当前位置:文档之家› TL重力坝设计实例

TL重力坝设计实例

TL重力坝设计实例
TL重力坝设计实例

2.2 设计实例

2.2.1 总论

2.2.1.1 基本资料

1.流域概况及枢纽任务

某水库枢纽位于某江上游,全河流域面积3 200km2,流向自北向南,干流的平均比降为2%~3%。流域内多石山,小部分为丘陵,水土流失不严重。

本枢纽工程是以发电为主兼顾灌溉和供水的综合利用工程,水库的总库容为1 200万m3,发电引水高程为347.5m,发电最大引水流量为74m3/s ,发电装机容量4万kW。灌溉下游左岸43.5万亩,灌溉最大引水流量40m3/s,引水高程352.5m。

2.地形地质

坝址处的岩体可大致分为新鲜岩石、微风化及覆盖层。河槽高程为332.0m,河槽处为半风化的花岗岩,风化层厚度为2 m,基岩具有足够的抗压强度,岩体较完整,无特殊不利地质构造。两岸风化较深呈带状,覆盖层较少,厚度约2~3m,风化层厚1~2m,坝址两岸均为花岗岩,岩石坚硬,裂隙不发育。

坝基的力学参数:抗剪断系数(混凝土与基岩之间)为f'=0.9, c'=700kPa。基岩的允许抗压强度5 000kPa。

地震的基本烈度为6度。

3.建筑材料

砂料、卵石在坝址上、下游均有,坝址下游5km以内砂储量丰富,可供建筑使用(建筑材料分布图略)。

4.水文

坝址以上控制集雨面积145.0km2,多年平均流量3.1 m3/s,平均年径流量5460.0万m3。

水文水利规划成果如下:

上游设计洪水位为385.4m,相应的下游水位为334.3m,库容为1 140万m3,溢流

坝相应的泄量为1 250m3/s;上游校核洪水位为386.7m,相应的下游水位335.2m,库容为1 200万m3,溢流坝相应的泄量为1 680m3/s;上游正常高水位为383.5m,相应的下游水位为331.7m,库容为895万m3;死水位为350m,相应的库容为40万m3。淤沙高程为345m,相应的库容为35万m3。

5.气象

本地区洪水期多年平均最大风速14m/s,水库的风区长度为2.6km。

6.其它有关资料

河流泥沙计算年限采用50年,坝前淤沙高程为345m,泥沙浮重度为9.5kN/m3,内摩擦角为12°。坝体混凝土重度采用24kN/m3,

2.2.1.2 工程综合说明

根据工程的效益、库容参照规范《水利水电工等级划分及洪水标准》,(SL252—2000)确定本工程属于III等工程,其主要建筑物为3级。次要建筑物为4级,临时性建筑物为5级。

枢纽布置:本工程是以发电为主的综合利用工程,溢流坝段应布置在主河槽处,冲沙孔应布置在电站进水口附近,另外电站布置应考虑地形、交通及电站附属建筑物布置等条件。

本枢纽的主体工程由挡水坝段、溢流坝段、泄水底孔坝段、电站坝段及其建筑物组成。电站为坝后式,该重力坝由18个坝段组成,每个坝段的长度大约为15m,从右岸至左岸依次为:1#~6#坝段为挡水坝段、7#~8#坝段为溢流坝段、9#~10#坝段为底孔坝段、11#~18#坝段为左岸挡水坝段,该坝的坝基面最低高程为327.0m,坝顶高程为386.7m,最大坝高为59.7m,坝体总长为277.5m。详图见2-7。

非溢流坝段:右岸全长90.5m,左岸全长120m,其中1#坝段长15.5m,其它各坝段均为15m。坝顶宽度为7m,坝顶两侧各设一人行道,人行道宽1m。坝顶的上游侧设置钢筋混凝土结构的防浪墙,墙高1.2m,宽0.3m,下游设置栏杆,沿坝轴线方向每隔20m设置一个照明灯。坝的其他尺寸为:上游面为折面,起坡点高程为347m,坡度为1:0.2;下游面坡度为1:0.7,折坡点的高程为379.5m。

溢流坝段:全长34m,分2个坝段,每个坝段长17m,共分3孔。溢流堰顶高程为376.4m,堰顶安装工作闸门和检修闸门,闸门宽×高=8m×8m,工作闸门为平面钢

闸门,采用坝顶门机启闭。工作桥面高程与非溢流坝顶一致。堰顶设有两个中墩,其厚度3m,边墩厚2m,缝设在闸孔中间,溢流堰面采用WES曲线,过堰水流采用连续式鼻坎挑流消能,坎顶高程为336.2m,反弧半径为18m,挑射角为25o。边墩向下游延伸成导水墙,其高度为3.5m,断面为梯形,顶宽为0.5m,底宽为2.0m,需分缝,缝距为15m。

— —

13

图2-7 枢纽工程布置图(单位:尺寸cm ;高程:m)

电站坝段:电站的装机容量为2×2万kW,坝段总长15m,坝顶高程为386.7m,坝顶宽度为16m,坝顶人行道与挡水坝段一致,门机与溢流坝段一致,上游突出2m,为拦污栅槽,引水口中心线高程为348.5m,孔径为3.0m,进口为三向收缩的喇叭口,进口前仅贴坝面布置拦污栅,进口处设置事故闸门和工作闸门,均为平面闸门。在进口闸门后设置渐变段,渐变段为圆角过度,长度为6m。电站厂房采用坝后式,位于左岸非溢流坝段后,由主厂房、副厂房等组成。副厂房在主厂房的上游侧,厂房与坝之间用缝分开,主厂房宽15m,高22m,内设两台2万kW的水轮发电机组,发电机层高程为332.0m。副厂房宽10m。

枢纽的主要技术指标见表2-8。

表2-8 主要技术指标一览表

2.2.2 坝型、坝址选择

2.2.2.1 坝型选择

坝址地形地质条件:河谷断面比较宽浅,两岸不对称,右岸坝头山梁单薄。坝址区域为花岗岩,完整性好,覆盖层及风化层均较薄。

建筑材料:经勘察,坝址附近缺乏土料,只有2~3m厚的表层风化坡积物,数量不足,含水量又偏高,但砂石料储量丰富。

根据以上情况进行综合分析如下:

拱坝方案:河谷断面宽浅,不是V字型,两岸不对称,山梁较单薄。没有适宜的地形条件,故该方案不可取。

土石坝方案:坝址附近没有适宜的地形修建溢洪道,并且当地土料比较缺乏,故该方案也不可取。

重力坝方案:混凝土重力坝和浆砌石重力坝都能充分利用当地的自然条件,泄洪问题容易解决,施工导流容易。浆砌石重力坝虽然可以节约水泥用量、投资少,但不能实现机械化施工,施工速度慢,施工质量难以控制,故不可取。混凝土重力坝可以采用机械化施工,施工方便,施工速度较快,而且坝址附近砂石料比较丰富,施工技术比较成熟,工期短,故本工程宜采用混凝土重力坝。

2.2.2.2 坝址选择

经地形地质勘测,坝址确定在峡谷出口处,峡谷上游是一巨大的山间盆地,建库后可以有较大的库容,并且坝轴线短,主体工程量小。峡谷出口后地形开阔,河岸边可以布置生活区。

从地形上分析可知,坝址处有上下两条坝轴线可供选择。上游坝轴线:基岩裸露,清基工程量可以减小,防渗工程施工方便,水流条件好,下泄水流与下游主流一致,可以防止下游河床发生冲刷;下游坝轴线:覆盖层较厚,清基工程量大,防渗工程量和施工工程量大,下泄水流与左岸弯曲段近,容易产生淤积。两条坝轴线在地质、枢纽布置、施工条件、建筑材料等方面基本相似。综合上述,上游坝轴线优于下游坝轴线,故应采用上游坝轴线。

2.2.3 非溢流坝设计

2.2.

