当前位置:文档之家› 对转动惯量平行轴定理的证明

对转动惯量平行轴定理的证明

对转动惯量平行轴定理的证明

对转动惯量平行轴定理的证明

如右图所示,轴L 与L '间距 离为0r

刚体M 对转轴L 的转动惯量为 dm r 2?=I ①

刚体M 对转轴L '的转动惯量为 dm r 2?'='I ②

由图可知,0r r r ='- ③ 由①③两式消去r '可得 ()dm r r 2dm r dm r dm r r 020220?????-+=-='

I 即

dm r r 2mr 020??-+='

I I ④ 这就是平行轴定理一般式 当转轴L 过质心时,有 0m dm

r r c ==?

代入④式可得 2

0mr +='I I ⑤

这就是过质心平行轴定理

大学物理-刚体的定轴转动-习题及答案

第4章 刚体的定轴转动 习题及答案 1.刚体绕一定轴作匀变速转动,刚体上任一点是否有切向加速度?是否有法向加速度?切向和法向加速度的大小是否随时间变化? 答:当刚体作匀变速转动时,角加速度β不变。刚体上任一点都作匀变速圆周运动,因此该点速率在均匀变化,v l ω=,所以一定有切向加速度t a l β=,其大小不变。又因该点速度的方向变化, 所以一定有法向加速度2 n a l ω=,由于角速度变化,所以法向加速度的大小也在变化。 2. 刚体绕定轴转动的转动定律和质点系的动量矩定理是什么关系? 答:刚体是一个特殊的质点系,它应遵守质点系的动量矩定理,当刚体绕定轴Z 转动时,动量矩定理的形式为z z dL M dt = ,z M 表示刚体对Z 轴的合外力矩,z L 表示刚体对Z 轴的动量矩。()2z i i L m l I ωω==∑,其中()2i i I m l =∑,代表刚体对定轴的转动惯量,所以 ()z z dL d d M I I I dt dt dt ω ωβ= ===。既 z M I β=。 所以刚体定轴转动的转动定律是质点系的动量矩定理在刚体绕定轴转动时的具体表现形式, 及质点系的动量矩定理用于刚体时在刚体转轴方向的分量表达式。 3.两个半径相同的轮子,质量相同,但一个轮子的质量聚集在边缘附近,另一个轮子的质量分布比较均匀,试问:(1)如果它们的角动量相同,哪个轮子转得快?(2)如果它们的角速度相同,哪个轮子的角动量大? 答:(1)由于L I ω=,而转动惯量与质量分布有关,半径、质量均相同的轮子,质量聚集在边缘附近的轮子的转动惯量大,故角速度小,转得慢,质量分布比较均匀的轮子转得快; (2)如果它们的角速度相同,则质量聚集在边缘附近的轮子角动量大。 4.一圆形台面可绕中心轴无摩擦地转动,有一玩具车相对台面由静止启动,绕轴作圆周运动,问平台如何运动?如小汽车突然刹车,此过程角动量是否守恒?动量是否守恒?能量是否守恒? 答:玩具车相对台面由静止启动,绕轴作圆周运动时,平台将沿相反方向转动;小汽车突然刹车过程满足角动量守恒,而能量和动量均不守恒。 5.一转速为1200r min 的飞轮,因制动而均匀地减速,经10秒后停止转动,求: (1) 飞轮的角加速度和从开始制动到停止转动,飞轮所转过的圈数; (2) 开始制动后5秒时飞轮的角速度。 解:(1)由题意飞轮的初角速度为 0240()n rad s ωππ== 飞轮作均减速转动,其角加速度为 20 0404/10 rad s t ωωπ βπ--= = =-? 故从开始制动到停止转动,飞轮转过的角位移为 201 2002 t t rad θωβπ?=?+?= 因此,飞轮转过圈数为

平行轴及垂直轴定理

平行轴定理 转动惯量与转动轴的位置有关。 绕着一个固定轴转动的物体的动能是 2z I 2 1K ω= 之前我们可以将动能用质心的动能和相对于质心的内能之和的形式表示出来: int 2cm K Mv 21K += 一个刚体上的两个平行轴。Z 轴是固定的,质心轴绕着z 轴运动。相对于任意一个轴物体都处于运动状态。 考虑绕不经过质心的固定轴(假设是z 轴)的转动。 质心绕着这个固定轴转动,设它与轴之间的距离为d : 因此 ωd v cm = 222cm Md 2 1Mv 21ω= 一个物体以角速度ω绕固定轴z 轴的转动同样可以视为以同样的角速度绕平行于z 轴且通过质心的固定轴的转动。也就是说,绕z 轴的转动等同于绕过质心的平行轴的转动与质心的转动的叠加。 绕通过质心的固定轴转动的动能为: 2cm int I 2 1K ω= 所以 222cm Md 2 1I 21K ωω+= 22cm 2z ]Md I [21I 21ωω+= 两相比较可得: 2cm z Md I I +=,这就是平行轴定理。 例:木棒

细木棒绕着它长度的中点转动,转动惯量为: 2cm ML 12 1I = ——那么,当木棒绕着它的一端转动时,它的转动惯量是多少? 3 ML I )2 L (M 12ML I 2 L d 2 22=+== 垂直轴定理 一个薄平板,它可以绕着三个坐标轴中的任意一个转动。 表明了一个平板状物体绕着它的三个互相垂直的坐标轴转动的转动惯量之间的关系。 考虑一个薄板,它可以绕着它的三个垂直的坐标轴中的任意一个转动。 设与之相对应的转动惯量分别为 z y x I I ,I 和假设平板处于xy 平面上,从z 轴到参考点P 的垂直距离为 22y x R += ∫∫+==dV )y x (dV R I 222z ρρ ∫=dV y I 2x ρ ∫=dV x I 2y ρ

