当前位置:文档之家› Si对TiAl合金高温抗氧化性能的影响_肖伟豪

Si对TiAl合金高温抗氧化性能的影响_肖伟豪

Si对TiAl合金高温抗氧化性能的影响_肖伟豪
Si对TiAl合金高温抗氧化性能的影响_肖伟豪

锂电负极有哪些核心性能指标负极材料的发展情况和趋势的概述

锂电负极有哪些核心性能指标负极材料的发展情况和趋势的概述锂电负极二十年复盘与展望 投资观点: 负极的技术指标众多,且难以兼顾。 负极材料有克容量、倍率性能、循环寿命、首次效率、压实密度、膨胀、比表面积等多项性能指标,且难以兼顾,如大颗粒的压实密度好、克容量高,但倍率性能不好;小颗粒反之。负极制造商需要通过优化生产工艺,提高材料的整体、综合性能。 凭借资源和工艺优势,用十年时间打败日本完成国产化。 目前主流的负极仍然是天然石墨和人造石墨,天然石墨是从黑龙江、青岛的矿山采矿并经过浮选、球形化、表面包覆制成,人造石墨则是以石油或煤化工的副产物煤焦油沥青或减压渣油为原料,经延迟焦化制成针状焦,并经过造粒、石墨化制成。2000年之前,负极行业全部掌握在日本企业手中,之后经过贝特瑞(首家掌握天然鳞片石墨的球形化技术,还掌控上游的矿山和浮选)、上海杉杉(国产化CMS打败日本大阪煤气、05年首创FSN-1之后十年都是行业模仿抄袭的对象)、江西紫宸(G1系列高各向同性、极低的膨胀,实现FSN-1之后的又一次突破)三家企业长时间的努力,目前日本企业的占有率仅剩三成左右。人造石墨替代天然石墨仍是未来的趋势。 从供应链来看,国内动力电池基本全部使用循环、膨胀、倍率性能更优的人造石墨,国外动力电池(除松下外)则以价格低廉的天然石墨为主。消费电池方面也是天然石墨的用量更大,但以ATL为代表的软包电池和松下为代表的超高容量圆柱电池,则偏爱人造石墨。从未来的趋势来看,LG等日韩动力电池厂商将转向人造和天然混合的复合石墨,提高人造石墨的用量;消费电池中,软包和超高容量圆柱电池的渗透率也将持续提升,因此人造石墨仍将继续对天然石墨形成替代。 江西紫宸收入规模已超过上海杉杉成为国内第一人造石墨负极制造商,国际上也仅次于日立化成排名全球第二。市场普遍认为江西紫宸主要生产消费电池的负极材料,未来增长空间有限。但我们认为,消费电池虽然行业增长不快,但目前主要采用天然石墨,随着软包

镍基高温合金性能

镍基高温合金 镍基高温合金是以镍为基体(含量一般大于50%) 在650~1000℃范围内具有较高的强度和良好的抗氧化、抗燃气腐蚀能力的高温合金。 发展过程 镍基高温合金(以下简称镍基合金)是30年代后期开始研制的。英国于1941年首先生产出镍基合金Nimonic 75(Ni-20Cr-0.4Ti);为了提高蠕变强度又添加铝,研制出Nimonic 80(Ni-20Cr-2.5Ti-1.3Al)。美国于40年代中期,苏联于40年代后期,中国于50年代中期也研制出镍基合金。镍基合金的发展包括两个方面:合金成分的改进和生产工艺的革新。50年代初,真空熔炼技术的发展,为炼制含高铝和钛的镍基合金创造了条件。初期的镍基合金大都是变形合金。50年代后期,由于涡轮叶片工作温度的提高,要求合金有更高的高温强度,但是合金的强度高了,就难以变形,甚至不能变形,于是采用熔模精密铸造工艺,发展出一系列具有良好高温强度的铸造合金。60年代中期发展出性能更好的定向结晶和单晶高温合金以及粉末冶金高温合金。为了满足舰船和工业燃气轮机的需要,60年代以来还发展出一批抗热腐蚀性能较好、组织稳定的高铬镍基合金。在从40年代初到70年代末大约40年的时间内,镍基合金的工作温度从700℃提高到1100℃,平均每年提高10℃左右。镍基高温合金的发展趋势见图1。

镍基高温合金的发展趋势 成分和性能 镍基合金是高温合金中应用最广、高温强度最高的一类合金。其主要原因,一是镍基合金中可以溶解较多合金元素,且能保持较好的组织稳定性;二是可以形成共格有序的A3B 型金属间化合物γ'[Ni3(Al,Ti)]相作为强化相,使合金得到有效的强化,获得比铁基高温合金和钴基高温合金更高的高温强度;三是含铬的镍基合金具有比铁基高温合金更好的抗氧化和抗燃气腐蚀能力。镍基合金含有十多种元素,其中Cr主要起抗氧化和抗腐蚀作用,其他元素主要起强化作用。根据它们的强化作用方式可分为:固溶强化元素,如钨、钼、钴、铬和钒等;沉淀强化元素,如铝、钛、铌和钽;晶界强化元素,如硼、锆、镁和稀土元素等。 镍基高温合金按强化方式有固溶强化型合金和沉淀强化型合金。 ·固溶强化型合金 具有一定的高温强度,良好的抗氧化,抗热腐蚀,抗冷、热疲劳性能,并有良好的塑性和焊接性等,可用于制造工作温度较高、承受应力不大(每平方毫米几公斤力,见表1)的部件,如燃气轮机的燃烧室。 ·沉淀强化型合金 通常综合采用固溶强化、沉淀强化和晶界强化三种强化方式,因而具有良好的高温蠕变强度、抗疲劳性能、抗氧化和抗热腐蚀性能,可用于制作高温下承受应力较高(每平方毫米十

