段,降雨量大,多出现暴雨,年平均降雨量为1930mm ,多集中在6-9月,占全年降雨量的70%。 1.3 排水情况 城市用水按19万人口设计,居民最高日用水量按210 (d cap L )。生活污水排水量按给水的90%计算。街坊污水排入区域排水管网,区域排水管网再将接入城市的排水管道系统,最后到污水处理厂进行处理。 2 排水管段设计流量计算 2.1 污水管道的布置 2.1.1 地形坡度 地势由西南方向东北方逐渐降低,但总体变化趋势不大。 2.1.2 河流流向 该城市沿市区南部有一条由北至南流向的河流,综合地势原因,污水厂设在地势较低处。

输水管道水力计算公式

输水管道水力计算公式 1.常用的水力计算公式: 供水工程中的管道水力计算一般均按照均匀流计算,目前工程设计中普遍采用的管道水力计算公式有: 达西(DARCY )公式: g d v l h f 22 **=λ (1) 谢才(chezy )公式: i R C v **= (2) 海澄-威廉(HAZEN-WILIAMS )公式: 87 .4852.1852.167.10d C l Q h h f ***= (3) 式中 h f -----------沿程损失,m λ----------沿程阻力系数 l -----------管段长度,m d-----------管道计算内径,m g-----------重力加速度,m/s 2 C-----------谢才系数 i------------水力坡降; R-----------水力半径,m Q-----------管道流量m/s 2 v------------流速 m/s C n -----------海澄―威廉系数 其中达西公式、谢才公式对于管道和明渠的水力计算都适用。海澄-威廉公式影响参数较小,作为一个传统公式,在国内外被广泛用于管网系统计算。三种水力计算公式中 ,与管道内壁粗糙程度相关的系数均是影响计算结果的重要参数。 2.规范中水力计算公式的规定 3.查阅室外给水设计规范及其他各管道设计规范,针对不同的设计条件,推荐 采用的水力计算公式也有所差异,见表1: 表1 各规范推荐采用的水力计算公式

3.1达西公式 达西公式是基于圆管层流运动推导出来的均匀流沿程损失普遍计算公式,该式适用于任何截面形状的光滑或粗糙管内的层流和紊流。公式中沿程阻力系数λ值的确定是水头损失计算的关键,一般采用经验公式计算得出。舍维列夫公式,布拉修斯公式及柯列勃洛克(C.F.COLEBROOK )公式均是针对工业管道条件计算λ值的著名经验公式。 舍维列夫公式的导出条件是水温10℃,运动粘度1.3*10-6 m 2/s,适用于旧钢管和旧铸铁管,紊流过渡区及粗糙度区.该公式在国内运用较广. 柯列勃洛可公式)Re 51.27.3lg(21 λ λ+?*-=d (Δ为当量粗糙度,Re 为雷诺数)是根据大量工业管道试验资料提出的工业管道过渡区λ值计算公式,该式实际上是泥古拉兹光滑区公式和粗糙区公式的结合,适用范围为4000

风管的水力计算

风管的水力计算 1、对各管段进行编号,标注管段长度和风量 2、选到管段1-2-3-4-5-6为最不利环路,逐步计算摩擦阻力和局部阻力管段 1-2: 摩擦阻力部分: L=2300,单位长度摩擦阻力Rm=0.88Pa,?Pm1-2=0.88*2.3=2Pa 局部阻力部分: 该段的局部阻力的部件有双层百叶送风口、渐扩口、弯头、多页调节阀、裤衩 三通 双层百叶送风口:查得ζ=3, 渐扩口:查得ζ=0.6 弯头:ζ=0.39 多页调节阀:ζ=0.5 裤衩三通:ζ=0.4,V=3.47m/s 汇总的1-2段的局部阻力为=(3+0.6+0.39+0.5+0.4)*1.2*3.47*3.47/2=35.3Pa 所以1-2段的总阻力为:35.3+2=37.3Pa 管段2-3: 摩擦阻力部分: L=2250,单位长度摩擦阻力Rm=1.0Pa,?Pm1-2=1.0*2.25=2.25Pa 局部阻力部分: 该段的局部阻力的部件有多页调节阀、裤衩三通 多页调节阀:ζ=0.5 裤衩三通:ζ=0.4,V=4.34m/s