3.1 剖面尺寸拟定

1.坝顶高程的确定

按2.1.2.1中介绍的公式(2-1)分正常蓄水位和校核洪水位两种情况分别计算。计算成果如表2-9。

表2-9 坝顶高程计算汇总表

经比较可以得出坝顶或防浪墙墙顶高程为387.90m,并取防浪墙高1.20m,

则坝顶高程为:387.9-1.2=386.70m

最大坝高为:386.7-327.0=59.70m

2.坝顶宽度

土坝建成后将成为连接左右岸的主要交通要道,根据设备布置、运行、检修、施工及交通需要确定坝顶宽度取7m。

3.坝面坡度

上游坝坡采用折线面,结合坝内发电引水管,泄水孔等建筑物进水口,确定起坡点高程为347m,坡度为1:0.2,下游坡度为1:0.7。下游坡的起坡点的高程m。

4.坝基的防渗与排水设施拟定

由于防渗的需要,坝基须设置防渗帷幕和排水孔幕。据基础廊道的布置要求,初步拟定防渗帷幕及排水孔中心线在坝基面处距离坝踵的水平距离分别7m和9m。

拟定的剖面尺寸如图2-8。

图2-8 非溢流坝剖面图

2.2.

3.2 荷载计算

在设计重力坝剖面时,应按照承载能力极限状态计算荷载的基本组合和偶然组合。荷载基本组合有:正常蓄水位情况、防洪高水位情况、冰冻情况,偶然组合有:校核洪水情况、地震情况。设计时应对这五种情况分别进行计算,该算例仅以基本组合防洪高水位情况为例对河床坝段最大剖面进行荷载分析计算。

2.计算截面的选择

抗滑稳定的计算截面一般选择在受力较大、抗剪强度低、容易产生滑动破坏的截面,一般情况有以下几种:坝基面、坝基内软弱层面、坝基缓倾角结构面、不利的地形、混凝土的层面等。

应力分析的位置一般有:坝基面、折坡处的截面、坝体削弱部位等。

本次设计仅以坝基面为例来分析计算。

3.荷载计算

设计洪水情况下作用在坝基面上的荷载有:自重、静水压力、扬压力、淤沙压力、浪压力。先计算出荷载作用的标准值,标准值乘以其分项系数即为荷载作用的设计值;然后,求出荷载作用点对滑动面截面形心的力臂、荷载所产生的力矩的标准值、设计值。荷载的计算成果见表2-10。

有关参数的选择:

混凝土的重度为24kN/m3,水的重度为9.81kN/m3,扬压力的折减系数为0.25(河床其他坝段与岸坡坝段扬压力折减系数不同,因此对这些坝段进行计算时,应选取不同的值),泥沙的浮重度为9.5kN/m3,内摩擦角为12o,荷载作用的分项系数查《混凝土重力坝设计规范》(DL-S108-1999)表8.2.1-1。

2.2.

3.3 抗滑稳定分析

1.基本荷载组合

基本荷载组合包括防洪高水位情况、正常蓄水位情况和冰冻情况三种,抗滑稳定对

基本组合采用承载能力极限状态进行分析。

(1) 设计洪水情况:γ0=1.0、ψ=1.0,摩擦系数、凝聚力的分项系数查表2-2,分别为1.3、3.0,计算时荷载及材料性能均以设计值代入。

表2-10 荷载计算成果表

19

——

)(177590.10.1)

,,(0kN P Q G S k k Q k G =??=∑αγγψγ

)

(23190)8.453.2332476169.0(2

.11)(1),(1

''kN C W f f R R R d k m k d

=?+?=+=∑γαγγ 由以上计算可知:设计洪水情况下,坝基面满足抗滑稳定极限状态要求。

(2) 正常蓄水位情况(略)

(3) 冰冻情况(略)

2.偶然荷载组合

偶然荷载组合包括校核洪水位情况和地震情况,抗滑稳定对偶然荷载组合也是采用承载能力极限状态进行分析。详细计算过程略,和基本荷载组合计算方法一样。

2.2.

3.4 应力分析

对基本组合采用承载能力极限状态法(荷载及材料性能均采用设计值)计算坝趾应力状态,用正常使用极限状态(荷载及材料性能均采用标准值)计算坝踵的应力状态。

设计洪水情况下,γ0=1.1,ψ=1,γ=1.3。

已知m =0.7,B =45.8 m 。

坝趾处:

)(230730003

.11),(1)

(1742)7.01)(8

.4518249368.4524761(11.1)1)((),(222200kPa f R kPa m J T M A W F S d d d R R R R R k

d =?==+?+??=+-=∑∑αγψγαψγ

即 : ),(0k d F S αψγ <

),(1d d d f R αγ,坝趾处的应力符合强度要求。

坝踵处:

)6(

)(200B M B W S ∑∑+=?γγ 0

)(7.74)8.4517023968.4525723(0.12

>=?-?=kPa 即:坝踵处的应力符合强度要求。

其它荷载组合略

2.2.4 溢流坝设计

2.2.4.1 孔口设计

1.泄水方式的选择

溢流重力坝的泄水方式主要有两种,开敞溢流式和孔口溢流式,比较以上两种泄水方式为使水库具有较大的超泄能力,采用开敞式孔口。

2.洪水标准的确定

该重力坝是III 级建筑物,故采用50年一遇的洪水标准设计,500年一遇的洪水标准校核。

3.流量的确定

设计情况下,溢流坝的下泄流量为1 250 m 3/s ;校核情况下溢流坝下泄流量为1 680 m 3/s 。

4.单宽流量的选择

坝址处基岩比较坚硬完整,坝址处河床宽度为208.5m ,河槽宽度为20~30m ,综合枢纽的布置及下游的消能防冲要求,单宽流量取50~100m 3/(sm),

5.孔口净宽拟定

分别计算设计和校核情况下溢洪道所需的孔口宽度, 计算成果如表2-11:

表 2-11 孔口净宽计算表

根据以上计算,溢流坝孔口净宽取24m ,假设每孔宽度为8m ,则孔数n 为3。

6.溢流坝段总长度(溢流孔口的总宽度)的确定

根据工程经验,拟定闸墩的厚度。初拟中墩厚d 为3m ,边墩厚t 为2m ,则溢流坝段的总长度B 0为:B 0=nb +(n -1)d +2t =24+6+4=34(m)

7.堰顶高程的确定

由于溢流坝采用开敞溢流式,,由堰流公式: 232?εσH g B cm Q s = 确定堰上

水头,则堰顶高程=计算水位?H 。

g

V H H 22ωω-= 初拟:侧收缩系数ε=0.95 流量系数m =0.502(WES 堰)σs =1.0。计算成果如表2-12。

表2-12 堰顶高程计算表

根据以上计算,取堰顶高程为376.4m ,

8.闸门高度的确定

门高=正常高水位-堰顶高程+0.1~0.2=383.5-376.4+0.1=7.2m ,按规范取门高8m ,

2.2.4.2 溢流坝剖面设计

1.堰顶下游段堰面曲线

堰顶下游段堰面曲线采用幂曲线:(圆点位于溢流坝顶点,x 向下游为正、y 以向下为负)。

()y kH x n d n 1-=

(1)定型设计水头H d 的确定。

堰上最大水头:

H max =校核洪水位-堰顶高程,即:H max =386.7-376.4=10.3(m)。

定型设计水头H d 为:

H d =(75%~95%)H max =7.73~9.78(m),取H d =8.8m 。

查表知坝面最大负压为:0.3Hs =2.64(m),小于允许值(最大不超过3~6m 水柱)。

(2)堰顶下游段堰面曲线

幂曲线方程:n 、k 为上游堰面坡度有关的参数,该设计上游面垂直,则k =2.0,n =1.85。

则 ()85.11079.0x kH x y n d

n ==- 2.上游面

上游面采用椭圆曲线,其方程为:

()()()122

22

=-+d d d bH y bH H x α 方程中: 取a =0.3,b =0.17,则aH d =2.64,bH d =1.5,其方程如下:

15.1)5.1(64.22

2

22=-+y x 由上游面超出基本剖面,需将溢流坝作成倒悬的堰顶以满足溢流曲线的要求,倒悬的高度:

2

max H d > 取 d =6m 2.2.4.3 水力计算

校核在设计水位和校核水位情况下溢流坝的泄流能力,采用公式:

232εσH g B cm Q s = 式中 : c =1.0 (上游面为垂直面)

m ——根据H w /H d 参考规范(DL5108-1999)附录选取。

ε——按水力学方法计算

σs =1.0

计算成果列表2-13。由表2-13可知溢流坝满足泄流能力要求。

表2-13 泄流能力校核计算表

2.2.4.4 消能防冲设计

根据地形地质条件,选用挑流消能。根据已建工程经验,挑射角θ=25o,挑流鼻坎应高出下游最高水位(335.2m)1~2m ,鼻坎的高程为:335.2+1=336.2m 。

1.反弧半径的确定

坎顶水流流速V 按下式计算:

)

/(8.292.496.1996.02s m gH

V =??==?