电化学工作站技术参数

电化学工作站技术参数 1、仪器整体需为插板式设计,扩展槽至少3个,需配数据接口卡1个,提供4个外置设备 接口,连接大电流外置恒电位仪能做±8A充放电测试; 2、频率范围:10μHz~3MHz,模数分辨率不低于18 bit; 3、最大输出电流不低于±2.2 A;CV扫速范围:0.3 μV/s ~80 kV/s; 4、频率精度及频率分辨率至少达到0.0028%; 5、最高电流精度不低于0.05%; 6、测试阻抗精度:100 mΩ~10 MΩ/0.2%;1 mΩ~1 GΩ / 2%;30μΩ~1 GΩ/3%; 7、大电流外置恒电位仪调制输出频率范围不窄于10μHz-150KHz;输出功率不小于180W; 最大输出电流及电压不小于±8A,±18V;大电流外置恒电位仪必须可以驱动光源、控制光源强度、调制光谱; 8、外置光强计必须能实时检测样品被照射强度,能通过光强闭环控制系统实时反馈给大电 流外置恒电位仪对光源进行实时调节。 9、快速光强瞬态测试模块最高采样速率不低于16MHz(双通道),时间分辨率不超过60ns, 能用于快速光强瞬态测试,光电瞬态响应,电流遮断,电子寿命测试,载流子传输时间测试; 10、软件:具备交流阻抗测试,电荷提取测试,时间域测试,快速光强瞬态测试,动态调制光电压谱IMVS/光电流谱IMPS,光电流/光电压对快速变化光源的瞬态响应,斩光伏安测试。 11、配置要求: 除电化学工作站主机外还需有以下配件: ①大电流外置恒电位仪; ②光具座、外置光强计、光强放大反馈系统及光强闭环回路控制系统; ③快速瞬态记录仪; ④1000W/m^2 白光LED光源; ⑤340W/m^2 绿光LED光源。 12、需提供厂家宣传彩页或官网说明证明其投标响应参数的真实性。 13、技术服务要求 ①免费安装、现场培训,受训人员掌握仪器的基本原理、结构,达到独立操作和进行方法条件摸索开发的水平,能够对仪器进行日常维护。 ②厂家为用户免费保修至少一年,保修期自仪器验收合格之日起计算。 ③厂家接到用户维修申请后24小时内做出响应,并在三个工作日内派维修人员到现场维修。

RSTF电化学工作站技术指标

RST5080F电化学工作站 技术指标、测试方法 一、技术指标: 1 仪器架构: 恒电位仪、恒电流仪、交流阻抗谱仪,F型 2 接地模式:可根据体系要求设置成实地模式或浮地模式 3 槽压: ±15V 4 电位扫描范围: ±12.8V 5 CV最小电位增量: 0.0125mV 6 电位控制精度:<±0.5mV 7 电位控制噪声: <0.01mV 8 电位上升时间: <0.25uS 9 电位测量零位: 自动校正 10 电位更新及阻抗采集速率: 10MHz 11 电位测量低通滤波器: 自动或手动设置 12 电位测量精度:满量程的0.1% 13 扫描速度: 0.000001V/S~20000V/S 14 参比电极输入阻抗//电容: >1013Ω// <10pF 15 最大恒电流输出:±0.5A 16 输入偏置电流: <0.1pA 17 电流测量分辨率: 电流量程的0.00076%,最小0.2fA 18 电流测量零位: 自动校正 19 电流测量量程: 1pA~0.5A(共25档) 20 前置放大倍数: 5×10×100 21 电流测量最高灵敏度: 1×10-12A/V 22 电流测量精度:满量程的0.1% 23 电流测量低通滤波器: 自动或手动设置 24 方波伏安法频率 1Hz~100kHz 25 交流伏安法频率 0.1Hz~10kHz 26 SHACV频率 0.1Hz~5KHz 27 交流阻抗谱频率: 0.00001Hz~1MHz(11个频段) 28 正弦波幅度: 0.01mV~2.3V 29 CA和CC脉冲宽度: 0.1mS~1200S 30 DPV脉冲宽度: 0.05mS~64S 31 IR降补偿:自动或手动设置(10Ω~1MΩ) 32 多阶跃循环次数: 1000次 33 限压反馈恒流换向时间: 0.1mS 34 电池全容量充电工步:激活、恒流、恒压、涓流

技术指标和性能指标

电位滴定仪技术要求 一、品牌型号: 1.品牌:瑞士梅特勒 2.型号:新超越系列T5 二、运行环境 1、电源电压:100~240VAC±10%;频率:50~60HZ;环境温度:5--40℃;相对空气湿度: 31℃时最大80%。 2、用途 用于各种电化学滴定分析,如酸碱滴定、络合滴定、沉淀滴定、氧化还原滴定、电导滴定、恒pH滴定、永停滴定、容量法卡氏水分测定、库仑法卡氏水分测定,两相滴定(如表面活性剂类样品)、光度滴定,并能直接测量pH值、离子浓度、氧化还原电位、温度、电导率值、极化电压、极化电流、透光率和吸光率等 三、技术指标 1、仪器的硬件连接 ①滴定仪控制方式:分体式七英寸中文彩色触摸屏和中文电脑软件双通道控制,自由切换。 ②搅拌方式:同时具有磁力搅拌器和螺旋桨搅拌器2种,搅拌速度随意可调。 ③电极接口类型:两个智能电势(mV/pH)测量电极接口、极化电极接口,温度电极接口, 电导率电极接口,库仑法电解电极接口,标配Lims接口。 2、电势(mV/pH)测量电极 2.1 mV测量电极接口 ①测量范围:-2000mV~2000mV ②分辨率:0.1mV ③最大的可能误差:0.2mV 2.2 pH测量电极接口 ①测量范围:-26.0~40.0pH ②辨率:0.001pH ③最大的可能误差:0.003pH 3、极化电极接口(Upol) ①极化电压:0-2000mV(交流电,增量0.1mV); ②测量范围:0-200μA;

