当前位置:文档之家› 界面科学4

界面科学4

材料科学基础第三章答案

第三章 1. 试述结晶相变的热力学条件、动力学条件、能量及结构条件。 2. 如果纯镍凝固时的最大过冷度与其熔点(tm=1453℃)的比值为0.18,试求其凝固驱动力。(ΔH=-18075J/mol) 3. 已知Cu的熔点tm=1083℃,熔化潜热Lm=1.88×103J/cm3,比表面能σ=1.44×105 J/cm3。(1)试计算Cu在853℃均匀形核时的临界晶核半径。(2)已知Cu的相对原子质量为63.5,密度为8.9g/cm3,求临界晶核中的原子数。 4. 试推导杰克逊(K.A.Jackson)方程 5. 铸件组织有何特点? 6. 液体金属凝固时都需要过冷,那么固态金属熔化时是否会出现过热,为什么? 7. 已知完全结晶的聚乙烯(PE)其密度为1.01g/cm3,低密度乙烯(LDPE)为0.92 g/cm3,而高密度乙烯(HDPE)为0.96 g/cm3,试计算在LDPE及HDPE中“资自由空间”的大小。8欲获得金属玻璃,为什么一般选用液相线很陡从而有较低共晶温度的二元系?9. 比较说明过冷度、临界过冷度、动态过冷度等概念的区别。 10. 分析纯金属生长形态与温度梯度的关系。 11. 什么叫临界晶核?它的物理意义及与过冷度的定量关系如何? 12. 简述纯金属晶体长大的机制。13. 试分析单晶体形成的基本条件。 14. 指出下列概念的错误之处,并改正。(1) 所谓过冷度,是指结晶时,在冷却曲线上出现平台的温度与熔点之差;而动态过冷度是指结晶过程中,实际液相的温度与熔点之差。(2) 金属结晶时,原子从液相无序排列到固相有序排列,使体系熵值减少,因此是一个自发过程。(3) 在任何温度下,液体金属中出现的最大结构起伏都是晶胚。

材料科学基础第三章答案

习题:第一章第二章第三章第四章第五章第六章第七章第八章第九章第十章第十一章答案:第一章第二章第三章第四章第五章第六章第七章第八章第九章第十章第十一章 3-2 略。 3-2试述位错的基本类型及其特点。 解:位错主要有两种:刃型位错和螺型位错。刃型位错特点:滑移方向与位错线垂直,符号⊥,有多余半片原子面。螺型位错特点:滑移方向与位错线平行,与位错线垂直的面不是平面,呈螺施状,称螺型位错。 3-3非化学计量化合物有何特点?为什么非化学计量化合物都是n型或p型半导体材料? 解:非化学计量化合物的特点:非化学计量化合物产生及缺陷浓度与气氛性质、压力有关;可以看作是高价化合物与低价化合物的固溶体;缺陷浓度与温度有关,这点可以从平衡常数看出;非化学计量化合物都是半导体。由于负离子缺位和间隙正离子使金属离子过剩产生金属离子过剩(n型)半导体,正离子缺位和间隙负离子使负离子过剩产生负离子过剩(p型)半导体。 3-4影响置换型固溶体和间隙型固溶体形成的因素有哪些? 解:影响形成置换型固溶体影响因素:(1)离子尺寸:15%规律:1.(R1-R2)/R1>15%不连续。 2.<15%连续。 3.>40%不能形成固熔体。(2)离子价:电价相同,形成连续固熔体。( 3)晶体结构因素:基质,杂质结构相同,形成连续固熔体。(4)场强因素。(5)电负性:差值小,形成固熔体。差值大形成化合物。 影响形成间隙型固溶体影响因素:(1)杂质质点大小:即添加的原子愈小,易形成固溶体,反之亦然。(2)晶体(基质)结构:离子尺寸是与晶体结构的关系密切相关的,在一定程度上来说,结构中间隙的大小起了决定性的作用。一般晶体中空隙愈大,结构愈疏松,易形成固溶体。(3)电价因素:外来杂质原子进人间隙时,必然引起晶体结构中电价的不平衡,这时可以通过生成空位,产生部分取代或离子的价态变化来保持电价平衡。 3-5试分析形成固溶体后对晶体性质的影响。 解:影响有:(1)稳定晶格,阻止某些晶型转变的发生;(2)活化晶格,形成固溶体后,晶格结构有一定畸变,处于高能量的活化状态,有利于进行化学反应;(3)固溶强化,溶质原子的溶入,使固溶体的强度、硬度升高;(4)形成固溶体后对材料物理性质的影响:固溶体的电学、热学、磁学等物理性质也随成分而连续变化,但一般都不是线性关系。固溶体的强度与硬度往往高于各组元,而塑性则较低, 3-6说明下列符号的含义:V Na,V Na',V Cl˙,(V Na'V Cl˙),Ca K˙,Ca Ca,Ca i˙˙解:钠原子空位;钠离子空位,带一个单位负电荷;氯离子空位,带一个单位正电荷;最邻近的Na+空位、Cl-空位形成的缔合中心;Ca2+占据K.位置,带一个单位正电荷;Ca原子位于Ca原子位置上;Ca2+处于晶格间隙位置。 3-7写出下列缺陷反应式:(l)NaCl溶入CaCl2中形成空位型固溶体;(2)CaCl2溶入NaCl中形成空位型固溶体;(3)NaCl形成肖特基缺陷;(4)Agl形成弗伦克尔缺陷(Ag+进入间隙)。