切割线定理割线定理相交弦定理等及几何题解

切割线定理割线定理相交弦定理等及几何题解 南江石 2018年4月7日星期六 圆的切线,与圆(圆弧)只有一个公共交点的直线叫做圆的切线。 圆的割线,与圆(圆弧)有两个公共点的直线叫做圆的割线。 圆的弦,圆(圆弧)上两点的连接线段叫做圆(圆弧)的弦。 弦是割线的部分线段。 公共弦线:两圆相交,两交点的连线为公共弦线——共弦线,共割线。 公共切线:两圆相切,过两圆切点的公切线为公共切线——共切线。 几何原理 几何原理 共弦线垂直于连心线共切线垂直于连心线共割线平分公切线 共切线平分公切线 4切线长度相等—— 4切点共圆,圆心在两线交点 3切线长度相等——3切点共圆,圆心在两线交点 共割线上任意一点到圆的 4个切线的长度相等,4切点共圆 共切线上任意一点到圆的3个切线的长度相等,3切点共圆 圆幂定理 是平面几何中的一个定理,是相交弦定理、切割线定理及割线定理(切割线定理推论)的统一。 圆幂定理及相交弦定理、切割线定理和割线定理的实质是相似三角形。 点对圆的幂 P 点对圆O 的幂定义为 2 2 R OP F B 性质

点P 对圆O 的幂的值,和点P 与圆O 的位置关系有下述关系: 点P 在圆O 内→P 对圆O 的幂为负数; 点P 在圆O 外→P 对圆O 的幂为正数; 点P 在圆O 上→P 对圆O 的幂为0。 切割线定理 从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。 PB PT PT PA = PB PA PT ?=2 222Am Pm PT -= 割线定理(切割线定理的推论) 从圆外一点引圆的两条割线,这一点到每条割线与圆交点的距离的积相等。 PD PC PB PA ?=? 2222Cn Pn Am Pm -=- 相交弦定理 圆内的两条相交弦,被交点分成的两条线段长的积相等,或经过圆内一点引两条弦,各弦被这点所分成的两线段的积相等。 PD PC PB PA ?=? 2222A Pn Cn Pm m -=- 垂径定理(相交弦定理推论) 如果弦与直径垂直相交,那么弦的一半是它所分直径所成的两条线段的比例中项。 垂直于弦的直径平分弦且平分这条弦所对的两条弧。 PB PC PC PA = PB PA PC ?=2 222OP R PC -= P 点在圆外,切割线定理、割线定理 2222222Cn Pn Am Pm R OP PD PC PB PA PT -=-=-=?=?= P 点在圆内,相交弦定理、垂径定理 222222Pn Cn Pm Am OP R PD PC PB PA -=-=-=?=? 222OP R PB PA PC -=?=

大学物理_刚体的定轴转动_习题及答案

第4章 刚体的定轴转动 习题及答案 1.刚体绕一定轴作匀变速转动,刚体上任一点是否有切向加速度是否有法向加速度切向和法向加速度的大小是否随时间变化 答:当刚体作匀变速转动时,角加速度β不变。刚体上任一点都作匀变速圆周运动,因此该点速率在均匀变化,v l ω=,所以一定有切向加速度t a l β=,其大小不变。又因该点速度的方向变化, 所以一定有法向加速度2 n a l ω=,由于角速度变化,所以法向加速度的大小也在变化。 2. 刚体绕定轴转动的转动定律和质点系的动量矩定理是什么关系 答:刚体是一个特殊的质点系,它应遵守质点系的动量矩定理,当刚体绕定轴Z 转动时,动量矩定理的形式为z z dL M dt = ,z M 表示刚体对Z 轴的合外力矩,z L 表示刚体对Z 轴的动量矩。()2z i i L m l I ωω==∑,其中()2i i I m l =∑,代表刚体对定轴的转动惯量,所以 ()z z dL d d M I I I dt dt dt ω ωβ= ===。既 z M I β=。 所以刚体定轴转动的转动定律是质点系的动量矩定理在刚体绕定轴转动时的具体表现形式, 及质点系的动量矩定理用于刚体时在刚体转轴方向的分量表达式。 3.两个半径相同的轮子,质量相同,但一个轮子的质量聚集在边缘附近,另一个轮子的质量分布比较均匀,试问:(1)如果它们的角动量相同,哪个轮子转得快(2)如果它们的角速度相同,哪个轮子的角动量大 答:(1)由于L I ω=,而转动惯量与质量分布有关,半径、质量均相同的轮子,质量聚集在边缘附近的轮子的转动惯量大,故角速度小,转得慢,质量分布比较均匀的轮子转得快; (2)如果它们的角速度相同,则质量聚集在边缘附近的轮子角动量大。 4.一圆形台面可绕中心轴无摩擦地转动,有一玩具车相对台面由静止启动,绕轴作圆周运动,问平台如何运动如小汽车突然刹车,此过程角动量是否守恒动量是否守恒能量是否守恒 答:玩具车相对台面由静止启动,绕轴作圆周运动时,平台将沿相反方向转动;小汽车突然刹车过程满足角动量守恒,而能量和动量均不守恒。 5.一转速为1200r min 的飞轮,因制动而均匀地减速,经10秒后停止转动,求: (1) 飞轮的角加速度和从开始制动到停止转动,飞轮所转过的圈数; (2) 开始制动后5秒时飞轮的角速度。 解:(1)由题意飞轮的初角速度为 0240()n rad s ωππ== 飞轮作均减速转动,其角加速度为 20 0404/10 rad s t ωωπ βπ--= = =-? 故从开始制动到停止转动,飞轮转过的角位移为 201 2002 t t rad θωβπ?=?+?= 因此,飞轮转过圈数为

转动惯量(指导书)

转动惯量指导书 力学实验室 2016年3月

转动惯量的测量 【预习思考】 1.转动惯量的定义式是什么? 2.转动惯量的单位是什么? 3.转动惯量与质量分布的关系? 4.了解单摆中摆长与周期的关系? 5.摆角对周期的影响。 【仪器照片】 【原理简述】 1、转动惯量的定义 构件中各质点或质量单元的质量与其到给定轴线的距离平方乘积的总和,即