汇总的2-3段的局部阻力为=(0.5+0.4)*1.2*4.34*4.34/2=10.2Pa 所以2-3段的总阻力为:2.25+10.2=12.5Pa 管段3-4: 摩擦阻力部分: L=8400,单位长度摩擦阻力Rm=1.33Pa,?Pm1-2=1.33*8.4=11.2Pa 局部阻力部分: 该段的局部阻力的部件有四通:ζ=1,V=5.56m/s 局部阻力=1*1.2*5.56*5.56/2=18.5Pa 所以管段3-4的总阻力 为:11.2+18.5=29.7Pa 管段4-5: 摩擦阻力部分: L=1100,单位长度摩擦阻力Rm=0.93Pa,?Pm1-2=0.93*1.1=1.023Pa 局部阻力部分: 该段的局部阻力的部件有70?防火阀、静压箱 70?多页调节阀:ζ=0.5,V=5.56m/s 静压箱的阻力约30Pa 局部阻力=0.5*1.2*5.56*5.56/2+30=39.25Pa 所以管段4-5的总阻力 为:1.023+9.25+30=40.25Pa 管段5-6: 单层百叶风口:ζ=3,V=3.17m/s 静压箱的阻力约30Pa 局部阻力=3*1.2*3.17*3.17/2+30=48Pa 所以管段5-6的总阻力为:48Pa 机外余压=机外静压+机外动压=沿程阻力+局部阻力+风管系统最远送风口的动压 =37.3+12.5+29.7+40.25+48+1.2*3.47*3.47/2=175Pa 机外静压=机外余压-设备出口处的动压

球墨铸铁管的水力计算

球墨铸铁管的水力计算的探讨 圣戈班管道系统有限公司李华成 一、前言 在二十世纪九十年代以前,绝大多数供水管材都是灰口铸铁管,依据我国27个大中城市的给水管材的调查数据,灰口铸铁管所占的比例为84.72%。在长期的使用过程中,灰口铸铁管有着十分成熟的设计规范、设计标准图集和施工规范。这些都给管道生产商、设计单位、施工单位带来了很大的便利。 球墨铸铁管是在灰口铸铁管基础上的一次新的革命。它不但继承了灰口管抗腐蚀、耐磨等优点,而且其机械性能远大于灰口管,更接近于钢管。随着球墨铸铁管进入中国市场,越来越多的自来水公司和建设单位了解和掌握球墨铸铁管的性能,球墨铸铁管成为供水管材的主导产品,并逐步取代灰口铸铁管,这已成为不争的事实。 但是遗憾的是,我国许多关于球墨铸铁管的设计、施工、验收规范都没有及时地推出,给管线的建设带来了无法可依的局面。由于标准的缺乏,现行的做法是只能套用灰口铸铁管的规范。我们知道,球墨铸铁管与灰口铸铁管相比,无论是管材的本身、接口防腐层、管线设计、安装、验收都有很大的不同,直接套用所产生的误差也是相当大的,对管线的正常运行,经济效益都带来了重大影响。 主要的问题如下: -管线的设计,由于球墨铸铁管内喷涂一层光滑的水泥内衬,粗糙度k约为0.03;而灰口铸铁管没有内衬保护,在管线运行一段时间后,会有一层腐蚀,粗糙度k约为0.2 ~ 0.3。 由此,两种管道的水力阻力系数会有很大的不同。由于这类的问题非常突出,本文就此进行了详细的阐述,并进行了技术、经济上的比较。 -管道的安装,球墨铸铁管一般采用T型滑入式柔性接口,灰口铸铁管接口比较多,如,青铅接口、膨胀水泥接口、石棉水泥接口等,这些均属于刚性接口。球墨铸铁管的安装相对简单得多,在生产厂家提供技术安装手册或技术人员亲临指导下,很容易掌握,所以安装问题并没有给建设单位造成多大的困难。但应当说明是,球墨铸铁管的安装标准,包括一些特殊接头的安装,在现行的大多数设计施工规范中都没有体现,这样的形势是无法另人满意的。 -水泥支墩,我国给排水标准图集S3中,有对水泥支墩的定义,它的设计依据是由1965年北京、上海、成都三个地区灰口铸铁管的试验做出的。由于管材、接口形式等不同,图集中的支墩尺寸并不适合于球墨铸铁管。如果能推出一系列球墨铸铁管水泥支墩的安装图集,将给管线的设计、施工带来很大的便利。 -工程的水压试验,现行的GB50268-97《给水排水管道工程施工及验收规范》的水压试验中一些方法及一些参数的取值均不合理,已经不适应于球墨铸铁管的验收要求。目前,郑州自来水公司在工程建设中积累了大量的试验数据,对水压试验的修订提供了许多宝贵的建议,这些都为球墨铸铁管在中国的发展有着积极地推动作用。 -产品标准的陈旧与错误,GB13295-91及GB13294-91历经了十几年没有更新,已不能跟上球墨铸铁管的发展。另外,GB13295-91还包含着一些错误,例如,DN700管道的重量(K9级,标准工作长度6m)为1126kg,如果按照承口部分的重量加上直管部分的重量计算,其结果是1123kg。两者的结果相差3kg,显然是不合理的。新的国家标准GB/T13295-200X已经出台了报批稿,那么新版本也将正式推出,这无疑是个值得庆贺的好消息。 总之,一方面,球墨铸铁管的使用得到了供水行业决大多数技术专家的认同;另一方面,

