当前位置:文档之家› 华理线性代数答案

华理线性代数答案

华理线性代数答案
华理线性代数答案

线性代数模试题试题库(带答案)

第一套线性代数模拟试题解答 一、填空题(每小题4分,共24分) 1、 若12335544i j a a a a a 是五阶行列式中带正号的一项,则,12 i j = =。 令1,2i j ==,(12354)(13524)134τπ+=+=,取正号。 2、 若将n 阶行列式D 的每一个元素添上负号得到新行列式D ,则D = (1)n D - 。 即行列式D 的每一行都有一个(-1)的公因子,所以D = (1)n D -。 3、设1101A ??= ??? , 则100A =110001?? ???。 23 111112121113,,010*********A A ????????????==== ??? ? ??? ????????????? L 可得 4、设A 为5 阶方阵,5A =,则5A =1 5n +。 由矩阵的行列式运算法则可知:1 555 n n A A +==。 5、A 为n 阶方阵,T AA E =且=+

《线性代数》习题集(含答案)

《线性代数》习题集(含答案) 第一章 【1】填空题 (1) 二阶行列式 2a ab b b =___________。 (2) 二阶行列式 cos sin sin cos αα α α -=___________。 (3) 二阶行列式 2a bi b a a bi +-=___________。 (4) 三阶行列式x y z z x y y z x =___________。 (5) 三阶行列式 a b c c a b c a b b c a +++=___________。 答案:1.ab(a-b);2.1;3.()2 a b -;4.3 3 3 3x y z xyz ++-;5.4abc 。 【2】选择题 (1)若行列式12 5 1 3225x -=0,则x=()。 A -3; B -2; C 2; D 3。 (2)若行列式11 1 1011x x x =,则x=()。 A -1 , B 0 , C 1 , D 2 ,

(3)三阶行列式2 31 503 2012985 23 -=()。 A -70; B -63; C 70; D 82。 (4)行列式 000 000 a b a b b a b a =()。 A 4 4 a b -;B () 2 2 2a b -;C 4 4 b a -;D 44 a b 。 (5)n 阶行列式0100 0020 0001000 n n - =()。 A 0; B n !; C (-1)·n !; D () 1 1!n n +-?。 答案:1.D ;2.C ;3.A ;4.B ;5.D 。 【3】证明 33()by az bz ax bx ay x y z bx ay by az bz ax a b z x y bz ax bx ay by az y z x ++++++=++++ 答案:提示利用行列式性质将左边行列式“拆项”成八个三阶行列式之和,即得结果。 【4】计算下列9级排列的逆序数,从而确定他们的奇偶性: (1)134782695;(2)217986354;(3)987654321。 答案:(1)τ(134782695)=10,此排列为偶排列。 (2)τ(217986354)=18,此排列为偶排列。 (3)τ(987654321)=36,此排列为偶排列。 【5】计算下列的逆序数: (1)135 (2n-1)246 (2n );(2)246 (2n )135 (2n-1)。 答案:(1) 12n (n-1);(2)1 2 n (n+1) 【6】确定六阶行列式中,下列各项的符号:

关于精品课程建设发展趋势的思考

关于精品课程建设发展趋势的思考 Meditation on Tendency to Develop Elite Courses 林大钧 By Lin Dajun 华东理工大学机械与动力工程学院 The School of Mechanical and Power Engineering, East China University of Science & Technology 摘要:以质量工程为契机,把握精品课程建设发展趋势,对传统的课程作理念层面的调整,以人为本发掘精品课程建设持续发展的内在动力,提出精品课程建设持续发展的关注重点。 Abstracts: Hold the tendency to develop elite courses by taking the advantage of quality project and make theoretic adjustment to conventional courses. Discover the inherent drive of sustainable development in exploring elite courses with people-oriented point and bring forward the key concern about persistent development of elite courses. 一.引言 I. Foreword 2003年教育部开始全面实施“高等学校教学质量与教学改革工程”(简称“质量工程”),在“质量工程”中把建设一批国家级精品课程作为建设目标之一,在教育部关于启动高等学校教学质量与“教学改革工程精品课程建设工作的通知”(教高[2003]1号)中明确提出精品课程要使用网络进行教学与管理,并形成中国高校精品课程网站。(什么是国家精品课程?教育部副部长吴启迪在“千门精品课程上网,打造高教新质量”新闻发布会上讲话中指出国家精品课程就是具有一流的教师队伍、一流的教学内容、一流的教学方法、一流的教材、一流的教学管理等特点的示范性课程。“五个一流”是对精品课程建设内容的基本定义,而“精品课程网站建设”是以教育信息化作为提高教学质量的手段,实现优质资源共享,使优质课程成果发挥示范作用,带动国内同类课程和其他课程建设,使不同高校的学生从网上大面积受益,对全面提高各校的教育教学质量起到重要作用。经过三年建设,教育部已经批准923门国家级精品课程,通过这批课程示范辐射,使各高校对精品课程建设的重要性有了更为深刻的认识,对如何建设精品课程也有了更为深刻的理解。在距教育部五年中完成1500门国家级精品课程建设规模还有二年时间的今天,既要抓住最后二次申报机会积极争取跨入国家级精品课程行列,赢得教育改革与发展的先机,更要从系统工程角度出发看精品课程建设的发展趋势,改变原有的高等教育课程的观念、内容、方法、评价等。因为一方面课程集中体现了国家对人才培养的期待和要求,表现在教育领域就是国家对教育目标、教育方针等一系列问题的制定。而这些较为宏观的战略层面的人才培养的指导思想和蓝图,正是通过国家对课程的设置,课程内容及其一系列的课程要素的规制和引导才得以具体化。另一方面,课程及其教学也是学习者获取知识、发展能力、提升素质,直至成才的主要途径。虽然当今社会的学习形式已经日益多样化,然而通过精心设计的课程活动,学习者能够更加高效、系统地获得成才的绝大部分素质。特别是要与国家对人才培养的要求与时俱进,如创新型国家的建设需要创新型人才等都对精品课程建设的发展趋势提出了更高的要求。从这个角度看,精品课程建设要结合现今世界大学课程发展的普遍趋势,围绕增强课程适应性、更好满足变动不居的社会不断提出的新要求,以及学习者自身对课程日益增长的个性化需求,对传统的课程作理念层面的调整。 In 2003, Ministry of Education started The Project of Reforming Teaching & Quality in

