当前位置:文档之家› 高中数学新人教A版选修1-1教学设计:第2章 圆锥曲线与方程 教案(1)

高中数学新人教A版选修1-1教学设计:第2章 圆锥曲线与方程 教案(1)

高中数学新人教A版选修1-1教学设计:第2章 圆锥曲线与方程 教案(1)
高中数学新人教A版选修1-1教学设计:第2章 圆锥曲线与方程 教案(1)

圆锥曲线与方程

课 题:小结与复习

教学目的:

1. 椭圆的定义、标准方程、焦点、焦距,椭圆的几何性质,椭圆的画法; 双曲线

的定义、标准方程、焦点、焦距,双曲线的几何性质,双曲线的画法,等轴双曲线;抛物线的定义、标准方程、焦点、焦距,抛物线的几何性质,抛物线的画法, 2. 结合教学内容对学生进行运动变化和对立统一的观点的教育

教学重点:椭圆、双曲线、抛物线的定义、方程和几何性质;坐标法的应用.

教学难点:椭圆、双曲线的标准方程的推导过程;利用定义、方程和几何性质求有关焦点、

焦距、准线等.

授课类型:复习课 课时安排:1课时

教 具:多媒体、实物投影仪 教学过程: 一、课前预习 椭 圆 双曲线 抛物线 定义

标准方程

图形 顶点坐标 对称轴 焦点坐标 渐近线方程

二、复习引入: 名 称

椭 圆

双 曲 线

图 象

x

O

y

x

O

y

平面内到两定点21,F F 的距离的和

平面内到两定点21,F F 的

定 义

为常数(大于21F F )的动点的轨迹叫椭圆即a MF MF 221=+ 当2a ﹥2c 时,轨迹是椭圆, 当2a =2c 时,轨迹是一条线段

21F F

当2a ﹤2c 时,轨迹不存在

距离的差的绝对值为常数(小于21F F )的动点的轨迹叫双曲线即a MF MF 221=- 当2a ﹤2c 时,轨迹是双曲线

当2a =2c 时,轨迹是两条射线

当2a ﹥2c 时,轨迹不存在

标准方 程

焦点在x 轴上时:

12

2

22=+b y a x 焦点在y 轴上时:12222=+b

x a y 注:是根据分母的大小来判断焦点在哪一坐标轴上

焦点在x 轴上时:

12222

=-b

y a x 焦点在y 轴上时:122

2

2=-b x a y 常数

c

b a ,,的关 系

2

2

2

b c a +=,0>>b a ,

a 最大,

b

c b c b c ><=,,

222b a c +=,0>>a c

c

最大,可以

b a b a b a ><=,,

渐近线

焦点在x 轴上时:

0=-b

y

a x 焦点在y 轴上时: 0=-b

x

a y 抛物线:

图形

x

y

O

F

l

x

y

O F

l

程 )0(22>=p px y )0(22>-=p px y )0(22>=p py x )0(22>-=p py x

焦点

)0,2

(p )0,2(p -

)2

,0(p

)2

,0(p -

三、章节知识点回顾:

椭圆、双曲线、抛物线分别是满足某些条件的点的轨迹,由这些条件可以求出它们的标

x

y O F

l

x

y

O

F l

准方程,并通过分析标准方程研究这三种曲线的几何性质

1.椭圆定义:在平面内,到两定点距离之和等于定长(定长大于两定点间的距离)的动点的轨迹

2.椭圆的标准方程:12222=+b y a x ,122

22=+b x a y (0>>b a )

3.椭圆的性质:由椭圆方程122

22=+b

y a x (0>>b a )

(1)范围: a x a ≤≤-,b y b ≤≤-,椭圆落在b y a x ±=±=,组成的矩形中.

(2)对称性:图象关于y 轴对称.图象关于x 轴对称.图象关于原点对称原点叫椭圆的对称

中心,简称中心.x 轴、y 轴叫椭圆的对称轴.从椭圆的方程中直接可以看出它的范围,对称的截距

(3)顶点:椭圆和对称轴的交点叫做椭圆的顶点

椭圆共有四个顶点: )0,(),0,(2a A a A -,),0(),,0(2b B b B -加两焦点

)0,(),0,(21c F c F -共有六个特殊点21A A 叫椭圆的长轴,21B B 叫椭圆的短轴.长分别为

b a 2,2 b a ,分别为椭圆的长半轴长和短半轴长椭圆的顶点即为椭圆与对称轴的交点

(4)离心率: 椭圆焦距与长轴长之比a c e =

?2)(1a

b

e -=10<

4.双曲线的定义:平面内到两定点21,F F 的距离的差的绝对值为常数(小于21F F )的动点的轨迹叫双曲线 即a MF MF 221=- 这两个定点叫做双曲线的焦点,两焦点间的距离叫做焦距

在同样的差下,两定点间距离较长,则所画出的双曲线的开口较开阔(→两条平行线)两定点间距离较短(大于定差),则所画出的双曲线的开口较狭窄(→两条射线)双曲线的形状与两定点间距离、定差有关 5.双曲线的标准方程及特点:

(1)双曲线的标准方程有焦点在x 轴上和焦点y 轴上两种:

焦点在x 轴上时双曲线的标准方程为:122

22=-b y a x (0>a ,0>b );

焦点在y 轴上时双曲线的标准方程为:122

22=-b

x a y (0>a ,0>b )

6.c b a ,,有关系式2

22b a c +=成立,且0,0,0>>>c b a

其中a 与b 的大小关系:可以为b a b a b a ><=,,

7焦点的位置:从椭圆的标准方程不难看出椭圆的焦点位置可由方程中含字母2

x 、2y 项的分母的大小来确定,分母大的项对应的字母所在的轴就是焦点所在的轴而双曲线是根据项的正负来判断焦点所在的位置,即2

x 项的系数是正的,那么焦点在x 轴上;2y 项的系数是正的,那么焦点在y 轴上 8.双曲线的几何性质: (1)范围、对称性

由标准方程122

22=-b

y a x ,从横的方向来看,直线x=-a,x=a 之间没有图象,从纵的方向

来看,随着x 的增大,y 的绝对值也无限增大,所以曲线在纵方向上可无限伸展,不像椭圆那

样是封闭曲线双曲线不封闭,但仍称其对称中心为双曲线的中心 (2)顶点

顶点:()0,),0,(21a A a A -,特殊点:()b B b B -,0),,0(21

实轴:21A A 长为2a, a 叫做半实轴长虚轴:21B B 长为2b ,b 叫做虚半轴长 双曲线只有两个顶点,而椭圆则有四个顶点,这是两者的又一差异 (3)渐近线

过双曲线122

22=-b

y a x 的渐近线x a b y ±=(0=±b y a x )

(4)离心率

双曲线的焦距与实轴长的比a

c

a c e ==

22,叫做双曲线的离心率范围:1>e 双曲线形状与e 的关系:1122

2

22-=-=-==e a

c a a c a b k ,e 越大,即渐近线的斜率的绝对值就大,这是双曲线的形状就从扁狭逐渐变得开阔由此可知,双曲线的离心率越大,

它的开口就越阔 9.等轴双曲线

定义:实轴和虚轴等长的双曲线叫做等轴双曲线,这样的双曲线叫做等轴双曲线 等轴双曲线的性质:(1)渐近线方程为:x y ±=;(2)渐近线互相垂直;(3)离心率2=e