坎顶水深为:

)(88.18

.29301680m BV Q h =?==

反弧半径R 为: R =(4~10)h=7.7~18.8(m)

取R =18m

2.水舌的挑距L 及可能最大冲坑的深度估算

水舌的挑距L 及可能最大冲坑的深度t k 可按公式(2-5)~(2-9)计算,经计算得:

s K H H q t -=25.05.0'α

[])(2sin cos cos sin 121221121h h g g L +++=

θυθυθθυ [

])1704.1(8.9225sin 8.2925cos 8.2925cos 25sin 8.298.912222+?+?+?= =102 (m)

232.49560.125.05.0=??=k t (m)

L/t k=4.43>2.5,由此可知,挑流消能形成的冲坑不会影向大坝的安全。

2.2.5 细部构造

2.2.5.1 坝顶构造

1.非溢流坝

坝顶上游设置防浪墙,与坝体连成整体,结构为钢筋混凝土结构,防浪墙在坝体横缝处留有伸缩缝,缝内设止水。墙高为1.2m,厚度为30cm,以满足运用安全的要求。坝顶采用混凝土路面,向两侧倾斜,坡度为2%,两边设有排水管,汇集路面的雨水,并排入水库中。坝顶公路两侧设有宽0.75m人行道,并高出坝顶路面20cm,坝顶总宽度为7m,下游设置栏杆及路灯。

2.溢流坝

溢流坝的上部设有闸门、闸墩、门机、交通桥等结构和设备。

闸门的布置工作闸门布置在溢流坝的顶稍偏向下游一些,以防闸门部分开启时水舌脱离坝面而形成负压。采用平面钢闸门,门的尺寸高×宽=8m×8m,工作闸门的上游设有检修闸门,二门之间的净距为2m,

3.闸墩

闸墩的墩头形状:上游采用半圆形,下游采用流线型。其上游布置工作桥,顶部高程取非溢流坝坝顶高程,即386.7m,下游布置交通桥,桥面高程为非溢流坝顶高程。中墩的厚度3m,边墩的厚度2m,溢流坝的分缝设在闸孔中间,故没有缝墩。工作闸门槽深1m,宽1m,检修闸门槽深0.5m,宽0.5m。

4.导水墙

边墩向下游延伸成导水墙。其长度:延伸到挑流鼻坎的末端;高度经计算得3.5m,导水墙需分缝,间距为15m,其横断面为梯形,顶宽取0.5m。

2.2.5.2 分缝与止水

1.横缝

垂直于坝轴线布置,缝距为15m,缝宽2cm,内有止水。

混凝土重力坝施工导流工程施工设计方案

一、工程概况 本水库是该流域水利水电建设规划中的主体工程之一。坝址位于某乡上游3km处,控制流域面积317km2,坝址处多年平均流量11.1m3/s,年径流总量3.5×108m3。本工程是一座兼有防洪、灌溉、发电、水产养殖效益的综合开发的水利枢纽工程。 工程总库容为1.6×108m3,正常高水位130.0m,死水位112.0m,设计洪水位130.74m,校核洪水位132.4m,水库有效库容达1.0×108m3,为年调节性水库。 该工程拦河坝的坝型为砼重力坝,电站布置在河床右侧的非溢流坝段的后面,为坝后式布置,坝顶全长315m,坝顶高程135m,其中左非溢流坝坝段长度为100m,溢流坝段长度为48m,右非溢流坝段长度167m,溢流坝段布置在河床中部偏左岸,设有3孔6m×12m的弧形工作闸门,堰顶高程124m,坝底最大宽度为54m,消能方式为挑流消能,在坝后式厂房处,非溢流坝段的最大底度为46.6m,厂房最大宽度为13.7m,厂坝联结段为4m。 电站装机容量为2×3200KW。引水压力钢管设在非溢流坝段,进水口底板高程为95.0m,管径1.75m,采用单机供水的布置方式。水轮机安装高程85.0m,设计工作水头36.0m,最大工作水头45.0m,最小工作水头27.0m。 工程枢纽处地形及工程布置见图1。 二、基本资料 1.工程水文资料 该水库库容在1×108m3以上,主坝工程为二级建筑物,坝址设计洪水过程线,是根据上游3km处水文观测站实测某年最大一次洪水典型加以修正,以洪峰、洪量控制进行放大而得。现将各设计频率洪水过程线、施工设计洪水等水文资料列于表1~表5。 3 3 3

重力坝设计说明书

重力坝设计说明书 《水工建筑物》课程设计 姓名: 专业: 学号: 基本资料一、基本情况 本重力坝水库坝高53.9m,坝底高程31.0m,坝顶高程84.9m , 坝基为微、弱风化的花岗岩层,致密坚硬,强度高, 抗冲能力强。 3水库死水位51.0m,死库容亿m,正常水位80.0m,设计状况时上游水位82.5m、下游水位45.5m,校核状况上游戏水位84.72m、下游水位46.45m。二、气候特征 1、根据当地气象局50年统计资料,多年平均最大风速14m/s,重现

期50年最大风速23m/s,设计洪水位时2.6km,校核洪水位时3.0km; 2、最大冻土层深度为125m; 3、河流结冰期平均为150天左右,最大冰层1.05m。三、工程地质条件 1、坝址地形地质(1)、左岸:覆盖层2-3m,全风化带厚3-5,强风化加弱风化带厚3m,微风化层厚4m; (2)、河床:岩面较平整,冲积沙砾层厚约0-1.5m,弱风化层厚1m 左右,微风化层厚3-6m;坝址处河床岩面高程约在38m左右,整理个河床皆为微、弱风化的花岗岩层,致密坚硬,强度高,抗冲能力强;(3)、右岸:覆盖层3-5m,全风化带厚5-7,强风化加弱风化带厚1-3m,弱风化带厚1-3m,微风化层厚1-4m。 2、天然建筑材料:粘土料、砂石料和石料在坝址上下游2-3km均可开采,储量足。粘土料各项指标均满足土坝防渗体土料质量技术要求。砂石料满足砼重力坝要求。 大坝设计 一、工程等级 3 3本水库死库容亿m,最大库容未知,估算约为5亿m左右。根据现行《水电枢纽工程等级划分及设计安全标准》(DL5180-2003),按水库总库容确定本工程等别为Ⅱ等,工程规模为大(2)型水库。枢纽主要建筑物挡水、泄水、引水系统进水口建筑物为2级建筑物,施工导流建筑物为3级建筑物。二、坝型确定

混凝土重力坝毕业设计计算书

1 目录 目录 (1) 第1章非溢流坝设计 (4) 1.1坝基面高程的确定 (4) 1.2坝顶高程计算 (4) 1.2.1基本组合情况下: (4) 1.2.2特殊组合情况下: (5) 1.3坝宽计算 (6) 1.4 坝面坡度 (6) 1.5 坝基的防渗与排水设施拟定 (7) 第二章非溢流坝段荷载计算 (8) 2.1 计算情况的选择 (8) 2.2 荷载计算 (8) 2.2.1 自重 (8) 2.2.2 静水压力及其推力 (8) 2.2.3 扬压力的计算 (10) 2.2.4 淤沙压力及其推力 (12) 2.2.5 波浪压力 (13) 2.2.6 土压力 (14) 第3章坝体抗滑稳定性分析 (16) 3.2 抗滑稳定计算 (17) 3.3 抗剪断强度计算 (18) 第4章应力分析 (20) 4.1 总则 (20) 4.1.1大坝垂直应力分析 (20) 4.1.2大坝垂直应力满足要求 (21) 4.2计算截面为建基面的情况 (21) 4.2.1 荷载计算 (22) 4.2.2运用期(计入扬压力的情况) (23) 4.2.3运用期(不计入扬压力的情况) (23)