线性代数复习题及答案

《 线性代数复习提纲及复习题 》 理解或掌握如下内容: 第一章 n 阶行列式 .行列式的定义,排列的逆系数,行列式性质,代数余子式, 行列式的计算,三角化法及降阶法,克莱姆法则。 第二章 矩阵及其运算 矩阵的线性运算,初等变换与初等矩阵的定义,方阵的逆矩阵定义及性质 方阵的逆矩阵存在的充要条件,用初等变换求逆矩阵,矩阵方程的解法,矩阵的秩的定义及求法;齐次线性方程组只有零解、有非零解的充要条件,;非齐次线性方程组有解的充要条件,解的判定。 第三章 线性方程组 n维向量的线性运算,向量组线性相关性的定义及证明,向量空间,向量组的极大线性无关组、秩; 齐次线性方程组的基础解系,解的结构,方程组求解;非齐次线性方程组解的结构,用初等变换解方程组,增广矩阵含有字母元素的方程组的求解。 复习题: 一、填空 (1)五阶行列式的项5441352213a a a a a 前的符号为 负 ; (2)设)3,3,2(2),3,3,1(-=+-=-βαβα,则α= (1,0,0) ; (3)设向量组γβα,,线性无关,则向量组γβαβα2,,+-线性 无关 ; (4)设* A 为四阶方阵A 的伴随矩阵,且*A =8,则12)(2-A = 4 ; (5)线性方程组054321=++++x x x x x 的解空间的维数是 4 ; (6)设???? ? ??=k k A 4702031,且0=T A 则k = 0或6 ; (7)n 元齐次线性方程组0=Ax 的系数矩阵A 的秩r(A)秩是r,则其解空间的维数是 n-r ; (8)的解的情况是:方程组b Ax b A R A R 2),,()3(== 有解 ; (9)方阵A 的行向量组线性无关是A 可逆的 充要 条件;

昆明理工大学线性代数考试试题集及答案

《线性代数B 》 2010~ 2011 学年第 一 学期课程试卷A 一、填空 1. 125 642782516945 4321111= 12 . 2. 设A 、B 为4阶方阵,且,2||1 =-A 813=B ,则=||AB 1/2 . 3. 给定矩阵A ,且E A -可逆,满足B A E AB +=+2,则=B E A + . 4.设??????????=210110001A ,则=-1A ???? ??????--11012000 1 . 5.已知321,,ααα线性相关,3α不能由21,αα线性表示,则21,αα线性 相关 . 6.设???? ? ?????=??????????=??????????=120,61,321321αααt ,且1α,32αα,线性相关, 则=t 8 . 7.设A 是34?矩阵,且2)(=A R ,???? ? ?????=213010321B 则=)(AB R __2___ 8.设三阶方阵A 的每行元素之和均为零,又2)(=A R ,则齐次线性方程组O Ax =的通解为 )(111R k k ∈???? ?????? . 9. 向量组,11011????????????-=α,02132????????? ???-=α,31103????????????-=α???? ? ? ??????-=01014α的一个最大线性无关组为 421,,ααα . 10. 设A 为n 阶方阵,0=Ax 有非零解,则A 必有一个特征值为 0 . 二、单项选择