风管的水力计算

1、对各管段进行编号,标注管段长度和风量 2、选到管段1-2-3-4-5-6为最不利环路,逐步计算摩擦阻力和局部阻力 管段1-2: 摩擦阻力部分: L=2300,单位长度摩擦阻力Rm=0.88Pa,△Pm1-2=0.88*2.3=2Pa 局部阻力部分: 该段的局部阻力的部件有双层百叶送风口、渐扩口、弯头、多页调节阀、裤衩三通 双层百叶送风口:查得ζ=3, 渐扩口:查得ζ=0.6 弯头:ζ=0.39 多页调节阀:ζ=0.5 裤衩三通:ζ=0.4,V=3.47m/s 汇总的1-2段的局部阻力为=(3+0.6+0.39+0.5+0.4)*1.2*3.47*3.47/2=35.3Pa 所以1-2段的总阻力为:35.3+2=37.3Pa 管段2-3: 摩擦阻力部分: L=2250,单位长度摩擦阻力Rm=1.0Pa,△Pm1-2=1.0*2.25=2.25Pa 局部阻力部分: 该段的局部阻力的部件有多页调节阀、裤衩三通 多页调节阀:ζ=0.5 裤衩三通:ζ=0.4,V=4.34m/s 汇总的2-3段的局部阻力为=(0.5+0.4)*1.2*4.34*4.34/2=10.2Pa 所以2-3段的总阻力为:2.25+10.2=12.5Pa 管段3-4: 摩擦阻力部分: L=8400,单位长度摩擦阻力Rm=1.33Pa,△Pm1-2=1.33*8.4=11.2Pa 局部阻力部分: 该段的局部阻力的部件有四通:ζ=1,V=5.56m/s

局部阻力=1*1.2*5.56*5.56/2=18.5Pa 所以管段3-4的总阻力为:11.2+18.5=29.7Pa 管段4-5: 摩擦阻力部分: L=1100,单位长度摩擦阻力Rm=0.93Pa,△Pm1-2=0.93*1.1=1.023Pa 局部阻力部分: 该段的局部阻力的部件有70℃防火阀、静压箱 70℃多页调节阀:ζ=0.5,V=5.56m/s 静压箱的阻力约30Pa 局部阻力=0.5*1.2*5.56*5.56/2+30=39.25Pa 所以管段4-5的总阻力为:1.023+9.25+30=40.25Pa 管段5-6: 单层百叶风口:ζ=3,V=3.17m/s 静压箱的阻力约30Pa 局部阻力=3*1.2*3.17*3.17/2+30=48Pa 所以管段5-6的总阻力为:48Pa 机外余压=机外静压+机外动压=沿程阻力+局部阻力+风管系统最远送风口的动压 =37.3+12.5+29.7+40.25+48+1.2*3.47*3.47/2=175Pa 机外静压=机外余压-设备出口处的动压 =175-1.2*5.56*5.56/2=156.5Pa 风管不平衡率的计算: 风管4-7-8的总阻力为: 管段8-7: 摩擦阻力部分: L=2300,单位长度摩擦阻力Rm=0.89Pa,△Pm1-2=0.89*2.3=2Pa 局部阻力部分: 该段的局部阻力的部件有双层百叶送风口、渐扩口、弯头、多页调节阀、裤衩三通