∑ =2 J mr(1)转动惯量是刚体转动时惯性的量度,其量值取决于物体的形状、质量分布及转轴的位置。刚体的转动惯量有着重要的物理意义,在科学实验、工程技术、航天、电力、机械、仪表等工业领域也是一个重要参量。 图1 电磁系仪表的指示系统,因线圈的转动惯量不同,可分别用于测量微小电流(检 流计)或电量(冲击电流计)。在发动机叶片、飞轮、陀螺以及人造卫星的外形 设计上,精确地测定转动惯量,都是十分必要的。 2、转动惯量的公式推导 测定刚体转动惯量的方法很多,常用的有三线摆、扭摆、复摆等。本实验采用的是三线摆,是通过扭转运动测定物体的转动惯量,其特点是无力图像清楚、操作简便易行、适合各种形状的物体,如机械零件、电机转子、枪炮弹丸、电风扇的风叶等的转动惯量都可用三线摆测定。这种实验方法在理论和技术上有一定的实际意义本实验的目的就是要求学生掌握用三线摆测定物体转动惯量的方法,并验证转动惯量的平行轴定理。 两半径分别为r'和R'(R'>r')的刚性均匀圆盘,用均匀分布的三条等长l的无弹性、无质量的细线相连,半径为r'的圆盘在上,作为启动盘,其悬点到盘心的距离为r;半径为R'的圆盘在下,作为悬盘,其悬点到盘心的距离为R。将启动盘固定,则构成一振动系统, 称为三线摆(图2)。当施加力矩使悬盘转过角 θ后,悬盘将绕中心轴O O''做角简谐振动。 A A' O O' O'' r R B θ h2 h1 H . . . C'

圆幂定理(垂直弦定理)偏难

【例题求解】 【例1】 如图,PT 切⊙O 于点T ,PA 交⊙O 于A 、B 两点,且与直径CT 交于点D ,CD=2,AD=3,BD=6,则PB= . (市中考题) 思路点拨 综合运用圆幂定理、勾股定理求PB 长. 注:比例线段是几之中一个重要问题,比例线段的学习是一个由一般到特殊、不断深化的过程,大致经历了四个阶段: (1)平行线分线段对应成比例; (2)相似三角形对应边成比例; (3)直角三角形中的比例线段可以用积的形式简捷地表示出来; (4)圆中的比例线段通过圆幂定理明快地反映出来. 【例2】 如图,在平行四边形ABCD 中,过A 、B 、C 三点的圆交AD 于点E ,且与CD 相切,若AB=4,BE=5,则DE 的长为( ) A .3 B .4 C . 415 D .5 16 (全国初中数学联赛题) 思路点拨 连AC ,CE ,由条件可得多等线段,为切割线定理的运用创设条件.

注:圆中线段的算,常常需要综合相似三角形、直角三角形、圆幂定理等知识,通过代数化获解,加强对图形的分解,注重信息的重组与整合是解圆中线段计算问题的关键. 【例3】如图,△ABC接于⊙O,AB是∠O的直径,PA是过A点的直线,∠PAC=∠B. (1)求证:PA是⊙O的切线; (2)如果弦CD交AB于E,CD的延长线交PA于F,AC=8,CE:ED=6:5,,AE:BE=2:3,求AB的长和∠ECB的正切值. (北京市海淀区中考题) 思路点拨直径、切线对应着与圆相关的丰富知识.(1)问的证明为切割线定理的运用创造了条件;引入参数x、k处理(2)问中的比例式,把相应线段用是的代数式表示,并寻找x与k的关系,建立x或k的程. 【例4】如图,P是平行四边形AB的边AB的延长线上一点,DP与AC、BC分别交于点E、E,EG是过B、F、P三点圆的切线,G为切点,求证:EG=DE (省竞赛题) 思路点拨由切割线定理得EG2=EF·EP,要证明EG=D E,只需证明DE2=EF·EP,这样通过圆幂定理把线段相等问题的证明转化为线段等积式的证明. 注:圆中的多问题,若图形中有适用圆幂定理的条件,则能化解问题的难度,而圆中线段等积式是转化问题的桥梁. 需要注意的是,圆幂定理的运用不仅局限于计算及比例线段的证明,可拓展到平面几各种类型的问题

转动惯量的测定与平行轴定理验证的实验研究模板

转动惯量的测定与平行轴定理验证的实验研究 摘要: 采用三线摆, 双线摆, 扭摆, 测量不同刚性物体的转动惯量, 并进一步验证平行轴定理, 同时应用扭摆的特性测量切边模量。 关键字: 转动惯量; 平行轴定理; 切变模量 转动惯量是刚体转动惯性的量度, 它与刚体的质量分布和转轴位置有关。根据物体的规则与否, 转动惯量的获得分为理论公式法与实验法。对于规则物体, 测量其尺寸和质量, 即可经过理论公式计算获得; 对于不规则、 质量分布不均匀的物体则要经过实验测定。 一. 实验原理 (一) 双线摆 本实验中, 认为双线摆是纯转动的理想模型。这样, 双线摆摆锤的运动可分解为: 水平面上的转动以及竖直方向上的振动。 设均匀细杆质量、 长为l 、 绕经过质心竖直轴转动的惯量为; 两相同圆柱体 的质量之和为2m 1,之间距离为2c; 双绳之间 距离为d, 绳长L 。 由右图 几何关系分析, 当很小时, , 得 81 )2cos -L(1=h 2θθL = ( 1) 图2几何分析 图1双线摆结