10.共渐近线的双曲线系

如果已知一双曲线的渐近线方程为x a b y ±

=)0(>±=k x ka

kb

,那么此双曲线方程就一定是:)0(1)

()(2

2

22>±=-k kb y ka x 或写成λ=-2222b y a x

11.共轭双曲线

以已知双曲线的实轴为虚轴,虚轴为实轴,这样得到的双曲线称为原双曲线的共轭双曲线 区别:三量a,b,c 中a,b 不同(互换)c 相同共用一对渐近线 双曲线和它的共轭双曲线的焦点在同一圆上确定双曲线的共轭双曲线的方法:将1变为-1 12.双曲线的焦点弦:

定义:过焦点的直线割双曲线所成的相交弦 焦点弦公式:

当双曲线焦点在x 轴上时,

过左焦点与左支交于两点时: )(221x x e a AB +--= 过右焦点与右支交于两点时:)(221x x e a AB ++-= 当双曲线焦点在y 轴上时,

过左焦点与左支交于两点时:)(221y y e a AB +--= 过右焦点与右支交于两点时:)(221y y e a AB ++-= 13.双曲线的通径:

定义:过焦点且垂直于对称轴的相交弦 a

b d 2

2=

14 抛物线定义:

平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹叫做抛物线定点F 叫做抛物线的焦点,定直线l 叫做抛物线的准线 15.抛物线的准线方程:

(1))0(22

>=p px y , 焦点:)0,2(

p ,准线l :2p x -= (2))0(22

>=p py x , 焦点:)2,0(p ,准线l :2p y -=

(3))0(22

>-=p px y , 焦点:)0,2(p -,准线l :2p x =

(4) )0(22

>-=p py x , 焦点:)2,0(p -,准线l :2

p y =

相同点:(1)抛物线都过原点;(2)对称轴为坐标轴;(3)准线都与对称轴垂直,垂足与焦点在对称轴上关于原点对称 它们到原点的距离都等于一次项系数绝对值的

41,即

2

42p

p = 不同点:(1)图形关于X 轴对称时,X 为一次项,Y 为二次项,方程右端为px 2±、左端为2

y ;图形关于Y 轴对称时,X 为二次项,Y 为一次项,方程右端为py 2±,左端为2

x (2)开口方向在X 轴(或Y 轴)正向时,焦点在X 轴(或Y 轴)的正半轴上,方程右端取正号;

开口在X 轴(或Y 轴)负向时,焦点在X 轴(或Y 轴)负半轴时,方程右端取负号 16.抛物线的几何性质 (1)范围

因为p >0,由方程()022>=p px y 可知,这条抛物线上的点M 的坐标(x ,y)满足不等式x≥0,所以这条抛物线在y 轴的右侧;当x 的值增大时,|y|也增大,这说明抛物线向右上方和右下方无限延伸. (2)对称性

以-y 代y ,方程()022>=p px y 不变,所以这条抛物线关于x 轴对称,我们把抛物线的对称轴叫做抛物线的轴. (3)顶点

抛物线和它的轴的交点叫做抛物线的顶点.在方程()022>=p px y 中,当y=0时,x=0,因此抛物线()022>=p px y 的顶点就是坐标原点.

(4)离心率

抛物线上的点M 与焦点的距离和它到准线的距离的比,叫做抛物线的离心率,用e 表示.由抛物线的定义可知,e=1. 17抛物线的焦半径公式:

抛物线)0(22

>=p px y ,0022x p

p x PF +=+

= 抛物线)0(22

>-=p px y ,002

2x p

p x PF -=-

= 抛物线)0(22

>=p py x ,0022y p

p y PF +=+

= 抛物线)0(22

>-=p py x ,002

2y p

p y PF -=-

= 18.直线与抛物线:

(1)位置关系:

相交(两个公共点或一个公共点);相离(无公共点);相切(一个公共点)

将b kx y l +=:代入0:2

2=++++F Ey Dx Cy Ax C ,消去y ,得到

关于x 的二次方程02

=++c bx ax (*) 若0>?,相交;0=?,相切;0

联立???=+=px

y b kx y 22,得关于x 的方程02

=++c bx ax

当0=a (二次项系数为零),唯一一个公共点(交点) 当0≠a ,则

若0>?,两个公共点(交点)

0=?,一个公共点(切点) 0

(2)相交弦长: 弦长公式:21k a

d +?

=

, (3)焦点弦公式:

抛物线)0(22>=p px y , )(21x x p AB ++= 抛物线)0(22>-=p px y , )(21x x p AB +-= 抛物线)0(22>=p py x , )(21y y p AB ++= 抛物线)0(22>-=p py x ,)(21y y p AB +-= (4)通径:

定义:过焦点且垂直于对称轴的相交弦 通径:p d 2= (5)若已知过焦点的直线倾斜角θ

则?????

=-=px y p x k y 2)2(2022

2=--?p y k p y ?????-==+?2

21212p y y k p y y θsin 2442

2

221p p k p y y =+=-?θθ22

1sin 2sin 1p y y AB =-=? (6)常用结论:

?????

=-=px

y p x k y 2)2(2

0222=--?p y k p y 和04)2(222

22=++-p k x p p k x k 221p y y -=?和4

21p

x x =

四、【例题】

1.动点A 到定点F 1(0, -2)和F 2(0, 2)的距离的和为4,则动点A 的轨迹为 ( B ) A. 椭圆 B. 线段 C. 无图形 D. 两条射线;

2.动点P 到定点F 1(1, 0)的距离比它到定点F 2(3, 0)的距离小2,则点P 的轨迹是 ( C ) A .双曲线 B .双曲线的一支 C .一条射线 D .两条射线

3.人造地球卫星的运行轨道是以地心为一个焦点的椭圆.设地球半径为R ,卫星近地点、远地点离地面的距离分别为 r 1、r 2 ,求卫星轨道的离心率.

4.两定点的坐标分别为A(-1, 0),B(2, 0),动点M满足∠MBA=2∠MAB,求动点M的轨迹

方程.