雨水管网设计说明

5 雨水管网设计说明 5.1 雨水量计算 (1)暴雨强度公式 我国常用的暴雨强度公式为:() ()n b t P c A q ++=lg 11671……………………(式5—1) 式中 q —— 设计暴雨强度(L/s ·ha ) P —— 设计重现期(a ) t —— 降雨历时(min ) A1、c 、b 、n —— 地方参数,根据统计方法计算确定。 根据所处地区分别选用不同的暴雨强度公式,经过查表的本设计地区福建福安的暴雨强度公式为:() ()688.0409.8lg 536.01072.2060++=t P q ………………………………(式5—2) 重现期:一般地区重现期为0.5~3年,重要地区3~5年,本设计地区取值为3年 降雨历时:21mt t t +=………………………………………………………(式5—3) .(min)602i i v L t ∑=…………………………………………………(式5—4) 式中 t —— 设计降雨历时(min ) t1 —— 地面集水时间(min ),取5~15min ,本设计地区取值为10 min t2 —— 管渠内雨水流行时间(min ) m —— 折减系数,暗管取2,明渠取1.2,本设计都为暗管,即取值为2 L —— 设计断面上游各管道的长度(m ) V —— 上游各管道中的设计流速(m/s ) (2)径流系数ψ计算 通常根据排水流域内各类地面的面积数或所占比例,采用加权平均法计算出该排水流域的平均径流系数。也可根据规划的地区类别,采用区域综合径流系数,本设计地区采用区域综合径流系数,并取值为0.5。

(3)实际地面径流量即雨水管渠设计流量Q 计算 按推理公式:qF Q ψ=………………………………………………(式5—5) 式中 Q ——计算汇水面积的设计最大径流量,亦即要排除的雨水设计流量(L/S ) q ——雨峰时段内的平均设计暴雨强度[(L/S) /2hm ] ψ——径流系数 F ——计算汇水面积(2hm ) 把(式5-2)、(式5-3)和ψ=0.5代入(式5-5)得 ∑∈+++=i k k i i F t Q 5.0)409.8210()3lg 536.01(072.2060688.02…………………………………(式5—6) 式中Q i ——管段的设计流量(L/s ) t2i ——管段i 的计算流经时间(min ) Fk ——管段i 上游各集水面积(2hm ) 5.2 雨水管网定线(分散排放和集中排放相结合) (1)充分利用地形,就近排入水体。 雨水管渠应尽量利用自然地形坡度布置,要以最短的距离靠重力流将雨水排入附近的池塘、河流、湖泊等水体中。在每一排水流域内,结合建筑物及雨水口分布,充分利用各排水流域内的自然地形,布置管道,使雨水以最短距离靠重力流就近排入水体。 (2)出水口布置: 当管道将雨水排入池塘或小河时,水位变化小,出水口构造简单,宜采用分散出水口。当河流等水体的水位变化很大,管道的出水口离常水位较远时,出水口的构造就复杂,因而造价较高,此时宜采用集中出水口式布置形式。一般按主干管、干管、支管的顺序进行布置各流域的主干管、干管和支管的具体位置见《雨水计算图》。 5.3 划分设计管段(管材采用钢筋混凝土) 设计管段:把两个检查井之间流量不变且预计管径和坡度也不变的管段定为设计管段。划分设计管段方法:只是估计可以采用同样管径和坡度的连续管段,就可以划作一个设计管段。根据管道的平面布置图,凡有集中流量流入,有旁侧管接入的检查井均可作为设计管段的起止点。 设计管段检查井从上游往下游依次编号,具体位置见《雨水计算图》。

水力计算说明书

水力计算说明书 一.风管水力计算 风管压力损失计算的根本任务是解决如下两个问题:设计计算和校核计算。确定好设备布置、风量、管道走向等之后,应经济合理地确定风管的断面尺寸,以保证实际风量符合设计要求;计算系统总阻力,以确定风机的型号及相应的电机;计算风机及相应电机是否满足要求。 本设计中,风管压力损失计算根据《实用供热空调设计手册》风管计算方法来确定。水力计算的方法及步骤如下: (1)计算步骤: ①绘制空调系统轴测图,并对各段风管进行编号,标注。 ②设定风管内的合理流速。 ③根据各风管的风量和选择的流速确定各管段的断面尺寸,计算沿程阻力和局部阻力。 ④与最不利环路并联的管路的阻力平衡计算。 为了保证各送风点达到预期的风量,必须进行阻力平衡计算。一般的空调系统要求并联管路之间的不平衡率应不超过15%。若超出上述规定,则应采用下面几种方法使其阻力平衡。 ①在风量不变的情况下,调整支管管径; ②在支管断面尺寸不变情况下,适当调整支管风量; ③在风量不变的情况下,在支管加平衡阀。 (2)系统总阻力的计算 计算风管的压力损失:通过对风管的沿程压力损失和局部压力损失的计算,最终确定风管的尺寸。 ①矩形风管截面积: 3600 ×= V L S 其中:L 为风管的流量,单位:m3/h V 为风管假定的流速,单位:m/s ,本设计中取V=9m/s ②沿程压力损失: L R P m m =Δ 其中:R m 为单位长度的比摩阻, Pa/m L 为管长,m