由上式可得系统的势能为 2 001 8p E m gh m gL θ== ( 2) 杆的转动动能为2 0)(21dt d I E k θ = ( 3) 由能量守恒得 22 000011() 28d I m gL m gh dt θθ+= ( 4) 用( 4) 关于时间求导, 并除以, 得 2020 04m gL d dt I θθ+= ( 5) 解上面的简谐振动方程, 得杆的转动惯量: 2020 016T gL m I π= ( 6) 测量物体的转动惯量: 202()16x m m gL I T π+= (7) 待测物体的转动惯量为: 22200000222()()161616x x x m m gL m m gL m gL I T I T T πππ++=-=- (8) (二) 三线摆和扭摆 ① 三线摆 左图是三线摆示意图。上、 下圆盘均处于水平, 悬挂在

转动惯量公式表

常见几何体]转动惯量公式表

对于细杆 当回转轴过杆的中点并垂直于杆时;J=m(L^2)/12 其中m是杆的质量,L是杆的长度。 当回转轴过杆的端点并垂直于杆时:J=m(L^2)/3 其中m是杆的质量,L是杆的长度。

对于圆柱体 当回转轴是圆柱体轴线时;J=m(r^2)/2 其中m是圆柱体的质量,r是圆柱体的半径。 对于细圆环 当回转轴通过中心与环面垂直时,J=mR^2; 当回转轴通过边缘与环面垂直时,J=2mR^2; R为其半径 对于薄圆盘 当回转轴通过中心与盘面垂直时,J=﹙1/2﹚mR^2; 当回转轴通过边缘与盘面垂直时,J=﹙3/2﹚mR^2; R为其半径 对于空心圆柱 当回转轴为对称轴时,J=﹙1/2﹚m[(R1)^2+(R2)^2]; R1和R2分别为其内外半径。 对于球壳 当回转轴为中心轴时,J=﹙2/3﹚mR^2; 当回转轴为球壳的切线时,J=﹙5/3﹚mR^2; R为球壳半径。 对于实心球体 当回转轴为球体的中心轴时,J=﹙2/5﹚mR^2; 当回转轴为球体的切线时,J=﹙7/5﹚mR^2; R为球体半径 对于立方体 当回转轴为其中心轴时,J=﹙1/6﹚mL^2; 当回转轴为其棱边时,J=﹙2/3﹚mL^2; 当回转轴为其体对角线时,J=(3/16)mL^2; L为立方体边长。 只知道转动惯量的计算方式而不能使用是没有意义的。下面给出一些(绕定轴转动时)的刚体动力学公式。 角加速度与合外力矩的关系:

角加速度与合外力矩 式中M为合外力矩,β为角加速度。可以看出这个式子与牛顿第二定律是对应的。 角动量: 角动量 刚体的定轴转动动能: 转动动能 注意这只是刚体绕定轴的转动动能,其总动能应该再加上质心动能。 只用E=(1/2)mv^2不好分析转动刚体的问题,是因为其中不包含刚体的任何转动信息,里面的速度v 只代表刚体的质心运动情况。由这一公式,可以从能量的角度分析刚体动力学的问题。 平行轴定理:设刚体质量为m,绕通过质心转轴的转动惯量为Ic,将此轴朝任何方向平行移动一个距离d,则绕新轴的转动惯量I为: I=Ic+md^2 这个定理称为平行轴定理。 一个物体以角速度ω绕固定轴z轴的转动同样可以视为以同样的角速度绕平行于z轴且通过质心的固定轴的转动。也就是说,绕z轴的转动等同于绕过质心的平行轴的转动与质心的转动的叠加

转动惯量与刚体定轴转动定律

转动惯量与刚体定轴转动定律 先阐明几个概念: 刚体:简单的说,即形变可以忽略的物体。作为理想的物理模型,刚体的特征是有质量、大小和形状,而在处理时我们往往不考虑其形变(但有时会出现断裂、破碎或者磨损的情况)。 力矩:和力类似,并不好直接定义,可以简单的认为是力乘以力臂或者M F r =?(关于叉乘,请自行百度)。 转动惯量:度量转动时惯性的量。详见后文。 下面是准备工作: 定理:无外力系统内各质点相互作用的合力矩为0 证: ①考虑两个质点的系统: 如图, 由牛顿第三定律, 120F F +=, 且1221()F F r r - 而,合力矩=1221121()0F r F r F r r ?+?=?-= 成立。 ②假设,含k 个质点的无外力系统其内力的合力矩为0 ③对于含(k+1)个质点的无外力系统,

分为两组,一组含k 个质点,另一组则为第(k+1)个质点。 含k 个质点的一组,其内力的合力矩为 而该组任一质点与第(k+1)个质点的相互作用合力矩也为 0 故含(k+1)个质点的无外力系统其内力的合力矩为 0 因而,无外力系统内各质点相互作用的合力矩为 0 推论:对系统施加M 的外力矩,有i M M =∑ (i M 为系统内第i 个质点所受力矩。) 证: 将施加外力的质点纳入系统,由上, 则有,0i M M -+=∑ 故,i M M =∑ 刚体定轴转动定律:M I β= (M 为合外力矩,β为角加速度,I 为转动惯量(见下)。) ①考虑只有一个质点, 由牛顿第二定律: ()r F ma m a a θ==+ (其中,,r a r a r θ⊥) 则 2 ()()[()()]r F r m a a ma m r r m r r r r mr θθββββ ?=+==??=-= 『1』 ②考虑多个质点时, 对于系统中第i 个质点,

转动惯量的平行轴定理

由上节的定义可知,刚体的转动惯量矩(或回转半径) 与惯性积和连体基及其基点的定义有关。从例 5.1-1 可以看到。对于同一个基点不同方位的两个连体基,一般情况下刚体关于两基的转动惯量与惯性积各不相同,但它们有一定的关系( 详见 6.4 节) 。 本节讨论当基点改变,连体基的方向不变时刚体的转动惯量间的关系。 在刚体的质心C上建立另一个与平行的连体基。质心C相对于O的矢径为。质点P k 相对 于点O与C 的矢径分别为与。由图5-2 可见,这些矢径有如下关系 图5-2 不同基点转动惯量的关系 (5.1-5) 由于两基平行,该矢量式在基上的坐标表达式为 (5.1-5') 其中为质心C 矢径在基上的坐标阵,为P k 的矢径在基上的坐标阵。将式(5.1-5') 代入(5.1-2c) ,有 (5.1-6) 考虑到矢径由质心C出发,由质心的矢径与质点矢径间的关系式(2.3-24) ,有