③分辨率:0.1μA; ④误差范围:0.2μA; 4、极化电极接口(Ipol) ①极化电流:0-24μA(交流电,增量0.1μA); ②测量范围:0-2000mV; ③分辨率:0.1mV; ④误差范围:2mV; 5、PT1000温度电解接口 ①测量范围:-20-130; ②分辨率:0.1℃; ③误差范围:0.2℃; 6、滴定仪主机可直接扩展电导率电极接口,实现电导率直接测量和电导率滴定。 ①测量范围:±2000m V; ②分辨率:0.1mV; ③误差范围:0.2mV; 7、滴定仪主机可直接扩展电解电极接口,实现库仑法水分测定和溴指数测定(电量法) ①库仑法水分测定电流范围:可选100、200、300、400mA或Auto ②溴指数测定电流范围:可选1、5、100、200、300、400mA或Auto 8、滴定管 & 滴定管驱动器 ①滴定管驱动器的分辨率:滴定管体积的1/20000(10mL滴定管为例:0.5uL) ②具备各种体积的滴定管(包括1毫升、5毫升、10毫升、20毫升) ③滴定管可以方便安装、拆除,无需工具进行操作 ④滴定管具有滴定剂(名称、浓度)自动识别(RFID)的功能,并支持热插拔,更换滴定 管无需重启仪器,即插即用。 ⑤滴定管驱动器工作类型:上推式滴定管驱动器,保证气泡能够完全排空,从而保证结果 的准确性 四、性能指标: 1、*使用彩色TFT触摸屏为控制终端,且彩色触摸屏不低于7寸,同时具备StatusLight TM (状态指示灯),通过红、黄、绿三种颜色有效指示滴定的工作状态 2、主机内置状态指示灯,且具有声音信号的喇叭; 3、*主机内置SmartSample阅读器,无需手动输入,直接把重量等信息传入主机,实现从 天平到滴定仪的高效安全的无线数据传输,避免抄写错误; 4、*具备全面的多级用户权限管理功能,并可设置指纹或密码保护 5、具备RS232,USB,以太网和PDF等输出方式,并可输出PDF,csv,XML等格式的数据 6、*具备多次标准加入法,可实现自动化的钠,钾,钙,硝酸根等离子的含量测定,内置

电化学工作站技术参数

电化学工作站技术参数 一、主机与配置规格 1.测试通道配置数量:安装4个7 MHz电化学阻抗测试通道板; 2.通道测试功能:所有通道都具备电化学交流阻抗测试功能、循环伏安、电化学噪声、极化曲线、恒电位、恒电流、脉冲伏安、恒定加载放电、恒功率放电、电位滴定、电流滴定、恒电流充放电等测试功能; 3.浮地功能:4个通道全部具备; 二、测试通道的技术参数要求 1.★EIS电化学阻抗频率测试范围:50 μHz– 7 MHz(4个); 2.EIS频率分辨率:<0.001%; 3.EIS电化学阻抗频率最高测试精度:<0.5%; 4.电流量程:不少于400 mA,可选配放大器升级到100 A以上; 5.施加电流分辨率:<0.006%; 6.电流测试精度:<0.1%; 7.测试电流分辨率:<0.004%; 8.工作电压:+/-10V; 9.电压测试精度:<0.1%; 10.带宽:8 MHz; 11.★数据采集速率:不少于800,000点/秒; 12.★电池正负极阻抗测试:4个通道都具备运行一次阻抗测试可同时测量工作电极对参比, 辅助电极对参比,工作电极对辅助电极的3个阻抗谱; 13.电池正负极电压记录:4个通道都具备一次实验,同时记录工作电极对参比,对电极对参 比,工作电极对对电极的电压值; 14.★无线控制:用户可通过WIFI网络控制仪器进行测试; 15.双恒电位:可以组建2套双恒电位仪,同时连接2套RRDE旋转环盘电极系统同步测量; 16.软件升级:支持每年升级一次新版本软件; 17.硬件升级:可升级到48 V高电压,120 A大电流; 三、售后服务 1年免费保修,免费上门安装培训与技术支持