③局部压力损失: 2 ρξp 2 m v = 其中:ξ为局部阻力系数; ρ为空气的密度,kg/m 3 ν与ξ对应的风道断面平均速度,m/s 。 ④风管的压力损失 s j m P P P P ΔΔΔΔ++= 其中, s P Δ为风系统设备阻力,Pa 。 (2)计算最不利环路的压力损失 计算结果如下: 各机组出口送风管管径汇总 风管管径 空调机组 楼层 设备型号 送风量m3/h 制冷量KW 机组管径 长*宽 实际流速 覆盖区域散流器个数 负一层 KBG50-4 8623.8 135 630*320 11.13 9 KBG80-6 8623.8 135 800*320 10.65 9 KBG120-4 11498.4 180 1000*400 9.98 12 KBG70-4 7665.6 120 800*320 10.45 8 KBG70-4 5749.2 90 630*320 11.09 6 KBG80-4 8623.8 135 800*320 10.87 9 KBG60-4 5749.2 90 630*320 11.02 6 KBG80-4 5749.2 90 630*320 10.78 6 KBG70-4 7665.6 120 630*320 10.34 8 KBG70-4 7665.6 120 630*320 10.75 8 KBG70-4 7665.6 120 630*320 10.35 8 KBG100M-4 14373 225 1000*400 9.57 15 KBG140-4 14373 225 1000*400 9.43 15 KBG70-4 7665.6 120 630*320 10.57 8 KBG70M-4 4791 75 630*320 11.01 5 一层 KBG120-6 15264.2 229.6 800*400 12.02 14 KBG120-4 15264.2 229.6 1000*400 11.93 14 KBG80-4 9812.7 147.6 1000*320 10.83 9 KBG80-4 11993.3 180.4 800*320 11.59 11 KBG80-4 10903 164 630*320 12.45 10 KBG80-4 9812.7 147.6 800*320 10.37 9

风道设计计算的方法与步骤

风道设计计算的方法与步骤 评论(3)浏览(1777)[转帖]2010-7-23 15:03:56 §8.3 风道设计计算的方法与步骤 一.风道水力计算方法 风道的水力计算是在系统和设备布置、风管材料、各送、回风点的位置和风量均已确定的基础上进行的。 风道水力计算方法比较多,如假定流速法、压损平均法、静压复得法等。对于低速送风系统大多采用假定流速法和压损平均法,而高速送风系统则采用静压复得法。 1.假定流速法 假定流速法也称为比摩阻法。这种方法是以风道内空气流速作为控制因素,先按技术经济要求选定风管的风速,再根据风管的风量确定风管的断面尺寸和阻力。这是低速送风系统目前最常用的一种计算方法。 2.压损平均法 压损平均法也称为当量阻力法。这种方法以单位管长压力损失相等为前提。在已知总作用压力的情况下,取最长的环路或压力损失最大的环路,将总的作用压力值按干管长度平均分配给环路的各个部分,再根据各部分的风量和所分配的压力损失值,确定风管的尺寸,并结合各环路间的压力损失的平衡进行调节,以保证各环路间压力损失的差值小于15%。一般建议的单位长度风管的摩擦压力损失值为0.8~1.5Pa/m。该方法适用于风机压头已定,以及进行分支管路压损平衡等场合。 3.静压复得法 静压复得法的含义是,由于风管分支处风量的出流,使分支前后总风量有所减少,如果分支前后主风道断面变化不大,则风速必然下降。风速降低,则静压增加,利用这部分“复得”的静压来克服下一段主干管道的阻力,以确定管道尺寸,从而保持各分支前的静压都相等,这就是静压复得法。此方法适用于高速空调系统的水力计算。 <<返回 二.风道水力计算步骤 以假定流速法为例: 1.确定空调系统风道形式,合理布置风道,并绘制风道系统轴测图,作为水力计算草图。 2.在计算草图上进行管段编号,并标注管段的长度和风量。 管段长度一般按两管件中心线长度计算,不扣除管件(如三通、弯头)本身的长度。 3.选定系统最不利环路,一般指最远或局部阻力最多的环路。