4.2.4 施工期 (23) 第5章溢流坝段设计 (25) 5.1 泄流方式选择 (25) 5.2 洪水标准的确定 (25) 5.3 流量的确定 (25) 5.4 单宽流量的选择 (25) 5.5 孔口净宽的拟定 (26) 5.6 溢流坝段总长度的确定 (26) 5.7 堰顶高程的确定 (27) 5.8 闸门高度的确定 (27) 5.9 定型水头的确定 (28) 5.10 泄流能力的校核 (28) 5.11.1 溢流坝段剖面图 (29) 5.11.2 溢流坝段稳定性分析 (29) (1)正常蓄水情况 (29) (2)设计洪水情况 (30) (3)校核洪水情况 (30) 第6章消能防冲设计 (31) 6.1洪水标准和相关参数的选定 (31) 6.2 反弧半径的确定 (31) 6.3 坎顶水深的确定 (32) 6.4 水舌抛距计算 (33) 6.5 最大冲坑水垫厚度及最大冲坑厚度 (34) 第7章泄水孔的设计 (36) 7.1有压泄水孔的设计 (36) 7.11孔径D的拟定 (36) 7.12 进水口体形设计 (36) 7.13 闸门与门槽 (37) 7.14 渐宽段 (37) 7.15 出水口 (37) 7.15 通气孔和平压管 (38) 参考文献 (39)

夏县温峪水库水源地保护工程2010.8.22

1综合说明 山西省夏县温峪水源地保护工程是温峪引水工程的主要配套工程。温峪引水工程是山西省委、省政府为实施全省引水战略而确定的35项应急水源工程之一。主要工程设施位于夏县东部中条山区温峪河上游,工程建成后可引取1562万m3天然水,解决5个乡镇,92个行政村,11.52万人口生产、生活用水,辅之以缓解夏县工业、农业用水的供需矛盾。 夏县位于运城市的东南部,地理坐标为东经111°02′~111°41′和北纬34°55′~35°19′,东靠黄河,西依峨眉岭、中条山、鸣条岗横穿全境,四周与平陆、盐湖、闻喜、垣曲接壤,隔黄河和河南省渑池县相望,全县总面积1352.6km2。地势特征为东北高,西南低,境内地形复杂,山地、丘陵、平原、河槽呈条带形状分布,丘陵区和平原区位于西部,山区位于东部,其面积为817.7km2,占总面积的60.5%。境内主要有白沙河、青龙河、泗交河、清水河、温峪河等,年径流总量约2000万m3。夏县山区面积大,径流量大,平川河槽区面积小,径流少,地下水不能满足工、农业及生活用水需求。特别是近年来,涑水河、姚暹渠受到污染,不仅水量少,且水质差,达不到国标要求。加之白沙河和泗交河部分径流被白沙河水库拦蓄,80%供给严重缺水的运城市区,因而夏县县域及部分乡镇的人畜用水趋于严重紧缺态

势。有鉴于此,就于2005年开始温峪引水工程的筹建工作,决定在温峪河中游建一拦蓄工程,并调引泗交河、清水河部分河水,以解决夏县人民用水紧张问题。到2015年总供水量可达1272万m3,2020年可达1803万m3。温峪引水工程,已于2007年开始筹建,已完成拦蓄水库工程和主要调水工程的70%的任务,约在2012年底即可竣工。 温峪水源地保护工程是保证温峪引水工程,引取供给城乡居民高标准、高质量的安全水、放心水、健康水的主要工程设施。根据《中华人民共和国水污染防治法》和《中华人民共和国水污染防治法实施细则》及“饮用水水源工程保护区划分技术规范(一)”、特编制出“夏县温峪引水工程水源地保护工程规划设计报告”。 工程总需投资189.36万元,其中:建筑工程费159.86万元,其他费用12.3万元,基本预备费17.2万元。 项目建设单位:温泽鑫引水有限责任公司 项目法人:郭永贵 项目建设性质:新建 工程建设时间安排:根据规划建设工期为6个月,即以2010年10月到2011年3月底完工。

混凝土重力坝设计

XXXXXX 继续教育学院 毕业论文 题目 XXX水库 混凝土重力坝枢纽设计 专业水工 层次专升本 姓名 学号

前言 关键词:重力坝剖面稳定应力细部构造地基处理 本次设计内容为河南南潘家口水利枢纽,坝型选择为混凝土重力坝,坝轴线选择和枢纽布置见1号图SG-01潘家口水库平面图所示。 整座重力坝共分53个坝段,主要有非溢流挡水坝段、溢流表孔坝段、溢流底孔坝段和电站厂房坝段。其中非溢流挡水坝段每坝段宽15米,分布于大坝两端;厂房坝段每段宽16米,布置在靠近右岸的主河床上,装机3台机组;底孔坝段每段宽22米,布置在厂房坝段左侧的主河床上;溢流坝段每段宽18米,布置在滦河主河床上。详见1号图SG-02下游立视图。 挡水坝段最大断面的底面高程为128米,坝顶高程为228米,防浪墙高1.2米,最大坝高为101.2m,属高坝类型。坝顶宽12米,最优断面的上游坝坡坡率为1:0.2,上游折坡点高程为181米,下游坝坡坡率为1:0.7,下游折坡点高程688.98英尺,详细情况参见1号图SG-03挡水坝剖面图。 溢流坝段最大断面的底面高程为126米,堰顶高程210米,溢流堰采用WES曲线设计,直线段坡率为1:0.7,反弧段半径取25.0米,鼻坎高程取159米,上游坝坡坡率取1:0.2,折坡点高程为181米,上游坝面与WES曲面用1/4椭圆相连,详细情况见1号图SG-02溢流堰标准横断面图所示。 本枢纽溢流堰采用挑流方式消能,挑角取250。止水采用两道紫铜中间加沥青井的形式。坝基防渗处理(主要依据上堵下排的原则),上游帷幕灌浆(两道),下游侧设置排水管。 以非溢流挡水坝段为计算选择断面,进行了抗滑稳定分析和应力分析,分别采用抗剪断计算法和材料力学法计算法进行计算,最终验算满足抗滑稳定,上游坝踵没有出现拉应力,设计剖面合理可行。 本次设计只是部分结构物设计,考虑问题较单一,采用基础资料一般以书本为主,跟实际情况难免有出入,敬请读者批评指正。 编者 2008.9

重力坝设计计说明书

重力坝设计书 姓名:谢龙基 专业:水利水电建筑工程学号:1223111043

一基本资料 1.1工程概况 1、工程地理位置、工程任务和规模 燕云电站位于四川省阿坝藏族羌族自治州松潘境内的岷江河右岸一级支流热务沟梯级开发的第一级,该电站工程的主要任务是发电。 燕云电站为单一径流引水式电站,电站取水枢纽控制流域面积660.8km2。电站有效库容120万m3,电站设计引用流量16.99m3/s,设计工作水头127.51m,装机18.0MW(2×9.0MW)。根据《防洪标准》(GB50201-94)及《水电枢纽工程等级划分及设计安全标准(DL/T 5180—2003)》规定本工程为IV等小(1)型工程,主要水工建筑物为4级,次要水工建筑物和临时性水工建筑物为5级。坝体设计洪水标准为30年一遇,校核洪水标准为300年一遇。 2、对外交通规划及施工场地条件 燕云水电站位于松潘县燕云乡境内,首部枢纽、引水线路及厂址有松潘县至黑水县省级公路相通,并与国道213线相连,电站建设区距松潘县县城约109km,距成都约356km,对外交通较为方便。 鉴于各支洞无公路与主要交通公路相通,故需修建临时公路或施工便道,将各主要施工建筑物与对外交通相连。 工程区首部枢纽河段左岸有大片河滩地,施工布置较为方便;引