在连体基 的坐标式为 ,, 因此式 (5.1-6) 右边的后两项为零。根据定义,该式右边第一项为刚体相对于 J Cz ,即 式(5.1-9) 与 (5.1-10) 描述的是刚体转动惯量的平行轴定理:刚体对任意轴的转动惯量等于它对 过质心的平行轴转动惯量加上刚体的质量与两轴垂直距离平方的乘积。 利用同样的方法可得到刚体关于 O 惯性积与关于 C 惯性积间的关系式 (5.1-11a) (5.1-11b) (5.1-11c) (5.1-7) Cz 轴的转动惯量 同理可得 (5.1-8) 为 Oz 轴与 Cz 轴的垂直距离,记为 h z 。这样式 (5.1-6) 变为 (5.1-9) (5.1-10) 右边第二项中的

6.刚体定轴转动定律

《大学物理》作业 No.6 刚体定轴转动定律 班级 ___________ 学号 __________ 姓名 _________ 成绩 ________ 基本要求: (1) 理解描述刚体定轴转动的基本物理量以及角量与线量之间的关系 (2) 掌握力矩、转动惯量的概念和转动定律及应用 内容提要 1. 刚体绕定轴转动的角速度和角加速度 t t t d d lim 0θθω=??=→?, t d d ωβ = 2. 刚体绕定轴转动匀变速转动公式 2002 1 t t αωθθ++=, t αωω+=0,)(202 02θθαωω-+= 3. 力矩F r M ?= 注意对固定点的力矩与对转轴的力矩的区别 力矩是使物体转动状态变化的原因,力是使物体平动状态变化的原因,合外力为零,合外力矩不一定为零; 4. 刚体的定轴转动定律: β J M = 5. 刚体转动惯量:质量分布不连续的质点系∑?= 2i i r m J 连续物体m r J d 2?= 6. 转动惯量有关的因素: a. 刚体的质量; b. 质量的分布; c. 转轴的位置; 7. 几种特殊情况的转动惯量大小: a: 长为L 、质量为m 的均匀细棒绕一端的转动惯量:3/2mL J = b: 质量分布均匀的圆盘绕中心转轴: 22 1mR J =

一、选择题 1.以下说法正确的是 [ ](A) 合外力为零,合外力矩一定为零; (B) 合外力为零,合外力矩一定不为零; (C) 合外力为零,合外力矩可以不为零; (D) 合外力不为零,合外力矩一定不为零; (E) 合外力不为零,合外力矩一定为零. 2. 有A、B两个半径相同,质量相同的细圆环.A环的质量均匀分布,B环的质量不均匀分布,设它们对过环心的中心轴的转动惯量分别为I A和I B,则有 [ ](A) I A>I B. (B) I A<I B. (C) 无法确定哪个大. (D)I A=I B. 3.将细绳绕在一个具有水平光滑轴的飞轮边缘上,如果在绳端挂一质量为m的重物时,飞轮的角加速度为β1.如果以拉力2mg代替重物拉绳时, 飞轮的角加速度将 [ ] (A)小于β1. (B )大于β1,小于2β1. (C)大于2β1. (D)等于2β1. 4. 一轻绳跨过一具有水平光滑轴、质量为M的定滑轮,绳的两端分别悬有质量为m1和m2的物体(m1<m2﹚,如图所示.绳与轮之间无相对滑动.若某时刻滑轮沿逆时针方向转动,则绳中的张力 [ ] (A) 处处相等.(B) 左边大于右边. (C) 右边大于左边.(D) 哪边大无法判断. 二、填空题 1.半径为r = 1.5m的飞轮作匀变速转动,初角速度ω0=10rad/s,角加速度 β=-5rad/s2, 则在t= 时角位移为零,而此时边缘上点的线速度v= . 2.半径为20cm的主动轮,通过皮带拖动半径为50cm的被动轮转动,皮带与轮之间无相对滑动, 主动轮从静止开始作匀角加速转动. 在4s内被动轮的角速度达到8πrad/s,则主动轮在这段时间内转过了圈. 3. 如图所示一长为L的轻质细杆,两端分别固定质量为m和2m的小球,此系统在竖直平面内可绕过中点O且与杆垂直的水平光滑轴(O轴)转动, 开始时杆与水平成60°角,处于静止状态.无初转速地释放后,杆球这一刚体系统绕O轴转动,系统绕O轴的转动惯量J= .释放后,当杆转到水平位置时,刚体受到的合外力矩M= ; 角加速度β= . 三、计算题 ○2m ○m O ·╮60°

垂直弦的直径(垂径定理)

垂直弦的直径(垂径定理) 一、复习与思考: 1.如下图,弦AB对应的弧为为;此图是不是轴对称图形? 如果是,求你画出它的一条对称轴. 二、新课学习 垂径定理:垂直于弦的直径________弦,并且平分弦所对的两条________. 几何语言:∵________________, ∴________________;________________ ;________________. 垂径定理的推论 平分弦(不是直径)的直径________弦,并且________弦所对的弧. ∵________________, ∴________________;________________;________________. 练习: 2.如图,CD是⊙O的直径,CD⊥AB,则下列结论:①EA=EB②EO=ED③DA DB =④CA CB =.一定成立的有 3.如图,在⊙O中,半径OC⊥AB于点E,AE=2,则下列结论正确的是()A.OE=2B.EC=2 C.AB垂直平分OC D.OC垂直平分AB 第2题第3题第4题第5题 4.如图,在⊙O中,直径CD⊥弦AB,AB=8,OE=3,则⊙O半径为及ED的长为. 5.如图,⊙O半径为5,OC=3,OC⊥AB,求AC的长为及AB的长为. 6.如图,在⊙O中,直径CD⊥AB,AB=6,ED= 1,求⊙O半径.