五【课后作业】

六、板书设计(略)

七、课后记:

y

x A B

M

αβ

O

高中数学新课程创新教学设计案例等比数列

高中数学新课程创新教学设计案例等比数列 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

47 等比数列 教学内容分析 这节课是在等差数列的基础上,运用同样的研究方法和研究步骤,研究另一种特殊数列———等比数列.重点是等比数列的定义和通项公式的发现过程及应用,难点是应用. 教学目标 1. 熟练掌握等比数列的定义、通项公式等基本知识,并熟练加以运用. 2. 进一步培养学生的类比、推理、抽象、概括、归纳、猜想能力. 3. 感受等比数列丰富的现实背景,进一步培养学生对数学学习的积极情感. 任务分析 这节内容由于是在等差数列的基础上,运用同样的方法和步骤,研究类似的问题,学生接受起来较为容易,所以应多放手让学生思考,并注意运用类比思想,这样不仅有利于学生分清等差和等比数列的区别,而且可以锻炼学生从多角度、多层次分析和解决问题的能力.另外,与等差数列相比等比数列须要注意的细节较多,如没有零项、q≠0等,在教学中应注意加以比较. 教学设计 一、问题情景 在前面我们学习了等差数列,在现实生活中,我们还会遇到下面的特殊数列: 1. 在现实生活中,经常会遇到下面一类特殊数列.下图是某种细胞分裂的模型. 细胞分裂个数可以组成下面的数列: 1,2,4,8,… 2. 一种计算机病毒可以查找计算机中的地址薄,通过电子函件进行传播.如果把病毒制造者发送病毒称为第一轮,函件接收者发送病毒称为第二轮,依此类推.假设每一轮每一台计算机都感染20台计算机,那么,在不重复的情况下,这种病毒每一轮感染的计算机数构成的数列是 1,20,202,203,…

(3)除了单利,银行还有一种支付利息的方式———复利,即把前一期的利息和本金加在一起算作本金,再计算下一期的利息,也就是通常说的“利滚利”.按照复利计算本利和的公式是 本利和=本金×(1+利率)存期 例如,现在存入银行10000元钱,年利率是%,那么按照复利,5年内各年末得到的本利和分别是(计算时精确到小数点后2位): 表47-1 时间年初本金(元)年末本利和(元) 第1年10000 10000× 第2年10000×10000× 第3年10000×10000× 第4年10000×10000× 第5年10000×10000× 各年末的本利和(单位:元)组成了下面的数列: 10000×10198,10000×101982,10000×101983,10000×101984,10000×101985. 问题:回忆等差数列的研究方法,我们对这些数列应作如何研究 二、建立模型 结合等差数列的研究方法,引导学生运用从特殊到一般的思想方法分析和探究,发现这些数列的共同特点,从而归纳出等比数列的定义及符号表示: 一般地,如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,那么这个数列 叫作等比数列,这个常数叫作等比数列的公比,公比通常用字母q表示(q≠0).即 [问题] 1. q可以为0吗有没有既是等差,又是等比的数列 2. 运用类比的思想可以发现,等比数列的定义是把等差数列的定义中的“差”换成了“比”,同样,你能类比得出等比数列的通项公式吗如果能得出,试用以上例子加以检验. 对于2,引导学生运用类比的方法:等差数列通项公式为an=a1+(n-1)d,即a1与(n-1)个d的和,等比数列的通项公式应为an等于a1与(n-1)个q的乘积,即an=a1qn-1.上面的几个例子都满足通项公式. 3. 你如何论证上述公式的正确性.

(完整版)高中数学圆锥曲线知识点总结

高中数学知识点大全—圆锥曲线 一、考点(限考)概要: 1、椭圆: (1)轨迹定义: ①定义一:在平面内到两定点的距离之和等于定长的点的轨迹是椭圆,两定点是焦点,两定点间距离是焦距,且定长2a大于焦距2c。用集合表示为: ; ②定义二:在平面内到定点的距离和它到一条定直线的距离之比是个常数e,那么这个点的轨迹叫做椭圆。其中定点叫焦点,定直线叫准线,常数是离心 率用集合表示为: ; (2)标准方程和性质:

注意:当没有明确焦点在个坐标轴上时,所求的标准方程应有两个。 (3)参数方程:(θ为参数); 3、双曲线: (1)轨迹定义: ①定义一:在平面内到两定点的距离之差的绝对值等于定长的点的轨迹是双曲线,两定点是焦点,两定点间距离是焦距。用集合表示为: ②定义二:到定点的距离和它到一条定直线的距离之比是个常数e,那么这个点的轨迹叫做双曲线。其中定点叫焦点,定直线叫准线,常数e是离心率。 用集合表示为:

(2)标准方程和性质: 注意:当没有明确焦点在个坐标轴上时,所求的标准方程应有两个。

4、抛物线: (1)轨迹定义:在平面内到定点和定直线的距离相等的点的轨迹是抛物线,定点是焦点,定直线是准线,定点与定直线间的距离叫焦参数p。用集合表示为 : (2)标准方程和性质: ①焦点坐标的符号与方程符号一致,与准线方程的符号相反;②标准方程中一次项的字母与对称轴和准线方程的字母一致;③标准方程的顶点在原点,对称轴是坐标轴,有别于一元二次函数的图像;

二、复习点睛: 1、平面解析几何的知识结构: 2、椭圆各参数间的关系请记熟“六点六线,一个三角形”,即六点:四个顶点,两个焦点;六线:两条准线,长轴短轴,焦点线和垂线PQ;三角形:焦点三角形。则椭圆的各性质(除切线外)均可在这个图中找到。

人教版高中数学选修2-1第二章圆锥曲线与方程---椭圆教案

椭圆 【学习目标】 1.能 正熟练使用直接法、待定系数法、定义法求椭圆的方程; 2.能熟练运用几何性质(如范围、对称性、顶点、离心率)解决相关问题; 3.能够把直线与椭圆的位置关系的问题转化为方程组解的问题,判断位置关系及解决相关问题. 【知识网络】 【要点梳理】 要点一、椭圆的定义及其标准方程 椭圆的定义 平面内一个动点P 到两个定点1F 、2F 的距离之和等于常数(21212F F a PF PF >=+),这个动点P 的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距. 椭圆的标准方程: 1.当焦点在x 轴上时,椭圆的标准方程:122 22=+b y a x )0(>>b a ,其中222b a c -=; 2.当焦点在y 轴上时,椭圆的标准方程:122 22=+b x a y )0(>>b a ,其中222b a c -=; 要点诠释:求椭圆的标准方程应从“定形”、“定式”和“定值”三个方面去思考.“定形”是指对称中心在原点,以坐标轴为对称轴的情况下,焦点在哪条坐标轴上;“定式”根据“形”设椭圆方程的具体形式;“定量”是指用定义法或待定系数法确定a,b 的值. 要点二、椭圆的几何性质 焦点在x 轴上 焦点在y 轴上 标准方程 22 221(0)x y a b a b +=>> 22 221(0)x y a b b a +=>> 椭圆 椭圆的定义与标准 方程方程 椭圆的几何性质 直线与椭圆的位置关系 椭圆的综合问题 最大(小)值问题 椭圆的弦问题 椭圆离心率及离心率的范围问题

(,0)F c -,(,0)F c (0,)F c -,(0,)F c 直线与椭圆的位置关系 将直线的方程y kx b =+与椭圆的方程22 221x y a b +=(0)a b >>联立成方程组,消元转化为关于x 或y 的一 元二次方程,其判别式为Δ. ①Δ>0?直线和椭圆相交?直线和椭圆有两个交点(或两个公共点); ②Δ=0?直线和椭圆相切?直线和椭圆有一个切点(或一个公共点); ③Δ<0?直线和椭圆相离?直线和椭圆无公共点. 直线与椭圆的相交弦 设直线y kx b =+交椭圆22 221x y a b +=(0)a b >>于点111222(,),(,),P x y P x y 两点,则 12||PP 12|x x - 同理可得1212|||(0)PP y y k =-≠ 这里12||,x x -12||,y y -的求法通常使用韦达定理,需作以下变形:

高中数学教学设计模版及案例

联系已学知识,可以解决这个问题。 对应问题1. 第三边c 是确定的,如何利用条件求之? 首先用正弦定理试求,发现因A 、B 均未知,所以较难求边c 。 由于涉及边长问题,从而可以考虑用向量来研究这个问题。 A 如图,设CB a =,CA b =,AB c =,那么c a b =-,则 b c ()() 222 2 2c c c a b a b a a b b a b a b a b =?=--=?+?-?=+-? C a 从而2222cos c a b ab C =+-,同理可证2222cos a b c bc A =+-,2222cos b a c ac B =+- 于是得到以下定理 余弦定理:三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍。即2222cos a b c bc A =+-;2222cos b a c ac B =+-;2222cos c a b ab C =+- 教学情境二 对余弦定理的理解、定理的推论 对应问题2 公式有什么特点?能够解决什么问题? 等式为二次齐次形式,左边的边对应右边的角。主要作用是已知三角形的两边及夹角求对边。 对应问题3 从方程的角度看已知其中三个量,可以求出第四个量,能否由三边求出一角? 从余弦定理,又可得到以下推论:(由学生推出)

222cos 2+-=b c a A bc ; 222cos 2+-=a c b B ac ; 222 cos 2+-=b a c C ba [理解定理]余弦定理及其推论的基本作用为: ①已知三角形的任意两边及它们的夹角求第三边; ②已知三角形的三条边求三个角。 思考:勾股定理指出了直角三角形中三边平方之间的关系,余弦定理则指出了一般三角形中三边平方之间的关系,如何看这两个定理之间的关系? (由学生总结)若?ABC 中,C=90,则cos 0=C ,这时222=+c a b 由此可知余弦定理是勾股定理的推广,勾股定理是余弦定理的特例。 教学情境三 例题与课堂练习 例题.在?ABC 中,已知=a c 060=B ,求b 及A ⑴解:2222cos =+-b a c ac B =222+-?cos 045=2121)+-=8 ∴=b 求A 可以利用余弦定理,也可以利用正弦定理: ⑵解法一:∵cos 2221,22+-=b c a A bc ∴060.=A 解法二:∵0sin sin sin45a A B = 又 a <c ,即00<A <090, ∴060.=A 评述:解法二应注意确定A 的取值范围。 课堂练习 在?ABC 中,若222a b c bc =++,求角A (答案:A=120°) 教学情境四 课堂小结 (1)余弦定理是任何三角形边角之间存在的共同规律,勾股定理是余弦定理的特例; (2)余弦定理的应用范围:①.已知三边求三角;②.已知两边及它们的夹角,求第三边。 (3)正、余弦定理从数量关系的角度解释了三角形全等,已知边角求做三角形两类问题,使其化为可以计算的公式。 习题设计 1. 在?ABC 中,a=3,b=4,?=∠60C ,求c 边的长。 2. 在?ABC 中,a=3,b=5,c=7,求此三角形的最大角的度数。 3. 若sin :sin :sin 5:7:8A B C =,求此三角形的最大角与最小角的和的大小。 4. △ABC 中,若()222tan a c b B +-=,求角B 的大小。 5. ?ABC 的三内角,,A B C 所对边的长分别为,,a b c 设向量(,)p a c b =+,(,)q b a c a =--,若//p q ,求角C 的大小) (本案例由河北师大附中 刘建良设计,由汉沽五中 纪昌武 在目标设计和习题设计方面略作改动) 编写要求: 1、页面设置:A4,上、下、左、右边距都为2cm ;教学课题:小四宋体加粗;问题设计:课本上没有的有价值的情境、问题、例题、习题用五号黑体字,并简要说明设计意图。其他都用五号宋体。“目标设计、情境设计、问题设计、习题设计”要加粗。 2、目标设计主要写知识目标的设计。目标要具体明确、具有可操作性、可测性。

高中数学圆锥曲线详解【免费】

解圆锥曲线问题常用方法+椭圆与双曲线的经典 结论+椭圆与双曲线的对偶性质总结 解圆锥曲线问题常用以下方法: 1、定义法 (1)椭圆有两种定义。第一定义中,r 1+r 2=2a 。第二定义中,r 1=ed 1 r 2=ed 2。 (2)双曲线有两种定义。第一定义中,a r r 221=-,当r 1>r 2时,注意r 2的最小值为c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。 (3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。 2、韦达定理法 因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。 3、解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x 1,y 1),B(x 2,y 2),弦AB 中点为M(x 0,y 0),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有: (1))0(122 22>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有02 020=+k b y a x 。 (2))0,0(122 22>>=-b a b y a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有02 020=-k b y a x (3)y 2 =2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p. 【典型例题】 例1、(1)抛物线C:y 2 =4x 上一点P 到点A(3,42) (2)抛物线C: y 2 =4x 上一点Q 到点B(4,1)与到焦点F 的距离和最小,则点分析:(1)A 在抛物线外,如图,连PF ,则PF PH =

2.3.1圆锥曲线的参数方程教案新人教版选修4_4

第三课时 圆锥曲线的参数方程 一、教学目标: 知识与技能:了解圆锥曲线的参数方程及参数的意义 过程与方法:能选取适当的参数,求简单曲线的参数方程 情感、态度与价值观:通过观察、探索、发现的创造性过程,培养创新意识。 二、重难点:教学重点:圆锥曲线参数方程的定义及方法 教学难点:选择适当的参数写出曲线的参数方程. 三、教学方法:启发、诱导发现教学. 四、教学过程: (一)、复习引入: 1.写出圆方程的标准式和对应的参数方程。 (1)圆2 2 2 r y x =+参数方程? ? ?==θθ sin cos r y r x (θ为参数) (2)圆2 2020)\()(r y y x x =+-参数方程为:?? ?+=+=θ θ sin cos 00r y y r x x (θ为参数) 2.写出椭圆、双曲线和抛物线的标准方程。 3.能模仿圆参数方程的推导,写出圆锥曲线的参数方程吗? (二)、讲解新课: 1.椭圆的参数方程推导:椭圆122 22=+b y a x 参数方程 ???==θ θsin cos b y a x (θ为参数),参 数θ的几何意义是以a 为半径所作圆上一点和椭圆中心的连线与X 轴正半轴的夹角。 2.双曲线的参数方程的推导:双曲线122 22=-b y a x 参数方程 ???==θ θtan sec b y a x (θ为参数)

参数θ几何意义为以a 为半径所作圆上一点和椭圆中心的连线与X 轴正半轴的夹角。 3.抛物线的参数方程:抛物线Px y 22 =参数方程???==Pt y Pt x 222 (t 为参数),t 为以抛物 线上一点(X,Y )与其顶点连线斜率的倒数。 (1)、关于参数几点说明: A.参数方程中参数可以是有物理意义,几何意义,也可以没有明显意义。 B.同一曲线选取的参数不同,曲线的参数方程形式也不一样 C.在实际问题中要确定参数的取值范围 (2)、参数方程的意义: 参数方程是曲线点的位置的另一种表示形式,它借助于中间变量把曲线上的动点的两个坐标间接地联系起来,参数方程与变通方程同等地描述,了解曲线,参数方程实际上是一个方程组,其中x ,y 分别为曲线上点M 的横坐标和纵坐标。 (3)、参数方程求法:(A )建立直角坐标系,设曲线上任一点P 坐标为),(y x ;(B )选取适当的参数;(C )根据已知条件和图形的几何性质,物理意义,建立点P 坐标与参数的函数式;(D )证明这个参数方程就是所由于的曲线的方程 (4)、关于参数方程中参数的选取:选取参数的原则是曲线上任一点坐标当参数的关系比较明显关系相对简单。与运动有关的问题选取时间t 做参数;与旋转的有关问题选取角θ做参数;或选取有向线段的数量、长度、直线的倾斜斜角、斜率等。 4、椭圆的参数方程常见形式:(1)、椭圆12222=+b y a x 参数方程 ???==θ θsin cos b y a x (θ为