1..若=---+=--1 2 1 203242,112 2013z y x z y x 则( A ) )A ( 1- ; )B ( 2 ; )C ( 1 ; )D ( 0. 2.设C B A ,,均为二阶方阵,AC AB =,则当(C )时,可以推出C B =. .1111)D (;0110)C (;0011)B (;0101)A (? ? ? ???=? ?? ???=? ?? ???=? ?? ???=A A A A 3. 下列结论正确的是( A ) . )A ( s ααα,,,21 线性无关的充要条件是其中任意一个向量都不是其余向量的线性组合; )B ( 若向量321,,ααα线性相关,则21,αα线性相关; )C ( 若n 阶方阵A 与对角阵相似,则A 有n 个不同的特征值; )D ( 若方程组O Ax =有非零解,则b Ax =有无穷多解. 4. 已知321,,ηηη是四元方程组b Ax =的三个解,其中,3)(=A R ? ? ??? ???????=43211η,???? ????????=+444432ηη, 则以下不是方程组b Ax =的通解为( D ) . )A (;43214202???? ?? ??????+????????????--k )B ( ;43212101????????????+????????????--k )C (;22222101???? ????????+????????????--k )D (????? ? ??????+????????????43210123k . 5. 设向量组321,,ααα线性无关,则下列向量组中线性无关的是( B ) )A (133221,,αααααα--- ; )B (1321,,αααα+ ; )C (212132,,αααα- ; )D (32322,,αααα+. 6.若n 阶矩阵B A ,有共同的特征值,且各有n 个线性无关的特征向量,则(A )

线性代数试题及答案.

线性代数(试卷一) 一、 填空题(本题总计20分,每小题2分) 1. 排列7623451的逆序数是_______。 2. 若 122 21 12 11 =a a a a ,则=1 6 030322211211 a a a a 3。 已知n 阶矩阵A 、B 和C 满足E ABC =,其中E 为n 阶单位矩阵,则CA B =-1。 4. 若A 为n m ?矩阵,则非齐次线性方程组AX b =有唯一解的充分要条件是 _________ 5. 设A 为86?的矩阵,已知它的秩为4,则以A 为系数矩阵的齐次线性方程组的解空间维数为_ _2___________. 6. 设A为三阶可逆阵,??? ? ? ??=-1230120011 A ,则=*A 7。若A为n m ?矩阵,则齐次线性方程组0Ax =有非零解的充分必要条件是 8.已知五阶行列式1 23453 2011 11111 2 1403 54321=D ,则=++++4544434241A A A A A 9。 向量α=(2,1,0,2)T -的模(范数)______________ 。 10。若()T k 11=α与()T 121-=β正交,则=k

二、选择题(本题总计10分,每小题2分) 1。 向量组r ααα,,,21 线性相关且秩为s ,则(D) A.s r = B.s r ≤ C.r s ≤ ? D .r s < 2. 若A 为三阶方阵,且043,02,02=-=+=+E A E A E A ,则=A (A) A.8? B.8- C. 34?? D.3 4- 3.设向量组A 能由向量组B 线性表示,则( d ) A.)()(A R B R ≤ B.)()(A R B R < C.)()(A R B R = D.)()(A R B R ≥ 4. 设n 阶矩阵A 的行列式等于D ,则 () * kA 等于_____。c )(A *kA )(B *A k n )(C *-A k n 1)(D *A 5。 设n 阶矩阵A ,B 和C ,则下列说法正确的是_____. )(A AC AB = 则 C B =)(B 0=AB ,则0=A 或0=B )(C T T T B A AB =)()(D 22))((B A B A B A -=-+ 三、计算题(本题总计60分.1-3每小题8分,4-7每小题9分) 1。 计算n 阶行列式22221 =D 22222 22322 2 12 2 2-n n 2 222 . 2.设A 为三阶矩阵,* A 为A 的伴随矩阵,且2 1= A ,求* A A 2)3(1--. 3.求矩阵的逆 111211120A ?? ?=- ? ???