7.如图,是一个高速公路的隧道的横截面,若它的形状是以O 为圆心的圆的一部分,路面AB =12米,拱高CD =9米,求圆的半径. 小结:“垂径三角形五线段,知二求三” 8.如图, AB 是⊙O 的弦,点C ,D 是直线AB 上的点,且OC =OD .求证AC =BD . 9.如图,在平面直角坐标系中,点O 为坐标原点,点P 在第一象限,⊙P 与x 轴交于O ,A 两点,点A 的坐标为(6,0),⊙ P 的半径为 ,则点P 的坐标为 . 10.如图,AB 为⊙O 的直径,E 为OB 与CD 的中点.试猜想:△OBD 是什么特殊三角形?四边形 OCBD 是什么特殊四边形?并证明你的猜想.

相交弦定理

相交弦定理、弦切角定理、切割线定理定理图形已知结论证法 相交弦定理 ⊙O中,AB、CD 为弦,交于P PA·PB=PC·PD 连结AC、BD,证: △APC∽△DPB 相交弦定理的推论 ⊙O中,AB为直 径,CD⊥AB于P PC2=PA·PB 用相交弦定理 弦切角定理 直线AB切⊙O于 P,PC、PD为弦 弦切角等于其所夹的 弧所对的圆周角。 ∠BPD=∠DCP ∠APC=∠PDC 切割线定理 ⊙O中,PT切⊙O 于T,割线PB交 ⊙O于A PT2=PA·PB 连结TA、TB,证: △PTB∽△PAT 切割线定理推论 PB、PD为⊙O的 两条割线,交⊙O 于A、C PA·PB=PC·PD 过P作PT切⊙O于 T,用两次切割线定 理 一、选择题 1.下列图形一定有内切圆的是() A.平行四边形 B.矩形 C.菱形 D.梯形

2.如图:⊙O的弦AB、CD相交于P,PC=8,PD=9 (1)若PA=4,则PB= ,AB= 。 (2)若PA=PB,则CD= 。 (3)若PA:PB=2:3,则PA= ,PB= 。 (4)若AB=18(PA

圆中垂直弦问题(圆的有关性质复习课)

复习课圆中垂直弦问题自主学习单 课题圆中垂直弦问题 一、学习要求:(1)复习与圆有关的一些性质。 (2)掌握一类教特殊而有规律的几何图形及变式,培养解决问题的能力。 二、学习重点:圆中有关性质及解决几何证明问题的思考方法。 三、学习难点:如何从已知条件中寻找解决问题的方法。 四、学习时间:一课时五、学习过程: 问题提出: 已知:如图,四边形ACBD内接于⊙O ,AB⊥CD于E ,BD=6, AC=8,求圆的半径。 探究一: 如图,四边形ACBD内接于⊙O ,AB⊥CD于E,探究∠AOC 与∠BOD的大小关系 探究二: 如图,四边形ACBD内接于⊙O ,AB⊥CD于E,讨论AC、CB、 BD、DA、半径R之间的大小关系。 探究三: 如图,四边形ACBD内接于⊙O ,AB⊥CD于E,AB=a,CD=b,求四边形ACBD的面积。

探究四: 如图,四边形ACBD内接于⊙O ,AB⊥CD于E,过E作AC 的垂线交AC于T,交DB于S,讨论SE、SD、SB三条线段的 大小关系。 (反之,结论成立吗?) 探究五: 如图,四边形ACBD内接于⊙O ,AB⊥CD于E,若OG⊥AD,讨论OG与CB的大小关系。 应用: 一、解决“问题提出”中的问题; 二、、已知:△ABC内接于⊙O ,高AD 、BE交与点G , AD的延长线交⊙O与点F ,求证:DG = DF. 三、如图,⊙O中,AB⊥CD于E,若OG⊥AD,O F⊥BC,AD=BC, 求证:四边形OFEG为菱形。 拓展探究六: 基本条件:ΔABC 内接于⊙O ,AD为BC边上的高,AE为⊙O的 直径,基本结论:AB?AC =AE?AD(AB?AC =h ?2R) 课后练习: 如图所示,ABC ?为圆O的内接三角形,AB为直径,过C作CD AB ⊥于D,设AD a =,BD=b. (1)分别用,a b表示线段OC,CD; (2)探求OC与CD表达式之间存在的关系(用含a,b 的式子表示). ●归纳结论:根据上面的观察计算、探究证明,你能得出 2 a b + 的大小关系是:____________________. ●实践应用:要制作面积为1平方米的长方形镜框,直接利用探究得出的结论,求出镜框周长的最小值.

转动惯量的平行轴定理

由上节的定义可知,刚体的转动惯量矩(或回转半径)与惯性积和连体基及其基点的定义有关。从例5.1-1可以看到。对于同一个基点不同方位的两个连体基,一般情况下刚体关于两基的转动惯量与惯性积各不相同,但它们有一定的关系(详见6.4节)。 本节讨论当基点改变,连体基的方向不变时刚体的转动惯量间的关系。 在刚体的质心C上建立另一个与平行的连体基。质心C相对于O的矢径为。质点P k相对 于点O与C的矢径分别为与。由图5-2可见,这些矢径有如下关系 图5-2 不同基点转动惯量的关系 (5.1-5) 由于两基平行,该矢量式在基上的坐标表达式为 (5.1-5') 其中为质心C矢径在基上的坐标阵,为P k的矢径 在基上的坐标阵。将式(5.1-5')代入(5.1-2c),有 (5.1-6) 考虑到矢径由质心C出发,由质心的矢径与质点矢径间的关系式(2.3-24),有