高中数学优秀教学案例设计汇编(上册)

高中数学教学设计大赛获奖作品汇编 (上部)

目 录 1、集合与函数概念实习作业…………………………………… 2、指数函数的图象及其性质…………………………………… 3、对数的概念………………………………………………… 4、对数函数及其性质(1)…………………………………… 5、对数函数及其性质(2)…………………………………… 6、函数图象及其应用…………………………………… 7、方程的根与函数的零点…………………………………… 8、用二分法求方程的近似解…………………………………… 9、用二分法求方程的近似解…………………………………… 10、直线与平面平行的判定…………………………………… 11、循环结构 ………………………………………………… 12、任意角的三角函数(1)………………………………… 13、任意角的三角函数(2)…………………………………… 14、函数sin()y A x ω?=+的图象………………………… 15、向量的加法及其几何意义……………………………………… 16、平面向量数量积的物理背景及其含义(1)……………… 17、平面向量数量积的物理背景及其含义(2)…………………… 18、正弦定理(1)…………………………………………………… 19、正弦定理(2)…………………………………………………… 20、正弦定理(3)……………………………………………………

21、余弦定理……………………………………………… 22、等差数列……………………………………………… 23、等差数列的前n项和……………………………………… 24、等比数列的前n项和……………………………………… 25、简单的线性规划问题……………………………………… 26、拋物线及其标准方程……………………………………… 27、圆锥曲线定义的运用………………………………………

高中数学圆锥曲线专题-理科

圆锥曲线专题 【考纲要求】 一、直线 1.掌握直线的点方向式方程、点法向式方程、点斜式方程,认识坐标法在建立形与数的关 系中的作用; 2.会求直线的一般式方程,理解方程中字母系数表示斜率和截距的几何意义:懂得一元二 次方程的图像是直线; 3.会用直线方程判定两条直线间的平行或垂直关系(方向向量、法向量); 4.会求两条相交直线的交点坐标和夹角,掌握点到直线的距离公式。 二、圆锥曲线 1.理解曲线的方程与方程的曲线的意义,并能由此利用代数方法判定点是否在曲线上,以 及求曲线交点; 2.掌握圆、椭圆、双曲线、抛物线的定义,并理解上述曲线在直角坐标系中的标准方程的 推导过程; 3.理解椭圆、双曲线、抛物线的有关概念及简单的几何特性,掌握求这些曲线方程的基本 方法,并能根据曲线方程的关系解决简单的直线与上述曲线有两个交点情况下的有关问题; 4.能利用直线和圆、圆和圆的位置关系的几何判定,确定它们之间的位置关系,并能利用 解析法解决相应的几何问题。 【知识导图】【精解名题】 一、弦长问题 例1 如图,已知椭圆 2 21 2 x y +=及点B(0, -2),过点B引椭圆的割线(与椭圆相交的直线)BD与椭圆交于C、D两点 (1)确定直线BD斜率的取值范围 (2)若割线BD过椭圆的左焦点 12 ,F F是椭圆的右焦点,求 2 CDF ?的面积 y x B C D F1F2 O

二、轨迹问题 例2 如图,已知平行四边形ABCO ,O 是坐标原点,点A 在线段MN 上移动,x=4,y=t (33)t -≤≤上移动,点C 在双曲线 22 1169 x y -=上移动,求点B 的轨迹方程 三、对称问题 例3 已知直线l :22 2,: 1169 x y y kx C =++=,问椭圆上是否存在相异两点A 、B ,关于直线l 对称,请说明理由 四、最值问题 例4 已知抛物线2 :2()C x y m =--,点A 、B 及P(2, 4)均在抛物线上,且直线PA 与PB 的倾斜角互补 (1)求证:直线AB 的斜率为定值 (2)当直线AB 在y 轴上的截距为正值时,求ABP ?面积的最大值 五、参数的取值范围 例5 已知(,0),(1,),a x b y → → == ()a → +⊥()a → - (1)求点P (x, y )的轨迹C 的方程 (2)直线:(0,0)l y kx m k m =+≠≠与曲线C 交于A 、B 两点,且在以点D (0,-1)为圆 心的同一圆上,求m 的取值范围 六、探索性问题 例6 设x, y ∈R ,,i j →→ 为直角坐标平面内x, y 轴正方向上的单位向量,若向量 (2)a x i y j → →→=++,且(2)b x i y j →→→=+-且8a b →→ += (1)求点M (x, y )的轨迹方程 (2)过点(0,3)作直线l 与曲线C 交于A 、B 两点,设OP OA OB → → → =+,是否存在这样的直线l ,使得四边形OAPB 是矩形?若存在,求出直线l 的方程;若不存在,请说明理由

[复习]高中数学课题教学设计案例.docx

高中数学课程可选内容的资源 ——数学建模、数学课题学习的教学设计的案例 1.升旗中的数学问题 (一)问题情景和任务 问题情景:在不同地区,同一天的H出和H落吋间不尽相同;对一个地区而言,H岀日落时间又是随FI期的变化而变化的。北京的天安门广场上的国旗每天伴着太阳升起、伴着太阳降落,下表给出了是天安门广场2003年部分LI期的升、降旗时刻表: 任务1:试根据上表提供的数据,分析升、降旗时间变化的人致规律;建立坐标系,将以上数据描在坐标系中; 任务2:分别建立I」出时间和I」落时间关于I」期的近似函数模型;利用你建立的函数模型,计算“五一”国际劳动节、“十一”国庆节的升、降旗时间; 任务3:利用年鉴、互联网或其它资料,查阅北京天安门2003年升旗时间表,检验模型的准确度,分析误差原因,考虑如何改进口己的模型。 任务4:你所生活地区(城市、省、乡村等)某年不同的日期的“日出和FI落”的时间, 建立一个函数关系。 (二)实施建议与说明 通过对升旗中数学问题的求解和讨论,进一步了解相关数学知识的意义和作用,体验数学