线性代数试题及答案。。

第一部分选择题(共28分) 一、单项选择题(本大题共14小题,每小题2分,共28分)在每小题列出的四个选项中只有 一个是符合题目要求的,请将其代码填在题后的括号内。错选或未选均无分。 1.设行列式a a a a 1112 2122 =m, a a a a 1311 2321 =n,则行列式 a a a a a a 111213 212223 + + 等于() A. m+n B. -(m+n) C. n-m D. m-n 2.设矩阵A= 100 020 003 ? ? ? ? ? ? ? ,则A-1等于() A. 1 3 00 1 2 001 ? ? ? ? ? ? ? ? ? ? B. 100 1 2 00 1 3 ? ? ? ? ? ? ? ? ? ? C. 1 3 00 010 00 1 2 ? ? ? ? ? ? ? ?? D. 1 2 00 1 3 001 ? ? ? ? ? ? ? ? ? ? 3.设矩阵A= 312 101 214 - - - ? ? ? ? ? ? ? ,A*是A的伴随矩阵,则A *中位于(1,2)的元素是() A. –6 B. 6 C. 2 D. –2 4.设A是方阵,如有矩阵关系式AB=AC,则必有() A. A =0 B. B≠C时A=0 C. A≠0时B=C D. |A|≠0时B=C 5.已知3×4矩阵A的行向量组线性无关,则秩(A T)等于() A. 1 B. 2 C. 3 D. 4 6.设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,则() A.有不全为0的数λ1,λ2,…,λs使λ1α1+λ2α2+…+λsαs=0和λ1β1+λ2β2+…λsβs=0 B.有不全为0的数λ1,λ2,…,λs使λ1(α1+β1)+λ2(α2+β2)+…+λs(αs+βs)=0 C.有不全为0的数λ1,λ2,…,λs使λ1(α1-β1)+λ2(α2-β2)+…+λs(αs-βs)=0 D.有不全为0的数λ1,λ2,…,λs和不全为0的数μ1,μ2,…,μs使λ1α1+λ2α2+…+ λsαs=0和μ1β1+μ2β2+…+μsβs=0 7.设矩阵A的秩为r,则A中() A.所有r-1阶子式都不为0 B.所有r-1阶子式全为0 C.至少有一个r阶子式不等于0 D.所有r阶子式都不为0 8.设Ax=b是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误的是() A.η1+η2是Ax=0的一个解 B.1 2η1+1 2 η2是Ax=b的一个解 C.η1-η2是Ax=0的一个解 D.2η1-η2是Ax=b的一个解 9.设n阶方阵A不可逆,则必有()

线性代数考试题库及答案(五)

线性代数考试题库及答案 一、单项选择题(共5小题,每题2分,共计10分) 1.在111 ()111111 x f x x x -+=-+-展开式中,2x 的系数为 ( ) (A) -1 (B) 0 (C) 1 (D) 2 2.A 是m ×n 矩阵,(),r A r B =是m 阶可逆矩阵,C 是m 阶不可逆矩阵,且 ()r C r <,则 ( ) (A) BAX O =的基础解系由n-m 个向量组成 (B) BAX O =的基础解系由n-r 个向量组成 (C) CAX O =的基础解系由n-m 个向量组成 (D) CAX O =的基础解系由n-r 个向量组成 3.设n 阶矩阵,A B 有共同的特征值,且各自有n 个线性无关的特征向量,则( ) (A) A B = (B) ,0A B A B ≠-=但 (C) A B (D) A B 与不一定相似,但 A B = 4.设,,A B C 均为n 阶矩阵,且AB BC CA E ===,其中E 为n 阶单位阵,则 222A B C ++= ( ) (A) O (B) E (C) 2E (D) 3E 5.设1010,0203A B ???? == ? ????? ,则A B 与 ( ) (A)合同,且相似 (B)不合同,但相似 (C)合同,但不相似 (D )既不合同,又不相似

二、填空题(共 二、填空题(共10小题,每题 2分,共计 20 分) 1.已知11 122 233 30a b c a b c m a b c =≠,则1111 22223333 232323a b c c a b c c a b c c ++=+ 。 2.设 1 010 2010 1A ?? ?= ? ?? ? ,若三阶矩阵Q 满足2,AQ E A Q +=+则Q 的第一行的行向量是 。 3.已知β为n 维单位列向量, T β为β的转置,若T C ββ= ,则 2C = 。 4.设12,αα分别是属于实对称矩阵A 的两个互异特征值12,λλ的特征向量,则 12T αα= 。 5.设A 是四阶矩阵,A * 为其伴随矩阵,12,αα是齐次方程组0AX =的两个线 性无关解,则()r A *= 。 6.向量组1 23(1,3,0,5,0),(0,2,4,6,0),(0,3,0,6,9)T T T ααα===的线性关系 是 。 7.已知三阶非零矩阵B 的每一列都是方程组1231231 23220 2030 x x x x x x x x x λ+-=?? -+=??+-=?的解,则 λ= 。 8.已知三维向量空间3R 的基底为123(1,1,0),(1,0,1),(0,1,1)T T T ααα===,则向量 (2,0,0)T β=在此基底下的坐标是 。 9.设21110012100,112004A a a ?? ?? ? ?== ? ? ? ????? 则 。 10.二次型2 2 2 123123121323(,,)222222f x x x x x x x x x x x x =++++-的秩为 。

(完整版)线性代数试题和答案(精选版)