材料表面与界面课后思考题胡福增

第一章 1.试述表面张力(表面能)产生的原因。怎样测试液体的表面张力 (1)原因 液体表面层的分子所受的力不均匀而产生的。液体表面层即气液界面中的分子受到指向液体内部的液体分子的吸引力,也受到指向气相的气体分子的吸引力,由于气相吸引力太小,这样,气液界面的分子净受到指向液体内部并垂直于表面的引力作用,即为表面张力。这里的分子间作用力为范德华力。 (2)测试 ①毛细管上升法 测定原理 将一支毛细管插入液体中, 液体将沿毛细管上升, 升到一定高度后, 毛细管内外液体将达到平衡状态, 液体就不再上升了。此时, 液面对液体所施加的向上的拉力与液体总向下的力相等。则γ=1 /2(ρl-ρg)ghrcosθ (1) (1)式中γ为表面张力, r为毛细管的半径, h为毛细管中液面上升的高度,ρl为测量液体的密度,ρg为气体的密度( 空气和蒸气) , g为当地的重力加速度, θ为液体与管壁的接触角。若毛细管管径很小, 而且θ=0 时, 则上式(1)可简化为γ=1/2ρghr (2) ②Wilhelmy 盘法 测定原理

用铂片、云母片或显微镜盖玻片挂在扭力天平或链式天平上, 测定当片的底边平行面刚好接触液面时的压力, 由此得表面张力, 公式为: W总-W片=2γlcosφ 式中,W总为薄片与液面拉脱时的最大拉力,W片为薄片的重力, l为薄片的宽度, 薄片与液体的接触的周长近似为2l, φ为薄片与液体的接触角。 ③悬滴法 测定原理 悬滴法是根据在水平面上自然形成的液滴形状计算表面张力。在一定平面上, 液滴形状与液体表面张力和密度有直接关系。由Laplace 公式, 描述在任意的一点P 曲面内外压差为 式中R1, R2 为液滴的主曲率半径; z 为以液滴顶点O为原点, 液滴表面上P 的垂直坐标; P0 为顶点O处的静压力。 定义S= ds/de式中de为悬滴的最大直径, ds为离顶点距离为de处悬滴截面的直径再定义H=β(de/b)2 则得γ= (ρl-ρg)gde2/H 式中b为液滴顶点O处的曲率半径。若相对应与悬滴的S值得到的1/H为已知, 即可求出表(界) 面张力。即可算出作为S的函数的1/H值。因为可采用定期摄影或测量ds/de 数值随时间的变化, 悬滴法可方便地用于测定表(界)面张力。 ④滴体积法 测定原理

材料科学基础课后作业第三章

3-3.有两个形状、尺寸均相同的Cu-Ni合金铸件,其中一个铸件的w Ni=90%,另一个铸件的w Ni=50%,铸后自然冷却。问凝固后哪一个铸件的偏析严重?为什么?找出消除偏析的措施。 答: 合金在凝固过程中的偏析与溶质原子的再分配系数有关,再分配系数为k0=Cα/C L。对一给定的合金系,溶质原子再分配系数与合金的成分和原子扩散能力有关。根据Cu-Ni合金相图,在一定成分下凝固,合金溶质原子再分配系数与相图固、液相线之间的水平距成正比。当w Ni=50% 时,液相线与固相线之间的水平距离更大,固相与液相成分差异越大;同时其凝固结晶温度比w Ni=90%的结晶温度低,原子扩散能力降低,所以比偏析越严重。 一般采用在低于固相线100~200℃的温度下,长时间保温的均匀化退火来消除偏析。 3-6.铋(熔点为271.5℃)和锑(熔点为630.7℃)在液态和固态时均能彼此无限互溶,w Bi=50%的合金在520℃时开始凝固出成分为w Sb=87%的固相。w Bi=80%的合金在400℃时开始凝固出成分为w Sb=64%的固相。根据上述条件,要求: 1)绘出Bi-Sb相图,并标出各线和各相区的名称; 2)从相图上确定w Sb=40%合金的开始结晶终了温度,并求出它在400℃时的平衡相成分及其含量。

解:1 )相图如图所示; 2)从相图读出结晶开始温度和结晶终了温度分别为495℃(左右),350℃(左右) 固、液相成分w Sb(L) =20%, w Sb(S)=64% 固、液相含量: %5.54%10020-6440-64=?=L ω %5.45%100)1(=?-=L S ωω 3-7.根据下列实验数据绘出概略的二元共晶相图:組元A 的熔点为1000℃,組元B 的熔点为700℃;w B =25%的合金在500℃结晶完毕,并由73-1/3%的先共晶α相与26-2/3%的(α+β)共晶体所组成;w B =50%的合金在500℃结晶完毕后,则由40%的先共晶α相与60%的(α+β)共晶体组成,而此合金中的α相总量为50%。 解:由题意由(α+β)共晶含量得 01.03226--25.0?=+)()()(αβααωωωB B B 6.0--5.0=+)()()(αβααωωωB B B