建模的基木过程,增强数学知识的应用意识。理解用函数拟合数据的方法,捉高对数据的 观察、分析、处理、从中获取有益信息的能力。 在这个探求活动屮,要特别重视观察、分析、处理数据的一般方法、现代技术的合理使用、数学得到的结果与实际情况不同的原因分析。 1?组成学习探究小组,集体讨论,互相启发,形成可行的探究方案,独立思考,完成每个人的“成果报告”。 2.任务1的建议: 为了便于在坐标系中观察表中数据,选择适当的计最单位,如升旗时刻以10分之为一个单位,H期可以天为单位,即1月1 H为第0天,12月31日为第364天;可借助图形计算器或其它工具绘制各点, 3.任务2的建议: 利用自己的生活经验,或者访问家长、地理老师等,结合散点图,选择学过的适当函数, 作为刻画该关系的模型;要应注意关键数据(如最早升(降)旗时间和最迟升(降)旗时间等)在确定拟合函数参数小的作用; 4.任务3的建议: 根据观察坐标平而上所绘制点的走向趋势,对以考虑分段拟合函数。 5.“成果报告”的书写建议 成果报告可以下表形式呈现。 表1:探究学习成果报告表年级 ________ 班—完成时间_________

圆锥曲线与方程单元教学设计

圆锥曲线与方程单元教 学设计 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

课题名称《圆锥曲线与方程》单元教学设计 设计者姓名郭晓泉 设计者单位华亭县第二中学 联系电话 电子邮箱 《圆锥曲线与方程》单元教学设计 一、教学内容分析 1、实际背景分析 该单元选自人教版数学选修2-1.圆锥曲线与科研、生产以及人类生活关系密切,早在16、17世纪之交,开普勒就发现了行星绕太阳运行的轨道是一个椭圆;探照灯反射镜是抛物线绕其对称轴旋转形成的抛物面;发电厂冷却塔的外形线是双曲线,……现代航空航天领域内圆锥曲线也有重要的应用。圆锥曲线在实际生产生活中有着巨大的作用,主要来自于它们的几何特征及其特性。 2、数学视角分析 《圆锥曲线与方程》是中学数学解析几何的主要内容,研究圆锥曲线的性质,是圆的几何性质的推广与延伸,是运用坐标法从代数的角度来研究圆锥曲线性质,为了解决这个问题,让学生更好地理解和学习圆锥曲线的性质,先了解曲线与方程的关系,研究如何建立曲线的方程,把几何的形与代数的数通过这个关系有机的联系起来,充分运用数的运算来解决形的问题,达到数形统一,体现数形结合的思想。对于圆锥曲线的几何特征与方程的研究,延续了必修课程《必修2》中研究直线与圆的方程的方法,通过图形探究圆锥曲线的几何特征,建立它们的方程,并通过方程来研究他们的简单性质,进而利用坐标法解决一些圆锥曲线有关的简单几何问题和实际问题。 3、课程标准视角分析 (1)学生学习方式的转变问题。在本部分内容中,延续了《必修2》中研究直线与圆的方程的思想,所以应该引导学生通过积极主动的探索来完成圆锥曲线的学习,教师通过圆锥曲线背景的介绍,激发学生的学习兴趣,在研究了椭圆方程及性质的基础上,用类比的方法来研究双曲线和抛物线的方程及性质,经历直观感知,定义、建立方程、研究性质的基本过程,感受坐标法的作用,体会数形结合法的思想。 (2)学生思维能力培养的问题。“高中数学课程应注意提高学生的数学思维能力,这是数学教育的基本目标之一。”这是课标对学生思维培养的要求,在圆锥曲线这部分

高中数学新课程创新教学设计案例 角的概念的推广

31 角的概念的推广 教材分析 这节课主要是把学生学习的角从不大于周角的非负角扩充到任意角,使角有正角、负角和零角.首先通过生产、生活的实际例子阐明了推广角的必要性和实际意义,然后又以“动”的观点给出了正、负、零角的概念,最后引入了几个与之相关的概念:象限角、终边相同的角等.在这节课中,重点是理解任意角、象限角、终边相同的角等概念,难点是把终边相同的角用集合和符号语言正确地表示出来.理解任意角的概念,会在平面内建立适当的坐标系,通过数形结合来认识角的几何表示和终边相同的角的表示,是学好这节的关键. 教学目标 1. 通过实例,体会推广角的必要性和实际意义,理解正角、负角和零角的定义. 2. 理解象限角的概念、意义及表示方法,掌握终边相同的角的表示方法. 3. 通过对“由一点出发的两条射线形成的图形”到“射线绕着其端点旋转而形成角”的认识过程,使学生感受“动”与“静”的对立与统一.培养学生用运动变化的观点审视事物,用对立统一规律揭示生活中的空间形式和数量关系. 任务分析 这节课概念很多,应尽可能让学生通过生活中的例子(如钟表上指针的转动、体操运动员的转体、自行车轮子上的某点的运动等)了解引入任意角的必要性及实际意义,变抽象为具体.另外,可借助于多媒体进行动态演示,加深学生对知识的理解和掌握. 教学设计 一、问题情境 [演示] 1. 观览车的运动. 2. 体操运动员、跳台跳板运动员的前、后转体动作. 3. 钟表秒针的转动. 4. 自行车轮子的滚动.

[问题] 1. 如果观览车两边各站一人,当观览车转了两周时,他们观察到的观览车上的某个座位上的游客进行了怎样的旋转,旋转了多大的角 2. 在运动员“转体一周半动作”中,运动员是按什么方向旋转的,转了多大角 3. 钟表上的秒针(当时间过了时)是按什么方向转动的,转动了多大角 4. 当自行车的轮子转了两周时,自行车轮子上的某一点,转了多大角 显然,这些角超出了我们已有的认识范围.本节课将在已掌握的0°~360°角的范围的基础上,把角的概念加以推广,为进一步研究三角函数作好准备. 二、建立模型 1. 正角、负角、零角的概念 在平面内,一条射线绕它的端点旋转有两个方向:顺时针方向和逆时针方向.习惯上规定,按逆时针旋转而成的角叫作正角;按顺时针方向旋转而成的角叫作负角;当射线没有旋转时,我们也把它看成一个角,叫作零角. 2. 象限角 当角的顶点与坐标原点重合、角的始边与x轴正半轴重合时,角的终边在第几象限,就把这个角叫作第几象限的角.如果角的终边在坐标轴上,就认为这个角不属于任何象限. 3. 终边相同的角 在坐标系中作出390°,-330°角的终边,不难发现,它们都与30°角的终边相同,并且这两个角都可以表示成0°~360°角与k个(k∈Z)周角的和,即 390°=30°+360°,(k=1); -330°=30°-360°,(k=-1). 设S={β|β=30°+k·360°,k∈Z},则390°,-330°角都是S中的元素,30°角也是S中的元素(此时k=0).容易看出,所有与30°角终边相同的角,连同30°角在内,都是S中的元素;反过来,集合S中的任一元素均与30°角终边相同.一般地,所有与角α终边相同的角,连同角α在内,可构成一个集合:S={β|β=α+k·360°,k∈Z},即任一与α终边相同的角,都可以表求成角α与整数个周角的和. 三、解释应用 [例题] 1. 在0°~360°范围内,找出与下列各角终边相同的角,并判断它们是第几象限的角.