水隧洞各施工支洞及跨沟暗涵处施工均位于山坡或或沟内,施工场地较为狭窄,施工布置比较困难;厂区部位施工场地较为开阔,施工布置较为方便。 3、施工期间综合利用要求及通航 本工程以发电为主要目标,无航运、漂木等综合利用要求。施工期间无断流情况出现,对下游供水及厂、闸址间河道的生态环保用水均无影响。 4、供应条件 1)主要建筑材料供应 本电站施工对外交通运输以公路运输为主。工程区附近天然建材储量丰富,质量也满足本工程需要。 主要建筑材料钢材从成都采购,综合运距为356km,木材、油料、炸药由松潘县供应,综合运距为109km,水泥由拉法基水泥厂供应,综合运距为270km。 2)施工机械修配 工程施工机械设备与汽车修理可依托松潘县地方机械修理厂承担,工地只设机修站和汽车保养站。 3)施工供电和施工供水 本工程施工由当地地方电网供电。 热务沟及工程区内水质良好,施工生产、生活用水可抽取热务沟水或就近截取支沟水。 4)施工队伍及施工设备和物质采购

重力坝设计内容

第三部分枢纽布置 (1)坝型的选择 坝型根据:坝址基岩岩性为燕山早期第三次侵入黑云母花岗岩,河岸边及冲沟底部见有弱风化基岩出露。河床冲积层厚度一般为2.0-2.5m,左岸覆盖层厚度为3-8m,右岸覆盖层厚度为0.5-5.0m,覆盖层主要为坡残积含碎石粘土层。且河床堆积块石、孤石和卵石,但是缺乏土料。浆砌石重力坝虽然可以节约水泥用量,但不能实现机械化施工,施工质量难以控制,故本工程采用混凝土重力坝。 (2)坝轴线的选取 坝址河段长350m,河流方向为N20E,其上、下游河流方向分别为S70E 和S80E。坝址河谷呈“V”型,两岸 h山体较雄厚,地形基本对称,较 1 完整,两岸地形坡度为30°-40°。河床宽20-30m,河底高程约 556-557m。坝轴线取在峡谷出口处,此处坝轴线较短,主体工 程量小,建库后可以有较大库容。 (3)地形地质 坝址基岩岩性为燕山早期第三次侵入黑云母花岗岩,河岸边及冲沟底部见有弱风化基岩出露。河床冲积层厚度一般为2.0-2.5m,左岸覆盖层厚度为3-8m,右岸覆盖层厚度为0.5-5.0m,覆盖层主要为坡残积含碎石粘土层。 (4)坝基参数 坝址地质构造主要表现为断层、节理裂隙。坝址发育11 条断层。建议开挖深度:河中5m,左岸6-12m,右岸6-15m。 (5)基本参数 干密度2.61g/cm 3 ,饱和密度2.62 g/cm 3 ,干抗压强度 92-120MPa,饱和抗压强度83-110MPa,软化系数0.9,泊松比

0.22-0.23。混凝土与基岩接触面抗剪断指标:Ⅲ类岩体,抗剪断摩擦系数 1.0-1.1,抗剪断凝聚力09.-1.1MPa。坝基高程为550m. 正常水位642.00m 设计水位642.71m 校核水位643.69m (6)工程级别:本水利枢纽坝址林地溪与国宝溪汇合口下游约2.5km的峡谷中,坝址集水面积144.5km2,又知河底高程556-557m。可算的水库容容量约为0.12亿立方米,大坝的工程级别为中型级别。 第三部分非溢流坝段设计 (1)剖面尺寸的拟定 1、坝顶高程的确定 坝顶高程分别按设计和校核两种情况,用下列公式进行: 波浪要素按官厅公式计算: Δh = h1+ hz + hc Δh—库水位以上的超高,m; h1—波浪高度,m; hz —波浪中心线超出静水位的高度,m; hc —安全超高,按表2-1 采用,对于2级工程,设计情况hc=0.5m,校核情况hc=0.4m。

A江坝后式厂房双曲拱坝设计计算书

目录 第一章调洪演算 ........................ - 3 - 1.1 调洪演算的原理.......................................... - 3 - 1.2 调洪方案的选择.......................................... - 3 - 1.2.1对以下四种方案进行调洪演算......................... - 3 - 1.2.2方案比较........................................... - 7 - 1.2.3 2浅孔+2中孔方案选定后坝顶高程的计算 .............. - 8 -第二章大坝工程量比较 .................. - 10 - 2.1 大坝剖面设计计算....................................... - 10 - 2.1.1混凝土重力坝设计.................................. - 10 - 2.2 大坝工程量比较......................................... - 17 - 2.2.1重力坝工程量...................................... - 17 - 2.2.2拱坝工程量........................................ - 18 - 2.2.3重力坝与拱坝工程量比较............................ - 19 -第三章第一主要建筑物的设计 ............ - 19 - 3.1 拱坝的型式尺寸及布置................................... - 19 - 3.1.1坝型选择.......................................... - 19 - 3.1.2拱坝的尺寸........................................ - 19 - 3.2 荷载组合............................................... - 23 - 3.2.1 正常水位+温降 .................................... - 23 - 3.2.2 设计水位+温升 .................................... - 23 - 3.2.3 校核水位+温升 .................................... - 23 - 3.2.4 正常水位+温降+地震 ............................... - 23 - 3.3 拱坝的应力计算......................................... - 23 - 3.3.1对荷载组合1,2,3使用FORTRAN程序进行电算........ - 23 - 3.3.2对荷载组合4进行手算.............................. - 24 - 3.4 坝肩稳定验算........................................... - 37 - 3.4.1计算原理.......................................... - 37 - 3.4.2验算工况.......................................... - 38 - 3.4.3验算步骤.......................................... - 38 - 4.1泄水建筑物的型式尺寸 ................................... - 42 - 4.2坝身进水口设计 ......................................... - 42 - 4.2.1管径的计算........................................ - 42 - 4.2.2进水口的高程...................................... - 42 - 4.3泄槽设计计算 ........................................... - 43 - 4.3.1坎顶高程.......................................... - 43 - 4.3.2坎上水深h ........................................ - 43 - c 4.3.3反弧半径R ........................................ - 44 -

重力坝毕业设计

第一章设计基本资料及任务 第一节设计基本资料 一、枢纽任务 本工程同时兼有防洪、发电、灌溉、渔业等综合利用。水电站装机容量为21.75万kW,装3台机组。正常蓄水位为110.5m,死水位为86.5m,三台机满载时的流量为405m3/s。采用坝后式厂房。工程建成后,可增加保灌面积90万亩,减轻洪水对下游城市和平原的威胁。在遇P=0.02%和P=0.1%频率的洪水时,经水库调节后,洪峰流量可由原来的18200m3/s、14100 m3/s分别削减为6800 m3/s和6350 m3/s;水库蓄水后形成大面积水域,为发展养殖业创造有利条件。 二、基本资料 1、规划数据 本重力坝坝高86.9m,坝全长368m,溢流坝位于大坝中段长度73米,非溢流坝分别接溢流坝两侧各147.5m,坝顶宽度8m,坝底宽度80.5m,坝底高程28m,坝顶高程114.9m,正常蓄水位110.5m,死水位86.5m。 坝址处的河床宽约120m,水深约1.5~4m。河谷近似梯形,两岸基本对称,岸坡取约35o。 2、工程地质 坝基岩性为花岗岩,风化较深,两岸达10m左右。新鲜花岗岩的饱和抗压强度为100~200MPa,风化花岗岩为50~80Mpa。坝址处无大的地质构造。 3、其他资料 - 1 -

(1)风向吹力:实测最大风速为24m/s,多年平均最大风速为20m/s,风向基本垂直坝轴线,吹程为4km。 (2)本坝址地震烈度为7度。 (3)坝址附近卵砾石、碎石及砂料供应充足,质量符合规范要求。 三、表格 表1比选数据 - 2 -

表2岩石物理力学性质 四、参考文献 1.混凝土重力坝设计规范水利电力部编 2.水工建筑物任德林河海大学出版社 3.水工设计手册泄水与过坝建筑物水利电力出版社 4.混凝土拱坝及重力坝坝体接缝设计与构造水电部黄委会编 第二节设计任务 一、枢纽布置 (1)拟定坝址位置 - 3 -

重力坝稳定及应力计算书..