线性代数习题和答案 第一部分选择题(共28分) 一、单项选择题(本大题共14小题,每小题2分,共28分)在每小题列出の四个选项中只有 一个是符合题目要求の,请将其代码填在题后の括号内。错选或未选均无分。 1.设行列式a a a a 1112 2122 =m, a a a a 1311 2321 =n,则行列式 a a a a a a 111213 212223 + + 等于() A. m+n B. -(m+n) C. n-m D. m-n 2.设矩阵A= 100 020 003 ? ? ? ? ? ? ? ,则A-1等于() A. 1 3 00 1 2 001 ? ? ? ? ? ? ? ? ? ? B. 100 1 2 00 1 3 ? ? ? ? ? ? ? ? ?? C. 1 3 00 010 00 1 2 ? ? ? ? ? ? ? ?? D. 1 2 00 1 3 001 ? ? ? ? ? ? ? ? ? ? 3.设矩阵A= 312 101 214 - - - ? ? ? ? ? ? ? ,A*是Aの伴随矩阵,则A *中位于(1,2)の元素是() A. –6 B. 6 C. 2 D. –2 4.设A是方阵,如有矩阵关系式AB=AC,则必有() A. A =0 B. B≠C时A=0 C. A≠0时B=C D. |A|≠0时B=C 5.已知3×4矩阵Aの行向量组线性无关,则秩(A T)等于() A. 1 B. 2 C. 3 D. 4 6.设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,则() A.有不全为0の数λ1,λ2,…,λs使λ1α1+λ2α2+…+λsαs=0和λ1β1+λ2β2+…λsβs=0 B.有不全为0の数λ1,λ2,…,λs使λ1(α1+β1)+λ2(α2+β2)+…+λs(αs+βs)=0 C.有不全为0の数λ1,λ2,…,λs使λ1(α1-β1)+λ2(α2-β2)+…+λs(αs-βs)=0 D.有不全为0の数λ1,λ2,…,λs和不全为0の数μ1,μ2,…,μs使λ1α1+λ2α2+…+ λsαs=0和μ1β1+μ2β2+…+μsβs=0 7.设矩阵Aの秩为r,则A中() A.所有r-1阶子式都不为0 B.所有r-1阶子式全为0 C.至少有一个r阶子式不等于0 D.所有r阶子式都不为0 8.设Ax=b是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误の是() A.η1+η2是Ax=0の一个解 B.1 2 η1+ 1 2 η2是Ax=bの一个解

(完整word版)线性代数考试题及答案解析

WORD 格式整理 2009-2010学年第一学期期末考试 《线性代数》试卷 答卷说明:1、本试卷共6页,五个大题,满分100分,120分钟完卷。 2、闭卷考试。 评阅人:_____________ 总分人:______________ 一、单项选择题。(每小题3分,共24分) 【 】1.行列式=----3111131111311113 (A)0 (B) 1 (C) 2 (D)3 【 】2.设A 为3阶方阵,数2-=λ,3=A ,则=A λ (A) 24 (B) 24- (C) 6 (D) 6- 【 】3.已知,,B A 为n 阶方阵,则下列式子一定正确的是 (A)BA AB = (B)2222B)(A B AB A ++=+ (C)BA AB = (D) 22))((B A B A B A -=-+ 【 】4.设A 为3阶方阵, 0≠=a A ,则=*A (A) a (B) 2a (C) 3a (D) 4a __ __ ___ __ __ ___ __ __ 系_ __ __ ___ __ 专业_ __ __ ___ __ _班级 姓名_ __ ___ __ __ ___ __ 学号__ ___ __ __ ___ __ _ ………… … … … … … … … … ( 密) … … … … … … … … … … … … ( 封 ) … … … …… … … … … … … … ( 线 ) … … … … … … … … … … … …

(A) )()(B R A R < (B) )()(B R A R > (C) )()(B R A R = (D) 不能确定)(A R 和)(B R 的大小 【 】6.设n 元齐次线性方程组0=Ax 的系数矩阵A 的秩为r ,则0=Ax 有非零解 的充分必要条件是 (A) n r = (B) n r ≥ (C) n r < (D) n r > 【 】7. 向量组)2(,,,21≥m a a a m 线性相关的充分必要条件是 (A) m a a a ,,,21 中至少有一个零向量 (B) m a a a ,,,21 中至少有两个向量成比例 (C) m a a a ,,,21 中每个向量都能由其余1-m 个向量线性表示 (D) m a a a ,,,21 中至少有一个向量可由其余1-m 个向量线性表示 【 】8. n 阶方阵A 与对角阵相似的充分必要条件是 (A)n A R =)( (B)A 有n 个互不相同的特征值 (C)A 有n 个线性无关的特征向量 (D)A 一定是对称阵 二、填空题。(每小题3分,共15分) 1.已知3阶行列式D 的第2行元素分别为1,2,1-,它们的余子式分别为2,1,1-,则=D 。 2.设矩阵方程??????-=???? ??12640110X ,则=X 。 3.设*=ηx 是非齐次线性方程组b Ax =的一个特解,21,ξξ为对应齐次线性方程组 0=Ax 的基础解系, 则非齐次线性方程组b Ax =的通解为 . 4.设n m ?矩阵A 的秩r A R =)(,则n 元齐次线性方程组0=Ax 的解集S 的最大无关组S 的秩=R 。