固体表面与界面翻译

《固体的表面与界面》期末考试作业 姓名:刘继琼学号:200907120002 翻译章节:第三章翻译页码:32-42

Chapter 3 Electron spectroscopy 电子能谱 3.1 Introduction 3.1 引言 If we want to learn something about a system, a general experimental approach is a scattering technique: we shoot some particles in a well-prepared state on the target and look at particles coming out of the target (which do not have to be the same). In surface science the most basic questions we want to solve with this approach are for example: Is the surface clean? Which elements are on the surface? And in which chemical compound? What is the exact geometric structure of the surface? 如果我们想要了解一个系统,通常的实验方法是采用散射技术:我们向靶发射一些处于特定状态的粒子,观察它们从靶出射的情况(各个粒子出射情况不同),在表面科学中我们想通过这种方法解决的最基本的问题有:表面是否清洁?哪种元素处在表面?以及它们的化学组成?表面的精确的几何结构是什么样的? The most common particles to scatter from surfaces are electrons, ions, atoms and photons both as probe and response particles. An important issue is the surface sensitivity of an experiment. In general, it is high if we choose particles which have a small mean free path in the solid because this means that the detected particles must originate near the surface. The opposite is true, for example, when the scattering of light by the surface is investigated(reflectivity and change of polarization). The photons will penetrate relatively deeply into the crystal. The amount of photons scattering at or near the surface be very small. Hence, light scattering is not a good tool to study surfaces. In some cases we can increase the surface sensitivity by choosing an experimental set-up where we use a very grazing angle of incidence or emission. In this way the particles travel a long way close to the surface, even if their mean free path is relatively long. 从表面上散射出来的最常见的粒子是电子,离子,原子和声子,它们即作为探测粒子又作为反应粒子。一个重要的因素是实验的表面灵敏度。通常,如果当我们选择的微粒在固体中有一个小的平均自由程时表面灵敏度很高,因为这就意味着探测粒子必须在表面附近产生。反之亦然,例如,研究表面光的散射(折射率和偏振变化)。光子将相对较深的深入固体。在表面及其表面附近散射的光子数量就会很少。因此,光子散射不适宜用来研究表面性能。有时候,我们可以选择合适的入射角和出射角来提高表面灵敏度。这样,及时粒子的平均自由程很长,它们也会在表面附近运动很长的一段距离。 surface sensitivity-表面灵敏度 mean free path-平均自由程

材料表面与界面分析复习题

1表面、界面的定义与理解: 表界面是由一个相过渡到另一相的过渡区域。 习惯上把固-气、液-气的过渡区域称为表面,而把固-液、液-液、固-固的过渡区域称为界面。根据物质的聚集态,表界面通常可以分为以下五类:固-气;液-气;固-液;液-液;固-固; 物理表面包括:理想表面、清洁表面、吸附表面 表面是一个抽象的概念,实际常把无厚度的抽象表面叫数学表面,把厚度在几个原子层内的表面叫作物理表面,而把我们常说实际的固体表面叫工程表面。 2 理想表面理论前提: ①不考虑晶体内部周期性势场在晶体表面中断的影响;②不考虑表面原子的热运动、热扩散、热缺陷等;③不考虑外界对表面的物理-化学作用等;④认为体内原子的位置与结构是无限周期性的,则表面原子的位置与结构是半无限的,与体内完全一样。 3何为清洁表面?清洁表面获得方法? 指不存在任何污染的化学春表面,即不存在吸附、催化反应或杂质扩散等一系列物理、化学效应的表面。 获得清洁表面的几种方法: ①在获得超高真空的同时获得清洁的表面。②用简单的加热方法去除表面的沾污。③在化学气氛中加热去除那些通过简单加热不能清除的化学吸附沾污。④对于较顽固的沾污,可以利用惰性气体离子(如Ar+、Ne+)轰击表面而有效地清除污染。⑤对于一些晶体,可以采用沿特定的晶面自然解理而得到清洁表面。⑥在适当的基片上通过真空蒸发法获得预想的单晶和多晶薄膜,作为研究对象的清洁表面。 4 根据原子结构的不同清洁表面分哪几种?图示说明(PPT) 弛豫表面:指表面层之间以及表面和体内原子层之间的垂直间距d s和体内原子层间距d0相比有所膨胀和压缩的现象。可能涉及几个原子层。 重构表面:指表面原子层在水平方向上的周期性不同于体内,但在垂直方向上的层间间距d0与体内相同。 台阶结构:表面不是平面,由规则或不规则台阶组成。由于晶体内部缺陷的存在等因素,使晶体内部应力场分布不均匀,加上在解理晶体对外力情况环境的影响,晶体的解理面常常不能严格地沿所要求的晶面解理,而是伴随着相邻的倾斜晶面的开裂,形成层状的解理表面。它们由一些较大的平坦区域和一些高度不同的台阶构成,称为台面-台阶-拐结(Terrace-Ledge-Kink)结构,简称台阶结构或TLK 结构。 表面偏析:杂质由体内偏析到表面,使多组分材料体系的表面组成与体内不同。 吸附表面:在清洁表面上有来自体内扩散到表面的杂质和来自表面周围空间吸附在表面上的质点所构成的表面。 5吸附类型有哪些?画图说明(PPT) 顶吸附;桥吸附;填隙吸附;中心吸附 6 典型材料的工程表面示意图及表面成分(PPT) 7 解释表面原子的压缩效应、驰张效应、起伏效应及双电层效应,并图示说明(PPT) 压缩效应:表面原子失去空间方向的相邻原子后,体内原子对表面原子的作用,产生了一个指向体内的合力,导致表面原子向体内的纵向弛豫。 驰张效应:在少数晶体的某些表面发生原子向体外移动的纵向弛豫,造成了晶体的膨胀。这种情况多由于内层原子对表层原子的外推作用,有时也由于表面的松散结构所致。即表面层内各原子间的距离普遍增大,并且可波及表面内几个原子层,造成晶体总体在某一方向的膨胀。 起伏效应:对于半导体材料如Ge、Si等具有金刚石结构的晶体,可以在(111)表面上观察到,有的原子向体外方向弛豫,有的原子向体内弛豫。而且这俩种方向相反的纵向弛豫是有规律地间隔出现的,即有起有伏,称为起伏效应。 双电层效应:对于多原子晶体,弛豫情况将更加复杂。在离子晶体中,表层离子失去外层离子后,破坏了静电平衡,由于极化作用,造成了双电层效应。 8 什么是表面探针?用于表面分析的探针应满足的要求? 一般地说,表面探针是利用一种探测束--如电子束、离子束、光子束、中性粒子束等,有时还