(新)高中数学教学设计

等比数列的前n项和 (第一课时) 一.教材分析。 (1)教材的地位与作用:《等比数列的前n项和》选自《普通高中课程标准数学教科书·数学(5),是数列这一章中的一个重要内容,它不仅在现实生活中有着广泛的实际应用,如储蓄、分期付款的有关计算等等,而且公式推导过程中所渗透的类比、化归、分类讨论、整体变换和方程等思想方法,都是学生今后学习和工作中必备的数学素养。 (2)从知识的体系来看:“等比数列的前n项和”是“等差数列及其前n项和”与“等比数列”内容的延续、不仅加深对函数思想的理解,也为以后学数列的求和,数学归纳法等做好铺垫。 二.学情分析。 (1)学生的已有的知识结构:掌握了等差数列的概念,等差数列的通项公式和求和公式与方法,等比数列的概念与通项公式。 (2)教学对象:高二理科班的学生,学习兴趣比较浓,表现欲较强, 逻辑思维能力也初步形成,具有一定的分析问题和解决问题的能力,但由于年龄的原因,思维尽管活跃、敏捷,却缺乏冷静、深刻,因而片面、不够严谨。 (3)从学生的认知角度来看:学生很容易把本节内容与等差数列前n项和从公式的形成、特点等方面进行类比,这是积极因素,应因势利导。不利因素是:本节公式的推导与等差数列前n项和公式的推导有着本质的不同,这对学生的思维是一个突破,另外,对于q = 1这一特殊情况,学生往往容易忽视,尤其是在后面使用的过程中容易出错。 三.教学目标。 根据教学大纲的要求、本节教材的特点和本班学生的认知规律,本节课的教学目标确定为: (1)知识技能目标————理解并掌握等比数列前n项和公式的推导过程、公式的特点,在此基础上,并能初步应用公式解决与之有关的问题。

平远高中数学第二章圆锥曲线与方程222双曲线的几何性质一2教案新人教A版选修11

2.2.2双曲线的几何性质(一) ☆要点强化☆ 1.双曲线的范围、对称性、顶点和渐近线; 2.双曲线的渐近线的概念。 ☆当堂检测☆ 1. 07宁夏理 已知双曲线的顶点到渐近线的距离为2,焦点到渐近线的距离为6,则该双曲线的离心率为 . 2. 求双曲线的标准方程: ⑴实轴的长是10,虚轴长是8,焦点在x 轴上; ⑵焦距是10,虚轴长是8,焦点在y 轴上; ⑶离心率e =()5,3M -; ⑷两条渐近线的方程是23y x =±,经过点9,12M ??- ??? 。 (选作题) 已知双曲线的中心在坐标原点,焦点12,F F 在坐标轴上,离心率为 ,且过点 (4,, (1)求双曲线方程; (2)若点(3,)M m 在双曲线上,求证:12MF MF ⊥; (3)求12F MF ?的面积。 ●教学目标 1.掌握双曲线的几何性质 2.能通过双曲线的标准方程确定双曲线的顶点、实虚半轴、焦点、离心率、渐近线方程. ●教学重点 双曲线的几何性质 ●教学难点 双曲线的渐近线 ●教学方法

学导式 ●教具准备 幻灯片、三角板 ●教学过程 I.复习回顾: 师:上一节,我们学习了双曲线的标准方程,这一节,我们要根据它来研究双曲线的几何性质.同学们可以按照研究椭圆几何性质的方法和步骤,自己推出双曲线的几何性质,然后与课文对照,所以,我们来回顾一下研究椭圆的几何性质的方法与步骤.(略) II.讲授新课: 1.范围: 双曲线在不等式x ≥a 与x ≤-a 所表示的区域内. 2.对称性: 双曲线关于每个坐标轴和原点都对称,这时,坐标轴是双曲 线的对称轴,原点是双曲线的对称中心,双曲线的对称中心叫双 曲线中心. 3.顶点: 双曲线和它的对称轴有两个交点A 1(-a ,0)、A 2(a ,0),它们叫做双曲线的顶点. 线段A 1A 2叫双曲线的实轴,它的长等于2a ,a 叫做双曲线的实半轴长;线段B 1B 2叫双曲线的虚轴,它的长等于2b , b 叫做双曲线的虚半轴长. 4.渐近线 ①我们把两条直线y=±x a b 叫做双曲线的渐近线; ②从图8—16可以看出,双曲线122 22=-b y a x 的各支向外延伸时,与直线y =±x a b 逐渐接近. ③“渐近”的证明: 先取双曲线在第一象限内的部分进行证明.这一部分的方程可写为 y =x a x a b (22->a ). 设M (x ,y )是它上面的点,N (x ,y )是直线y=x a b 上与M 有相同横坐标的点,则Y =x a b .

高中数学教学设计模版及案例

教学情境一:(问题引入)在ABC中,已知两边a,b和夹角C,作出三角形。 联系已学知识,可以解决这个问题。

对应问题1. 第三边c 是确定的,如何利用条件求之 首先用正弦定理试求,发现因A 、B 均未知,所以较难求边c 。 由于涉及边长问题,从而可以考虑用向量来研究这个问题。 A 如图,设CB a =,CA b =,AB c =,那么c a b =-,则 b c ()() 222 2 2c c c a b a b a a b b a b a b a b =?=--=?+?-?=+-? C a 从而2222cos c a b ab C =+-,同理可证2222cos a b c bc A =+-,2222cos b a c ac B =+- 于是得到以下定理 余弦定理:三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍。即2222cos a b c bc A =+-;2222cos b a c ac B =+-;2222cos c a b ab C =+- 教学情境二 对余弦定理的理解、定理的推论 对应问题2 公式有什么特点能够解决什么问题 等式为二次齐次形式,左边的边对应右边的角。主要作用是已知三角形的两边及夹角求对边。 对应问题3 从方程的角度看已知其中三个量,可以求出第四个量,能否由三边求出一角 从余弦定理,又可得到以下推论:(由学生推出) 222cos 2+-=b c a A bc ; 222cos 2+-=a c b B ac ; 222 cos 2+-=b a c C ba [理解定理]余弦定理及其推论的基本作用为: ①已知三角形的任意两边及它们的夹角求第三边; ②已知三角形的三条边求三个角。 思考:勾股定理指出了直角三角形中三边平方之间的关系,余弦定理则指出了一般三角形中三边平方之间的关系,如何看这两个定理之间的关系 (由学生总结)若?ABC 中,C=90,则cos 0=C ,这时222=+c a b 由此可知余弦定理是勾股定理的推广,勾股定理是余弦定理的特例。 教学情境三 例题与课堂练习 例题.在?ABC 中,已知=a c 060=B ,求b 及A ⑴解:2222cos =+-b a c ac B =222+-?cos 045=2121)+-=8 ∴=b 求A 可以利用余弦定理,也可以利用正弦定理: ⑵解法一:∵cos 2221,22+-==b c a A bc ∴060.=A 解法二:∵0sin sin sin45a A B b = 又 a <c ,即00<A <090, ∴060.=A 评述:解法二应注意确定A 的取值范围。

高中数学圆锥曲线解题技巧总结

高中数学圆锥曲线解题 技巧总结 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

解圆锥曲线问题的常用方法大全 1、定义法 (1)椭圆有两种定义。第一定义中,r 1+r 2=2a 。第二定义中,r 1=ed 1 r 2=ed 2。 (2)双曲线有两种定义。第一定义中,a r r 221=-,当r 1>r 2时,注意r 2的最小值为c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。 (3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。 2、韦达定理法 因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。 3、解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x 1,y 1),B(x 2,y 2),弦AB 中点为M(x 0,y 0),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有: (1))0(122 22>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有 020 20=+k b y a x 。 (2))0,0(122 22>>=-b a b y a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有02 020 =-k b y a x (3)y 2=2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p. 【典型例题】 例1、(1)抛物线C:y 2=4x 上一点P 到点A(3,42)与到准线的距离和最小,则点 P 的坐标为______________ (2)抛物线C: y 2=4x 上一点Q 到点B(4,1)与到焦点F 分析:(1)A 在抛物线外,如图,连PF ,则PF PH =现,当A 、P 、F 三点共线时,距离和最小。