线性代数试卷及答案

《 线性代数A 》试题(A 卷) 试卷类别:闭卷 考试时间:120分钟 考试科目:线性代数 考试时间: 学号: 姓名: 题号 一 二 三 四 五 六 七 总 分 得分 阅卷人 一.单项选择题(每小题3分,共30分) 1.设A 经过初等行变换变为B ,则( ).(下面的(),()r A r B 分别表示矩阵,A B 的秩)。 () A ()()r A r B <; () B ()()r A r B =; ()C ()()r A r B >; () D 无法判定()r A 与()r B 之间的关系。 2.设A 为 (2)n n ≥阶方阵且||0A =,则( )。 () A A 中有一行元素全为零; () B A 有两行(列)元素对应成比例; () C A 中必有一行为其余行的线性组合; () D A 的任一行为其余行的线性组合。 3. 设,A B 是n 阶矩阵(2n ≥), AB O =,则下列结论一定正确的是: ( ) () ;A A O B O ==或 ()AX B B 的每个行向量都是齐次线性方程组=O 的解. ();C BA O = ()()().D R A R B n +≤ 4.下列不是n 维向量组12,,...,s ααα线性无关的充分必要条件是( ) () A 存在一组不全为零的数12,,...,s k k k 使得1122...s s k k k O ααα+++≠;

() B 不存在一组不全为零的数12,,...,s k k k 使得1122...s s k k k O ααα+++= 12(),,...,s C ααα的秩等于s ; 12(),,...,s D ααα中任意一个向量都不能用其余向量线性表示 5.设n 阶矩阵(3)n ≥1...1................1a a a a a a A a a a ?? ? ? ?= ? ? ???,若矩阵A 的秩为1n -,则a 必为( )。 ()A 1; () B 11n -; () C 1-; () D 11 n -. 6.四阶行列式 1 1 2 2334 4 0000 000 a b a b b a b a 的值等于( )。 ()A 12341234a a a a b b b b -; ()B 12341234a a a a b b b b +; () C 12123434()()a a b b a a b b --; () D 23231414()()a a b b a a b b --. 7.设A 为四阶矩阵且A b =,则A 的伴随矩阵* A 的行列式为( )。 ()A b ; () B 2b ; () C 3b ; () D 4b 8.设A 为n 阶矩阵满足23n A A I O ++=,n I 为n 阶单位矩阵,则1 A -=( ) () n A I ; ()3n B A I +; ()3n C A I --; ()D 3n A I + 9.设A ,B 是两个相似的矩阵,则下列结论不正确的是( )。 ()A A 与B 的秩相同; ()B A 与B 的特征值相同; () C A 与B 的特征矩阵相同; () D A 与B 的行列式相同;

2019培养方案-华东理工大学化学与分子工程学院

应用化学专业教学培养方案 一、专业特色 应用化学专业成立于1985年,是全国首批设立的应用化学专业之一,2007年获批成为国家特色专业建设点。化学与分子工程学院坚持以“化学为基础,应用化学为特色,理工学科协调发展,化学学科具有国际先进水平,建设世界一流、特色鲜明的高水平人才培养与科学研究基地”为发展目标。本专业以化学一流学科和国家重点学科应用化学、工业催化为依托,以诺贝尔奖科学家联合研究中心、国家工科化学实验教学中心、国家化学化工虚拟仿真实验教学中心为基地,坚持“立德树人”的基本原则,通过师资体系、课程体系建设,全方位设计了基于两校区办学的由精品课程平台、创新实践平台、竞赛平台、大型仪器培训平台、创业实战平台、国际交流平台等组成的人才培养体系,培养具备科学素养、创新能力、综合能力的创新型人才。坚持“以学生为本,通识教育、大类教学、复合创新”的办学理念,围绕化学学科前沿、国家重大需求和国民经济发展,培养化学基础研究和化工等相关行业的社会英才。毕业生除可进入化学博士学位授权一级学科、应用化学、制药工程等学科继续深造取得硕士、博士学位外,还可选择在教育、医药、精细化工、材料、能源、生物、环境、食品等领域的各类企事业单位就业。 二、培养目标 应用化学专业培养掌握化学基础知识和理论及其他自然科学基础知识,具备一定的应用研究、产品开发和工程实践能力,养成一定的家国情怀和高尚的道德情操,拥有良好的国际视野、科学素养和创新意识的高素质专门人才。 预期毕业后五年应具备: 能在化学、化工、医药、材料、能源、生物、环境、食品等领域从事科学研究、分析检测、技术开发、项目管理等工作,适应独立和团队工作环境。 以重要的法律、伦理、监管、社会、环境、工业安全和经济等方面宽广的系统视角管理多学科项目。 在终身学习、专业发展和领导能力上表现出担当和进步,在化学、化工领域具有职场竞争力。 三、毕业要求 1、工程知识:能够将数学、自然科学、工程基础和专业知识用于解决化学、化工及相关领域的工程问题。 2、问题分析:能够应用数学、自然科学和化工工程科学的基本原理,识别、表达、并通过文献研究分析化学、化工及相关领域的工程问题,以获得有效结论。 3、设计/开发解决方案:能够设计针对应用化学及相关领域复杂工程问题的解决方案,设计满