材料科学基础第三章

材料科学基础大作业——第3章凝固 2015年 月 日 班级: 姓名: 学号: 分数: 一、解释下列概念及术语: 1、结晶 2、过冷度 3、相起伏 4、均匀形核 5、晶粒度 6、形核率 7、形核功 8、枝晶偏析 9、成分过冷 10、临界形核半径 二、填空题 1. 过冷度的大小与金属的本性、纯度和冷却速度有关。金属不同,过冷度大小 同;金属的纯度越高,过冷度越 ;金属及其纯度确定后,过冷度大小主要取决于冷却速度,冷却速度越大,过冷度越 。 2. 金属和非金属,在结晶时均遵循相同的规律,即结晶过程是 和 的过程。 3. 根据热力学条件,金属发生结晶的驱动力为液态金属和固相金属的 之差。此差值与过冷度呈 比。 4.液态金属的晶胚能否形成晶核,主要取决于晶胚半径是否达到了临界形核半径的要求。此半径与过冷度呈 比。 5. 均匀形核时,过冷度△T 和理论结晶温度T m 之间的关系为 。形核功△G k 与过冷度△T 的平方呈 比,即过冷度越大,形核功越 。 6. 形核率可用12N N N ? =表示,其中N 1为受 影响的形核率因子,N 2为受 影响的形核率因子。 7. 工业生产中,液态金属的结晶总是以 形核方式进行,其所需过冷度一般不超过 ℃。 8. 决定晶体长大方式和长大速度的主要因素是晶核的 和其前沿液体中的 。 9. 光滑界面又称为 界面,粗糙界面又称为 界面,其杰克逊因子α值范围分别为 和 。 10.晶体长大方式主要为 长大机制、 长大机制和 长大机制。其中,大部分金属均以 长大机制进行。 11.在正的温度梯度下,光滑界面的界面形态呈 状;粗糙界面的界面形态为 界面。在负的温度梯度下,一般金属和半金属的界面都呈 状。杰克逊因子α值较高的物质保持 界面形态。 12、金属结晶后晶粒内部的成分不均匀现象叫 ;因初晶相与剩余液相比重不同而造成的偏析叫 。 三、判断题

材料科学基础课后习题答案

《材料科学基础》课后习题答案 第一章材料结构的基本知识 4. 简述一次键和二次键区别 答:根据结合力的强弱可把结合键分成一次键和二次键两大类。其中一次键的结合力较强,包括离子键、共价键和金属键。一次键的三种结合方式都是依靠外壳层电子转移或共享以形成稳定的电子壳层,从而使原子间相互结合起来。二次键的结合力较弱,包括范德瓦耳斯键和氢键。二次键是一种在原子和分子之间,由诱导或永久电偶相互作用而产生的一种副键。 6. 为什么金属键结合的固体材料的密度比离子键或共价键固体为高? 答:材料的密度与结合键类型有关。一般金属键结合的固体材料的高密度有两个原因:(1)金属元素有较高的相对原子质量;(2)金属键的结合方式没有方向性,因此金属原子总是趋于密集排列。相反,对于离子键或共价键结合的材料,原子排列不可能很致密。共价键结合时,相邻原子的个数要受到共价键数目的限制;离子键结合时,则要满足正、负离子间电荷平衡的要求,它们的相邻原子数都不如金属多,因此离子键或共价键结合的材料密度较低。 9. 什么是单相组织?什么是两相组织?以它们为例说明显微组织的含义以及显微组织对性能的影响。 答:单相组织,顾名思义是具有单一相的组织。即所有晶粒的化学组成相同,晶体结构也相同。两相组织是指具有两相的组织。单相组织特征的主要有晶粒尺寸及形状。晶粒尺寸对材料性能有重要的影响,细化晶粒可以明显地提高材料的强度,改善材料的塑性和韧性。单相组织中,根据各方向生长条件的不同,会生成等轴晶和柱状晶。等轴晶的材料各方向上性能接近,而柱状晶则在各个方向上表现出性能的差异。对于两相组织,如果两个相的晶粒尺度相当,两者均匀地交替分布,此时合金的力学性能取决于两个相或者两种相或两种组织组成物的相对量及各自的性能。如果两个相的晶粒尺度相差甚远,其中尺寸较细的相以球状、点状、片状或针状等形态弥散地分布于另一相晶粒的基体内。如果弥散相的硬度明显高于基体相,则将显著提高材料的强度,同时降低材料的塑韧性。 10. 说明结构转变的热力学条件与动力学条件的意义,说明稳态结构和亚稳态结构之间的关系。 答:同一种材料在不同条件下可以得到不同的结构,其中能量最低的结构称为稳态结构或平衡太结构,而能量相对较高的结构则称为亚稳态结构。所谓的热力学条件是指结构形成时必须沿着能量降低的方向进行,或者说结构转变必须存在一个推动力,过程才能自发进行。热力学条件只预言了过程的可能性,至于过程是否真正实现,还需要考虑动力学条件,即反应速度。动力学条件的实质是考虑阻力。材料最终得到什么结构取决于何者起支配作用。如果热力学推动力起支配作用,则阻力并不大,材料最终得到稳态结构。从原则上讲,亚稳态结构有可能向稳态结构转变,以达到能量的最低状态,但这一转变必须在原子有足够活动能力的前提下才能够实现,而常温下的这种转变很难进行,因此亚稳态结构仍可以保持相对稳定。 第二章材料中的晶体结构 1. 回答下列问题: (1)在立方晶系的晶胞内画出具有下列密勒指数的晶面和晶向: 32)与[236] (001)与[210],(111)与[112],(110)与[111],(132)与[123],(2 (2)在立方晶系的一个晶胞中画出(111)和(112)晶面,并写出两晶面交线的晶向指数。 解:(1)