在连体基的坐标式为 (5.1-7) ,, 因此式(5.1-6)右边的后两项为零。根据定义,该式右边第一项为刚体相对于Cz轴的转动惯量J Cz,即 (5.1-8) 右边第二项中的为Oz轴与Cz轴的垂直距离,记为h z。这样式(5.1-6)变为 (5.1-9) 同理可得 (5.1-10) 式(5.1-9)与(5.1-10)描述的是刚体转动惯量的平行轴定理:刚体对任意轴的转动惯量等于它对过质心的平行轴转动惯量加上刚体的质量与两轴垂直距离平方的乘积。 利用同样的方法可得到刚体关于O惯性积与关于C惯性积间的关系式 (5.1-11a) (5.1-11b) (5.1-11c)

图示一摆由长为l均质杆与一半径为r的均质圆球刚连而成。质量分别为m1与m2。计算该摆对过O且垂直杆的z轴的转动惯量。 例5.1-2图 解: 令过点O杆绕z轴的转动惯量为,球对过质心C2的平行z轴的z2转动惯量为。由附录A 知, (1) 令球对过点O绕z轴的转动惯量为,由式(5.1-9),考虑到式(1),有 (2) 令整个摆对过点O绕z轴的转动惯量为,由定义式(5.1-2c),考虑到式(1)与(2)有 质点系转动惯量与惯量积的定义

圆幂定理(垂直弦定理)偏难

【例题求解】 【例1】 如图,PT 切⊙O 于点T ,PA 交⊙O 于A 、B 两点,且与直径CT 交于点D ,CD=2,AD=3,BD=6,则PB= . (市中考题) 思路点拨 综合运用圆幂定理、勾股定理求PB 长. 注:比例线段是几之中一个重要问题,比例线段的学习是一个由一般到特殊、不断深化的过程,大致经历了四个阶段: (1)平行线分线段对应成比例; (2)相似三角形对应边成比例; (3)直角三角形中的比例线段可以用积的形式简捷地表示出来; (4)圆中的比例线段通过圆幂定理明快地反映出来. 【例2】 如图,在平行四边形ABCD 中,过A 、B 、C 三点的圆交AD 于点E ,且与CD 相切,若AB=4,BE=5,则DE 的长为( ) A .3 B .4 C . 415 D .5 16 (全国初中数学联赛题) 思路点拨 连AC ,CE ,由条件可得多等线段,为切割线定理的运用创设条件.

注:圆中线段的算,常常需要综合相似三角形、直角三角形、圆幂定理等知识,通过代数化获解,加强对图形的分解,注重信息的重组与整合是解圆中线段计算问题的关键. 【例3】如图,△ABC接于⊙O,AB是∠O的直径,PA是过A点的直线,∠PAC=∠B. (1)求证:PA是⊙O的切线; (2)如果弦CD交AB于E,CD的延长线交PA于F,AC=8,CE:ED=6:5,,AE:BE=2:3,求AB 的长和∠ECB的正切值. (市海淀区中考题) 思路点拨直径、切线对应着与圆相关的丰富知识.(1)问的证明为切割线定理的运用创造了条件;引入参数x、k处理(2)问中的比例式,把相应线段用是的代数式表示,并寻找x与k的关系,建立x或k的程. 【例4】如图,P是平行四边形AB的边AB的延长线上一点,DP与AC、BC分别交于点E、E,EG是过B、F、P三点圆的切线,G为切点,求证:EG=DE (省竞赛题) 思路点拨由切割线定理得EG2=EF·EP,要证明EG=D E,只需证明DE2=EF·EP,这样通过圆幂定理把线段相等问题的证明转化为线段等积式的证明. 注:圆中的多问题,若图形中有适用圆幂定理的条件,则能化解问题的难度,而圆中线段等积式是转化问题的桥梁. 需要注意的是,圆幂定理的运用不仅局限于计算及比例线段的证明,可拓展到平面几各种类型的问题

验证刚体转动的基本定律

验证刚体转动的基本定律 刚体转动定律与牛顿第二定律有相同的形式。转动惯量是刚体转动中惯性大小的量度。它取决于刚体的总质量,质量分布、形状大小和转轴位置。对于形状简单,质量均匀分布的刚体,可以通过数学方法计算出它绕特定转轴的转动惯量,但对于形状比较复杂,或质量分布不均匀的刚体,用数学方法计算其转动惯量是非常困难的,因而大多采用实验方法来测定。 测定转动惯量常采用扭摆法或恒力矩转动法,本实验采用恒力矩转动法测定转动惯量。 刚体转动的特性被用来制作惯性导航用的陀螺仪,在航空航海中有重要应用。随着技术的进步,出现了激光陀螺仪,微机电陀螺仪等,一些智能手机中也装置有陀螺仪芯片,但其原理与刚体转动是不同的。 一、实验目的 1. 研究刚体作定轴转动时外力矩与角加速度的关系,验证刚体转动定律。 2. 用直线拟合的方法得到转动惯量和摩擦力矩。 二、转动惯量实验组合仪简介 转动惯量实验仪如图1所示,绕线塔轮通过特制的轴承安装在主轴上,使转动时的摩擦力矩很小。塔轮半径为15,20,25,30,35mm共5挡,可与大约5g的砝码托及1个5g,4个10g的砝码组合,产生大小不同的力矩。载物台用螺钉与塔轮连接在一起,随塔轮转动。随仪器配的被测试样有1个圆盘,1个圆环,两个圆柱。圆柱试样可插入载物台上的不同孔,这些孔离中心的距离分别为45, 60, 75, 90, 105mm,便于验证平行轴定理。铝制小滑轮的转动惯量与实验台相比可忽略不记。仪器底座上有两只光电门, 一只光电门作测量,一只作备用,可通过智能计时计数器记录旋转的圈数和时间。