5.1重力坝剖面设计及原则 5.1.1剖面尺寸的确定 重力坝坝顶高程1152.00m,坝高H=40.00m。为了适应运用和施工的需要,坝顶必须要有一定的宽度。一般地,坝顶宽度取坝高的8%~10%,且不小于2m。若有交通要求或有移动式启闭设施时,应根据实际需要确定。综合考虑以上因素,坝顶宽度m B10 。 考虑坝体利用部分水中增加其抗滑稳定,根据工程实践,上游边坡坡率n=0~0.2,下游边坡坡率m=0~0.8。故上游边坡坡率初步拟定为0.2,下游边坡坡率初步拟定为0.8。上游折坡点位置应结合应力控制标准和发电引水管、泄洪孔等建筑物的进口高程来定,一般折坡点在坝高的1/3~2/3附近,故初拟上游折坡点高程为1138.20m。下游折坡点的位置应根据坝的实用剖面形式、坝顶宽度,结合坝的基本剖面计算得到(最常用的是其基本剖面的顶点位于校核洪水位处),故初拟下游折坡点高程为1148.50m。 5.1.2剖面设计原则 重力坝在水压力及其他荷载的作用下,主要依靠坝体自重产生的抗滑力维持抗滑稳定;同时依靠坝体自重产生压应力来抵消由于水压力引起的拉应力以满足强度要求。 非溢流坝剖面设计的基本原则是:①满足稳定和强度要求,保证大坝安全;②工程量小,造价低;③结构合理,运用方便;④利于施工,方便维修。 遵循以上原则拟订出的剖面,需要经过稳定及强度验算,分析是否满足安全和经济的要求,坝体剖面可以参照以前的工程实例,结合本工程的实际情况,先行拟定,然后根据稳定和应力分析进行必要的修正。重复以上过程直至得到一个经济的剖面。 5.2重力坝挡水坝段荷载计算 5.2.1基本原理与荷载组合 重力坝的荷载主要有:自重、静水压力、扬压力、泥沙压力、浪压力、动水压力、冰压力、地震荷载等。本次设计取单位长度的坝段进行计算。相关荷载组合见表4.5。 表4.5 荷载组合表 组合情况相关 工况 自 重 静水 压力 扬压 力 泥沙 压力 浪压 力 冰压 力 地震 荷载 动水 压力 土压 力 基本正常√√√√√√

《水工建筑物课程设计》-混凝土重力坝设计

《水工建筑物课程设计》 题目:混凝土重力坝设计 学习中心:江苏扬州市邗江区教师进修学校奥鹏学 习中心[11]VIP

1 项目基本资料 1.1 气候特征 根据当地气象局50年统计资料,多年平均最大风速14 m/s,重现期为50年的年最大风速23m/s,吹程:设计洪水位 2.6 km,校核洪水位3.0 km 。 最大冻土深度为1.25m。 河流结冰期平均为150天左右,最大冰厚1.05m。 1.2 工程地质与水文地质 1.2.1坝址地形地质条件 (1)左岸:覆盖层2~3m,全风化带厚3~5m,强风化加弱风化带厚3m,微风化厚4m。 (2)河床:岩面较平整。冲积沙砾层厚约0~1.5m,弱风化层厚1m左右,微风化层厚3~6m。坝址处河床岩面高程约在38m左右,整个河床皆为微、弱风化的花岗岩组成,致密坚硬,强度高,抗冲能力强。 (3)右岸:覆盖层3~5m,全风化带厚5~7m,强风化带厚1~3m,弱风化带厚1~3m,微风化厚1~4m。 1.2.2天然建筑材料 粘土料、砂石料和石料在坝址上下游2~3km均可开采,储量足,质量好。粘土料各项指标均满足土坝防渗体土料质量技术要求。砂石料满足砼重力坝要求。 1.2.3水库水位及规模 ①死水位:初步确定死库容0.30亿m3,死水位51m。 ②正常蓄水位:80.0m。 注:本次课程设计的荷载作用只需考虑坝体自重、静水压力、浪压力以及扬压力。 表一 本设计仅分析基本组合(2)及特殊组合(1)两种情况: 基本组合(2)为设计洪水位情况,其荷载组合为:自重+静水压力+扬压力+泥沙

压力+浪压力。 特殊组合(1)为校核洪水位情况,其荷载组合为:自重+静水压力+扬压力+泥沙压力+浪压力。 1.3大坝设计概况 1.3.1工程等级 本水库死库容0.3亿m3,最大库容未知,估算约为5亿m3左右。根据现行《水电枢纽工程等级划分及设计安全标准》(DL5180-2003),按水库总库容确定本工程等别为Ⅱ等,工程规模为大(2)型水库。枢纽主要建筑物挡水、泄水、引水系统进水口建筑物为2级建筑物,施工导流建筑物为3级建筑物。 1.3.2坝型确定 坝型选择与地形、地质、建筑材料和施工条件等因素有关。确定本水库大坝为混凝土重力坝。 1.3.3基本剖面的拟定 重力坝承受的主要荷载是水压和自重,控制剖面尺寸的主要指标是稳定和强度要求。由于作用于上游面的水压力呈三角形分部,所以重力坝的基本剖面是三角形,根据提供的资料,确定坝底宽度为43.29m(约为坝高的0.8倍),下游边坡m=0.8,上游面为铅直。

毕业设计守口堡混凝土实体重力坝设计说明书

第一篇守口堡混凝土实体重力坝设计说明书 第一章工程概况 第一节工程简况 守口堡水利枢纽工程位于南洋河支流黑水河上,坝址位于阳高县城西北二十华里守口堡村北500米处,坝址以上控制流域面积291平方公里,本水库是以防洪为主,结合灌溉等综合利用的中型水利工程。正常储水位1242.0米,总库容1020万立方米,其中兴利库容 740万立方米,死库容 496.2万立方米。 本工程为三等工程,大坝按Ⅲ级建筑物设计。设计洪水为100年一遇,校核洪水为500年一遇。设计洪水位为1245.938米,设计下泄流量为362.6m3/s,相应的下游水位为1200.5米,校核洪水位为1248.348米,校核下泄流量为1281.5m3/s,相应下游洪水位为1202.0米。 守口堡水利枢纽工程大坝由挡水坝、溢流坝、底孔坝段等建筑物组成。坝顶高程1248.2米,最大坝高60.2米,大坝为混泥土重力坝,坝顶总长350米。溢流坝顶高程为1242.0米,溢流前沿总长30米,共俩孔,每孔宽15米。挑流鼻坎高程为1205米,挑射角30。;泄流底孔地板高程为1203米,控制断面尺寸为4×4㎡,检修闸门采用平板门,工作闸门采用弧形门,进口采用压板式进口,挑流鼻坎高程为1204.0米,挑射角为30。。 宽缝重力坝的宽缝部分用废弃的风化石料填筑,以减少宽缝处混泥土面的温度变化幅度,避免产生裂缝;同时又节省模板,便于搭脚手架,施工安全。坝体混泥土防渗墙厚6~11米,下游在地面以下采用浆砌石墙,地面以上采用预制混泥土板作模板。 坝基为花岗片麻岩,基岩摩擦系数f=0.95。大坝按地震烈度七度设防。 基础处理主要是挖除风化层,对坝基采取灌浆等加固和防渗处理措施。 第二节工程建设的作用及意义 守口堡水利枢纽工程下游黄、黑水河两岸有土地7万亩,土质肥沃、地势平坦,其中耕地面积约为63万亩,另外其下游有京包铁路、同公路、部队营房、村庄及农田,故水库的首要任务是防洪,另外一重要任务是灌溉,通过水库调蓄,充分利用水源,灌溉农田53000亩,其中新增灌溉面积近4万亩;通过水库蓄清缓洪,可以延长灌溉时间,

重力坝设计

重力坝课程设计 一、目的 1、学会初拟重力坝尺寸的方法; 2、掌握重力坝抗滑稳定计算和应力计算; 3、进一步认识重力坝的结构特点。 二、基本资料 (一)、水文、气象及泥沙资料 通过对区域内水文气象资料的调查和分析计算,设计中所采用的水文、气象及泥沙参数见下表1。 (二)、地质资料