第四章 固体的表面与界面

第四章 固体的表面与界面 【教学目的】了解固体的表面及结构与液体的不同界面及界面行为。基本掌握晶界理论、表面吸附、粘土-水系统性质。 【教学内容】固体表面结构、固体界面结构、界面吸附效应、粘土-水系统性质。 【教学重点】表面结构、界面效应中的吸附和改性、泥浆的各种性质。 【教学方法及手段】多媒体课件展示图、表 第一节 晶界类型 一.根据相邻晶粒的位向差分: 位向差大——大角度晶界 位向差小——小角度晶界 1.小角度晶界:亚晶界 单晶体中“镶嵌结构”产生小角度晶界。小角度晶界位向差小,晶界很薄。小角度晶界形成原因是单晶体在成长过程中受热或机械应力或表面张力作用产生的。 同号位错在同一滑移面上相互排斥

异号位错在同一滑移面上相互吸引。 同号位错不在同一滑移面上相互吸引。 2.大角度晶界:多晶材料之间的晶界,其结构为无定型结构,厚度较大。 二.根据晶面两侧晶格的吻合程度分: 1.共格界面:界面两侧具有相近的原子排列和原子间距,越过晶面原子排列是连续的,即界面上的原子同时处于相邻的晶列的晶格结点上。 共格界面,其上结点属于界面两侧两个晶粒,但两侧的晶粒晶格常数略有差别,通过弹性变形来协调。 孪晶(双晶)间界面为共格晶界,可通过堆垛层错产生。 A B C A 孪晶 2.半共格晶界 晶格间距失配度太大,弹性变形不能协调,插入刃型位错,在界面上插入附加的半平面(引入刃型位错)形成半共格界面。

3.非共格晶界面: 晶界两侧结构相差太大,此时晶界结构为无定形的,为非共格晶面。 二.晶界能 晶界比晶体内部具有过剩的能量。 晶界能:大角度晶界 > 小角度晶界 非共格晶界 > 半共格晶界 > 共格晶界 三.晶界应力 晶体各向异性,晶界两侧位向不同,两侧晶体沿晶界同一方向上弹性模量、热膨胀系数不同,会产生晶界应力,若应力过大,晶界开裂,有裂纹出现。 第二节 晶体的表面结构 表面是指晶体与真空(或与本身蒸汽)之间的界面。 一.表面对键强分布的影响: 表面的存在会影响晶体内部键强的分布。表面的键强两极分化,最强键、最弱键都分布在表面,随离开表面距离的增大,键增强、减弱的程度减小,表面的影响程度越来越弱,到离开表面足够远的地方,键强已经不受表面影响了。

材料表面与界面综述

材料表面与界面综述 表面技术是通过物理、化学工艺方法使材料表面具有与基体材料不同的组织结构、化学成分和物理状态,使表面具有与基体材料不同的性能的技术。 材料表面技术的目的与作用有:(1)提高材料的表面损伤失效抗力。磨损和腐蚀是最重要的表面损伤失效形式,据统计,因磨损、腐蚀失效造成的经济损失分别可达国民经济总产值的1%~2%和4%~5%。绝大多数疲劳断裂也主要是从表面开始而逐渐向内部发展的。由于磨损、腐蚀和疲劳断裂是产品(零件)的最主要失效形式,而它们又主要是发生在材料表面或开始于材料表面,因此,通过表面技术,提高材料表面的耐磨性、耐蚀性和抗疲劳性能,可有效地保护或强化零件表面,防止失效现象。(2)赋予材料表面某种(或多种)功能特性。这些功能包括电性能(如导电性、绝缘性),热学性能(如耐热性、热障性),光学性能(如反光性、吸光性及光致效应),电磁特性(如磁性、屏蔽性),声学性能及吸附、分离等各种物理性能和化学性能。(3)实施特定的表面加工来制造(或修复)零部件。如采用热喷涂、堆焊等表面技术修复已磨损或腐蚀的零件,用表面蚀刻、扩散等工艺制作晶体管及集成电路等。 表面技术的分类有:(1)表面覆层技术。按工艺特点,表面覆层技术包括各种镀层技术(电镀、化学镀等)、热喷涂技术、涂料涂装技术、陶瓷涂敷技术、化学转化膜技术、堆焊技术、气相沉积技术、着色染色技术等。其中电镀镀层材料可以是金属、合金、半导体等,基体材料也由金属扩大到陶瓷、高分子材料;电镀覆层广泛用于耐蚀、耐磨、装饰及其它功能性镀层(如磁性膜、光学膜)。而化学镀是在无外加电场的情况下,镀液中的金属离子在还原剂的作用下,通过催化在镀件(金属件或非金属件)表面上的还原沉积过程。从本质上讲,化学镀仍然是个电化学过程。化学镀在电子、石油、化学化工、航天航空、机械、汽车及核能等工业中已得到广泛应用。多元合金镀层如Ni-Cu-P、