图1 转动惯量实验组合仪 三、实验原理 1.刚体转动定律的验证:通过改变砝码的质量,或绕线在不同半径的塔轮上以实现对实验系统施加不同力矩,从而获得不同的角加速度。将这一组不同力矩及对应的角加速度绘制在直角坐标系中,可以很容易发现力矩与角加速度之间的线性关系。利用线性拟合工具软件得到力矩与角加速度之间的数学关系,其中斜率即为系统的转动惯量,截距对应摩擦力矩。 在应用这一方法时要清楚下面的事实: 将质量为m 的砝码用细线绕在半径为R 的实验台塔轮上,并让砝码下落,系统在恒外力作用下将作匀加速运动。若砝码的加速度为a ,则细线所受张力为T = m (g -a )。若此时实验台的角加速度为β,则有a = Rβ。细线施加给实验台的力矩为T R = m (g -Rβ) R ,此时有: ββμJ M R R g m =??)(, 变换为μβM mR J mgR ++=)(2, 可以知道mR 2是砝码在系统中的转动惯量。在本实验的设计中,只有当mR 2足够小, 力矩与角加速度之间才有较好的线性关系。这一点请同学们在实验中加以论证。 2.以上方法中,不可避免地使转动惯量测量受到mR 2的影响,若单纯测量转动惯量可采取以下方法: 根据刚体的定轴转动定律:

大学物理上练习册 第2章《刚体定轴转动》答案-2013

第2章 刚体定轴转动 一、选择题 1(B),2(B),3(C),4(C),5(C) 二、填空题 (1). 62.5 1.67s (2). 4.0 rad/ (3). 0.25 kg ·m 2 (4). mgl μ21参考解:M =?M d =()mgl r r l gm l μμ2 1 d /0=? (5). 2E 0 三、计算题 1. 如图所示,半径为r 1=0.3 m 的A 轮通过皮带被半径为r 2=0.75 m 的B 轮带动,B 轮以匀角加速度π rad /s 2由静止起动,轮与皮带间无滑动发生.试求A 轮达到转速3000 rev/min 所需要的时间. 解:设A 、B 轮的角加速度分别为βA 和βB ,由于两轮边缘的切向加速度相同, a t = βA r 1 = βB r 2 则 βA = βB r 2 / r 1 A 轮角速度达到ω所需时间为 ()75 .03 .060/230002 1?π?π?===r r t B A βωβωs =40 s 2.一砂轮直径为1 m 质量为50 kg ,以 900 rev / min 的转速转动.撤去动力后,一工件以 200 N 的正压力作用在轮边缘上,使砂轮在11.8 s 内停止.求砂轮和工件间的摩擦系数.(砂轮轴的摩擦可忽略不计,砂轮绕轴的转动惯量为 2 1mR 2 ,其中m 和R 分别为砂轮的质量和半径). 解:R = 0.5 m ,ω0 = 900 rev/min = 30π rad/s , 根据转动定律 M = -J β ① 这里 M = -μNR ② μ为摩擦系数,N 为正压力,22 1 mR J = . ③ 设在时刻t 砂轮开始停转,则有: 00=+=t t βωω 从而得 β=-ω0 / t ④ 将②、③、④式代入①式,得 )/(2 1 02t mR NR ωμ-=- ∴ m =μR ω0 / (2Nt )≈0.5 r

2019中考数学专题练习-圆的相交弦定理(含解析)

2019中考数学专题练习-圆的相交弦定理(含解析) 一、单选题 1.如图,弦CD垂直于⊙O的直径AB,垂足为H,且CD=2 ,BD= ,则AB的长为() A. 2 B. 3 C. 4 D. 5 2.如图,⊙O中,弦AB与直径CD相交于点P,且PA=4,PB=6,PD=2,则⊙O的半径为() A. 9 B. 8 C. 7 D. 6 3.如图,在Rt△ABC中,∠C=90°,,BC=1,如果以C为圆心,以CB长为半径 的圆交AB于点P,那么AP的长为() A. B. C. D. 3 4.如图所示,⊙O中,弦AB,CD相交于P点,则下列结论正确的是() A. PA AB=PC PB B. PA PB=PC PD C. PA AB=PC CD D. PA∶PB=PC∶PD 5.如图,正方形ABCD内接于⊙O,点P在劣弧AB上,连接DP,交AC于点Q.若QP=QO,

则的值为() A. B. C. D. 6.如图,已知⊙O的两条弦AB,CD相交于AB的中点E,且AB=4,DE=CE+3,则CD的长为 () A. 4 B. 5 C. 8 D. 10 7.如图,矩形ABCD为⊙O的内接四边形,AB=2,BC=3,点E为BC上一点,且BE=1,延长 AE交⊙O于点F,则线段AF的长为() A. B. 5 C. +1 D. 8.在⊙O中,弦AB与CD相交于点M,AM=4,MB=3,则CM?MD=() A. 28 B. 21 C. 12 D. 7 9.如图,两个同心圆,大圆的弦AB与小圆相切于点P,大圆的弦CD经过点P,且CD=13,PD=4,则两圆组成的圆环的面积是()

A. 16π B. 36π C. 52π D. 81π 10.如图,⊙O的直径AB=8,弧AC=弧BC,E为OB上一点,∠AEC=60°,CE的延长线交⊙O 于D,则CD的长为() A. 6 B. 4 C. D. 11.如图,⊙O的直径AB与弦CD交于点,AE=6,BE=2,CD=2 ,则∠AED的度数是() A. 30° B. 60° C. 45° D. 36° 12.如图,A、B、C、D为⊙O上的点,直线BA与DC相交于点P,PA=2,PC=CD=3,则PB= () A.6 B.7 C.8 D.9 13.如图,⊙O中弦AB,CD相交于点P,已知AP=3,BP=2,CP=1,则DP=() A. 3 B. 4 C. 5 D. 6 14.如图,⊙O的直径AB垂直弦CD于P,且P是半径OB的中点,CD=6cm,则直径AB的长是()

相关主题
文本预览
相关文档 最新文档