高中数学圆锥曲线与方程教案

高中数学圆锥曲线与方 程教案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

第二章圆锥曲线与方程 一、课程目标 在必修阶段学习平面解析几何初步的基础上,在本模块中,学生将学习圆锥曲线与方程,了解圆锥曲线与二次方程的关系,掌握圆锥曲线的基本几何性质,感受圆锥曲线在刻画现实世界和解决实际问题中的作用。结合已学过的曲线及其方程的实例,了解曲线与方程的对应关系,进一步体会数形结合的思想。 二、学习目标: (1)、圆锥曲线: ①了解圆锥曲线的实际背景,感受圆锥曲线在刻画现实世界和解决实际问题中的作用。 ②经历从具体情境中抽象出椭圆、抛物线模型的过程,掌握它们的定义、标准方程、几何图形及简单性质。 ③了解双曲线的定义、几何图形和标准方程,知道双曲线的有关性质。 ④能用坐标法解决一些与圆锥曲线有关的简单几何问题(直线与圆锥曲线的位置关系)和实际问题。 ⑤通过圆锥曲线的学习,进一步体会数形结合的思想。 三、本章知识结构框图: 2.1 求曲线的轨迹方程(新授课) 一、教学目标

知识与技能:结合已经学过的曲线及方程的实例,了解曲线与方程的对应关系,了解两条曲线交点的求法;能根据曲线的已知条件求出曲线的方程,并初步学会通过方程来研究曲线的性质。 过程与方法:通过求曲线方程的学习,可培养我们的转化能力和全面分析问题的能力,帮助我们理解研究圆锥曲线的基本方法。 情感、态度与价值观:通过曲线与方程概念的学习,可培养我们数与形相互联系,对立统一的辩证唯物主义观。 二、教学重点与难点 重点:求动点的轨迹方程的常用技巧与方法. 难点:作相关点法求动点的轨迹方法. 三、教学过程 (一)复习引入 平面解析几何研究的主要问题是: 1、根据已知条件,求出表示平面曲线的方程; 2、通过方程,研究平面曲线的性质. 我们已经对常见曲线圆、椭圆、双曲线以及抛物线进行过这两个方面的研究,今天在上面已经研究的基础上来对根据已知条件求曲线的轨迹方程的常见技巧与方法进行系统分析. (二)几种常见求轨迹方程的方法 1.直接法 由题设所给(或通过分析图形的几何性质而得出)的动点所满足的几何条件列出等式,再用坐标代替这等式,化简得曲线的方程,这种方法叫直接法.例1、(1)求和定圆x2+y2=R2的圆周的距离等于R的动点P的轨迹方程; (2)过点A(a,o)作圆O∶x2+y2=R2(a>R>o)的割线,求割线被圆O截得弦的中点的轨迹. 对(1)分析: 动点P的轨迹是不知道的,不能考查其几何特征,但是给出了动点P的运动规律:|OP|=2R或|OP|=0. 解:设动点P(x,y),则有|OP|=2R或|OP|=0. 即x2+y2=4R2或x2+y2=0. 故所求动点P的轨迹方程为x2+y2=4R2或x2+y2=0. 对(2)分析: 题设中没有具体给出动点所满足的几何条件,但可以通过分析图形的几何性质而得出,即圆心与弦的中点连线垂直于弦,它们的斜率互为负倒数.解答为: 设弦的中点为M(x,y),连结OM, 则OM⊥AM. ∵k OM·k AM=-1, 其轨迹是以OA为直径的圆在圆O内的一段弧(不含端点).

高中数学教学设计及课件

篇一:高中数学教学设计与教学反思 高中数学教学设计与教学反思 第一章第三节三角函数的诱导公式(一) 一、指导思想与理论依据 数学是一门培养人的思维,发展人的思维的重要学科。因此,在教学中,不仅要使学生“知其然”而且要使学生“知其所以然”。所以在学生为主体,教师为主导的原则下,要充分揭示获取知识和方法的思维过程。因此本节课我以建构主义的“创设问题情境——提出数学问题——尝试解决问题——验证解决方法”为主,主要采用观察、启发、类比、引导、探索相结合的教学方法。在教学手段上,则采用多媒体辅助教学,将抽象问题形象化,使教学目标体现的更加完美。 二.教材分析 三角函数的诱导公式是普通高中课程标准实验教科书(人教a版)数学必修四,第一章第三节的内容,其主要内容是三角函数诱导公式中的公式(二)至公式(六).本节是第一课时,教学内容为公式(二)、(三)、(四).教材要求通过学生在已经掌握的任意角的三角函数的定义和诱导公式(一)的基础上,利用对称思想发现任意角与、、终边的对称关系,发现他们与单位圆的交点坐标之间关系,进而发现他们的三角函数值的关系,即发现、掌握、应用三角函数的诱导公式公式(二)、(三)、(四).同时教材渗透了转化与化归等数学思想方法,为培养学生养成良好的学习习惯提出了要求.为此本节内容在三角函数中占有非常重要的地位. 三.学情分析 本节课的授课对象是本校高一(1)班全体同学,本班学生水平处于中等偏下,但本班学生具有善于动手的良好学习习惯,所以采用发现的教学方法应该能轻松的完成本节课的教学内容. 四.教学目标 (1).基础知识目标:理解诱导公式的发现过程,掌握正弦、余弦、正切的诱导公式; (2).能力训练目标:能正确运用诱导公式求任意角的正弦、余弦、正切值,以及进行简单的三角函数求值与化简; (3).创新素质目标:通过对公式的推导和运用,提高三角恒等变形的能力和渗透化归、数形结合的数学思想,提高学生分析问题、解决问题的能力; (4).个性品质目标:通过诱导公式的学习和应用,感受事物之间的普通联系规律,运用化归等数学思想方法,揭示事物的本质属性,培养学生的唯物史观. 五.教学重点和难点 1.教学重点 理解并掌握诱导公式. 2.教学难点 正确运用诱导公式,求三角函数值,化简三角函数式. 六.教法学法以及预期效果分析 “授人以鱼不如授之以鱼”,作为一名老师,我们不仅要传授给学生数学知识,更重要的是传授给学生数学思想方法, 如何实现这一目的,要求我们每一位教者苦心钻研、认真探究.下面我从教法、学法、预期效果等三个方面做如下分析. 1.教法 数学教学是数学思维活动的教学,而不仅仅是数学活动的结果,数学学习的目的不仅仅是为了获得数学知识,更主要作用是为了训练人的思维技能,提高人的思维品质. 在本节课的教学过程中,本人以学生为主题,以发现为主线,尽力渗透类比、化归、数形

相关主题
文本预览
相关文档 最新文档