1、坝址地质资料 选定坝址河谷呈基本对称的“V”形谷,左岸山体坡角48°,右岸山体坡角46°,两岸地貌主要为侵蚀切割形成的平缓脊状山岭地貌,河谷地貌为侵蚀-构造类型。坝址处出露地层为峨嵋山玄武岩(P2β),岩层无产状,岩层倾向总体倾向河床下游偏右岸。坝址处左右岸坡残坡积层厚度为0~2m,局部地段深达7m以上,河床上第四纪冲积覆盖层厚度为5m 左右。地表裸露的玄武岩呈强风化状,玄武岩地层上部强风化层在河床部位厚3.6m,在河床左岸坡厚7.5m,在河床右岸坡厚8m,下部呈弱风化状,弱风化层在河床部位厚3m,在河床左岸坡厚4m,在河床右岸坡厚3.5m。再往下为微风化和新鲜岩石。 经取样试验,结合有关工程经验类比,参考有关设计规范,地质专业提出了岩石(体)物理、力学参数,见表5-2~表5-4。 表5-2 岩土质物理力学性质建议指标 表5-3 坝基岩体力学参数 (三)特征水位

(四)坝址处地形图 三、要求 1、拟定坝体尺寸,进行重力坝稳定计算及应力计算; 2、提交成果 (1)重力坝非溢流坝段剖面图,溢流坝段剖面图;(2)重力坝平面布置图。

1.坝基开挖深度的确定 初步确定坝高在50~100m 的范围内,可建在微风化至弱风化的上部基岩上。由地质资料,坝址处左右岸坡残坡积层厚度为0~2m ,局部地段深达7m 以上,河床上第四纪冲积覆盖层厚度为5m 左右。地表裸露的玄武岩呈强风化状,玄武岩地层上部强风化层在河床部位厚3.6m ,在河床左岸坡厚7.5m ,在河床右岸坡厚8m ,下部呈弱风化状,弱风化层在河床部位厚3m ,在河床左岸坡厚4m ,在河床右岸坡厚3.5m 。再往下为微风化和新鲜岩石。综合考虑工程量、工程造价、坝的稳定决定开挖12m 相对比较合理,由地质图可知开挖高程为1328m 。 2.校核洪水位,设计洪水位的确定 设计洪水流量s m Q /4003= 校核洪水流量s m Q /6003= 一般软弱岩石单宽流量q=s m s m /50/3033- 设计洪水流量下溢流坝宽L=8~12m 校核洪水流量下溢流坝宽L=12~20m 取L=20m m=0.5,ξ=1,L=20m 正常蓄水位 1388m 2 /30 2H g mnb Q ξ= 得 =设计0H 4.338m =校核0H 5.684m 设计H =1388+4.338=1392.338m 校核H =1388+5.684=1393.684m 3.累计频率为1%时的波浪高度和波浪中心线高于静水位的计算

TL混凝土重力坝设计

网络教育学院 本科生毕业论文(设计) 题目: TL混凝土重力坝设计 学习中心:奥鹏远程教育 层次:专科起点本科 专业:水利水电工程

内容摘要 重力坝是一种古老而迄今应用很广的坝型,因主要依靠自重维持稳定而得名。重力坝的断面基本呈三角形,筑坝材料为混凝土或浆砌石。在中国的坝工建设中,混凝土重力坝也占有较大的比重。 本次设计为TL混凝土重力坝设计,设计的准备工作主要包括基本资料的分析、坝型选择和枢纽布置。设计的主要内容首先是进行坝体的设计,进行坝型选择,设计采用混凝土重力坝方案,设计内容包括挡水坝段的设计,溢流坝段的设计,底孔坝段的设计等。然后是细节构造与坝基处理,有坝基清理、坝基加固、坝基防渗及坝基排水设计、断层处理等。 关键词:水利工程;混凝土重力坝;剖面设计;荷载计算;应力分析 目录

引言1 1 设计资料2 1.1 某重力坝基本资料2 1.1.1 流域概况2 1.1.2 地形地质2 1.1.3 建筑材料2 1.1.4 水文条件2 1.1.5 气象条件3 1.2 某重力坝工程综合说明3 2 坝型及坝址选择5 2.1 坝型选择5 2.2 坝址选择5 3 挡水建筑物设计7 3.1 非溢流坝剖面设计7 3.1.1 坝顶高程的拟定7 3.1.2 坝顶宽度的拟定9 3.1.3 坝坡的拟定9 3.1.4 上、下游起坡点位置的确定9 3.2 荷载计算及组合9 3.2.1 自重10 3.2.2 静水压力10 3.2.3 扬压力10 3.2.4 泥沙压力11 3.2.5 浪压力11 3.2.6 荷载组合12 3.2.7.荷载计算成果14 3.3 抗滑稳定分析20 3.4 应力分析21

土石坝设计计算说明书

土石坝设计计算说明书 专业:水利水电建筑工程 指导老师:李培 班级:水工1303班 姓名:王国烽 学号:1310143 成绩评定: 2015年10月

目录 一、基本材料 (2) 1.1水文气象资料 (2) 1.2地质资料 (2) 1.3地形资料 (2) 1.4工程等级 (2) 1.5建筑材料情况 (2) 二、枢纽布置 (3) 三、坝型选择 (4) 四、坝体剖面设计 (5) 4.1坝顶高程计算 (6) 4.1.1 正常蓄水位 (6) 4.1.2 设计洪水位 (7) 4.1.3 校核洪水位 (8) 4.2坝顶宽度 (9) 4.3坝坡 (9) 五、坝体构造设计 (10) 5.1坝顶 (10) 5.2上游护坡 (10) 5.3下游护坡 (10) 5.4防渗体 (10) 5.5排水体 (11) 5.6排水沟 (11)

一、基本资料 1.1水文气象资料 吹程1km,多年平均最大风速20m/s,流域总面积2971km2。上游地形复杂,沟谷深邃,植被良好,森林分布面广,为湖北主要林区之一。 1.2地质资料 河床砂卵砾石最大的厚度达23m。两岸基岩裸露,支局不存在有1~8m厚的残坡积物。在峡谷出口处的左岸山坡,存在优厚1~30m,方量约150万m3 的坍滑堆积物,目前处于稳定状态。 1.3地形资料 坝址位于古洞口峡谷段,河谷狭窄,呈近似“V”型,河面宽60~90m。 1.4工程等级 本工程校核洪水位以下总库容1.38亿m3,正常蓄水位325m,相应库容1.16亿m3,装机容量3.6万kw,设计洪水位328.31m,校核洪水位330.66m,河床平均高程240m。混凝土面板堆石坝最大坝高120m。根据《水利水电枢纽工程等级划分及设计安全标准》DL5180—2003的规定,本工程为二等大(2)型工程。1.5建筑材料情况 坝址附近天然建筑材料储量丰富。砂砾料下游勘探储量318.5万m3,石料总储量21.86万m3,各类天然建筑材料的储量和质量基本都能满足要求。

重力坝课程设计

设计内容 一、 确定工程等级 由校核洪水位446.31 m 查水库水位———容积曲线读出库容为1.58亿3 m ,属于大(2)型,永久性水工建筑物中的主要建筑物为Ⅱ级,次要建筑物和临时建筑物为3级。 一、 确定坝顶高程 (1)超高值Δh 的计算 Δh = h1% + hz + hc Δh —防浪墙顶与设计洪水位或校核洪水位的高差,m ; H1% —累计频率为1%时的波浪高度,m ; hz —波浪中心线至设计洪水位或校核洪水位的高差,m ; hc —安全加高,按表3-1 采 内陆峡谷水库,宜按官厅水库公式计算(适用于0V <20m/s 及 D <20km ) 下面按官厅公式计算h1% , hz 。 113 120 22000.0076gh gD v v v -??= ??? 11 3.75 2.150 220 00.331m gL gD v v v -??= ??? 2 2l z h H h cth L L ππ= 式中:D ——吹程,km ,按回水长度计。 m L ——波长,m z h ——壅高,m V0 ——计算风速

h——当 2 20250 gD v =:时,为累积频率5%的波高h5%;当 2 2501000 gD v =:时, 为累积频率10%的波高h10%。 规范规定应采用累计频率为1%时的波高,对应于5%波高,应由累积频率为P(%)的波高hp 与平均波高的关系可按表B.6.3-1 进行换 超高值Δh 的计算的基本数据 设计洪水位校核洪水位 吹程D(m)524.19965.34 风速 v(m)2718 安全加高 c h(m)0.40.3 断面面积S(2 m) 1890.5719277.25 断面宽度B(m)311.80314.44 正常蓄水位和设计洪水位时,采用重现期为50 年的最大风速,本次设计 27/ v m s =;校 核洪水位时,采用多年平均风速,本次设计 18/ v m s =。 a.设计洪水位时Δh 计算: 18902.57 60.62 311.80 m S H m B === 设 设 波浪三要素计算如下: 波高: 2 1 13 12 2 9.819.81524.19 0.007627 27 27 h-?? ?? =? ? ?? h=0.82m 波长: 1 1 3.75 2.15 22 9.819.81524.19 0.33127 2727 m L-?? ?? =? ? ??