高温合金的性能

高温合金是在高温下具有较高力学性能、抗氧化和抗热腐蚀性能的合金。高温合金按基体成分可分为镍基高温合金、铁镍基高温合金和钴基高温合金,其中镍基高温合金发展最快,使用也最广,铁镍基高温合金次之。按强化方式分为固溶强化合金和析出强化合金(或称时效沉淀强化合金)等。按成型方式和生产工艺分为变形合金、铸造合金、粉末冶金合金和机械合金化合金。 固溶强化高温合金的基体为面心立方点阵的固溶体,在其固溶度范围内通过添加铬、钴、钼、钨、铌等元素,提高原子间结合力,产生点阵畸变,降低堆垛层错能,阻止位错运动,提高再结晶温度来强化固溶体。固溶强化的效果取决于合金化元素的原子尺寸及加入量。原子半径较大、熔点较高的钼和钨具有较好固溶强化作用,两者总含量可达18%~20%。铬可防止高温氧化和热腐蚀,但含量过高会降低γ’相的固溶度,使合金的热强性下降。镍基固溶强化高温合金一般均具有优良的抗氧化、抗热腐蚀性能,塑性较高、焊接性能好,但热性相对较低。铁镍基固溶强化高温合金,虽然与镍基固熔强化高温合金相比在热强性、抗氧化和抗热腐蚀等方面略差一些,但仍具有良好的力学性能、较好冷热加工工艺性能和焊接性能。 析出强化高温合金是在固溶强化高温合金的基础上,通过添加较多的铝、钛、铌等元素而发展的。这些无元素除了强化固溶体外,通过时效处理,与镍结合形成共格稳定、成分复杂的Ni3(Al Ti)相(也就是γ’相,具有长程有序的面心立方结构)或Ni3(Nb AI Ti)相(也就是γ’’相,有序体心四方结构)金属间化合物,同时钨、钼、铬等元素与碳形成各种碳化物(如MC M6C M23C6等)由于γ’(γ’’)相和碳化物存在,使合金的热强性大大提高。此外,这类合金中还可以加入微量的硼、锆和稀士元素、形成间隙相,强化晶界。近年来发展的一些合金,往往采用固溶,析出和晶界多种方式强化,使合金具有优良的综合性能。随着AI Ti Nb 等γ’(γ’’)相形成元素含量的提高,其强化效果也增大,热强性提高,但合金的冷热加工性能和焊接性能随之下降。一般认为,AI+Ti含量大于6%(原子百分数)的高温合金焊接就很困难。镍基析出强化高温合金具有很好的热强性、抗氧化和抗腐蚀性能,正如前面所提到的冷热加工性能和焊接性能较固溶强化高温合金差。但是,在固溶状态下,有些镍基析出强化高温合金还是具有良好塑性和焊接性。铁镍基析出强化高温合金要中温下具有较高的热强性、良好的抗氧化和抗热腐蚀性能。在固溶状态下,冷热加工性能和焊接性能同镍 基析出强化高温合金相类似。无论镍基析出强化高温合金还是铁镍基析出强化高温合金,当加入更多的钼、钛、硼等强化元素时,使其冷热加工塑性下降,只能通过铸造成型,一般铸造合金的焊接较为困难。 氧化物弥散强化是在基体中加入一定量细小的弥散分布的氧化颗粒,对基体进行强化,使合金具有很高的强度和某些特性。合金TDNi TDNiCr是镍和镍铬基中加入2%左右氧化钍(ThO2)颗粒强化,由于这种合金中的氧化钍在高温下不易聚集长大、不溶于基体,同时合金的熔点高,晶粒极细,在1000~12000C下仍有较高的强度,抗疲劳性能高,缺口敏感小,室温塑性较好,可轧成棒和板材。氧化物弥散强化ODS合金是利用氧化物(如Y2 O3和AI2O3)强化的合金,这类合金的采用特殊的粉末冶金工艺生产,经锻压制成材。氧化物弥散强化合金,具有很高的持久蠕变性能,是很有发展前途的新型高温材料,其缺点是成功率低,塑性焊接性和耐蚀性差,有待解决。 高温合金性能主要取决于合金成分和它的组织结构,如前面所述,难熔金属元素Mo W以及CO起到固溶强化作用,AI Ti Nb 等γ’形成元素起到析出强化作用。一般认为,强化效果应该计算W+MO和γ’形成元素的总量,而CO和Cr居于次要地位,合金的持久强度随着合金元素总量的增加而提高。现在大量研究表明,高温合金中加入微量的B Zr Ce 和Mg等元素能显著改善晶界状况,提高合金的蠕变性能,但要注意这些元素的加入量一定要严格控制,否则就会产生有害的作用,如使合金脆化,形成低熔化合物等。

电化学技术表征能量存储器件的性能

电化学技术表征能量存储器件的性能 一. 循环伏安曲线(CV) 【原理简介】 循环伏安法是以线性扫描伏安法的电位扫描到头后,再回过头来扫描到原来的起始电位值,所得的电流—电压曲线为基础的分析方法。扫描电压呈等腰三角形。如果前半部扫描(电压上升部分)为去极化剂在电极上被还原的阴极过程,则后半部扫描(电压下降部分)为还原产物重新被氧化的阳极过程。一次三角波扫描完成一个还原过程和氧化过程的循环,故称为循环伏安法。 在一个典型的循环伏安实验中,工作电极一般为浸在溶液中的固定电极。为了尽可能降低欧姆电阻,最好采用三电极系统。在三电极系统中,电流通过工作电极和对电极。工作电极电位是以一个分开的参比电极(如饱和甘汞电极,SCE)为基准的相对电位。在循环伏安测试实验中,工作电极的电位以10 mV/s 到200 mV/s 的扫描速度随时间线性变化(Fig.1a),在此同时记录在不同电位下的电流(Fig.1b)。 图一 【实验原理】 若电极反应为O+e →R,反应前溶液中只含有反应粒子O且O、R在溶液均可溶,控制扫描起始电势从比体系标准平衡电势φ正得多的起始电势j i处开始势作 0附近时,O 正向电扫描,电流响应曲线则如图所示。当电极电势逐渐负移到φ 平 开始在电极上还原,并有法拉第电流通过。由于电势越来越负,电极表面反应物O的浓度逐渐下降,因此向电极表面的流量和电流就增加。当O的表面浓度下