材料表面与界面-习题含答案

N 』N A ”N A M A M 4 3.14 (7.79 时)3 "7 6.02 1023 乂6个 3 0.018 第一章 1、什么是You ng 方程?接触角的大小与液体对固体的润湿性好坏有怎样的关 系? 答:You ng 方程:界面化学的基本方程之一。它是描述固气、固液、液气界面自 由能丫 SV Y L , Y v 与接触角B 之间的关系式,亦称润湿方程,表达式为: 丫 SV Y L = Y v COS 。该方程适用于均匀表面和固液间无特殊作用的平衡状态。 关系:一般来讲,接触角B 的大小是判定润湿性好坏的依据,若0 =0.cos 0=1 液体 完全润湿固体表面,液体在固体表面铺展;若0v 0V 90°液体可润湿固体, 且0越小,润湿性越好;90°V 0< 180°,液体不润湿固体;0 =180;完全不润湿 固体,液体在固体表面凝集成小球。 2、水蒸气骤冷会发生过饱和现象,在夏天的乌云中,用飞机撒干冰微粒,试气 温骤降至293K ,水气的过饱和度(P/Ps )达4,已知在293K 时,水的表面能力 为0.07288N/m ,密度为997kg/m 3 ,试计算: (1) 在此时开始形成雨滴的半径。 (2) 每一雨滴中所含水的分子数。 ,P 2 M ln —— ----- 答: (1)根据 Kelvin 公式有 P ° RT R ' 开始形成的雨滴半径为: R= 2M RT 门n — P 0 将数据代入得: R 、2 O.。7288 0.018 十9 忙 m 8.314 293 997 In 4 (2)每一雨滴中所含水的分子数为 N=N A n , n=m/M= ?V/M ,得

固体的表面与界面

1 粗糙度对润湿的影响是() ?A、粗糙度愈大,愈不利于润湿。 ?B、粗糙度愈大,愈有利于润湿。 ?C、当真实接触角θ小于90°时,粗糙度愈大,愈容易润湿。 ?D、当真实接触角θ大于90°时,粗糙度愈大,愈容易润湿。 正确答案:C 我的答案:C 得分:5.0分 2 黏土泥浆只有在一定的条件下才表现出触变性,它与黏土颗粒表面吸附的电解质的种类与数量有关,如果黏土浆体具有较小的触变性,则满足以下哪个条件()。 ?A、吸附阳离子价数越小 ?B、吸附阳离子价数越大 ?C、价数相同离子半径越大 ?D、价数相同时与阳离子半径大小没有关系 正确答案:A 我的答案:A 得分:5.0分 3 随着温度的升高,固体的表面能()。 ?A、升高 ?B、下降 ?C、先降后升 ?D、先升后降 正确答案:B 我的答案:B 得分:5.0分 4

毛细管凝聚现象在生活和生产中经常遇到,例如,陶瓷生坯中有许多毛细孔,从而有许多毛细孔凝聚水,这些水由于蒸汽压低而不易被排除,若不预先充分干燥,入窑将容易炸裂,这种现象可以用()解释。 ?A、拉普拉斯方程 ?B、金斯特林格方程 ?C、开尔文公式 ?D、丁达尔效应 正确答案:C 我的答案:C 得分:5.0分 5 黏土颗粒周围吸附着定向排列的水分子层和水化阳离子,这部分水称为()?A、结构水 ?B、牢固结合水 ?C、松结合水 ?D、自由水 正确答案:B 我的答案:B 得分:5.0分 6 矿物组成是影响黏土的阳离子交换容量的因素之一,同等条件下,在以下三种黏土矿物中,阳离子交换容量最大的是()。 ?A、高岭石 ?B、蒙脱石 ?C、伊利石 正确答案:B 我的答案:B 得分:5.0分 7

[精品]材料科学基础第三章答案.doc

笫三章 I.试述结晶相变的热力学条件、动力学条件、能量及结构条件。2.如 果纯银凝固时的最大过冷度与其熔点(tm=1453°C)的比值为0.18, 试求其 凝固驱动力。(△H = -18075J/mol) 3.已知Cu的熔点tm= 1083°C,熔化潜热Lm=1.88xl03J/cm3,比表面能0=1.44x105 J/cm3。 (1)试计算Cu在853°C均匀形核吋的临界晶核半径。(2)已知Cu的相对原子质量为63.5,密度为8.9g/cm3,求临界品核中的原子数。4.试推导杰克逊(K.A.Jackson)方程5.铸件组织有何特点?6.液体金属凝固时都需要过冷,那么固态金属熔化时是否会出现过热,为什么?7.已知完全结晶的聚乙烯(PE)其密度为1.01g/cm3,低密度乙烯(LDPE)为0.92 g/cm3,而高密度乙烯(HDPE)为0.96 g/cm3, 试计算在LDPE及HDPE中“资自由空I'u厂的大小。8欲获得金属玻璃,为什么一般选用液相线很陡从而有较低共晶温度的二元系?9. 比较说明过冷度、临界过冷度、动态过冷度等概念的区别。 10.分析纯金属生长形态与温度梯度的关系。 II.什么叫临界晶核?它的物理意义及与过冷度的定量关系如何? 12.简述纯金属晶体长大的机制。13.试分析单晶体形成的基本条件。 14.指出下列概念的错误之处,并改正。(1)所谓过冷度,是指结晶时,在冷却曲线上出现平台的温度与熔点之差;而动态过冷度是指结晶过程中,实际液相的温度与熔点之差。(2)金属结晶时,原子从液相无序排列到固相有序排列,使体系爛值减少,因此是一个自发过程。(3)在任何温度下,液体金属中出现的最大结构起伏都是品胚。(4)在任何温度下,液相中出