线性代数试题及答案

(试卷一) 一、 填空题(本题总计20分,每小题2分) 1. 排列7623451的逆序数是_______ 。 2. 若 122 21 1211=a a a a ,则=1 6 030 32221 1211a a a a 3. 已知n 阶矩阵A 、B 和C 满足E ABC =,其中E 为n 阶单位矩阵,则 CA B =-1 。 4. 若A 为n m ?矩阵,则非齐次线性方程组AX b =有唯一解的充分要条件是 _________ 5. 设A 为 86 ?的矩阵,已知它的秩为4,则以A 为系数矩阵的齐次线性方程组的解空间维数为 __2___________。 6. 设A 为三阶可逆阵,??? ? ? ? ?=-12 30120011 A ,则=*A 7.若A 为n m ?矩阵,则齐次线性方程组0Ax =有非零解的充分必要条件是 8.已知五阶行列式1 2 3 4 5 3201111111 2 1403 54321=D ,则=++++4544434241A A A A A 9. 向量α=(2,1,0,2) T -的模(范数)______________。 10.若()T k 11=α与()T 12 1 -=β正交,则=k 二、选择题(本题总计10分,每小题2分) 1. 向量组r ααα,,,21 线性相关且秩为s ,则(D) A.s r = B.s r ≤ C.r s ≤ D.r s < 2. 若A 为三阶方阵,且043,02,02=-=+=+E A E A E A ,则=A (A) A.8 B.8- C. 3 4 D.3 4-

3.设向量组A 能由向量组B 线性表示,则( d ) A.)()(A R B R ≤ B.)()(A R B R < C.)()(A R B R = D.)()(A R B R ≥ 4. 设n 阶矩阵A 的行列式等于D ,则 () * kA 等于_____。c )(A * kA )(B * A k n )(C * -A k n 1 )(D * A 5. 设n 阶矩阵A ,B 和C ,则下列说法正确的是_____。 )(A AC AB = 则 C B = )(B 0=AB ,则0=A 或0=B )(C T T T B A AB =)( )(D 2 2))((B A B A B A -=-+ 三、计算题(本题总计60分。1-3每小题8分,4-7每小题9分) 1. 计算n 阶行列式2 222 1 = D 2 222 2 22322 2 122 2-n n 222 2 。 2.设A 为三阶矩阵,* A 为A 的伴随矩阵,且2 1=A ,求* A A 2) 3(1 --. 3.求矩阵的逆 1112 1112 0A ?? ?=- ? ?? ? 4. 讨论λ为何值时,非齐次线性方程组2 1231231 231 x x x x x x x x x λλλλλ?++=? ++=??++=? ① 有唯一解; ②有无穷多解; ③无解。 5. 求下非齐次线性方程组所对应的齐次线性方程组的基础解系和此方程组的通解。 ??? ??=++=+++=+++5 221322 431 43214321x x x x x x x x x x x 6.已知向量组 () T 32 01 1=α、 () T 53 1 12=α、 () T 131 1 3-=α、

线性代数期末考试试题(含答案)