降到近于零,电流也增加到最大值I pc,然后电流逐渐下降。当电势达到j r后,又改为反向扫描。随着电极电势逐渐变正,电极附近可氧化的R粒子的浓度较大, 0时,表面上的电化学平衡应当向着越来越有利于生成R 在电势接近并通过φ 平 的方向发展。于是R开始被氧化,并且电流增大到峰值氧化电流I pa,随后又由于R的显著消耗而引起电流衰降。整个曲线称为“循环伏安曲线”。如图2所示: 图二 【应用】 基于CV曲线的电容器容量计算,可以根据公式(1)计算。 (ν为扫速,单位V/s) (1) 从式(1)来看,对于一个电容器来说,在一定的扫速下做CV测试。充电状态下,通过电容器的电流i是一个恒定的正值,而放电状态下的电流则为一个恒定的负值。这样,在CV图上就表现为一个理想的矩形。由于界面可能会发生氧化还原反应,实际电容器的CV图总是会略微偏离矩形。因此,CV曲线的形状可以反映所制备材料的电容性能。对双电层电容器,CV曲线越接近矩形,说明电容性能越理想;而对于赝电容型电容器,从循环伏安图中所表现出的氧化还原峰的位置,我们可以判断体系中发生了哪些氧化还原反应。 二. 恒电流充放电曲线(CCD) 【原理简介】 恒电流充放电法,又称计时电势法。一种研究材料电化学性能中非常重要的方法之一。在恒流条件下对被测电极进行充放电操作,记录其电位随时间的变化规律,研究电位随时间的函数变化的规律。它的基本工作原理是:在恒流条件下对被测电极进行充放电操作,记录其电位随时间的变化规律,进而研究电极的充

铝及铝合金的电化学氧化

铝及铝合金的电化学氧化(导电氧化): 在电解质溶液中,具有导电表面的制件置于阳极,在外电流的作用下,在制作表面形成氧化膜的过程称为阳极氧化,所产生的膜为阳极氧化膜或电化学转化膜. 电化学氧化膜与天然氧化膜不同,氧化膜为堆积细胞结构,每个细胞为一个六角柱体,其顶端为一个圆弧形且具六角星形的细孔截断面.氧化膜有两层结构.靠近基体金属的是一层致密且薄,厚度为 0.01~0.05μm的纯AL2O3膜,硬度高,此层即为阻挡层;外层为多孔氧化膜层,由带结晶水的AL2O3组成,硬度较低. 电化学氧化按电解液的主要成分可分为:硫酸阳极氧化,草酸阳极氧化,铬酸阳极氧化;按氧化膜的功能可分为:耐磨膜层,耐腐蚀膜层,胶接膜层,绝缘膜层,瓷质膜层及装饰氧化. 另外铝的表面处理可以用电镀的方式,提高硬度先镀底铜再镀硬铬,装饰可以镀装饰铬,另外阳极氧化也可进行着色处理 《材料工程丛书-表面处理手册》 1 氧化染色原理 众所周知,阳极氧化膜是由大量垂直于金属表面的六边形晶胞组成,每个晶胞中心有一个膜孔,并具有极强的吸附力,当氧化过的铝制品浸入染料溶液中,染料分子通过扩散作用进入氧化膜的膜孔中,同时与氧化膜形成难以分离的共价键和离子键。这种键结合是可逆的,在一定条件下会发生解吸附作用。因此,染色之后,必须经过封孔处理,将染料固定在膜孔中,同进增加氧化膜的耐蚀、耐磨等性能。

2 阳极氧化工艺对染色的影响 在氧化染色整个流程中,因为氧化工艺原因造成染色不良是比较普遍的。氧化膜的膜厚和孔隙均匀一致是染色时获得均匀一致颜色的前提和基础,为获得均匀一致的氧化膜,保证足够的循环量,冷却量,保证良好的导电性是举足轻重的,此外就是氧化工艺的稳定性。 硫酸浓度,控制在180—200g/l。稍高的硫酸浓度可促进氧化膜的溶解反应加快,利于孔隙的扩张,更易于染色; 铝离子浓度,控制在5—15 g/l。铝离子小于5g/l,生成的氧化膜吸附能力降低,影响上色速度,铝离子大于15 g/l时,氧化膜的均匀性受到影响,容易出现不规则的膜层。 氧化温度,控制在20℃左右,氧化槽液的温度对染色的影响非常显著,过低的温度致使氧化膜的膜孔致密,染色速度显著减缓;温度过高,氧化膜蔬松,容易粉化,不利于染色的控制,氧化槽的温差变化应在2℃以内为宜。 电流密度,控制在120—180a/m2。电流密度过大,在膜厚一定的情况下,就要相应地缩短铝制品在槽中的电解时间,这样,氧化膜在溶液中的溶解减少,膜孔致密,染色时间加长。同时,膜层容易粉化。膜厚,染色要求氧化膜厚度一般在10μm以上冲溶液。 膜厚过低,染色容易出现不均匀现象,同时在要求染深色颜色(如黑色)时,因为膜厚不够,导致染料的沉积量有限,无法达到要求的颜色深度。 总而言之,阳极氧化作为染色的前工序,是染色的基础。阳极氧化的