(精选)表面及界面分析

材料分析化学 第十讲 表面与界面分析 朱永法 清华大学化学系 2003年12月16日 ftp://166.111.28.134 Port:20 User:lesson pass:lesson 前言-意义 表面与界面分析的意义 ?电子材料研究的必要 ?薄膜材料研究的必要 ?催化材料研究的必要 ?纳米材料研究的需要 ?表面与界面现象的普遍性 ?材料的性能:取决于表面与界面特征 前言-分类 ?X射线光电子能谱(XPS or ESCA) ?紫外光电子能谱(UPS) ?俄歇电子能谱(AES) ?低能离子散射谱(ISS) ?低能电子能量损失谱(EELS) ?二次离子质谱(SIMS) ?低能电子衍射(LEED) 前言-研究内容 ?表面元素成分及其化学状态 表面元素鉴定,存在化学状态,化学键合状态,定量情况 ?表面几何结构 原子的二维排列次序 ?表面的电子结构 电子能态密度分布等 ?表面上的原子运动 表面扩散,吸附以及反应等 表面分析信息 ?表面元素分析 ?表面元素的化学状态 ?表面与界面的半定量分析?元素与化学态沿深度方向 的分布分析 ?样品表面的选点分析 ?样品表面的线扫描分析 ?样品表面的元素面分布 ?价态电子结构分析 前言-特点 ?表面性 表面只占体相的很小部 分,10-10倍 ?表面单分子层的电离截面 很小。 要求有很高的灵敏度 ?表面上存在大量悬挂化学 健 其化学状态可能与体相 不同 前言-表面概念 ?表面分析,薄膜分析,体相 分析的比较 前言-常用分析方法 ?XPS(50%) ?AES(40%) ?SIMS(10%) ?其它主要用于专门研究 主要应用方面 X射线光电子能谱(XPS) ?X射线光电子能谱(XPS) 也被称作化学分析用电子能 谱(ESCA) ?在普通的XPS谱仪中,一 般采用的Mg Kα和Al Kα X 射线作为激发源,光子的能 量足够促使除氢、氦以外的 所有元素发生光电离作用, 产生特征光电子。由此可见, XPS技术是一种可以对所有 元素进行一次全分析的方 法,这对于未知物的定性分 析是非常有效的。 ?光电效应的发现 ?60年代开始研究仪器 ?70年代,商用仪器 ?多功能,小面积,自动化 XPS原理-光电离 ?X射线光电子能谱基于光电 离作用,当一束光子辐照到 样品表面时,光子可以被样 品中某一元素的原子轨道上 的电子所吸收,使得该电子 脱离原子核的束缚,以一定 的动能从原子内部发射出 来,变成自由的光电子,而 原子本身则变成一个激发态 的离子。 ?能级图和轨道示意图 XPS原理-电离截面 ?电离截面与激发能量的关 系 XPS原理-表面灵敏度 ?非弹性散射平均自由程 IMFP ?I=I0exp(-x/λ) ?IMFP与材料有关 ?IMFP还与电子动能有关 材料关系,能量关系图λ XPS取样深度 ?取样深度概念(L=3 λ) ?物理意义见图 XPS原理 ?取样深度与原子序数的关 系图 取样深度 ?金属:0.5-2nm ?无机物:1-3nm ?有机物:3-10nm ?与各种物质性质有关 光电子的结合能 ?在光电离过程中,固体物质 的结合能可以用下面的方程 表示: ?Ek = hν- Eb - φs (18.1) ?式中Ek ?出射的光电子 的动能, eV; ?hν?X射线源光子的能量, eV; ?Eb ?特定原子轨道上的 结合能, eV; ?φs ?谱仪的功函, eV。 ?谱仪的功函主要由谱仪材 料和状态决定,对同一台谱

固体表面与界面行为

第六章 固体表面与界面行为 固体表面与界面行为,对固体材料的物理化学性质和工艺过程具有重要意义。 6-1 固体表面结构 一、表面力场 ?? ?外部质点 内部质点 结构中断力场作用 不对称力场作用固定周期晶体结构 固体表面力——化学力和分子间力 (一)化学力:本质上为静电力,来自表面质点的不饱和价键用表面能表达。 (二)分子间力:固体表面与被吸附质点之间物理作用力,为固体产生物理吸附和凝聚的原因。分子间力来源于三种不同效应。 1、定向作用:发生在极性分子之间本质上为静电力。 2、诱导作用:发生在极性分子与非极性分子之间,极性分子诱导非极性分子产生作用。 3、分散作用:发生在非极性分子之间。 二、晶体表面结构 表面不同于内部结构可以表示微观质点的排列状况和表面状态方面。 表面力存在使固体具有较高能量状态,但系统通过各种途径降低过剩能量,导致表面结构极化变形和原来晶格的畸变。 固体,形式极化变形降低表面能如图 三、粉体表面结构 粉体:微细的固体微料集合体大小,表面材料工艺中,原料加工成微细颗粒以利于成型和烧结。 粉体制备:反复粉碎形成一系列新表面,离子极化变形重排畸变有序性降低,随粒子的微细化从表面增大,无序性增大并向纵深发展,不影响内部结构——表面层的无定形结构和粒度极小的微晶结构的玻璃表面结构。 玻璃表面力场同晶体类似,玻璃内能 晶体内能表面力场作用更为明显。