水工建筑物重力坝设计计算书样本

一、非溢流坝设计 ( 一) 、初步拟定坝型的轮廓尺寸 (1)坝顶高程的确定 ①校核洪水位情况下: 波浪高度 2h l=0.0166V5/4D1/3=0.0166×185/4×41/3=0.98m 波浪长度 2L l=10.4×(2h l)0.8=10.4×0.980.8=10.23m 波浪中心线到静水面的高度h0=π(2h l)2/ 2L l=3.14×0.982/10.23=0.30m 安全超高按Ⅲ级建筑物取值 h c=0.3m 坝顶高出水库静水位的高度△h校=2h l+ h0+ h c=0.98+0.30+0.3=1.58m ②设计洪水位情况下: 波浪高度2h l=0.0166(1.5V)5/4D1/3=0.0166×(1.5×18)5/4×41/3=1.62m 波浪长度 2L l=10.4×(2h l)0.8=10.4×1.620.8=15.3m 波浪中心线到静水面的高度h0=π(2h l)2/ 2L l=3.14×1.622/15.3=0.54m 安全超高按Ⅲ级建筑物取值 h c=0.4m 坝顶高出水库静水位的高度△h设=2h l+ h0+ h c=1.62+0.54+0.4=2.56m ③两种情况下的坝顶高程分别如下: 校核洪水位时: 225.3+1.58=226.9m 设计洪水位时: 224.0+2.56=226.56m 坝顶高程选两种情况最大值226.9 m, 可按227.00m设计, 则坝高227.00-174.5=52.5m。

(2)坝顶宽度的确定 本工程按人行行道要求并设置有发电进水口, 布置闸门设备, 应适当加宽以满足闸门设备的布置, 运行和工作交通要求, 故取8米。 (3)坝坡的确定 考虑到利用部分水重增加稳定, 根据工程经验, 上游坡采用1: 0.2, 下游坡按坝底宽度约为坝高的0.7~0.9倍, 挡水坝段和厂房坝段均采用1: 0.7。 (4)上下游折坡点高程的确定 理论分析和工程实验证明, 混凝土重力坝上游面可做成折坡, 折坡点一般位于1/3~2/3坝高处, 以便利用上游坝面水重增加坝体的稳定。 根据坝高确定为52.5m, 则1/3H=1/3×52.5=17.5m, 折坡点高程=174.5+17.5=192m; 2/3H=2/3×52.5=35m, 折坡点高程=174.5+35=209.5m, 因此折坡点高程适合位于192m~209.5m之间, 则取折坡点高程为203.00m。挡水坝段和厂房坝段的下游折坡点在统一高程216.5m处。 (5)坝底宽度的确定 由几何关系可得坝底宽度为T=( 203-174.5) ×0.2+8+(216.5-174.5) ×0.7=43.1m (6)廊道的确定 坝内设有基础灌浆排水廊道, 距上游坝面6.1m, 廊道底距基岩面4m, 尺寸 2.5× 3.0m( 宽×高) 。 (7)非溢流坝段纵剖面示意图

水库混凝土重力坝设计书

水库混凝土重力坝设计书 第1章基本资料 一、枢纽工程概况: P水库位于TS和CD两地区交界处,坝址位于X河桥上游十公里干流上。控制流域面积3.37万km2,总库容为14.39亿m3。 P水库枢纽由主坝、电站及泄水底孔等组成,水库主要任务是调节水量,供TJ和TS地区工农业用水和城市人民生活用水,结合引水发电。并兼顾防洪,要求:尽可能使其工程提前受益,尽早建成。 根据水库的工程规模及其在国民经济中的作用,枢纽定为一等工程,主坝为Ⅰ级建筑物,其它均按Ⅱ级建筑物考虑。 二、气象: P库区年平均气温为10℃左右,一月份最低月平均气温为零下6.8℃,绝对最低气温达零下21.7℃(1969年);7月份最高月平均气温25℃,绝对最气温高达39℃(1955年),多年平均气温见下表(表五)。 表一多年平均气温、水温表单位:℃ 本流域无霜期较短(90—180天),冰冻期较长(120—200天),P站附近河道一般12月封冻,次年3月上旬解冻,封冻期约70—100天,冰厚0.4—0.6米,岸边可达1米。流域冬季盛行偏北风,风速可达七、八级,有时更大些,春秋两季风向变化较大,夏季常为东南风,多年平均最大风速为21.5m/s,水库吹程D=3km。

流域多年平均降雨量约为400—700mm,多年平均降水天数及降水量见表六: 表二多年月平均降水天数及降水量表单位:mm 三、水文分析: 1、年径流:栾河水量较充沛,多年平均年径流量为24.5亿m3,占全流域的53%。年分配很不均匀,主要集中汛期七、八月份。丰水年时占全年50—60%,枯水年占30—40%,而且年际变化也很大。 2、洪水:多发生在七月下旬至八月上旬,有峰高量大涨落迅速的特点,据调查,近一百年来有六次大洪水。其中1883年最大,由洪痕估算洪峰流量约为24400—27400 m3/s,实测的45年资料中最大洪峰流量发生在1962年为18800 m3/s。洪峰历时三天左右,由频率分析法求得:几个重现期所对应的洪峰流量值(见下表表三、表四所示)。 表三 表四

清水河重力坝设计说明书

清水河重力坝设计说明书 (总24页) 本页仅作为文档页封面,使用时可以删除 This document is for reference only-rar21year.March

第一章清水河某电站的工程条件 1.1.气象、水文 清水河流域属亚热带高原气候区,由于大气环流和流域地形影响,气候类型较为复杂,垂直变化十分明显,多年平均气温为14.1C。 流域内降水较多,但年内及地区分配极不均匀,年降雨量为1130mm,4~10月占全年降水量的86.5%。支流独木河上游为多雨区,多年平均降雨量超过1200mm。每年5~8月为暴雨集中的季节,降雨量占全年的60%。 坝址集雨面积为4328km2,多年平均流量76m3/s,多年平均来水量23.97亿m3,径流系数0.48。 流域洪水特性与暴雨特性和流域自然地理条件密切相关。洪水过程一般从5月份开始,到10月份结束,汛期洪水较为频繁,年最大洪峰多出现在6~7月。设计洪水标准(P=1%时),洪峰流量为5240m3/s,相应3天为洪量6.0亿m3。校核洪水标准(P=0.1%)时,洪峰流量为7430m3/s,相应3天洪量为8.4亿m3。 坝址多年平均年输沙量52.8万t,主要集中在汛期,占全年输沙量的 92.8%,其中5~7月来沙量占全年的73.8%。 1.2.工程地质 电站地处云贵高原的黔中地区,区域内碳酸盐岩广布,属中低山岩溶山地地貌,地层自寒武系至三迭系均布分布。区域地处黔北台隆、遵义断拱南部,属扬子准台地中稳定的III级构造单元,自中更新世以来,区域内无断裂活动迹象,构造环境稳定,地震基本烈度为6度。 水库河段均属峡谷型水库。库区构造以南北向为主,北东向和北西向断裂也很发育。南明河近坝6km库段大部分为横向谷,上游库段为走向谷,左岸为顺向坡;独木河库段大部为走向谷,右岸为顺向坡。 水库两岸山体雄厚,其间分布有多层隔水层和相对隔水层,不存在向邻谷渗漏问题。 水库库岸多为坚硬的灰岩、白云岩组成,一般稳定性较好。局部以软岩为

相关主题
文本预览
相关文档 最新文档