高温合金

1.高温合金的定义:高温合金是指以铁、镍、钴为基,能在600℃以上的高温及一定盈利作用下长期工作的一类金属材料。 2.高温合金的命名方法: 变形高温合金以“GH”加4位阿拉伯数字表示。前缀后第一位数字表分类号,1、2表铁基或铁镍基,3、4表镍基,5、6表钴基;1、3、5表固溶强化型合金,2、4、6表时效沉淀型合金。前缀后的第2、3、4位表合金编号。 铸造高温合金以“K”加3位阿拉伯数字表示。前缀后第一位数字表分类号,含义与变形合金相同,第2、3位表合金编号。 粉末高温合金以“FGH”加阿拉伯数字表示。 3.高温合金主要用于四大热端部件:导向器、涡轮叶片、涡轮盘、燃烧室。 4.常见的高温合金基体有哪几种?铁基镍基钴基 5.高温合金的固溶强化机制:固溶度小的合金元素较之固溶度大的合金元素,会产生更强烈的固溶强化作用,但其溶解度小却又限制其加入量。 6.合金元素的固溶强化能力排序:Cr

改性正极材料的合成及其电化学性能

第 24 卷第 4 期中国有色金属学报 2014 年 4 月 V olume 24 Number 4 The Chinese Journal of Nonferrous Metals April 2014 文章编号:1004-0609(2014)04-0974-07 改性 LiNi1/3Co l/3Mn l/3O2 正极材料的合成及其 电化学性能 朱继平,张 胜,辛智强,许全保,苏 徽 (合肥工业大学 材料科学与工程学院,合肥 230009) 摘 要:采用固相反应法制备Mg 2+ 掺杂的锂离子电池正极材料LiNi l/3Co l/3Mn l/3O2, 并将Mg 2+ 最佳掺杂量为0.03(摩 尔分数)的样品进行 CuO 复合。通过 X 射线衍射(XRD)、扫描电镜(SEM)和电池测试系统等手段对制备的 LiNi l/3Co l/3Mn l/3O2 样品的结构、形貌及电化学性能进行表征。结果表明:Mg 2+ 掺杂没有改变LiNi l/3Co l/3Mn l/3O2 的 层状结构,Mg 2+ 掺杂量为0.03的LiNi l/3Co l/3Mn l/3?0.03Mg0.03O2 材料具有最好的电化学性能和循环性能,在0.2C倍 率下, 首次放电比容量达158.5 mA?h/g, 10次循环后容量保持率为91.2%。 添加CuO的LiNi l/3Co l/3Mn l/3?0.03Mg0.03O2 的首次放电容量为167.4 mA?h/g,高电压下达到181.0 mA?h/g;循环10次后,放电比容量为159.4 mA?h/g,容量 保持率为95.3%,改性后的放电比容量、循环性能及在高倍率和高电压下的性能均得到改善。 关键词:LiNi l/3Co l/3Mn l/3O2;正极材料;Mg 2+ 掺杂;电化学性能;合成 中图分类号:TM912.9 文献标志码:A Synthesis and electrochemical properties of modified LiNi1/3Co1/3Mn1/3O2 cathode materials ZHU Ji-ping, ZHANG Sheng,XIN Zhi-qiang,XU Quan-bao,SU Hui (School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China) Abstract: The electrode materials LiNi1/3Co l/3Mn l/3O2 doped Mg 2+ were synthesized by solid state reaction, the optimum sample LiNi l/3Co l/3Mn l/3?0.03Mg0.03O2 was mixed with CuO. The structure, morphology and electrochemical properties of the as-prepared materials were characterized by XRD, SEM and battery testing system. The results show that Mg 2+ doping does not change the material layer structure, and the optimum sample is LiNi l/3Co l/3Mn l/3?0.03Mg0.03O2, which has the best electrochemical properties and cycle performance. The first discharge specific capacity of LiNi l/3Co l/3Mn l/3?0.03- Mg0.03O2 is 158.5 mA?h/g at 0.2C, and the conservation ratio of capacity is about 91.2% after 10 cycles. The first discharge capacity and cycle performance of the sample mixed with CuO improve obviously, which are 167.4 mA?h/g at 0.2C and maintain 95.3% after 10 cycles.The materials have good performances at high rate and high voltage. Key words: LiNi1/3Co1/3Mn1/3O2?cathode material?Mg 2+ doping?electrochemical properties? synthesis 能源问题已经成为全球关注的焦点,许多国家目 前都在开发新能源。锂离子电池具有无记忆效应、能 量密度高、循环寿命长的优势,是新一代绿色环保的 化学能源 [1] 。目前,商业化锂离子电池正极材料主要 有LiCoO2、 LiNi1/3Co1/3Mn1/3O2、 LiMn2O4 和LiFePO4, 其中 LiNi1/3Co1/3Mn1/3O2 材料具有原材料丰富、价格 便宜、安全性好等优点,被认为是最具有发展潜力的 锂离子动力电池正极材料之一 [2] 。LIANG等 [3] 研究认 基金项目:国家自然科学基金资助项目(21373074);安徽省科技攻关计划项目(11010202133);安徽高校省级自然科学研究重点项目(KJ2010A261); 合肥工业大学大学生创新训练计划项目(2013CXSY140) 收稿日期:2013-07-30;修订日期:2013-10-26 通信作者:朱继平,副教授,博士;电话:0551-62901362;E-mail: jpzh@https://www.doczj.com/doc/b13125828.html,