玻璃表面化学成分结构中内部质点的性质,表面相对率,化学稳定性,结晶倾向和强度不同。 表面结构 性质取决于材料的离子Pb 2+,Sn 2+,Sb 2+,Ca 2+,Zn 2+等离子极化性质的差异并进入表面层的离子对其影响不同。 四、固体表面的结构 固体实际表面为不平坦的 (1)具有不同厚度的台阶 (2)台阶部分具有一系列的断口 (3)数目不多的原子被吸附在晶体及台阶表面上,表面粗糙度和裂纹。 实际表面由于吸附出现不同的变化,表面被一层吸附膜所覆盖。 如玻璃表面K +取代Na +产生压应力提高其机械强度,工业玻璃加入Na 2O ,CaO ,X 2O 等,其中表面结构系为K +取代Na +从而表面产生一层压应力,提高其机械强度。 6-2 表面能及表面张力 (1)表面能 每形成一个新表面环境,对系统做功表面离子比内部离子能量高。 (2)表面张力 沿表面作用在单位长度上的力(N/m ) (3)液体表面能与表面张力数值相等单位相同。即液体不能承受剪切应力,无塑性变形,但固体能承受剪切应力外力作用表现在表面积增加,有部分变成塑性形变,因而固体表面能及表面张力不相等。 固体表面张力,通过向表面增加附加原子,从而在新表面形成时所作的功。 (4)液体表面张力 VL F 2= A V X L X F W ?==?=γ2 A W V ?= 依表面能定义,T ,P 及组分不变时每增加一个单位表面所需做功,则V 为表面能。

材料表面与界面

《材料表面与界面》课程简介 课程编号:02024915 课程名称:材料表面与界面/Material surface and interface 学分:2 学时:32 (实验:上机:课外实践:) 适用专业:无机非金属材料工程 建议修读学期:第6学期 开课单位:材料科学与工程学院无机非金属材料系 课程负责人:张毅 先修课程:物理化学、材料科学基础 考核方式与成绩评定标准:闭卷考试, 期末考试成绩70%,平时成绩30% 教材与主要参考书目: 教材:胡福增主编.材料表面与界面[M]. 上海:华东理工大学出版社, 2008. 参考书目 [1] 王兆华主编. 材料表面工程[M]. 北京:化学工业出版社, 2011. [2] 赵亚溥主编. 表面与界面物理力学[M]. 北京:科学出版社, 2012. [3] 腾新荣主编. 表面物理化学[M]. 北京:化学工业出版社, 2009. [4] 赵振国主编. 应用胶体与界面化学[M]. 北京:化学工业出版社, 2008. 内容概述: 材料的表界面在材料科学中占有重要的地位。材料表面与界面无机非金属材料工程专业的专业选修课。通过本课程的学习,使学生掌握材料表面与界面的基本概念、基本理论和基本研究方法,为今后在工作中打下有关材料研究和材料表面改性的理论基础。 The surface interface of materials plays an important role in material science. “Material surface and interface”is a specialized optional course of inorganic non-metallic materials specialty. The course mainly introduces the material surface basic concepts, basic theory and basic research methods of the interface. The study of this course is to lay the theoretical foundation for the study of materials and surface modification of materials in the future. 1

7固体表面与界面

第六章表面与界面 ?固体的表面 ?固体的界面 ?晶界 ?固体表面是固相和气相(或真空)的接触面。?一个固相与另一个固相(结构不同)接触面称为固体界面。 ●多晶材料的界面分为: 同相界面:相同化学成分和晶体结构的晶粒间界面, 如晶界、孪晶界、畴界等。 异相界面:不同化学成分和晶体结构的区域间界面, 如同质异构体界面、异质异构体界面。

概述 ●表面质点所处环境不同于内部质点,存在悬键或受力不均而处于较高能态,呈现一系列特殊的性质。 ●表面与界面可近似看作是材料中的二维缺陷。 ●引起熔点、沸点、蒸汽压、溶解度、吸附、润湿、化学活性、化学反应等方面的变化。 ●有关强度、韧性、导热、导电、介电、传感、腐蚀、氧化、催化、能量交换、摩擦磨损、光的吸收与反射等都与表面与界面特性密切相关。

第一节固体的表面 一、固体表面的特征 ?1、固体表面的特点 –表面结构缺陷引起表面性质变化。 –实际固体表面常被外来物污染而影响表面性 质。 –在原子尺度上,实际固体表面是凹凸不平的。 –晶体的各向异性在表面上也体现。 ●固体表面与液体相似处是表面受力不对称;不同处是 固体表面原子(离子)不能自由流动,使定量描述更困 难。

2、固体表面力场 ●晶体中质点的受力场可认为是有心对称的。 ●固体表面质点力场对称性被破坏,存在有指向的剩余力场,使固体表面表现出对其他物质有吸引作用(如吸附、润湿等),该力称为固体表面力。 ●固体表面力分为化学力和范德瓦尔斯力(分子力)

(1)化学力:本质是静电力。当固体表面质点通过不饱和键与被吸附物间发生电子转移时,产生化学力。 对于离子晶体,晶体表面化学力主要取决于晶格能和极化作用。(2)范德瓦尔斯力(分子引力),是固体表面产生物理吸附和气体凝聚的原因。 ●定向作用力(静电力):发生在极性物质之间。相邻两个极化电矩相互 作用的力。 ●诱导作用力:发生在极性与非极性物质之间。指在极性物质作用 下,非极性物质被极化诱导出暂态的极化电矩,随后与极性物质产生定向作用。 ●分散作用力(色散力):发生在非极性物质之间。非极性物质瞬间电 子分布并非严格对称,呈现瞬间的极化电矩,产生瞬间极化电矩间相互作用。 在固体表面上,化学力和范德华力可以同时存在,但两者在表面力中所占比重,将随具体情况而定。

相关主题
文本预览
相关文档 最新文档