风路系统水力计算

风路系统水力计算 1 水力计算方法简述 目前,风管常用的的水力计算方法有压损平均法、假定流速法、静压复得法等几种。 1.压损平均法(又称等摩阻法)是以单位长度风管具有相等的摩擦压力损失 m p ?为前提 的,其特点是,将已知总的作用压力按干管长度平均分配给每一管段,再根据每一管段的风量和分配到的作用压力,确定风管的尺寸,并结合各环路间压力损失的平衡进行调整,以保证各环路间的压力损失的差额小于设计规范的规定值。这种方法对于系统所用的风机压头已定,或对分支管路进行压力损失平衡时,使用起来比较方便。 2.假定流速法 是以风管内空气流速作为控制指标,这个空气流速应按照噪声控制、风管本身的强度,并考虑运行费用等因素来进行设定。根据风管的风量和选定的流速,确定风管的断面尺寸,进而计算压力损失,再按各环路的压力损失进行调整,以达到平衡。各并联环路压力损失的相对差额,不宜超过15%。当通过调整管径仍无法达到要求时,应设置调节装置。 3.静压复得法(略,具体详见《实用供热空调设计手册》之11.6.3) 对于低速机械送(排)风系统和空调风系统的水力计算,大多采用假定流速法和压损平均法;对于高速送风系统或变风量空调系统风管的水力计算宜采用静压复得法。工程上为了计算方便,在将管段的沿程(摩擦)阻力损失m P ?和局部阻力损失 j P ?这两项进行叠加时, 可归纳为下表的3种方法。 将m P ?与 j P ?进行叠加时所采用的计算方法 计算方法名称 基本关系式 备注 单位管长压力损失法(比摩阻法) 管段的全压损失 ) (2 222j m e j m P l p V l V d P l P P ?+?=+= ?+?=?ρζρ λ P ?——管段全压损失,Pa ; m p ?——单位管长沿程摩擦阻力,Pa/m 用于通风、空 调的送(回)风和排风系统的压力损失计算,是最常用的方法 当量长度法 2222ρ ζρ λV V d l e e = 风管配件的当量长度 λζ e e d l = 常见用静压 复得法计算高速风管或低速风管系统的压力损失。提供各类常用风管配

水力计算公式选用

长距离输水管道水力计算公式的选用 1. 常用的水力计算公式: 供水工程中的管道水力计算一般均按照均匀流计算,目前工程设计中普遍采用的管道水力计算公式有: 达西(DARCY )公式: g d v l h f 22 **=λ (1) 谢才(chezy )公式: i R C v ** = (2) 海澄-威廉(HAZEN-WILIAMS )公式: 87 .4852 .1852 .167.10d C l Q h h f ***= (3) 式中h f ------------沿程损失,m λ―――沿程阻力系数 l ――管段长度,m d-----管道计算内径,m g----重力加速度,m/s 2 C----谢才系数 i----水力坡降; R ―――水力半径,m Q ―――管道流量m/s 2 v----流速 m/s C n ----海澄――威廉系数 其中大西公式,谢才公式对于管道和明渠的水力计算都适用。海澄-威廉公式影响参数较小,作为一个传统公式,在国内外被广泛用于管网系统计算。三种水力计算公式中 ,与管道内壁粗糙程度相关的系数均是影响计算结果的重要参数。 2. 规范中水力计算公式的规定 3. 查阅室外给水设计规范及其他各管道设计规范,针对不同的设计条件,推荐采用的水力 计算公式也有所差异,见表1: 表1 各规范推荐采用的水力计算公式

4. 公式的适用范围: 3.1达西公式 达西公式是基于圆管层流运动推导出来的均匀流沿程损失普遍计算公式,该式适用于任何截面形状的光滑或粗糙管内的层流和紊流。公式中沿程阻力系数λ值的确定是水头损失计 算的关键,一般采用经验公式计算得出。舍维列夫公式,布拉修斯公式及柯列勃洛克(C.F.COLEBROOK )公式均是针对工业管道条件计算λ值的著名经验公式。 舍维列夫公式的导出条件是水温10℃,运动粘度1.3*10-6 m 2/s,适用于旧钢管和旧铸铁管,紊流过渡区及粗糙度区.该公式在国内运用教广. 柯列勃洛可公式 )Re 51.27.3lg( 21 λ λ + ?*-=d (Δ为当量粗糙度,Re 为雷诺数)是 根据大量工业管道试验资料提出的工业管道过渡区λ值计算公式,该式实际上是泥古拉兹光滑区公式和粗糙区公式的结合,适用范围为4000

相关主题
相关文档 最新文档