RST5202F电化学工作站技术指标

RST5202F电化学工作站技术指标 一、RST5202F电化学工作站主要技术参数: 仪器架构:恒电位仪、恒电流仪、交流阻抗频谱仪 接地模式:可根据体系要求设置成实地模式或浮地模式 槽压:±15V 电位扫描范围:±12.8V CV最小电位增量:0.0125mV 电位控制精度:<±0.5mV 电位控制噪声:<0.01mV 电位上升时间:<0.00025mS 电位测量零位:自动校正 电位更新及阻抗采集速率:10MHz 电位测量低通滤波器:自动或手动设置 电位测量精度:满量程的0.1% 扫描速度:0.000001V/S~20000V/S 参比电极输入阻抗//电容:>1013Ω//<10pF 最大恒电流输出:±2A 输入偏置电流:<0.1pA 电流测量分辨率:电流量程的0.00076%,最小0.2fA 电流测量零位:自动校正 电流测量量程:1pA~2A(27档) 前置放大倍数:5×10×100 电流测量最高灵敏度:1×10-12A/V 电流测量精度:满量程的0.1% 电流测量低通滤波器:自动或手动设置 方波伏安法频率:1Hz~100kHz 交流伏安法频率:0.1Hz~10kHz 交流阻抗谱频率:0.00001Hz~1MHz(11个频段) 正弦波幅度:0.01mV~2.3V CA和CC脉冲宽度:0.1mS~1200S DPV脉冲宽度:0.05mS~64S IR降补偿:自动或手动设置(10Ω~1MΩ) 多阶跃循环次数:1000次 限压反馈恒流换向时间:<0.1mS 恒流限压循环周期:0.1S~100000S 脉冲电镀//最小脉宽:八相脉冲可正可负//0.05mS 电池全容量充电工步:激活、恒流、恒压、涓流 双通道高速ADC :18bit@1Msps 最大数据长度:20,000,000点 通氮搅拌及敲击控制输出:二路开关量信号(+5V/10mA) 扩展输出:二路光电隔离数字量信号 储能电化学测量保护模式:极性、电压、电流、时间、链路 电极智能柔性保护:电压超载、电流超载

γ′粒子尺寸对定向凝固高温合金拉伸和持久性能的影响

Y/粒子尺寸对定向凝固高温合金拉伸 和持久性能的影响 吴昌新9孙传棋9李其娟 (北京航空材料研究院9北京100095 摘要研究了一种定向凝固高温合金析出V/粒子尺寸的控制规律O结果表明V/粒子尺寸随固溶处理后冷却速度提高而减小9抗拉强度和蠕变寿命随V/粒子尺寸增大而降低9而合金的拉伸塑性将随之提高O 关键词定向合金V/粒子尺寸强度与韧性冷却速度 中图分类号TG146.1+5文献标识码A文章编号1005-5053(2002 03-0001-04 定向柱晶和单晶高温合金叶片9由于消除了垂直于应力轴的横向晶界或全部晶界9其固有韧性和强度较高[1]可以通过高温固溶处理9充分均匀化减轻偏析9同时可在这基础上控制V/粒子的尺寸9调节合金的强度与韧性O我国自行研制的DZ4无铪定向凝固高温合金已经在多种型号发动机服役飞行十多年9合金在较多型号中强度与韧性匹配甚好9发挥了合金的较大效能9但在某一型号中发现9强度与韧性的匹配不是最佳状态9强度储备过多9而韧性的裕度比较紧张O本文就是为解决此问题而开展的应用研究O 1试验材料和方法 试验材料DZ4合金公称成分为(Wt%C 0.149Cr9.59CO6.09W5.39MO2.89A16.09Ti 1.89B0.0209Ni余[2]O在Ipsen真空热处理炉中进行1220 2 2.5h的固溶处理后在1220 1050 以不同速度冷却9再进行870 32h的时效处理9试样经加工后在拉伸试验机和蠕变持久试验机上测定中温~高温下的各不同冷却速度的拉伸和持久性能O同时在JSM5600VL扫描电镜上观察V/形态9并对每种冷却速度的V/粒子形态反复观察9再将不少于三个视场的枝晶干和枝晶间放大照相9对其测定V/立方体的边长和间距O 2结论和讨论 2.1冷却速度对析出V/粒子尺寸的影响及控制 DZ4合金固溶处理温度1220 保温2h后在 收稿日期2002-04-06 修订日期2002-06-08 作者简介吴昌新(1952- 9男9高级工程师O 12201050 的温度范围内分别以25 min9 42 min968 min和88 min速度冷却9不同冷却速度的V/相粒子形态见图19而V/相粒子尺寸依赖于冷却速度的关系见图2O从图192可以看出9随着冷却速度的降低9V/粒子尺寸明显变大9同时还可以看到9即使经过了1220 的固溶均匀化热处理9合金组织枝晶干和枝晶间的偏析还是存在的9在枝晶间的V/显得比枝晶干粗大和不均匀9V/粒子以不同尺寸的立方体弥散分布于V基体O 理想的固溶处理9必须使所有铸态V/相(共晶相和粗大V/相溶解9使合金成分完全均匀9再在从固溶处理温度冷却到V/全溶温度以下时9V/相将能相对均匀细小地在整个合金组织中析出9这是定向高温合金获得最佳力学性能的最好组织9因为含有共晶或粗大V/相的偏析组织是合金的薄弱区域9以及共晶和粗大V/实际上降低了有效V/体积分数9不能充分地对合金强度作出贡献O为了得到这一组织9合金必须加热到V/全溶温度以上9使铸态V/相溶解9加热温度又要限制在合金初熔温度以下9以防止合金熔化9熔化会导致凝固偏析9形成V/共晶和产生收缩疏松O而V/全溶温度和合金初熔温度都与合金成分有关9对于有低熔点共晶相比较多的合金9例如含~f合金9最好先在较低温度进行溶解共晶相的预备热处理9以便更容易使固溶温度保持在这两个临界温度之间9当V/相溶解于基体V后9它再以细小均匀形式析出O V/相粒子尺寸影响力学性能9为了控制其大小9必须控制从固溶温度到某一温度之间的冷却速度9低于这一温度V/将不会在短时间内粗化9对DZ4合金来说9这个温度不低于1050 9所以