江西理工大学《线性代数》考题 一、 填空题(每空3分,共15分) 1. 设矩阵??????????=333222 111 c b a c b a c b a A ,??????????=333 222111d b a d b a d b a B 且4=A ,1=B 则=+B A ______ 2. 二次型233222213214),,(x x tx x x x x x f +-+=是正定的,则t 的取值范围__________ 3. A 为3阶方阵,且2 1=A ,则=--*12)3(A A ___________ 4. 设n 阶矩阵A 的元素全为1,则A 的n 个特征值是___________ 5. 设A 为n 阶方阵,n βββ ,,21为A 的n 个列向量,若方程组0=AX 只有零解,则向量组(n βββ ,,21)的秩为 _____ 二、选择题(每题3分,共15分) 6. 设线性方程组?????=+=+--=-032231 3221ax cx bc bx cx ab ax bx ,则下列结论正确的是( ) (A)当c b a ,,取任意实数时,方程组均有解 (B)当a =0时,方程组无解 (C) 当b =0时,方程组无解 (D)当c =0时,方程组无解 7. A.B 同为n 阶方阵,则( )成立 (A) B A B A +=+ (B) BA AB = (C) BA AB = (D) 111)(---+=+B A B A 8. 设??????????=333231232221 131211 a a a a a a a a a A ,??????????+++=331332123111131211232221a a a a a a a a a a a a B ,??????????=1000010101P , ???? ??????=1010100012P 则( )成立 (A)21P AP (B) 12P AP (C) A P P 21 (D) A P P 12 9. A ,B 均为n 阶可逆方阵,则AB 的伴随矩阵=*)(AB ( ) (A) **B A (B) 11--B A AB (C) 11--A B (D)**A B 10. 设A 为n n ?矩阵,r A r =)(<n ,那么A 的n 个列向量中( ) (A )任意r 个列向量线性无关

线性代数试题及答案

2011-2012-2线性代数46学时期末试卷(A) 考试方式:闭卷 考试时间: 一、单项选择题(每小题 3分,共15分) 1.设A 为m n ?矩阵,齐次线性方程组0AX =仅有零解的充分必要条件是A 的( A ). (A ) 列向量组线性无关, (B ) 列向量组线性相关, (C )行向量组线性无关, (D ) 行向量组线性相关. 2.向量,,αβγ线性无关,而,,αβδ线性相关,则( C )。 (A ) α必可由,,βγδ线性表出, (B )β必不可由,,αγδ线性表出, (C )δ必可由,,αβγ线性表出, (D )δ必不可由,,αβγ线性表出. 3. 二次型 ()222 123123 (,,)(1)1f x x x x x x λλλ=-+++,当满足( C )时,是正定二次型. (A ) 1λ>-; (B )0λ>; (C )1λ>; (D )1λ≥. 4.初等矩阵(A ); (A ) 都可以经过初等变换化为单位矩阵;(B ) 所对应的行列式的值都等于1; (C ) 相乘仍为初等矩阵; (D ) 相加仍为初等矩阵 5.已知12,, ,n ααα线性无关,则(C ) A. 12231,, ,n n αααααα-+++必线性无关; B. 若n 为奇数,则必有122311,,,,n n n αααααααα-++++线性相关; C. 若n 为偶数,则必有122311,,,,n n n αααααααα-++++线性相关; D. 以上都不对。 二、填空题(每小题3分,共15分) 6.实二次型()2 3 2221213214,,x x x x tx x x x f +++=秩为2,则=t 7.设矩阵020003400A ?? ? = ? ??? ,则1A -=

线性代数习题及解答

线性代数习题一 说明:本卷中,A -1表示方阵A 的逆矩阵,r (A )表示矩阵A 的秩,||α||表示向量α的长度,αT 表示向量α的转置,E 表示单位矩阵,|A |表示方阵A 的行列式. 一、单项选择题(本大题共10小题,每小题2分,共20分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1.设行列式11 121321 222331 3233a a a a a a a a a =2,则1112 13 31323321312232 2333 333a a a a a a a a a a a a ------=( ) A .-6 B .-3 C .3 D .6 2.设矩阵A ,X 为同阶方阵,且A 可逆,若A (X -E )=E ,则矩阵X =( ) A .E +A -1 B .E -A C .E +A D . E -A -1 3.设矩阵A ,B 均为可逆方阵,则以下结论正确的是( ) A .?? ???A B 可逆,且其逆为-1-1 ?? ???A B B .?? ??? A B 不可逆 C .?? ? ??A B 可逆,且其逆为-1-1?? ??? B A D .?? ???A B 可逆,且其逆为-1-1?? ?? ? A B 4.设α1,α2,…,αk 是n 维列向量,则α1,α2,…,αk 线性无关的充分必要条件是 ( ) A .向量组α1,α2,…,αk 中任意两个向量线性无关 B .存在一组不全为0的数l 1,l 2,…,l k ,使得l 1α1+l 2α2+…+l k αk ≠0 C .向量组α1,α2,…,αk 中存在一个向量不能由其余向量线性表示 D .向量组α1,α2,…,αk 中任意一个向量都不能由其余向量线性表示 5.已知向量2(1,2,2,1),32(1,4,3,0),T T +=---+=--αβαβ则+αβ=( ) A .(0,-2,-1,1)T B .(-2,0,-1,1)T C .(1,-1,-2,0)T D .(2,-6,-5,-1)T 6.实数向量空间V ={(x , y , z )|3x +2y +5z =0}的维数是( )

相关主题
文本预览
相关文档 最新文档