燃料电池中催化剂的电化学性能研究进展

收稿日期:20180622三基金项目:福建省自然科学基金资助项目(2012J 05101 )三作者简介:余培锴(1992),男,福建厦门人,厦门理工学院硕士研究生;通信作者:李月婵(1983),女,福建厦门人,厦门理工学院副教授,博士三第36卷 第4期 2018年 8月沈阳师范大学学报(自然科学版)J o u r n a l o f S h e n y a n g N o r m a lU n i v e r s i t y (N a t u r a l S c i e n c eE d i t i o n )V o l .36N o .4A u g .2018文章编号:16735862(2018)04036908燃料电池中催化剂的电化学性能研究进展 余培锴,李月婵 (厦门理工学院材料科学与工程学院,福建厦门 361024 )摘 要:能源已经成为了社会进步与发展不可或缺的基础三人类与技术的快速发展无疑使 一些不可再生能源被急剧消耗,各种因能源消耗而引发的环境问题接踵而来三这些因素都会成为 社会发展的绊脚石三因此,以3E (E c o n o m y ,E n e r g y ,E n v i r o n m e n t )为出发点来大力开发可再生能源成为一个必然趋势三燃料电池是一种将阳极燃料与阴极助燃剂之间发生氧化还原反应所产生 的化学能转化为电能的绿色能源装置,因能量密度高二燃料成本低和常温下即可发生反应等优点, 被认为是21世纪最为理想的发电装置, 也逐渐引起了世界各国的广泛关注三关 键 词:能源;燃料电池;电催化剂 中图分类号:N 33 文献标志码:A d o i :10.3969/j .i s s n .16735862.2018.04.014R e s e a r c h p r o g r e s s o n p e r f o r m a n c e o f c a t a l y s t s i n f u e l c e l l s Y U P e i k a i ,L IY u e c h a n (C o l l e g e o fM a t e r i a l s S c i e n c e a n dE n g i n e e r i n g ,X i a m e nU n i v e r s i t y o fT e c h n o l o g y ,X i a m e n361024,C h i n a )A b s t r a c t :E n e r g y h a s p l a y e da n i n c r e a s i n g l y i m p o r t a n t r o l e i nt h ed e v e l o p m e n t a n d p r o g r e s so f t h e s o c i e t y o f h u m a nb e i n g .t h e r e i s n od e b t t h a t n o n -r e n e w a b l e e n e r g y r e s o u r c e i s g r a mm a t i c a l l y c o n s u m e dd u e t o t h e r a p i dd e v e l o p o f h u m a nk i n d a n d t e c h n o l o g y .W h a t i sm o r e ,t h e s e f a c t o r s c a n h i n d e r t h e a d v a n c e m e n t o f t h es o c i e t y o fh u m a nb e i n g .T h e r e f o r e ,i t i s m o r ea n d m o r en e c e s s i t y t h a tw eh u m a nb e i n g s h o u l dt r y o u rb e s t t oe x p l o i t r e n e w a b l ee n e r g y s o u r c e so nt h eb a s i so f3E (E c o n o m y ,E n e r g y ,E n v i r o n m e n t ).F u e l c e l l s a r e t h ed e v i c e s i n g r e e ne n e r g y t h a t t h e y c a nc o n v e r t c h e m i c a l e n e r g y ,o w n i n g t o r e d o xr e a c t i o n b e t w e e n f u e l so f t h ea n o d ea n do x y g e no f t h e c a t h o d e ,i n t o e l e c t r i c a l e n e r g y .F u e l c e l l s h a v e b e e n s e e n a s a k i n d o f i d e a l p o w e r - g e n e r a t e d d e v i c e s a n d p a i d a t t e n t i o nb y r e s e a r c h e r s f r o ma l l o v e r t h ew o r d a s c r i b e t o i t s h i g h c a p a c i t y d e n s i t y ,l o wc o s t a n d l o w w o r k i n g t e m p e r a t u r e .K e y w o r d s :e n e r g y ;f u e l c e l l ;e l e c t r o c a t a l y s t 1 燃料电池简介 伴随着全世界各国的经济(E c o n o m y )的高速发展,能源(E n e r g y )危机和环境(E n v i r o n m e n t )问题日益突出,3E 关系是人类世界发展与生存所导致的必然结果,如图1所示三目前,人类能够获得的能源主要依靠于化石能源二核能,还依靠一些比如太阳能二风能二地热能和潮汐能等能源三其中化石能源二核能为非再生能源,为非清洁能源三太阳能二风能可以再生,为可再生能源三过度依赖石油二煤二天然气等化石能源,其储量日益枯竭,并且对环境的污染越来越严重三现在全球都在积极采取措施来解决能源危机二环境污染和气候异常等问题三近年来,我国卓有成效的经济和社会

相关主题
文本预览
相关文档 最新文档